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Introduction

The purpose of this paper is to find equations associated to given compact Riemann surfaces. Though
all compact Riemann surfaces are obtained by algebraic equations, it is very difficult to give concrete
equations for compact Riemann surfaces. Kuribayashi showed in [Ku] that if a compact Riemann
surface X has an automorphism 7 such that the genus of X/(7) is zero, an equation of X is given by

the following formula

v =1 —a)™.
i=1
Here, p is the order of the automorphism 7 and 7 is given by the number of branched points of
the natural projection X — X /(7). We consider this formula in §1 and call it a ”semi-hyperelliptic
curve”. Girondo and Gonzalez-Diez [GG] give the values of the exponents m; for prime number p by
considering the rotation number of the automorphism 7. Using their idea, we obtain the values of
the exponents m; for all natural numbers p. We also obtain some conditions of a;.
In §2, we consider the compactification of H/T';, where

_ qa+1 qb
Fq—{< ” qd+1>€SL(2,Z)|a,b,c,d€Z}

is the principal congruence subgroup of level ¢ € N. We denote these compact Riemann surfaces by
Xg. It is well known that X7 is the Klein’s quartic [Kl]. We see that there is an automorphism 7 of
X, such that the genus of X,/(7) is zero, for ¢ < 10 or ¢ = 12.

In §3, we consider equations of X,. We remark that the equations are known. For ¢ < 5, equations
of X, is y = 0 since the genus of X, is zero so that X, is isomorphic to the Riemann sphere. An
equation of Xg is an elliptic curve

y2 =23 -1

since X has an automorphism of order 3 with fixed points. The Klein’s quartic X7 is given by the
classical equation
y = a(x—1)%

Furthermore, equations for prime numbers ¢ are given in [IT], and Ishida gives equations for all natural
numbers ¢ in [Is]. They consider a family of modular functions
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for » € Z which aren’t divided by ¢. Here, K, ,(7) is Klein forms of level ¢ which defined by the
following infinite product expansion

u(u—1)

Kou(7) = exp (mv/To(u — 1) 7 (1= ") T] (1 - ") (1 = ¢¢") (1 - ¢™) 2,
n=1

where ¢’ = exp (2r/—17) and ¢” = exp (2rv/—1(ur + v)). They show that X3(7) is integral over
Q [X2(7)%e], where g4 is 1 or 2 according to whether ¢ is odd or even and then, get equations of X,.
Recently, Yang gives another way to get the equations in [Ya] by generalizing Dedekind n-functions.
Then we give a new approach to get equations of X, for ¢ < 10 or ¢ = 12, which are semi-hyperelliptic
curves. The advantage of our way is that it is resolved in a more simplyer way. By using a method of
§1, we give equations of these X, except for values of constant numbers a;. It is done by computing
rotation numbers of parallel displacement.
In §4, we get an equation of Xg completely including constant numbers a;. The equation is

y® =2 (x —1)(xz +1).

We determine a; from the automorphism group of Xg agree with the one of the compact Riemann
surface defined by an equation which we get in §3. We consider automorphisms in the projective
space because it is difficult to consider them on algebraic curves in C2.

1 Properties of semi-hyperelliptic curves

We recall that a relation between algebraic functions and compact Riemann surfaces. Let
p .
F(z,y) =Y ai(z) -y’ € Clz,y
i=0

be an irreducible polynomial. If p > 1, there exists a compact Riemann surface Xr which contains
the connected Riemann surface

{ ($7y) € (CQ ‘ F(J:’y) = 07 Fy(a"?y) 7é O7ap(x) 7é 0 } ’ (11)

which is an open Riemann surface with finitely many complementary points. The first projection
(z,y) — z is a holomorphic function and admits a holomorphic extension Xrp — C. X F is uniquely
determined by F'(x,y) up to conformal maps. Conversely, all compact Riemann surface X has an
irreducible polynomial F(x,y) such that Xp is isomorphic to X. It is shown by considering the
meromorphic function field. Let M(X) be the meromorphic function field of X. M(X) is an
algebraic function field of one variable. In other words, there exists an element f € M(X) \ C such
that the extension C(f) C M(X) is finite. It is known that

[M(X) : C(f)] = deg(f)
and if g € M(X) is injective on the generic fiber of f, we get M(X) = C(f, g). There is an irreducible
polynomial F(x,y) such that F (f(x),g(z)) =0 on X. X is isomorphic to Xr by extension of
X3z~ (f(z)9(z)) € Xp.

Our purpose is to find such irreducible polynomials concretely to given especial compact Riemann
surfaces. Let (;, be a primitive p-th root of unity. The following proposition motivates us to the main
theorem of this paper.



Proposition 1.1. Let X be a compact Riemann surface which has an automorphism T of order p
such that the genus of X/(7) is zero. Then an equation of X is given by a semi-hyperelliptic curve

r

v’ =] — a)™ (1.2)

=1
and T corresponds to (z,y) — (x,(py) on this semi-hyperelliptic curve.

Proof. Let 7" be an automorphism on M(X) defined by 7*(f) = f o 7. Since
MX) T ={f e MX)|T*(f) =1}

is isomorphic to M(X/(r)), there is a meromorphic function x € M(X) such that M(X)™") = C(x).
One can easily see that the degree of x is p and then [M(X): C(x)] = p < co. We regard the
automorphism 7* as an endomorphism of the vector space M(X) over the field C(x). We claim that
the minimal polynomial of 7 is t? — 1 € C(x)[t]. Since (7%)P = id, it suffices to show the minimality
of the degree. We assume that

ap(x) + ar(x) 7F + -+ ap_1(x) (TP =0, (1.3)

where ap(x),--- ,ap—1(x) € C(x). We should show ¢;(x) = 0 for all [ = 0,---,p — 1. We take a
point P € X such that P, 7(P), --- , 7P~ 1(P) differ from each other and a;(x)(P) is finite for all I.
We also take meromorphic functions f; for j = 1,---,p such that f; (TZ(P)) = j!. The reason of the
existence of f; is shown by the next theorem. For a proof, see [Fr| for example.

Theorem 1.2. Let X be a compact Riemann surface and S C X be a finite subset. Assume that for
each s € S a complex number as € C is given. Then there is a meromorphic function f € M(X)
such that f(s) = as for all s € S.

