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Preface

The dynamics of a rational function induces a subdivision of the Riemann
sphere into the two complementary sets which are called the Fatou set and
the Julia set. The behavior of iterations of the rational function on the Fatou
set is regular. The behavior of iterations of the rational function on the Julia
set is chaotic. The Julia sets are important objects in a sense of dynamics
of the rational functions, and almost all the Julia sets take very complicated
forms.

We are interested in topological structures of the Julia sets and the bound-
aries of Fatou components. Local connectivity can be an indicator of the
complexity of the topological structures. There exist rational functions whose
Julia sets are so complicate and not locally connected. The purpose of the
paper is to clarify the topology of such complicated Julia sets.

This paper is organized as follows.
In Chapter 1, we consider biaccessible points in the Julia sets of some

rational functions. Let Ω be a simply connected Fatou component and z0 ∈
∂Ω. We are interested in knowing whether there exist at least two distinct
external rays in Ω landing at z0. We introduce a topological technique can
be applied to the local dynamics. So we investigate which points in the Julia
sets can be biaccessible by using the technique.

In Chapter 2, we consider periodic points on rotation domains under
some conditions. Let Ω be a Fatou component on which the dynamics cor-
responds to irrational rotation. When the boundary ∂Ω fails to be locally
connected, we are interested in the dynamics of the boundary ∂Ω. We inves-
tigate whether there are periodic points on the boundary ∂Ω.

I would like to thank my research supervisors Hiroshige Shiga and Naoya
Sumi for making perceptive comments.
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Chapter 1

On biaccessible points in the
Julia sets of some rational
functions

1.1 Introduction and results

Let Ĉ = C ∪ {∞} be the Riemann sphere, let f : Ĉ → Ĉ be a rational
function of degree d ≥ 2. We define the Fatou set of f as the union of all
open sets U ⊂ Ĉ such that the family of iterates {f ◦n|U}n≥0 forms a normal
family, and the Julia set of f as the complement of the Fatou set of f . We
denote the Julia set of f by Jf and the Fatou set of f by Ff . Clearly, the
Fatou set Ff is open and the Julia set Jf is closed. A connected component
of the Fatou set is called a Fatou component. Their fundamental properties
can be found in [Mi].

For each fixed point z0, the multiplier at z0 is defined as λ = f ′(z0) when
z0 6= ∞ and is defined as λ = limz→∞ 1/f ′(z) when z0 = ∞.

A fixed point z0 is called superattracting if the multiplier λ is equal to
zero, or equivalently z0 is a critical point. Then the point z0 is contained in
the Fatou set Ff . The Fatou component containing the superattracting fixed
point z0 is called the immediate basin of z0, and we denote by Az0 .

A fixed point z0 is called irrationally indifferent if the multiplier λ satisfies
|λ| = 1 but λ is not a root of unity, or equivalently there exists an irrational
number θ such that λ = e2πiθ. So we distinguish between two possibilities.

If an irrationally indifferent fixed point z0 lies in the Fatou set, the point
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z0 is called a Siegel point. The Fatou component containing a Siegel point z0
is called the Siegel disk with center z0, and we denote by Sz0 .

If an irrationally indifferent fixed point z0 belongs to the Julia set, the
point z0 is called a Cremer point. We say that a Cremer point z0 has the small
cycles property if every neighborhood of z0 contains infinitely many periodic
orbits. For quadratic polynomials, every Cremer point has the small cycles
property [Yo1]. However, it is not known whether this is true for arbitrary
rational functions.

An invariant Fatou component H is called a Herman ring if H is confor-
mally isomorphic to some annulus. Then the dynamics of f onH corresponds
to the dynamics of an irrational rotation on this annulus.

Let Ω ⊂ Ĉ be a simply connected domain. Assume that the boundary
∂Ω contains at least two points. For the sake of convenience, we assume that
Ω contains infinity ∞, and consider a conformal isomorphism Φ : Ĉ−D → Ω
such that Φ(∞) = ∞. For each angle t ∈ R/Z, the external ray is defined as

Rt = {Φ(re2πit) : r > 1}.

For each radius r > 1, the equipotential curve is defined as

Er = {Φ(re2πit) : t ∈ R/Z}.

If there exists a point z ∈ ∂Ω such that limr↘1 Φ(re
2πit) = z, then we

say that the external ray Rt lands at the point z. A point z ∈ ∂Ω is called
accessible from Ω if there exists a continuous curve γ : [0, 1) → Ω such that
lims↗1 γ(s) = z. Then there exists an external ray landing at z (see for
example [Mc, Corollary 6.4]).

Definition 1.1.1 We say that a point z ∈ ∂Ω is biaccessible from Ω if there
exist at least two distinct external rays landing at z (see Figure 1.1).

In the above definition, the biaccessibility from Ω does not depend on
the choice of the Riemann maps Φ. In fact, it depends only the topology of
the boundary ∂Ω. By a theorem of F. and M. Riesz (see [Mi]), ∂Ω− {z} is
disconnected whenever z ∈ ∂Ω is biaccessible from Ω. Moreover, the converse
is true (see [Mc, Theorem 6.6]). Therefore, z ∈ ∂Ω is biaccessible from Ω if
and only if z ∈ ∂Ω is a cut point of ∂Ω, namely ∂Ω− {z} is disconnected.

We are interested in the topological structures of the Julia sets and the
boundaries of Fatou components. There are some results about local con-
nectivity (see for example [Mi, Pe, R, Ra]) and (bi)accessibility (see for
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example [P, Sch, Smi, Zd]). As for Siegel disks, the location of biaccessible
points is well known as given in the following proposition.

Proposition 1.1.1 Let f be a rational function of degree d ≥ 2. Assume
that infinity ∞ is a Siegel point. Let S∞ be the Siegel disk with center ∞. If
z is biaccessible from S∞, then it is a periodic point of f .

Proof. We take a conformal isomorphism Φ : Ĉ − D → S∞ such that
Φ(∞) = ∞ and Φ−1 ◦ f ◦ Φ(w) = λw, where λ is the multiplier at ∞. So λ
is written as e2πiθ with an irrational number θ. We consider the dynamics of
external rays in the Siegel disk S∞. It is easy to see f ◦n(Rt) = Rt+nθ for all
n ≥ 0.

If z is biaccessible from S∞, then there exist two distinct external rays
Rs and Rt landing at z. Since θ is irrational, we may suppose that

s < s+Nθ < t < t+Nθ < s+ 1,

where N is some number. Let U1 and U2 be two distinct components of
C−(Rs∪{z}∪Rt). So we may assume that f ◦N(Rs) ⊂ U1 and f ◦N(Rt) ⊂ U2

(see Figure 1.2).
Both f ◦N(Rs) and f ◦N(Rt) land at f ◦N(z) by the continuity of f ◦N .

Therefore, f ◦N(z) ⊂ U1 ∩ U2, and thus f ◦N(z) = z.