By substituting f;(P) for (1.3), we have
ao(X)(P) + al(X)(P) iAo+ ap—l(X)(P) ) jp_l —0.

This means that at most (p—1)-th degree polynomial has p distinct solution, then we have a;(x)(P) =
0. Since this argument is held for all such points P € X, we have a;(x) = 0. Therefore, the minimal
polynomial of 7% is ¥ — 1.

By Cayley-Hamilton theorem, (, is an eigenvalue of 7*. We take an eigenvector y € M(X), that
is, 7*(y) = {py. By 7" (y?) = yP, we get y¥ = Zég € C(x). Replacing y with %
y? is an element of C[x]. We can also assume y” is a monic polynomial in x by replacing y with cy
for a suitable non-zero constant c. Furthermore, since y is injective on the generic fiber of x, we have
M(X) = C(x,y). Then we conclude that an equation of X is given by the semi-hyperelliptic curve
(1.2).

We finally check the behavior of 7 on this semi-hyperelliptic curve. Let

, We can assume

®:X 5P+ (x(P), y(P)) € { The compact Riemann surface given by (1.2) }



be an isomorphism and (z,y) = (x(P), y(P)). By

Porod Yz, y)=dor(P)
= (xo7(P), yo1(P))
= (x(P), Gy(P))
= (=, Gpy)

we have that 7 corresponds to (z,y) — (z,(y). O

Remark 1.3. The irreducibility of

,
yP — H(x —a;)
i=1
s shown by the behavior of T on the semi-hyperelliptic curve. If it is a reducible polypomz’al, the map
(x,y) — (x,Cy) is not defined on a compact Riemann surface defined by = [Ii—(z — a}), here
/
p <p-.

By repeating the replacement of y to (x — a;)y, we can assume 1 < m; < p. Our next goal is to
determine r, m; and a; in the definition of a semi-hyperelliptic curve. To do this, we have to consider
some properties of a semi-hyperelliptic curve. Let X be a compact Riemann surface defined by (1.2)
and we see that how X is done its compactification. By (1.1), X is obtained by the compactification
of

{<w,y> e<cZ|yp=H<x—ai>mi,y¢o} (14)

=1

and thus, points which are related to (a;,0) and infinity points are added. To see that how to add
points to the curve (1.4) by compactification, we shall define a chart ¢pp around each point P.

Let ged(a, b) be the greatest common divisor of a and b.

If P = (a;,0), we consider

1 P mg P mg
op (t) = [ tedemd + q;, teedlems H (tgcd@v’”i) +a; — ak)
ki

defined in a small disc. Then the branch order of the first projection X 3 (2,y) — z € C at

(a;,0) is m. To be the degree of this projection is p, we have to add ged(p,m;) points
(ai1,0), 5 (@, ged(pyms), 0)-  We sometimes use simply notation a;; instead of (a;;,0). We also
use (a;,0) if ged(p, m;) = 1. We see the branch order of 7 : (z, y) — (x, (y) at a;; is m by

considering the natural projection X — X /(7).
If P is a infinity point, we also consider

m my
ol(0) - (tgcd@,m), + wedtom) (/H;1 (1 _ aitigcd@,m)) ) (0<|t| <e)
SH(t) =




where m is >;_; m;. Since the branch order of the first projection at a infinity point is m, we
also need to add ged(p, m) points 001, -+, Oged(p,m) and the branch order of 7 at oo; is m. In

particular, the infinity points are non-branched points of 7 if and only if m is divided by p.

In Proposition 1.1, we take ¥ be an isomorphism from X/(r) to C and let Q1,--- ,Q,s € X/(r)
be the branched values of the natural projection X — X/(r). By composing ¥ with a Mdbius
transformation if necessary, we can assume ¥((Q);) is contained in C for all i. By the next commutative
diagram

The natural projection
X/(7)

o l+

X' >

The first projection

where X’ is the compactification of (1.4), we have

U{Q1, - ,Qs}) ={a1, - ,ar}.

Thus, we can assume r = s, ¥(Q;) = a; and the infinity points are non-branched points of 7. By
the following facts, we obtain conditions about m;. Under the assumption of Proposition 1.1, let
Pii,--- ,Piyn, -, P, -, Py, be the branched points of 7, where P; 1, --- , P; ,, are 7 equivalent
points. Namely, 7(P;1) = P2, 7(P;2) = Pi3, -+ ,7(P;n;) = P;1. Then the Riemann surface X is
given by

s
v =[] @-w(Pa))™
i=1
and the exponents m; are satisfied with ged(p, m;) = n; for all ¢ and )", m; is divided by p.

In order to completely determine m;, we define the ”rotation number” (cf. [GG]). Let X be a
Riemann surface which has an automorphism 7 of order p, and a point P € X be fixed. Take n to be
the smallest natural number such that 7"*(P) = P and ¢ to be a 7-invariant chart around P centered
at the origin. Then ¢ o 7" 0 ™! is an automorphism of a small disk fixing the origin with order B,
Hence, it is of the form

QOOTnOgO_l(t):C%'t. (1.5)

Here, k is the integer with 0 < k < %. We call the pair of n and k a rotation number of 7 at P, and
we denote it by R-(P) = R(n, k).

Remark 1.4. The number k is independent of the choice of the chart ¢, and we see that R,(P) =
R,(P') if P and P’ are T equivalent.

We often consider the rotation number at branched points of the natural projection X — X/(7).
Actually, we simply have R(P) = R(p,0) if P is a non-branched point of this projection. On other
hand, if P is a fixed point of 7, we have n = 1 and the rotation number’s concept, for these points,
is only the exponent k of (1.5).

For getting exponents m;, we consider the rotation number at a;; of a semi-hyperelliptic curve
(1.2).



Lemma 1.5. Let X be a semi-hyperelliptic curve and 7 be an automorphism (z, y) — (z, Gy) of X
as before. Let k be a unique number satisfying k - m =1 mod m with 1 < k < m.
Then

R‘r(ai,l) = R( ng(pa mi)a k)

Proof. The existence and uniqueness of k are shown by an elementary argument. Indeed, if a and b
are coprime integers, the equation ak + bl = 1 has a unique number solution k& with 1 < k < b for
the suitable integer .

It is clear that the smallest number n with 7"(a;;) = a;; is ged(p, m;) since we add ged(p, m;)
points a; 1, , a; ged(pm;) t0 (1.4). Then by

spai,l o Tng(pvmi) o 80;11 (t)

) P My p mg
= ((pai’l o Tng(pamz)) t ged(p,m;) + ai, tged(p,my) H (thd(p’mi) + a; — ak‘)

p mg p mg
= Pa;, teedlemi) 4+ q;, C p . ¢ ged(p,my) H (tgcd(P»mi) +a; — ak)

ged(p,m;)

ki
k
= -t
Cgcd(;mi) ’
we have Rr(a;;) = R(ged(p, m;), k). O

From above results, we obtain the next theorem.

Theorem 1.6. Let X be a compact Riemann surface which has an automorphism 7 of order p such
that the genus of X /() is zero. Py 1, - ,Pin,,- + ,Pr1, -+, Prp, are all branched points of T, where
Py, , Pip, are T equivalent points and the rotation numbers are given by R,(a;;) = R(ni, k;) for
all i. If we take unique numbers m; such that n; = ged(p, m;) and k;- % =1 mod n% with 1 < m; < p,
an equation of X is a semi-hyperelliptic curve given by

T

' == —a)™

i=1

and T corresponds to (x,y) — (x,(py). Furthermore, if we take an isomorphism ¥ from X /() to C,
a; is given by ¥ ([Pi1]).

The existence and uniqueness of m; are shown by the same argument as in the proof of Lemma
1.5. Of course, > .., m; is divided by p in this case. Finally, we give a remark about normalization.
By composing a suitable Mobius transformation to W, we get a normalized equation of X, namely

Y= = 1) (= ) (@ — )

Therefore, if r < 3, we immediately determine an equation completely, which corresponds to X, for
q<T.



2 The genus of quotient compact Riemann surfaces of X,

In this section, we see that there is an automorphism 7 of X, such that the genus of X,/(7) is zero
for ¢ <10 or ¢ = 12.
Let H be HUQU {o0}, and we give a unique topology of H such that it satisfies the following

properties.

1) The topology induced by H gives the usual topology on H.

2) Elements of SL (2,7) acts continuously on H.

3) A subset of H is a neighborhood of oo if and only if it contains a set {z € H:Imz > C }U{oo}

for a positive number C' > 0.

Since X, = H/T is isomorphic to H/T, we redefined X, by H/T,. We take an automorphism
T, of X, given by [z] — [z + n], where n is a positive divisor of ¢. It is grad if the genus of X /()
is zero.

Remark 2.1. We naturally think that the genus of X,/(T) decreases as the order of T € Aut(X,)
increases 1. The order of automorphisms of X, is at most q for ¢ > 7, and the remainder of
q divided by 4 isn’t 2 or q is divided by 3 (see Proposition A.3 in appendiz). For example, q =
7,8,9,11,12,13,15,---. The order of the automorphism T : [z] — [z + 1] reaches the bound for these
q. Thus, taking T, especially 11, from automorphisms of X, is reasonable.

For getting the genus of X,/(7,), we define some notations first.

Notation 2.2. For I' C SL(2,Z), we define T by T U —T and for Q=0qQu {0}, we define next
notations. A )
Sai=Q/Tq, hyi= #84, Ryi= |SL(2,2) : T,

Let X7 be H/Fg‘, which is isomorphic to Xy /(m,), where

ry :z{(i Z) € SL(2,Z)|la=d=1,c=0 (mod ¢q), b=0 (mod n)}
We also define
Spi= Q/Ty, W= #Sy, Ryi= [SL(2,2) : 7] .

n

We set gq and gy be the genera of Xq and Xg', respectively.
Finally, for a natural number ¢ € N, let P(q) be the set consisting of all primes | which divides
q. For example, P(12) ={2,3}.

The next theorem is well known. For a proof, see [Fr] or [Si] for example.
Theorem 2.3. For q > 3, we have
3 2 2
_q 1 _q 1 _ 4 la=06)q 1
o= T () om=% I (1-p) a=1e 5P I (1)
1eP(q) 1€P(q) leP(q)

We remark that Ry = #PSL(2,Z/qZ). Before getting g, we evaluate Ry and hy. It is because
we have gg =1 — %Z} + % if I'y acts freely on H. Actually, I'y acts freely on H for ¢ > 4.

LOf coures, there are opposite cases. For example, see table 7 in appendix.



Proposition 2.4. For q > 3, we have

2
n_ Nq 1
=" ] (1l2)

leP(q)

Proof. We get it by [SL (2,Z) : fq} - [SL(2,Z) : ngfg : fq} and [fg : fq] — [T =% O
Then we consider hy. Let I' be a subgroup of finite index of SL (2,Z) and k be an element of Q
We take N € SL(2,7Z) such that N(oo) = k. Then there is a positive number R such that

{MEN‘lfN|M(oo):oo}:{j:<(1) m1R>|meZ}.

We call R the width of £ and use the notation Wr (k) [Fr].

Remark 2.5. This definition is independent of the choice of N since if we take another N', it
satisfies N' = N ((1) 11’) for some b € Z. Moreover, it depends only on the I'-equivalence class. It
is because if k and k' are satisfied v(k) = k' for some v € T, we have YN(c0) = k' and then
N7ITN = (yN)"'(yN). Therefore, we can define the width of elements of Q/T' in a natural way
and we use the same notation.