We consider which points can be biaccessible from the immediate basins
of superattracting fixed points. For quadratic polynomials with irrationally
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indifferent fixed points, S. Zakeri [Za] showed the following proposition which
is an improvement of [SZ, Theorem 3].

Proposition 1.1.2 Let fc(z) = z2 + c be a quadratic polynomial with an
irrationally indifferent fixed point α. Assume that z0 is biaccessible from the
immediate basin A∞ of infinity. Then:

• if α is a Siegel point, the critical point 0 is contained in the forward
orbit {f ◦n

c (z0)}n≥0 of z0;

• if α is a Cremer point, then the point α is contained in the forward
orbit {f ◦n

c (z0)}n≥0 of z0.

In the above proposition, if α is a Cremer point, we are interested in
whether the point α is accessible or not. In fact, this is an open problem. If
the point α is accessible, then it follows from the Snail Lemma that infinitely
many external rays land at the point.

In this paper, we shall extend Proposition 1.1.2 for more general poly-
nomials and some rational functions of degree 3. In fact, such functions are
well known and selected so as to have simple locations of critical points.
However, we deal with the biaccessibility of Fatou components of genuine
rational functions, which probably has not been studied as yet.

First, we will show the following which is a small extension of the propo-
sition for polynomials with only one critical point in C.
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Theorem 1.1.1 Let fc(z) = zd + c be a polynomial of degree d ≥ 2 with an
irrationally indifferent fixed point α. Assume that z0 is biaccessible from the
immediate basin A∞ of infinity. Then:

• if α is a Siegel point, the critical point 0 is contained in the forward
orbit {f ◦n

c (z0)}n≥0 of z0;

• if α is a Cremer point, either the point α is contained in the forward or-
bit {f ◦n

c (z0)}n≥0 of z0 or the critical point 0 is contained in the forward
orbit {f ◦n

c (z0)}n≥0 of z0.

In the above theorem, if α is a Cremer point which has the small cycles
property, then the critical point 0 is not accessible from A∞ [Ki, Theorem
1.1]. Then 0 /∈ {f ◦n

c (z0)}n≥0, and so we can conclude that α ∈ {f ◦n
c (z0)}n≥0.

According to [Yo1], every Cremer point of quadratic polynomials has the
small cycles property, so the conclusion of the second part in Proposition
1.1.2 is just α ∈ {f ◦n

c (z0)}n≥0.
The following theorem gives an extension for some polynomials having

more than one critical point in C. However, we can make use to the sym-
metrical locations of critical points.

Theorem 1.1.2 Let gθ(z) = e2πiθz + zd be a polynomial of degree d ≥ 2 so
that the origin is an irrationally indifferent fixed point. Let c0, c1, · · · , cd−2

be all critical points of gθ in C. Assume that z0 is biaccessible from the
immediate basin A∞ of infinity. Then:

• if the origin is a Siegel point, there exists a critical point cj0 which is
contained in the forward orbit {g◦nθ (z0)}n≥0 of z0;

• if the origin is a Cremer point, either the origin is contained in the
forward orbit {g◦nθ (z0)}n≥0 of z0 or there exists a critical point cj0 which
is contained in the forward orbit {g◦nθ (z0)}n≥0 of z0.

In the above theorem, if the origin is a Cremer point which has the small
cycles property, then there exists a critical point cj0 which is not accessible
from A∞ [Ki, Theorem 1.1]. In addition, the symmetry of the Julia set
implies that every critical point cj is not accessible from A∞ (see Section
1.5). Therefore, cj /∈ {g◦nθ (z0)}n≥0 for all j, and so we can conclude that
0 ∈ {g◦nθ (z0)}n≥0.
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Finally, we will consider some rational functions of degree 3 which are cor-
responding to quadratic polynomials with irrationally indifferent fixed points
in a sense. Indeed, the dynamics of analytic circle diffeomorphisms with ir-
rational rotation numbers and the local dynamics of irrationally indifferent
fixed points are similar in certain respects. So we will suggest a new appli-
cation of Herman compacta to the proof of the following theorem.

Theorem 1.1.3 Let h(z) = hθ,a(z) = e2πiθz2(z − a)/(1 − āz) be a rational
function so that |a| > 3 and the rotation number Rot(h|S1) is irrational. Let c
be the critical point of h such that |c| > 1. Assume that z0 is biaccessible from
the immediate basin A∞ of infinity. Then the critical point c is contained in
the forward orbit {h◦n(z0)}n≥0 of z0.

In the above theorem, we fix |a| > 3 and consider the one-parameter
family hθ,a(z) = e2πiθz2(z − a)/(1 − āz) with θ of rational functions. From
the continuity and the monotonous increasing of the rotation function θ 7→
Rot(hθ,a|S1), we can adjust the rotation number to be any desired irrational
constant (see [MS, Section I.4]).

1.2 Local dynamics

In this section, we suppose that f is a rational function of degree d ≥ 2
and consider the local dynamics of f . We introduce Siegel compacta and
Herman compacta. They are essential for the proofs of the theorems. First,
we mention about the linearizability.

Definition 1.2.1 Let z0 be an irrationally indifferent fixed point of f . Let
λ be the multiplier at z0, so it is written as e2πiθ with an irrational number
θ. If there exists a local holomorphic change of coordinate z = Φ(w), with
Φ(0) = z0, such that Φ−1 ◦ f ◦ Φ is the irrational rotation w 7→ e2πiθw near
the origin, then we say that f is linearizable at the point z0.

An irrationally indifferent fixed point z0 of f is either a Siegel point or a
Cremer point, according to whether f is linearizable at the point z0 or not.
There are some results about the linearizability of irrationally indifferent
fixed points (see for example [Mi, Section 11]).

Definition 1.2.2 Assume that f |S1 : S1 → S1 is an analytic circle diffeo-
morphism whose rotation number Rot(f |S1) is irrational. If there exists an
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analytic circle diffeomorphism Φ : S1 → S1 such that Φ−1 ◦ f ◦ Φ is the
irrational rotation w 7→ e2πiRot(f |S1 )w, then we say that f is linearizable on
S1.

For a general theory on analytic circle diffeomorphisms, we refer to [MS].
There are some results about the linearizability for analytic circle diffeomor-
phisms with irrational rotation numbers (see for example [Yo2]). In addi-
tion, there are fine theorem correspondences between the linearizability of
irrationally indifferent fixed points and the linearizability for analytic circle
diffeomorphisms with irrational rotation numbers (see [PM, Theorem I.4.1]).

The following two propositions will be used for the proofs of Theorem
1.1.1 and Theorem 1.1.2.

Proposition 1.2.1 Let z0 be an irrationally indifferent fixed point of f . Let
U be a bounded neighborhood of z0 so that the boundary ∂U is a Jordan closed
curve. Assume that f is univalent on a neighborhood of U . Then there exists
a set S with the following properties:

• S is compact, connected, and Ĉ− S is connected;

• z0 ∈ S ⊂ U , S ∩ ∂U 6= ∅, and f(S) = S.