Lemma 2.6. Let I' and TV be subgroups of finite index of SL(2,7Z) and each of them contains the
negative unit matriz. Set T' to be a subgroup of I" and p to be [I':T]. Let us take an element
from @/I" and let k denote its representative. We consider the quotient of the stabilizer of k in T
determined by I'. Let k1, --- , kp, denote representatives of this quotient’s elements. Then

h
p - Wri(k) = Z Wr (ki) -
i=1

Proof. Let SL(2,7), and I'j, be subgroups of SL (2,Z) and I", respectively. Each of them fixes k.
Since Wrv(k) = [SL (2,Z), : T'], we take Ni,---, Ny, () which are the set of left cosets of '} in
SL(2,Z),. Fori=1,--- h,let SL(2,Z), and 'y, be subgroups of SL(2,Z) and I' such that they
fix k;, respectively. Since Wr(k;) = [SL (2, Z)M : F,ﬂ], we also take Nj 1, -+, Njyy(x,) Which are the
set of left cosets of 'y, in SL (2, Z)M. Then by letting Aq,---, A, denote the set of left cosets of I’

in IV and M, My, --- , My, satisfy M (k) = Mi(k1) = -+ = Mp(kp) = 00, we claim that
P MN, AT = M;N; ;T (2.1)
My v %.J

We prove (2.1) in several steps.
Step 1: MN, A, NMN, AT = ¢.
We assume MN,A,T NMNyA,T' # ¢. We should show p = p/ and v = v/. There is v € T such
that
MN,A, = MN,, Ay < N/;lNM = A AL,

Since A,yA;! € T’, we get NJlNH eI and so p = /. We also get v =1/ by A,T'N AT # ¢.



Step 2 MZNZJF N Mi’Ni’,j’F = ¢
We assume M;N; ;I' N My Ny yT' # ¢. We should show ¢ =i’ and j = j'. There is v € I' such that

MiNi’j:Mi/N/ /’y<:>N, ,M MNlj—

Then we get
V(i) = Ni/_,;/Mi/_lMiNi,j(’ii) = Ni’_,}/Mi’_l(oo) = Ky

and so i = ¢'. Since N; ;I' N N; I # ¢, we also get N; ;I'x, N N; Ty, # ¢ and so j = j'.
Step 3: The left-hand side is contained in the right-hand side.
It is sufficient to prove that MN,A, is contained in the right-hand side. We take v € I' and 4
such that A; (k) = v(k;). Since M; 'MN,A,y € SL(2,7)s,, there is j such that M, ' MN,A,y €
Ni,jrm C NZ'JF. Then we have MN#AV S MZNZJP
Step 4: The right-hand side is contained in the left-hand side.
It is sufficient to prove that M;N; ; is contained in the left-hand side. We take v € I' such that
~v(k) = K;. Since M_lMiNmy € SL(2,Z), there is p such that M_lMiNm-v € NIy, € N,I'. Then
there is v such that M;N; ; € MN,A,T.

Thus, the equation (2.1) is shown and the proof is completed. O

In special case IV = SL(2,Z), we get
Corollary 2.7. Let ' be a subgroup of finite index of SL(2,Z). Then
SLZ):T| = > Wil
keQ/T

We then evaluate hg by using a width.

Notation 2.8. Let p be a natural number and HZ 1Pt be the prime factorization of it. We define
a multiplicative function N (p) by

N(p)::ﬁ(1+Ti‘zili>.

i=1
Here, we note that N'(1) is 1.

Proposition 2.9. For ¢ > 5, we have
ng-N (%) 1
he=——5 1T (1~ 2)-

Proof. Let p be L. We split the proof into several steps.
Step 1: We describe by % a representative of x € S, where x and z are coprime integers. We claim
that 7
Wrn(k) = ———.
ged(p, 2)

q
Here, we note that oo is % and ged(p, 0) is defined to be p.



Let k be ged(p, z) and p/, 2’ are coprime integers such that p = kp/, z = kz’. Wetake N = (1Y) €
SL(2,7) and consider elements of N _1F’;N such that oo is fixed. By

w —y\ [—qzzZ’R+1 np'z®R z y\ _ (1 np’R
-z x —qzZ R qxzZR+1)\z w) \0 1
we have Wra (k) < np’. Then we should show Wrn (k) > np'.
We consider all the elements in N *IFZLN which fix co. Since

w —y\ (1 nb\ [z y
-z 0 1 Z w
we see that nzwb is a multiple of ¢, that is, wb is divided by p’. If not, nzwb = —2 = 2 in modular

q by diagonal components of (2.2). It is a contradiction with ¢ > 5. Thus, by (1,2) component of
(2.2), we have Wrn (k) > np'.

nzwb + 1 nw?b
—nz2b —nzwb + 1

) (moda) (2.2

Remark 2.10. The condition q > 5 in Proposition 2.9 is owing to Step 1. Indeed, we have
1 0\ '[/=4m+1 2m \ /1 0\ (1 2m
2 1 —8m  4m+1)\2 1) \0 1

1 0\ ' [—=4m—1 2m+1) (1 0\ (1 2m+1
2 1 —8m—-4 4m+3)\2 1) " \o 1 )
Thus, we obtain

-1
{Me(é?) ﬂ(égwM@QZm}:{iG5T>mez}
This wmplies Wr1 (3)=1#2=

_ 4
ged(4,2)

Step 2: Let Hle p;" be the prime factorization of p. For p and 0 < j; < r;, we define

1 (4i=0)

Ni(Gi) = Milp,py') = {(pz‘ + 1)pgi_1 (1< <mr;).

We claim that the number of elements of S, such that the denominators of their representative is
divided by [T, pl is
hg
[Ti= M)
Let H,, be the subgroup of SL (2,Z) such that these (2,1) entries are dividid by natural number
m. It is sufficient to prove that

[SL (2,7) : Hm:lpgi} = ﬁNl(ji)'
=1

10



We get it by

and so on.

Step 3: For p, we define

: i —1)pli .
Na(Gi) = No(p,pli) = § PP (1< gy <y — 1)
pritt )
pitl (Ji=ri).