Moreover, f is linearizable at z0 if and only if the interior IntS of S contains
z0.

We say that such a set S is a Siegel compactum for (f, U). Its applications
can be found in [PM, Section IV]. The above proposition is described in [PM,
Theorem 1], however, we do not assume that f−1 is defined and univalent
on a neighborhood of U . In fact, the condition leaves no impression on the
results.

Proposition 1.2.2 Assuming the hypothesis in Proposition 1.2.1, let S be
a Siegel compactum for (f, U). Then:

• if z0 is a Siegel point, there are no points which are biaccessible from
Ĉ− S;

• if z0 is a Cremer point, then the point z0 is the only possible point which
is biaccessible from Ĉ− S.
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Proof. This proof is referred from the explanations of [Za, Proposition 1]
and [SZ, Proposition 2]. We use proof by contradiction.

First, assume that z0 is a Siegel point and there exists a point z which
is biaccessible from Ĉ − S. Let Φ : Ĉ − D → Ĉ − S be a conformal isomor-
phism such that Φ(∞) = ∞. So g = Φ−1 ◦ f ◦ Φ is univalent on an outer
neighborhood of S1. Then g is extended and univalent on a neighborhood of
S1 by the reflection principle. Furthermore, the rotation number Rot(g|S1)
corresponds to the irrational number θ which satisfies λ = e2πiθ, where λ is
the multiplier at z0 [PM, Theorem 2].

Let Rs and Rt be two distinct external rays land at z. Let X be the
component of IntS which contains the Siegel point z0. Clearly, f(X) = X.
Let V be the component of C−(Rs∪{z}∪Rt) which does not contain X. We
cut off V along an equipotential curve Er, and thus have the Jordan domain
W which is contained in V . Then D = Φ−1(W − S) has the interval I ⊂ S1

as a part of its boundary (see Figure 1.3).
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Figure 1.3

Since the rotation number Rot(g|S1) is irrational, there exists N such that∪N
j=0 g

◦j(I) = S1. We could take a more smaller r > 1, so that g, g◦2, · · · , g◦N

are univalent on D, and furthermore,
∪N

j=0 g
◦j(D) is an outer neighborhood

of S1.
Then f, f ◦2, · · · , f ◦N are univalent on W − S, and thus

∪N
j=0 f

◦j(W − S)
is an outer neighborhood of S. So any point of the boundary ∂X ⊂ ∂S can
be approximated by some sequence in

∪N
j=0 f

◦j(W −S). Now the injectivity
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of f implies that each Jordan domain f ◦j(W ) does not intersect X, therefore,
f ◦j(W )∩X contains at most one point f ◦j(z). This contradicts that ∂X has
infinitely many points.

Now, assume that z0 is a Cremer point and there exists a point z 6= z0
which is biaccessible from Ĉ − S. Let Φ : Ĉ − D → Ĉ − S be a conformal
isomorphism such that Φ(∞) = ∞. So g = Φ−1◦f◦Φ is univalent on an outer
neighborhood of S1. Then g is extended and univalent on a neighborhood of
S1 by the reflection principle. Furthermore, the rotation number Rot(g|S1)
corresponds to the irrational number θ which satisfies λ = e2πiθ, where λ is
the multiplier at z0 [PM, Theorem 2].

Let Rs and Rt be two distinct external rays land at z. Let V be the
component of C− (Rs ∪ {z} ∪ Rt) which does not contain z0. We cut off V
along an equipotential curve Er, and thus have the Jordan domain W which
is contained in V . Then D = Φ−1(W − S) has the interval I ⊂ S1 as a part
of its boundary (see Figure 1.4).

s

t

I

D

r

S

R t

R s

E r

W-S
Φ

z0 z

Figure 1.4

Since the rotation number Rot(g|S1) is irrational, there exists N such that∪N
j=0 g

◦j(I) = S1. We could take a more smaller r > 1, so that g, g◦2, · · · , g◦N

are univalent on D, and furthermore,
∪N

j=0 g
◦j(D) is an outer neighborhood

of S1.
Then f, f ◦2, · · · , f ◦N are univalent on W − S, and thus

∪N
j=0 f

◦j(W −
S) is an outer neighborhood of S. So the Cremer point z0 ∈ ∂S can be
approximated by some sequence in

∪N
j=0 f

◦j(W−S). However, the injectivity
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of f implies that each Jordan domain f ◦j(W ) does not contain z0 and each
f ◦j(z) is not z0, therefore, f ◦j(W ) ∩ {z0} = ∅.

The following two propositions will be used for the proof of Theorem
1.1.3.

Proposition 1.2.3 Let U be a bounded annular neighborhood of S1 such that
the boundary ∂U consists of two Jordan closed curves γ1 ⊂ C−D and γ2 ⊂ D.
Assume that f is univalent on a neighborhood of U and f |S1 : S1 → S1 is an
analytic circle diffeomorphism whose rotation number Rot(f |S1) is irrational.
Assume that f(U) does not contain the bounded component of Ĉ− γ2. Then
there exists a set H with the following properties:

• H is compact, connected, and Ĉ−H has just two connected components;

• S1 ⊂ H ⊂ U , H ∩ γ1 6= ∅, H ∩ γ2 6= ∅, and f(H) = H.

Moreover, f is linearizable on S1 if and only if the interior IntH of H contains
S1.

We say that such a set H is a Herman compactum for (f, U). The above
proposition is described in [PM, Theorem V.1.1]. We do not assume that
f−1 is defined and univalent on a neighborhood of U , however, we add the
assumption that f(U) does not contain the bounded component of Ĉ− γ2.

Proposition 1.2.4 Assuming the hypothesis in Proposition 1.2.3, let H be
a Herman compactum for (f, U). Then there are no points which are biac-

cessible from the unbounded component of Ĉ−H.

In the rest of this section, we shall show the above two propositions.

Lemma 1.2.1 Let U be a bounded annular neighborhood of S1 such that the
boundary ∂U consists of two Jordan closed curves γ1 ⊂ C − D and γ2 ⊂
D. Assume that f is univalent on a neighborhood of U and f |S1 : S1 →
S1 is an analytic circle diffeomorphism whose rotation number Rot(f |S1) is
Diophantine. Then the Herman ring H intersects both γ1 and γ2.

Proof. This proof is referred from the proof of [PM, Theorem II.3.1]. Since
the rotation number Rot(f |S1) is Diophantine, f is linearizable on S1 [Yo2,
Theorem 1.4]. So we have the Herman ring H such that S1 ⊂ H.
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We use proof by contradiction. Assume that H ∩ γ1 = ∅. Let {Kn}n≥1

be a sequence of closed annuli in the Herman ring H such that f(Kn) = Kn,
Kn ⊂ IntKn+1 and

∪+∞
n=1Kn = H. So Kn converges to H in the sense of

Hausdorff convergence. Let Ωn be the unbounded component of Ĉ − Kn,
let Ω be the unbounded component of Ĉ − H. So Ωn converges to Ω with
respect to ∞ in the sense of Carathéodory kernel convergence. We consider
the following conformal isomorphisms

Φn : Ĉ− D → Ωn, Φ : Ĉ− D → Ω

so that Φn(∞) = Φ(∞) = ∞, limz→∞ Φn(z)/z > 0 and limz→∞ Φ(z)/z > 0.
So Φn converges locally uniformly to Φ by the Carathéodory kernel theorem
(see for example [Po, Theorem 1.8]).