Let A, whose width of its element with respect to I'y 2 s anzl pgi, be the subset of S;. We claim
that

h k
#A = LT[ MNa(di) -
P L

For elements of A, by Step 1, the denominators of representatives are divided by Hle pfi_ji and
are not divided by pis 7= T! [Lizs p, 7 for all s = s1, -+, s, and for positive j;. By Step 2, we get
h h
#A = S . 1 .
15, Mi(ri — ji) ; Ni(rs = js + 1) [Tz N1(ri = Ji)
h
+ ) : = :
Sus 5, N1(7“51 —Js1 T 1)./\/1(7’52 — Jsy T 1) Hi;ésl,SQ Nl(ri - Ji)
h
e (1) : g .
SIPZ;S# [L-i Mi(rs, —ds, +1) - Tliey s, N1(ri = i)
ok
= TG, (23)
D -
=1
The last equality is showed as follows. We assume that n]IE, pzz = npi’rf pi’ﬂ p;;’jjllill cep
and 1 < jpyy <rpyg forallt=1,--- 1.
#A
— hq
(pr+ P (o P oy + VP57 T (g + DT
hq
(Pr+DPT - (a A+ D)Py ™ P + D e+ Py T (s gy T
h’q

(prAD)pP - (pat Dy (VP (paa+ DS (e + Dy

2By taking a representative of elements of Sq, we may consider the its width with respect to I'y by a natural way.

11



hg

= = P P
(p1 + 1)pit L., (pn + 1)py" 1(ph+1 + 1)p;,’ff It (g + 1)10;?11 =+ 1)
h’q
e _ ~ —— —
(pr + 1)pit .. (pn + 1)py" l(ph+1 + l)pZ’fll I (g + 1)p;;++lz =l 41)
+ .
+ (=1)kh L :
(pr+D)p1 - (A1) (g + D)o P+ Doy (Phgiga +1) -+ - (pr+1)
i1t i1 a1 dniatl iyl
p (p1+1)- (Prt1 +1) p (p1+1) (Prt +1)
i1+l i 141 jn .
L hg prepep S R e el
P (pr+1)- (phyr + 1)
i1+l jnptl , i1l el ra ~
Chg prpe R pET PSS e g P el
p (pr+ 1) (Pht + 1) (Prgi+1 + 1) p (p1+1)-- (prgr + 1)(pr + 1)
+ “e
(Cpyenha DU PRPREY D P R
P (pr+1)-(px+1)
h pl .. ph p2h+11 .. .p‘}ihi'll pzhﬁl+11 . .pzk
N ;q . (lerJr 1) '?pk J:lJ)r A Pt (P +1) - (o + 1)
—Phy2 Phl Phyipr + 1) (P +1) — - = pag1 - Phyi—1 Phrirr +1) - (pr + 1)
—Pht1 - Phtl (Prgig2 + 1) (e +1) — - = pry1 - Pyt Prpier +1) - (pe—1 + 1)
et (_1)k—h }
hg DL PRDRS R P
= 9. . —1).-.. -1 +1—-1)-(po+1—1
D (p1 i 1) . (pk n 1) (ph+1 ) (ph+l ) (ph+l+1 ) (pk )
h k
Sl § 16D
p =1

Example 2.11. Let g be a semiprime number p1pa. We consider elements of Sp,p, such that their
width is p1ps with respect to F}hpg. By Step 1, the width of kK = [f] € Spip, 18 p1p2 with respect to

F11>1p2 if and only if gcd(p1p2, 2) = 1. The denominator z is not divided py and pa. By Step 2 and the

following calculation, we count the number of such k:

h . hp.ps . B, ps hpps
P2 Ni(pip2,p1)  Mi(pip2,p2)  Ni(pipe,p1) - Ni(pip2, p2)
—h ~ hpipy hpipy hpyps
P2 i+l pa+1l o (4 1)(pe+1)
Bpyps - P1D2

(p1+1D(p2+1)
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h
=N (p1p2, 1) - Na(pip2, p2).
p1p2

This equation is corresponding to (2.3) in Step 3.
Step 4: For p, we define

Ns(ji) = Na(p, pli) = { P!

Pt (1<ji<ri—1).

Let B, whose width of its element is anzlpji, be the subset of 5. We claim that

i
ok
#B =] Ns(i)-
P
(2
It is shown by Lemma 2.6. Indeed, we have
koo bk
p-n][pl - #B=q-#A & #B= ?"HN:»)(J'».

i=1 =1

Step 5: In this final step, we claim that

hg - . ng-N 1
hy = Z pl:[le(Ji):q 5 (v) H <l_l2>

jl?"'?jk: lep(q

=

and complete the proof.
It is sufficient to prove that

k
> 1IN0 = N(p)
JiyJk =1

and we show it by induction on k. For k = 1, we get

. D p—1
Z 3(]) p+1 (7" )p+1
7=0
zl—i—r-p_l
p+1
=N(p) -

13



We assume that the claim is held for £ — 1. Then we have

Tk

b
> TIVa0) =) > HN3 (4a) | - N3(jr)

Jiye gk =1 Jk=0 \ J1, k-1 =1

—ZN<HP1> - N3 (i)

Jk=0

k—1
:N<Hp?> -N(py!
=1

=N(p)
and the proof. O

7'L

We recall that g; =1 — —|— 79 and then we obtain the next theorem and table 1.
Theorem 2.12. For q > 5, we have

ey Um G (1),

qH1N5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘16‘17‘18‘19‘20‘---
9 0 [1]3[5]10]13[26]25[50][49[ 7381133109196 [ 169
93 0 [ofoflofolol1]ol2]1l1]2]5 2773

Table 1: Genera of X, and X ;

By considering whether ¢ — 6A/(¢) is negative or by table 1, we have the next corollary .

Corollary 2.13. For ¢ <10 or g = 12, X, has an automorphisms 7 such that the genus of X,/(T)
is zero. In particular, X, is a semi-hyperelliptic curve.

The next section, we find equations of X, except for constant numbers by using Theorem 1.6 for
these q.

3 Equations of X,

We consider rotation numbers of the automorphism 7, : Xy 3 [2] = [z +n] € X,. Since I'y acts
freely on H for ¢ > 4, it is sufficient to evaluate rotation numbers at only elements of S,.

Lemma 3.1. Let n be a divisor of ¢ > 5 and p = %. We describe by 5 a representative of k € S,

where x and z are coprime integers. We take integers y and w such that xw — yz = 1. Furthermore,
let k be the remainder of w? divided by gcd(p, z). Then the rotation number at xk of T, is

R., (k) =R (p,k:> .

ged(p, 2)

14



Proof. The width of Iy is always ¢ since I'; is a normal subgroup of SL (2,Z). By Lemma 2.6, the
smallest number m such that 7,7"(k) = k satisfied with p - Wrg(l-i) =m -q. By Step 1 of Proposition

_ _p
2.9, we have m = A"

We recall that elements of SL(2,Z) acts continuously on H and it is easy to be calculated

the rotation number of parallel displacement at infinity points. If Wr(co) = R for a subgroup
I'c SL(2,Z),

(1) = exp () (Imt>C)
Pl 0 (t=o0)

is a chart around the infinity point [0c] € H/T. We take (*, ) € SL(2,Z) which maps £ to oc.
By easy computation, we have

<w —y) x 1+ ezw
(1r0) -2
—z oz 2 —€z

(w —y) x 1+ ezw + mnzw
(7+6+mn>
P

-z —e22 — mnz?
and
mnzw + 1 mnw? 1+ czw 1+ 2w + mnzw
—mnz®> —mnzw + 1 2 = 2 5 - (3.1)
—&z —e22 —mnz
Since mnz = gcdqé)’z) is a multiple of ¢, the matrix of (3.1) is equal to

1 mnw?
0 1

in modular g. Then the rotation number is given by the remainder of mnw? = mn = w? divided by
p+m = ged(p, z). O

2

For ¢ <10 or g = 12, everything to find an equation of X, except for values of constant numbers
is ready now. We first consider Xg.

Since the denominators of the representatives of the branched points of the natural projection
Xg — Xé is not coprime to 8, the branched points of it are [o0], [%] , [ﬂ , [%] , [%] , [%] , [%] and
[%] Here [ﬂ , [%] are 11 equivalent. [%] , [%] , [g] , [%] are also 7 equivalent. By Theorem 1.6 and
Lemma 3.1, we get table 2 and

Y = (2 — a)(z — az)(w — a3)* (2 — aa)*

which gives an equation of Xg. Here, n, k are rotation numbers, and m is an exponent of an equation
about Xg. By normalizing, we have

v =22z —1)(z — a). (3.2)

Theorem 3.2. An equation of Xg is given by

y® = 2%z —1)(z +1). (3.3)

15



Z H n ‘ zw—yz =1 example of w? ged(8,2) k ‘ conditions of m m
1 w=1 1 8 1] 1=ged(8,m)and m=1mod8 1
301 |3w-8=1 9 8 1| 1=ged(8,m)and m=1mod8 1
112 w-42=1 1 4 1|2=gcd(8,m) and 2 =1mod4 2
314 w—2y=1 1 2 1|4=gecd(8,m)and 3 =1mod2 4
Table 2: Rotation numbers and exponents about Xg
We give the proof of Theorem 3.2 in §4.
Remark 3.3. The compact Riemann surface defined by
yt = z(z —1)(z + 1) (2% + 1)? (3.4)

is isomorphic to the compact Riemann surface defined by (3.3). An isomorphism is given by
8 _ .2 4 2 2
{y’=2"(z-1)(z+1)} = {y =z(@z-D(z+1)(z" +1)°}

¢yt V8y
(z,y) — <x(x+1)’g(x+1)>

22 -1 /20y
N <
( 2241 22+ 1 (@.9)

where ¢ = (16. Therefore, the equation (3.4) also gives Xg. The form y* = f(x) corresponds to
2
98 - 0.

Remark 3.4. By table 3, table 4 and table 5, we also have equations of Xo, X109 and X12. They are
given by

y’ = (e - 1)°(x — p1)’(z — po)*
v =a(r = 1% - ) (r — @)’ (¢ — g3)°
y'? x(x — 1)2(z — 7“1)3<$ — 7“2)3(33 — r3)4(x — r4)4(x - r5)6.

[Ya] gives these equations completely. We see that his equation of Xo is different from our one.
These equations are given by

y6 x(lﬁ +1)y3+:v5(333+ 1)2
Yy =z(z+ 1%z - 1)%@? + 2 —1)°
y2=z(z— D%z + 1% +1)*(2? —z+1)3

Of course, the sums of the column of m in these tables are multiple of each ¢ since the infinity
points are non-branched points before normalization. We also obtain an equation of X, for ¢ < 7
by the same way. In particular, it means that it gives other way to get the classical equation
y" = z(z — 1) of the Klein’s quartic X7.
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z H n ‘ zw—1yz =1 example of w? gcd(9,2) k ‘ conditions of m m

sl w=1 1 9 1] 1=ged(9,m)and m =1mod9 1

21| 2w—92=1 25 9 7| 1=gecd(9,m) and 7m = 1mod9 4

% 1] 4dw—-92=1 4 9 4| 1=ged(9,m) and 4m =1mod9 7

s3] w=3y=1 3 1|3=ged(9,m)and 2 =1mod3 3

23] 2w-3y=1 1 3 1| 3=ged(9,m) and %Elmod3 3

Table 3: Rotation numbers and exponents about Xy
= ‘ n ‘ rw—yz =1 example of w? gcd(10,2) k ‘ conditions of m m
s 1 w=1 1 10 1]1=ged(10,m) and m = 1mod10 1
201 |3w-10z=1 9 10 9 | 1 =gcd(10,m) and 9m = 1mod 10 9
2 w—5y =1 1 5 1| 2=gcd(10,m) and % = 1mod5 2
202| 2w—5y=1 4 5 4| 2 =ged(10,m) and 4% =1mod5 8
5] w-2y=1 1 2 1|5 =gcd(10,m) and 2 = 1 mod 2 5
5] w—4y=1 1 2 1| 5=gcd(10,m) and 2 = 1 mod 2 5
Table 4: Rotation numbers and exponents about X

z H n ‘ zw—yz =1 example of w? ged(12,2) k ‘ conditions of m m
1 w=1 1 12 1| 1=ged(12,m) and m = 1mod12 1
% 1]|5w—-12z=1 25 12 1| 1=gcd(12,m) and m =1mod12 1
2] w-62=1 1 6 1|2=gcd(12,m) and % =1mod6 2
113 w—4y=1 1 4 1|3=gecd(12,m) and % = 1mod4 3
303 3w—4y=1 1 4 1|3=ged(12,m) and % = 1mod4 3
3 14 w—3y=1 1 3 1[4=gcd(12,m) and 3! =1mod3 4
204 2w=-3y=1 1 3 1|4=ged(12,m) and * =1mod3 4
6] w—2y=1 1 2 1|6=gcd(12,m) and 2 =1mod2 6