Since f is univalent on a neighborhood of U and H∩ γ1 = ∅, there exists
r0 > 1 such that g = Φ−1 ◦ f ◦ Φ is univalent on {z : 1 < |z| < r0}. So
gn = Φ−1

n ◦ f ◦ Φn is also univalent on {z : 1 < |z| < r0}. By the reflection
principle, gn and g are extended and univalent on {z : 1/r0 < |z| < r0}. We
fix r such that 1 < r < r0. Since Φn converges locally uniformly to Φ, gn
converges uniformly to g on rS1. So gn converges uniformly to g on S1/r. By
the maximum principle, gn converges uniformly to g on {z : 1/r ≤ |z| ≤ r},
particularly on S1.

Let Ln be the outer boundary of Kn, let L be the outer boundary of the
Herman ring H. We notice that the dynamics of gn on S1 corresponds to
the dynamics of f on Ln. Since Ln is a Jordan closed curve in the Herman
ring H such that f(Ln) = Ln, the dynamics of f on Ln corresponds to the
dynamics of the irrational rotation z 7→ e2πiRot(f |S1 )z. Therefore, the rotation
number Rot(gn|S1) corresponds to Rot(f |S1). Then,

Rot(g|S1) = lim
n→+∞

Rot(gn|S1) = lim
n→+∞

Rot(f |S1) = Rot(f |S1).

Therefore, Rot(g|S1) is Diophantine, and thus g is linearizable on S1. So we
can take a Jordan closed curve η in an outer neighborhood of S1 such that
g(η) = η, and thus Φ(η) is a Jordan closed curve such that f(Φ(η)) = Φ(η).
Let V be the Jordan annular domain which is surrounded by Φ(η) and S1

(see Figure 1.5).
We notice f(V ) = V . Moreover, the dynamics of f on V corresponds to

the dynamics of the irrational rotation z 7→ e2πiRot(f |S1 )z by the classification
theorem of dynamics on hyperbolic surfaces (see for example [Mi, Theorem
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5.2]). Then L ⊂ V ⊂ Ff . This contradicts that L is the outer boundary of
the Herman ring H. Therefore, we conclude H∩ γ1 6= ∅. It is possible to see
H ∩ γ2 6= ∅, as in the above argument.

Proof. (Proof of Proposition 1.2.3) This proof is referred from [PM,
Section III.2]. Since the rotation number Rot(f |S1) is irrational, there exists
a sequence {αn}n≥1 such that limn→+∞ αn = 0 and each fn(z) = e2πiαnf(z)
has the rotation number Rot(fn|S1) which is Diophantine (see also [MS,
Lemma 4.1]). So fn is univalent on a neighborhood of U .

From Lemma 1.2.1, we take the closed annulus Hn in the Herman ring
Hn of fn with the following properties:

• Hn is compact, connected, and Ĉ−Hn has just two connected compo-
nents;

• S1 ⊂ Hn ⊂ U , Hn ∩ γ1 6= ∅, Hn ∩ γ2 6= ∅, and fn(Hn) = Hn.

Every Hn is contained in U , so there exists a subsequence {Hni
}i≥1 and a

set H ′ such that Hni
converges to H ′ in the sense of Hausdorff convergence.

Then H ′ has the following properties:

• H ′ is compact and connected;

• S1 ⊂ H ′ ⊂ U , H ′ ∩ γ1 6= ∅ and H ′ ∩ γ2 6= ∅.

Since fni
converges uniformly to f on U , it follows from [PM, Lemma

III.1.2] that fni
(Hni

) converges to f(H ′) in the sense of Hausdorff conver-
gence. Then fni

(Hni
) = Hni

implies f(H ′) = H ′. Let H be the union of H ′

and all the components of Ĉ − H ′ contained in U . So Ĉ − H has just two
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connected components. Since f(U) does not contain the bounded component

of Ĉ−γ2, it is not difficult to see f(H) = H, and thus H satisfies the required
properties.

Now, we show the last part of Proposition 1.2.3. If f is linearizable on S1,
it is obvious that S1 ⊂ IntH. Conversely, assume that S1 ⊂ IntH. Let V be
the component of IntH which contains S1. So V is conformally isomorphic
to some annulus, and f(V ) = V . The dynamics of f on V corresponds to
the dynamics of the irrational rotation z 7→ e2πiRot(f |S1 )z by the classification
theorem of dynamics on hyperbolic surfaces. Therefore, f is linearizable on
S1.

The following lemma corresponds to [PM, Theorem 2].

Lemma 1.2.2 Assuming the hypothesis in Proposition 1.2.3, let H be a Her-
man compactum for (f, U). Let Ω be the unbounded component of Ĉ − H,

let Φ : Ĉ − D → Ω be a conformal isomorphism such that Φ(∞) = ∞.
So g = Φ−1 ◦ f ◦ Φ is univalent on an outer neighborhood of S1. Then g
is extended and univalent on a neighborhood of S1 by the reflection princi-
ple. Furthermore, the rotation number Rot(g|S1) corresponds to the rotation
number Rot(f |S1).

Proof. First, we show that there exists a Herman compactum H for (f, U)
such that Rot(g|S1) = Rot(f |S1). It is referred from the proof of [PM, Lemma
III.3.3]. Since the rotation number Rot(f |S1) is irrational, there exists a
sequence {αn}n≥1 such that limn→+∞ αn = 0 and each fn(z) = e2πiαnf(z)
has the rotation number Rot(fn|S1) which is Diophantine. So fn is univalent
on a neighborhood of U .

From Lemma 1.2.1, we take the closed annulus Hn in the Herman ring
Hn of fn as the Herman compactum for (fn, U). Every Hn is contained in U ,
so there exists a subsequence {Hni

}i≥1 and a set H ′ such that Hni
converges

to H ′ in the sense of Hausdorff convergence.
Since fni

converges uniformly to f on U , it follows from [PM, Lemma
III.1.2] that fni

(Hni
) converges to f(H ′) in the sense of Hausdorff conver-

gence. Then fni
(Hni

) = Hni
implies f(H ′) = H ′. Let H be the union of H ′

and all the components of Ĉ − H ′ contained in U . It is not difficult to see
that H is a Herman compactum for (f, U).

Let Ωni
be the unbounded component of Ĉ−Hni

, let Φni
: Ĉ−D → Ωni

be
a conformal isomorphism so that Φni

(∞) = ∞. For the sake of convenience,
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we assume that limz→∞Φni
(z)/z > 0 and limz→∞ Φ(z)/z > 0. We notice that

Ω is the unbounded component of Ĉ−H, and is the unbounded component
of Ĉ −H ′ as well. So Ωni

converges to Ω with respect to ∞ in the sense of
Carathéodory kernel convergence, and thus Φni

converges locally uniformly
to Φ by the Carathéodory kernel theorem.

Since f is univalent on a neighborhood of U , there exists r0 > 1 such that
g = Φ−1 ◦ f ◦ Φ is univalent on {z : 1 < |z| < r0}. So gni

= Φ−1
ni

◦ fni
◦ Φni

is also univalent on {z : 1 < |z| < r0}. By the reflection principle, gni

and g are extended and univalent on {z : 1/r0 < |z| < r0}. We fix r such
that 1 < r < r0. Since Φni

converges locally uniformly to Φ, gni
converges

uniformly to g on rS1. So gni
converges uniformly to g on S1/r. By the

maximum principle, gni
converges uniformly to g on {z : 1/r ≤ |z| ≤ r},

particularly on S1.
Let Lni

be the outer boundary of Hni
. We notice that the dynamics

of gni
on S1 corresponds to the dynamics of fni

on Lni
. Since Lni

is a
Jordan closed curve in the Herman ring Hni

such that fni
(Lni

) = Lni
, the

dynamics of fni
on Lni

corresponds to the dynamics of the irrational rotation
z 7→ e2πiRot(fni |S1 )z. Therefore, the rotation number Rot(gni

|S1) corresponds
to the rotation number Rot(fni

|S1). Then,

Rot(g|S1) = lim
i→+∞

Rot(gni
|S1) = lim

i→+∞
Rot(fni

|S1) = Rot(f |S1).

Now, we show that such the rotation number Rot(g|S1) does not depend
on choosing the Herman compactum H for (f, U). It is referred from the
proof of [PM, Lemma III.3.4]. We fix a Herman compactum H for (f, U). A
sequence {zn}n∈Z is called a full orbit of z0 if zn+1 = f(zn) for all n ∈ Z, and
we denote by O(z0). Let HM be the connected component of the set {z ∈
U : ∃O(z) ⊂ U} which contains S1. Clearly, f(HM) = HM and H ⊂ HM . It
is not difficult to see that HM is the maximal Herman compactum for (f, U).

Let ΩM be the unbounded component of Ĉ−HM , let ΦM : Ĉ−D → ΩM

be a conformal isomorphism such that ΦM(∞) = ∞. So gM = Φ−1
M ◦f ◦ΦM is

univalent on an outer neighborhood of S1. Then gM is extended and univalent
on a neighborhood of S1 by the reflection principle.

We fix a point z ∈ H ∩ γ1 ⊂ HM ∩ γ1. Since γ1 is a Jordan closed curve,
the point z is accessible from the unbounded component of Ĉ − U , and is
accessible from ΩM as well. Let η ⊂ ΩM ⊂ Ω be a path converging to z. Then
Φ−1(η) converges to some point w ∈ S1 and Φ−1

M (η) converges to some point
wM ∈ S1 (see [Mc, Corollary 6.4]). Now the conformal isomorphism Φ−1◦ΦM
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preserves the cyclic ordering between {g◦n(Φ−1(η))}n≥0 and {g◦nM (Φ−1
M (η))}n≥0

(see Figure 1.6).

Φ

Φ

w

w

M

Φ (η)
-1

Φ

M

-1

° ΦM

M

z

Ω  ⊂ ΩM

Φ (η)
-1

η

Figure 1.6

Therefore, the cyclic ordering of {g◦n(w)}n≥0 corresponds to the cyclic
ordering of {g◦nM (wM)}n≥0, and thus Rot(g|S1) = Rot(gM |S1).

Proof. (Proof of Proposition 1.2.4) The method of the proof is similar
to that of Proposition 1.2.2. We use proof by contradiction.

First, we consider the case where f is linearizable on S1. Assume that
there exists a point z which is biaccessible from the unbounded component
Ω of Ĉ − H. Let Φ : Ĉ − D → Ω be a conformal isomorphism such that
Φ(∞) = ∞. So g = Φ−1 ◦ f ◦Φ is univalent on an outer neighborhood of S1.
Then g is extended and univalent on a neighborhood of S1 by the reflection
principle. From Lemma 1.2.2, the rotation number Rot(g|S1) corresponds to
the rotation number Rot(f |S1).

Let Rs and Rt be two distinct external rays land at z. Let X be the
component of IntH which contains S1, let L be the outer boundary of X.
Clearly, f(X) = X and f(L) = L. Let V be the component of C − (Rs ∪
{z} ∪ Rt) which does not contain L. We cut off V along an equipotential
curve Er, and thus have the Jordan domain W which is contained in V .
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Then D = Φ−1(W − H) has the interval I ⊂ S1 as a part of its boundary
(see Figure 1.7).
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t

I

D

r

R t

R s

E r

W-H
Φ

z

L

Figure 1.7

Since the rotation number Rot(g|S1) is irrational, there exists N such that∪N
j=0 g

◦j(I) = S1. We could take a more smaller r > 1, so that g, g◦2, · · · , g◦N

are univalent on D, and furthermore,
∪N

j=0 g
◦j(D) is an outer neighborhood

of S1.
Then f, f ◦2, · · · , f ◦N are univalent on W −H, and thus

∪N
j=0 f

◦j(W −H)
is an outer neighborhood of H. So any point of L ⊂ ∂Ω can be approximated
by some sequence in

∪N
j=0 f

◦j(W −H). Now the injectivity of f implies that

each Jordan domain f ◦j(W ) does not intersect L, therefore, f ◦j(W ) ∩ L
contains at most one point f ◦j(z). This contradicts that L has infinitely
many points.

Now, we consider the case where f is not linearizable on S1. Assume that
there exists a point z which is biaccessible from the unbounded component
Ω of Ĉ − H. Let Φ : Ĉ − D → Ω be a conformal isomorphism such that
Φ(∞) = ∞. So g = Φ−1 ◦ f ◦Φ is univalent on an outer neighborhood of S1.
Then g is extended and univalent on a neighborhood of S1 by the reflection
principle. From Lemma 1.2.2, the rotation number Rot(g|S1) corresponds to
the rotation number Rot(f |S1).