Table 5: Rotation numbers and exponents about X

4 A canonical model of Xg in the projective space

As we announced, in this section, we prove Theorem 3.2. Namely, we determine a constant number
a of (3.2). Two points (1,0) and (a,0) on this algebraic curve are corresponding to [cc] and [2] on
Xg = H/Fg, respectively. Since there is an automorphism which [co] maps [f] for example (31),
we take an automorphism o which satisfies o ((1,0)) = (a,0). However, depending the value of a,
the compact Riemann surface defined by (3.2) dosen’t always have such automorphisms. We see that
there is such ¢ if and only if a = —1 and thus, we determine a as —1.
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To find automorphisms of (3.2), we consider a canonical model in the projective space because it
is difficult to find automorphisms remains of two variables irreducible polynomials. The next lemma
is fundamental and useful to look for the automorphisms (cf. [KK]).

Lemma 4.1. Let X be a non-hyperelliptic compact Riemann surface of genus g > 3 and X' be a
canonical model of X in the projective space P9~t. Then an automorphism o of X is obtained as
projective transformation of P9~ restricted to X'.

We see that Xg is a non-hyperelliptic curve. If Xg is a hyperelliptic curve, there is an automor-
phism with order 2 which lies in the center of Aut(Xg). By appendix, Aut(Xg) is isomorphic to
PSL(2,Z/8Z). However, the center of PSL (2,Z/87Z) is trivial. It is a contradiction.

Since gg = 5, the projective space is P4. We should find a basis of holomorphic differentials of Xg
to get a canonical model. We set projections x : (z,y) — x and y : (z,y) — y. By §1, we get table
6, here [ = 1,2 and I’ = 1,2, 3,4, and a basis as

< igdx, ialx, ialx, de, de> .
y y y

dx || Ldx | Xax | Xdx | XN ax | X ax

x |x—1]| vy
y y y y y
0; 4 1 3 0 2 1 0 0
(1,0) 0 1 4 2 1 8 0
a,0) 0 1 4 2 1 0 0

Table 6: Orders of meromorphic functions and differentials

By three equations

we get a canonical model
{[21, 20, 23, 24, 25) € P*| 23 = 2025, 25 = 21(2a + 25), 21 = 24 (24 — (@ — 1)25) } - (4.1)

An isomorphism from the algebraic curve (3.2) is

(@.9) = [z,x,@,m;”,i]
vy y Y Y
Ol'—> i\fOO ]
(1,0) ~ 00001]

[
[

(a,0) — [0,0,0,a — 1,1]
1, 11,0,1,0],[ ,+v—1,0,-1,0].

oy Hr
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We define an automorphism o : [z1,- -+, 25] — [2],-- -, 25] of (4.1) by

!
21 c1,1 r C15 z1
/
2y 5,1 " C55 25
and then we must have
22 = 22k (4.2)

% =2 (2 + %)

2P =2 (¢ — (a—1)2).

We should consider the case of an automorphism ¢ maps [0,0,0,0,1] to [0,0,0,a — 1,1] and so

0

0 €11 - C15 0

A 0 = 0
a—1 cs1 0 Css 0

1 1

Here, A is a non-zero constant. We may assume A = 1 and then we have
as=cp=c5=0 cus=a—-1 c55=1

Lemma 4.2. If an automorphism 1 of Xg satisfies T ([o0]) = [%], we have

r([5]) =
(L) = 2] B
g({ERERERE DA (HRHRERE)S

Proof. We regard T as a element of PSL(2,Z/8Z). Since 7 ([oc]) = [2], 7 is the form £ (3%) in
modular 8. Then we have this claim by direct calculation. O

Since o maps [0,0,0,a — 1,1] to [0,0,0,0,1] and a # 1, we have
cla=cog=c34=0, cgq4=-1
Since [%] corresponding to ooy and so [1,41,0,1,0] or [1,+y/—1,0,—1,0], we get

c31tc32=0
cs1EcCs2+ 54 =c51EV—1cs2—c54=0.

and therefore, we have
€31 =cC32=20C51=C52=c54 = 0.
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By the behavior of the automorphism at [ﬂ corresponding to 0;, we also have ¢y = 0. Then (4.2)
become to

2 2
C3323 = (027222 + 6273,23)(65732’3 + 25)
2 2
& (c33 — Ca2 — C2,3C53)23 = C2.2C532223 + C2,32325
and thus, we have
2
c23=0, c33=c22#0, c53=0.

(4.3) become to
2 2
Cy925 = (€1121 + c1222 + €1.323) (C4121 + Ca222 + €4 323 — 24 + azs) .

By the coefficient of 2325 and a # 0, we have c; 3 = 0 and then, by the coefficient of 2325, we have
c12 =0. Thus, ¢;; # 0 and (4.3) is

2 2 2
(c11+ 02,2)2’1,24 = c11¢412] + C1,1c422122 + C11¢4 32128 + (aci — 02,2)2125-

We have
2
Cq1 = C42 = C43 = 0, Cl,1 = —Co, a= —1.

Therefore, the proof of Theorem 3.2 is completed.
We see the form of o. Since we get cil =1 by (4.4), the form of o is

-m
12
13
-1 =2
1

Here, n? = 1,15 = 0y and 73 = 12. We remark that the number of such o is 8 and it is equal to the
number of the automorphisms of Xg which maps [0c] to [2]. o corresponding to (z,y) — (—z,73y)
on the semi-hyperelliptic curve y® = 2?(x — 1)(x + 1). We hope that we get equations of Xy, X19 and
X192 completely by like way as Xsg.

A Appendix

We note that PSL(q) is PSL(2,Z/qZ). In this appendix, we see some properties of Aut(X,),
especially their orders. We first show Aut(X,) is isomorphic to PSL(q) for ¢ > 7. Of course, the
condition ¢ > 7 is because of g, > 1. The number of PSL(q) is R; < co. Since elements of PSL(q)
are regarded as elements of Aut(X,), we may show #Aut(X,) < R,;. We use Hurwitz theorem.