Let Rs and Rt be two distinct external rays land at z. Let V be the
component of C− (Rs ∪ {z} ∪ Rt) which does not contain S1. We cut off V
along an equipotential curve Er, and thus have the Jordan domain W which
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is contained in V . Then D = Φ−1(W −H) has the interval I ⊂ S1 as a part
of its boundary (see Figure 1.8).
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Figure 1.8

Since the rotation number Rot(g|S1) is irrational, there exists N such that∪N
j=0 g

◦j(I) = S1. We could take a more smaller r > 1, so that g, g◦2, · · · , g◦N

are univalent on D, and furthermore,
∪N

j=0 g
◦j(D) is an outer neighborhood

of S1.
Then f, f ◦2, · · · , f ◦N are univalent on W −H, and thus

∪N
j=0 f

◦j(W −H)

is an outer neighborhood ofH. So any point of S1 ⊂ ∂Ω can be approximated
by some sequence in

∪N
j=0 f

◦j(W −H). Now the injectivity of f implies that

each Jordan domain f ◦j(W ) does not intersect S1, therefore, f ◦j(W ) ∩ S1

contains at most one point f ◦j(z). This contradicts that S1 has infinitely
many points.

1.3 Preliminaries for proofs

In this section, we shall see preparations for the proofs of the theorems. The
following notion will be often used later.

Definition 1.3.1 Let Ω ⊂ Ĉ be a simply connected domain which contains
∞. Assume that the boundary ∂Ω contains at least two points. Let Φ :
Ĉ− D → Ω be a conformal isomorphism such that Φ(∞) = ∞. Let Rs and
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Rt be two distinct external rays land at z. Let U1 and U2 be two distinct
components of C − (Rs ∪ {z} ∪ Rt). Then for each l = 1, 2, angle of Ul is
defined as

A(Ul) =
length(Φ−1(Ul ∩ Er))

2πr
.

It does not depend on r > 1, so it is well defined. Clearly, 0 < A(U1), A(U2) <
1 and A(U1) + A(U2) = 1. The angle between Rs and Rt is defined as
A(Rs, Rt) = min{A(U1), A(U2)}. Clearly, A(Rs, Rt) ≤ 1/2 (see Figure 1.9).

s

t

r

z

R t

R s

Er

Φ U2

U1

Figure 1.9

The following two lemmas will be used for the proofs of the theorems.

Lemma 1.3.1 Let K be a compact subset of the complex plane C. Assume
that f is analytic on a neighborhood of K, there are no critical points of f in
K and f is injective on K. Then there exists ε > 0 such that f is univalent
on Nε(K), where Nε(K) = {z ∈ C : minw∈K |z − w| < ε}.

Proof. Assume that f is not univalent onN1/n(K) for all n ∈ N. Then there
exist xn ∈ N1/n(K) and yn ∈ N1/n(K) such that xn 6= yn and f(xn) = f(yn).
Since {xn}n≥1 is contained in N1(K), we take a subsequence {xni

}i≥1 and
a point x0 such that limi→+∞ xni

= x0. Similarly, we take a subsequence
{ynij

}j≥1 of {yni
}i≥1 and a point y0 such that limj→+∞ ynij

= y0. Then both
x0 and y0 are belong to K, and

f(x0) = lim
j→+∞

f(xnij
) = lim

j→+∞
f(ynij

) = f(y0).
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Now f is injective on K, and thus x0 = y0. So f is not univalent on any
neighborhood of x0, and thus x0 is a critical point of f . This contradicts that
there are no critical points of f in K.

Lemma 1.3.2 Let Ω be a bounded domain by a cycle γ ⊂ C which consists
of finite Jordan closed curves. Let f be a complex-valued function defined on
a neighborhood of Ω. Assume that f is analytic on Ω and injective on ∂Ω.
Assume that f preserves the orientation on each Jordan closed curve which
constructs a part of ∂Ω. Then Ω′ is well defined as the bounded domain by
the cycle f(∂Ω) ⊂ C, and f maps Ω conformally onto Ω′.

Ω f Ω’

Figure 1.10

Proof. From the open mapping theorem, it is easy to see that Ω′ is well
defined as the bounded domain by the cycle f(∂Ω) ⊂ C (see Figure 1.10).

Let w0 be a point in Ω′. Let Γ(z) = f(z) − w0 = w − w0. Then Γ(z)
is analytic on Ω and does not take the zeros on ∂Ω. From the argument
principle,

1

2π

∫
∂Ω

d arg Γ(z) =
1

2π

∫
f(∂Ω)

d arg(w − w0) = N,

where N is the number of the zeros in Ω. We obtain N = 1, so there exists
the zero z0 of Γ in Ω. Therefore, z0 is the point in Ω satisfies f(z0) = w0.

Similarly, we can see that there are no points z ∈ Ω such that f(z) = w0

when w0 /∈ Ω′.

1.4 Proof of Theorem 1.1.1

In this section, we consider a polynomial fc(z) = zd + c of degree d ≥ 2. For
each 0 ≤ j ≤ d− 1, let σj(z) = e2πij/dz be a j/d-rotation. Then fc ◦ σj = fc
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implies σj(Jfc) = Jfc . The origin is only one critical point of fc in C.
Assume that α is an irrationally indifferent fixed point of fc. Then the

origin is recurrent (see [Ma]), so the superattracting fixed point∞ is the only
critical point in the immediate basin A∞. Therefore, there exists a conformal
isomorphism Φ : Ĉ−D → A∞ such that Φ(∞) = ∞ and Φ−1◦fc◦Φ(w) = wd.

We consider the dynamics of external rays and the equipotential curves
in the immediate basin A∞. It is easy to see that fc(Rt) = Rdt, f

−1
c (Rt) =∪d−1

j=0 R(t+j)/d, fc(Er) = Erd and f−1
c (Er) = E d

√
r. Moreover, σj(A∞) = A∞

implies σj ◦ Φ = Φ ◦ σj, so that σj(Rt) = Rt+j/d and σj(Er) = Er.

Lemma 1.4.1 Let Rs and Rt be two distinct external rays land at z 6= 0.
Let U be the component of C− (Rs ∪ {z} ∪Rt) such that A(U) = A(Rs, Rt).
Then A(U) < 1/d and σj(U) ∩ σk(U) = ∅ for j 6= k. Therefore, U does not
contain both two σj-symmetric points and C− U contains the origin.

Proof. Assume that A(U) ≥ 1/d. Then A(C− U) ≥ A(Rs, Rt) = A(U) ≥
1/d, so we may suppose that

s < s+
1

d
≤ t < t+

1

d
≤ s+ 1,

and furthermore, σ1(Rs) ⊂ U and σ1(Rt) ⊂ C− U (see Figure 1.11).
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Figure 1.11

Then both Rs+1/d and Rt+1/d land at σ1(z), so σ1(z) ∈ U ∩C− U = ∂U ,
and thus σ1(z) = z. This implies z = 0, which contradicts the assumption
z 6= 0.
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Now assume that there are two distinct numbers j and k such that σj(U)∩
σk(U) 6= ∅. We have A(U) < 1/d, so we may suppose

s+
j

d
< t+

j

d
< s+

k

d
< t+

k

d
< s+

j

d
+ 1.

Two distinct external rays does not intersect, so we conclude that σj(z) =
σk(z). This implies z = 0, which contradicts the assumption z 6= 0.

Lemma 1.4.2 Let Rs and Rt be two distinct external rays land at z 6= 0. Let
U be a component of C− (Rs∪{z}∪Rt). Then the following three conditions
are equivalent to each other:

(a) A(U) < 1/d;

(b) fc is univalent on U ;

(c) U does not contain the origin.

Proof. (a)⇒(b): Assume that A(U) < 1/d. So we cut off U along an
equipotential curve Er, and thus have the Jordan domain V which is con-
tained in U . Then fc is injective on ∂V and preserves the orientation, so
Lemma 1.3.2 implies that fc is univalent on V . We could take a more bigger
r > 1, so that fc is univalent on U . Moreover, fc(U) is the component of
C− fc(Rs ∪ {z} ∪Rt) such that A(fc(U)) = dA(U).

(b)⇒(c): It is obvious.
(c)⇒(a): Assume that U does not contain the origin. If A(C − U) =

A(Rs, Rt), then Lemma 1.4.1 implies that U contains the origin. This con-
tradicts the assumption, and thus A(C−U) 6= A(Rs, Rt). Therefore, A(U) =
A(Rs, Rt) and thus Lemma 1.4.1 implies A(U) < 1/d.

Lemma 1.4.3 Assume that z is biaccessible from the immediate basin A∞
such that α /∈ {f ◦n

c (z)}n≥0 and 0 /∈ {f ◦n
c (z)}n≥0. Then there exist two distinct

external rays Ru and Rv with a common landing point w such that Ru∪{w}∪
Rv separates α from the origin.

Proof. Let Rs and Rt be two distinct external rays landing at z. Let U be
the component of C−(Rs∪{z}∪Rt) which does not contain the origin. Then
Lemma 1.4.2 implies that fc is univalent on U and thus A(fc(U)) = dA(U).
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If fc(U) does not contain the origin, then we have that fc is univalent
on fc(U) and thus A(f ◦2

c (U)) = d2A(U) as the above argument. Otherwise,
fc(U) contains the origin.

By repeating the above step, we see that there exists N ≥ 0 such that
f ◦N
c (U) does not contain the origin and f ◦N+1

c (U) contains the origin. Then
fc is univalent on f ◦N

c (U) and thus A(f ◦N+1
c (U)) = dN+1A(U).

If α ∈ f ◦N
c (U), then put Ru ∪ {w} ∪Rv = f ◦N

c (Rs ∪ {z} ∪Rt).
Otherwise, if α /∈ f ◦N

c (U), then we may consider the following two cases:

(1) f ◦N
c (U) contains some σj0(α);

(2) f ◦N
c (U) does not contain any σj(α).

In the case (1), put Ru ∪ {w} ∪Rv = σd−j0(f
◦N
c (Rs ∪ {z} ∪Rt)).

In the case (2), if f ◦N+1
c (U) contains α, then f ◦N

c (U) contains one point
of inverse image of α. Since f−1

c (α) = {σj(α)|0 ≤ j ≤ d− 1}, it follows that
f ◦N
c (U) contains some σj0(α). However, this contradicts that f ◦N

c (U) does
not contain any σj(α). Therefore, f

◦N+1
c (U) does not contain α, and thus we

put Ru ∪ {w} ∪Rv = f ◦N+1
c (Rs ∪ {z} ∪Rt).

Proof. (Proof of Theorem 1.1.1) We use proof by contradiction. If α is
a Siegel point, assume that 0 /∈ {f ◦n

c (z0)}n≥0. If α is a Cremer point, assume
that α /∈ {f ◦n

c (z0)}n≥0 and 0 /∈ {f ◦n
c (z0)}n≥0. In both cases, it follows that

z0 is biaccessible from A∞ such that α /∈ {f ◦n
c (z0)}n≥0 and 0 /∈ {f ◦n

c (z0)}n≥0.
Lemma 1.4.3 implies that there exist two distinct external rays Ru and

Rv with a common landing point w such that Ru∪{w}∪Rv separates α from
the origin. Let U be the component of C− (Ru ∪ {w} ∪Rv) which contains
α. Then fc is injective on U . We cut off U along an equipotential curve Er,
and thus have the Jordan domain V which contains α.

Since V contains no critical points of fc, it follows from Lemma 1.3.1 that
there exists a Jordan domain W such that V ⊂ W and fc is univalent on a
neighborhood of W (see Figure 1.12).

Now we take a Siegel compactum S for (fc,W ) by Proposition 1.2.1.
Then S meets the boundary ∂W but not ∂V − {w}, so S must contain

w. Furthermore, ∂(Ĉ − S) − {w} is disconnected, and thus the point w

is biaccessible from Ĉ − S. However, the biaccessibility of w contradicts
Proposition 1.2.2.
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1.5 Proof of Theorem 1.1.2

In this section, we consider a polynomial gθ(z) = e2πiθz+ zd of degree d ≥ 2.
Actually, we may consider the cases of d ≥ 3 and thus assume that d ≥ 3 in
the following arguments. For each 0 ≤ j ≤ d − 2, let τj(z) = e2πij/(d−1)z be
a j/(d − 1)-rotation. Then gθ ◦ τj = τj ◦ gθ implies τj(Jgθ) = Jgθ . So gθ has
d− 1 symmetric critical points cj = τj(c), where c is one of the solutions of
e2πiθ + dzd−1 = 0.

Assume that the origin is an irrationally indifferent fixed point of gθ. Then
some critical point cj0 is recurrent (see [Ma]), so gθ ◦ τj = τj ◦ gθ implies that
every critical point cj is recurrent. Therefore, the superattracting fixed point
∞ is the only critical point in the immediate basin A∞. Then there exists
a conformal isomorphism Φ : Ĉ − D → A∞ such that Φ(∞) = ∞ and
Φ−1 ◦ gθ ◦ Φ(w) = wd.

We consider the dynamics of external rays and the equipotential curves
in the immediate basin A∞. It is easy to see that gθ(Rt) = Rdt, g

−1
θ (Rt) =∪d−1

j=0 R(t+j)/d, gθ(Er) = Erd and g−1
θ (Er) = E d

√
r. Moreover, τj(A∞) = A∞

implies τj ◦ Φ = Φ ◦ τj, so that τj(Rt) = Rt+j/(d−1) and τj(Er) = Er.

Lemma 1.5.1 Let Rs and Rt be two distinct external rays land at z 6= 0.
Let U be the component of C− (Rs ∪ {z} ∪Rt) such that A(U) = A(Rs, Rt).
Then A(U) < 1/(d− 1) and τj(U) ∩ τk(U) = ∅ for j 6= k. Therefore, U does
not contain both two τj-symmetric points and C− U contains the origin.
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The method of the proof is similar to that of Lemma 1.4.1.

Lemma 1.5.2 Let Rs and Rt be two distinct external rays land at z 6= 0. Let
U be a component of C− (Rs∪{z}∪Rt). Then the following three conditions
are equivalent to each other:

(a) A(U) < 1/d;

(b) gθ is univalent on U ;

(c) U does not contain any cj.