Theorem A.1. Let X be a compact Riemann surface with genus g > 1 and {p1,--- ,pn} be a mazimal
set of fixed points of Aut(X) inequivalent under the action of Aut(X). We denote the number of the
stabilizer of p; in Aut(X) by m;. Then we get

- 1
2—2=N|2g—2 1-— Al
g < g +;< mz>> (A1)
where we have denoted N = #Aut(X) and g is the genus of X/Aut(X).
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In our case, by Theorem 2.3, we have g = g, = 1 + (q;i)‘f Hlep(q) (1 — l%) and g = 0. Since the
number of the stabilizer of the infinity point in Aut(X,) is at least ¢, we can assume m; > q. We
also have n = 3. Indeed, if n < 2, we have 2g, —2 < N(-2+1+1) < g4 < 1 by (A.1). On the other
hand, if n > 4, (A.1) gives

1 1 11
29q—22N<—2+(n—1)-2+1—>>N(6—>

q q
3
q H Iy
leP(q)

Then (A.1) is equivalent to

29, —2=N (1 ————— ) (A.2)

in our case. We can assume my > 3 since if mo = m3 = 2, we get g; < 1 by (A.2). Then (A.2)
become to

and so N = R,. Therefore, Aut(X,) is isomorphic to PSL(q) for ¢ > 7.

Next, we consider the largest order of elements of Aut(X,). If the remainder of ¢ divided by 4 is 2
and isn’t divided by 3, we call g type I. Otherwise, we call ¢ type II. For example, ¢ = 2,10, 14, 20, - - -
are type 1.

Lemma A.2. If q is type I, the largest order of elements of PSL(q) is %q. If q is type II, the largest
order is q.

Proof. Since the order of (}1) € PSL(q) is ¢ and the order of (pzl i) € PSL(2p) is 3p for type I

g = 2p, the existence is shown. We take A € PSL(q) and see that its order is at most %q or q. We
prove for each case of q.

Case 1: ¢ = p is prime.

For p = 2, since PSL(2) is the dihedral group D3, the largest order is 3. We set p be an odd prime.
Z/pZ is a finite field F,. Let o € F,, be an eigenvalue of A, where F, is an algebraic closure of F,,. «
is a solution of

22 —tr(A)z +1=0. (A.3)

If A is a diagonalization impossible, « is a multiple root of (A.3) and thus, Jordan normal form of A
is (3 1) whose order is g. We assume A is a diagonalizable matrix. By Frobenius endomorphism, we
realize that a? is also a solution of (A.3). If & # o?, (¢ 5 ) is a diagonal matrix of A and a-a? = 1.
We have its order is at most %. If a = o, the other eigenvalue of A is a~!. Thus, the order of A
is at most %.
Case 2: ¢ = 4.

By (A.3), we have

AP = (P —1)A—tI
Al=t(?-2)A— (P -1)I
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where t = tr(A) and [ is the unit matrix. By considering each case of ¢ in modular 4, we see that
the order of A is at most 4.

Case 3: ¢ =p" is a prime power.
We use a induction on r. Let assume that the claim is held for r — 1. We regard A € PSL(p") as an

element of PSL(p"~1). By assumption, we take n such that A" is a unit matrix in PSL(p"~!) with
1<n<p~! It means A" = I +p"~ !B in PSL(p") with some B € PSL(p"). Then by

A" = (I+p'B)" =1,

we get the order of A is at most np (< p").

Case 4: For general q.
By Chinese remainder theorem, we may prove it for only ¢ = 2 - 3", which is type II. If the order of

A=DB®C € PSL(2) ® PSL(3")

is larger than ¢, the order of B is 3 and the order of C is larger than 2-3"~!. By proof of Case 3, we
have that the order of C is 3". However, then the order of A = B® C is 3". It is a contradiction. [J

From above results, we have

Proposition A.3. For q > 7, the order of elements of Aut(X,) is at most %q if q is type 1. If q is
type 1I, the order is at most q.

In Theorem 2.12, we have the genus of X; = X,/(z — z+1). For type I ¢ = 2p, we shall consider
the genus of
X, = Xy/ (2= Mz),

M= <p +1 1> 7
P 1
which is an order 3p automorphism of X,. An odd number p isn’t divided by 3. We denote the genus
of X, by g

where

Proposition A.4. Let g = 2p be type I. For ¢ > 10, thus for p > 5, we have

Proof. By
3
p+1 1\° (1 p+3
( ’ 1> :(0 1 ) (mod 2p),

Xg/ (z+— Mz)

and the order of M is 3 in Xg. We see that Xg — Xl’z is the unbranched natural projection. The
subgroup of SL (2,Z) generated by Fg and A acts freely on H since diagonal components of its

X, is isomorphic to
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elements are 1 in modular p. Then we may consider whether only points of Sg are branched points
or not. If [ﬂ € Sg with ged(x, z) = 1 is a branched point of the natural projection, we have

[(p+1)x+z] B {f}
pr+z zlrz

We remark that ged ((p+ 1)z + z,px + 2) = ged(x,z) = 1. Then we have pr+z2=zorpr+2z = —=z
in modular 2p. In either case, x is an even number and thus, 2z is an odd number. We have

[(p—l— 1):E—|—z} B [$+z]
pxr + 2 r2 Z r2

and there is n € Z such that x + 2z = x + 2nz in modular 2p. However, it is a contradiction with z is
odd.
Since the natural projection X, 3 — X {1 is unbranched, we have

292 — 2 =3 (29, - 2)
by Hurwitz Theorem A.1. The proof is completed by Theorem 2.12 and a direct computation. [

By table 7, we notice that g; isn’t always smaller than g; even though the order of the corre-
sponding automorphism of X[I is larger than one of X;. Moreover, unfortunately g; # 0 except
for ¢ = 2. Therefore, considering gfl is of no use to get a semi-hyperelliptic curve after all and we
naturally think that X, is a semi-hyperelliptic curve if and only if ¢ <10 or ¢ = 12.

qH2‘10‘14‘22‘26‘34‘38‘...
gq |[0 ] 1349 [ 241 [ 421 [ 1009 | 1441

g OO [ 1T | 6 | 10| 21 | 28
golflol 126 ] 9] 17 | 22

Table 7: Genera for type I ¢
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