Proof. The method of the proof of (a)⇒(b) is similar to that of Lemma
1.4.2. The proof of (b)⇒(c) is obvious. We give the proof of (c)⇒(a) here.

Assume that U does not contain any cj. If A(C − U) = A(Rs, Rt), then
Lemma 1.5.1 implies that C − U does not contain both two τj-symmetric
points. Therefore, U contains at least one point of cj. This contradicts the
assumption, and thus we have A(C − U) 6= A(Rs, Rt). Therefore, A(U) =
A(Rs, Rt) and we see from Lemma 1.5.1 that τj(U) ∩ τk(U) = ∅ for j 6= k.

If A(U) ≥ 1/d, then A(τj(U)) ≥ 1/d and thus gθ(τj(U)) = C. Then each

τj(U) contains at least one point of inverse image of some critical value vj0 ,

where vj0 = gθ(cj0). Therefore,
∪d−2

j=0 τj(U) contains at least d − 1 points of

inverse image of vj0 . However, this contradicts that C−
∪d−2

j=0 τj(U) contains
the critical point cj0 . Therefore, we conclude A(U) < 1/d.

Lemma 1.5.3 Assume that z is biaccessible from the immediate basin A∞
such that 0 /∈ {g◦nθ (z)}n≥0 and cj /∈ {g◦nθ (z)}n≥0 for all j. Then for each j,
there exist two distinct external rays Ruj

and Rvj with a common landing
point wj such that Ruj

∪ {wj} ∪Rvj separates cj from the origin.

Proof. By τj-symmetry, it is enough to show Lemma 1.5.3 for some j0.
Now let Rs and Rt be two distinct external rays landing at z. Let U be the
component of C − (Rs ∪ {z} ∪ Rt) which does not contain the origin. If U
contains some cj0 , put Ruj0

∪ {wj0} ∪Rvj0
= Rs ∪ {z} ∪Rt.

On the other hand, assume that U does not contain any cj. Then Lemma
1.5.2 implies gθ is univalent on U and thus A(gθ(U)) = dA(U).

If gθ(U) does not contain any cj, then we have that gθ is univalent on
gθ(U) and thus A(g◦2θ (U)) = d2A(U) as the above argument. Otherwise,
gθ(U) contains some cj0 .
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By repeating the above step, we see that there exists N ≥ 0 such that
g◦Nθ (U) does not contain any cj and g◦N+1

θ (U) contains some cj0 . Then gθ is
univalent on g◦Nθ (U) and thus A(g◦N+1

θ (U)) = dN+1A(U).
So we may consider the following three cases:

(1) g◦N+1
θ (U) contains only some one of cj;

(2) C− g◦N+1
θ (U) contains only some one of cj;

(3) g◦N+1
θ (U) contains all cj.

In the case (1) and case (2), put Ruj0
∪{wj0}∪Rvj0

= g◦N+1
θ (Rs∪{z}∪Rt).

Now, we consider the case (3). To simplify the notation, we set as the
following:

L = g◦Nθ (Rs ∪ {z} ∪Rt), V = g◦Nθ (U),

W = C−
d−2∪
j=0

τj(V ), W ′ =
d−2∩
j=0

gθ(τj(V )) =
d−2∩
j=0

τj(gθ(V )).

Then both W and W ′ are τj-symmetrical domains, which contain the origin
as well as all cj (see Figure 1.13).

V

c c0 0

c1
c1

0 0

L

θ (L)

θg

g
W’W

Figure 1.13

If W ′ contains some critical value vj0 = gθ(cj0), then each τj(V ) contains

one point of inverse image of vj0 , and thus
∪d−2

j=0 τj(V ) contains d− 1 points
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of inverse image of vj0 . However, this contradicts that W = C−
∪d−2

j=0 τj(V )

contains the critical point cj0 . Therefore,W
′ does not contain any vj = gθ(cj).

Now we may suppose that C − gθ(V ) contains some vj0 = gθ(cj0). For
each 0 ≤ j ≤ d− 2, we consider the following bijection:

gθ|τj(V ) : τj(V ) → gθ(τj(V )).

Then the image gθ(τj(V )) contains gθ(L). Therefore, deg gθ = d implies
W ∩ g−1

θ (gθ(L)) 6= ∅. Now we set L′ = W ∩ g−1
θ (gθ(L)).

If L′ does not separate cj0 from the origin, then there exists a continuous
curve γ inW−L′ between cj0 and the origin. Then gθ(γ) is a continuous curve
between vj0 and the origin. So gθ(γ)∩gθ(L) 6= ∅ and thus γ∩g−1

θ (gθ(L)) 6= ∅.
However, this contradicts γ ⊂ W − L′.

Therefore, it is concluded that L′ separates cj0 from the origin, and thus
we put Ruj0

∪ {wj0} ∪Rvj0
= L′.

Proof. (Proof of Theorem 1.1.2) We use proof by contradiction. If the
origin is a Siegel point, assume that cj /∈ {g◦nθ (z0)}n≥0 for all j. If the origin
is a Cremer point, assume that 0 /∈ {g◦nθ (z0)}n≥0 and cj /∈ {g◦nθ (z0)}n≥0 for
all j.

In both cases, it follows that z0 is biaccessible from A∞ so that 0 /∈
{g◦nθ (z0)}n≥0 and cj /∈ {g◦nθ (z0)}n≥0 for all j. Lemma 1.5.3 implies that for
each j, there exist two distinct external rays Ruj

and Rvj with a common
landing point wj such that Ruj

∪ {wj} ∪ Rvj separates cj from the origin.
Then we may suppose that all Ruj

∪ {wj} ∪Rvj are τj-symmetrical.

Let U be the component of C −
∪d−2

j=0(Ruj
∪ {wj} ∪ Rvj) which contains

the origin. We cut off U along an equipotential curve Er and thus have
the τj-symmetric Jordan domain V which contains the origin. Then gθ is
injective on ∂V and preserves the orientation, so Lemma 1.3.2 implies that
gθ is injective on V .

Since V contains no critical points of gθ, it follows from Lemma 1.3.1 that
there exists a Jordan domain W such that V ⊂ W and gθ is univalent on a
neighborhood of W (see Figure 1.14).

Now we take a Siegel compactum S for (gθ,W ) by Proposition 1.2.1.
Then S meets the boundary ∂W but not ∂V −

∪d−2
j=0{wj}, so S must contain

some wj0 . Furthermore, ∂(Ĉ−S)−{wj0} is disconnected, and thus the point

wj0 is biaccessible from Ĉ−S. However, the biaccessibility of wj0 contradicts
Proposition 1.2.2.
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1.6 Proof of Theorem 1.1.3

In this section, we consider a rational function h(z) = e2πiθz2(z−a)/(1− āz).
Let υ(z) = 1/z̄ be an inversion. Then h ◦ υ = υ ◦ h implies υ(Jh) = Jh. The
zeros are the origin and a, and the poles are infinity and υ(a). We suppose
|a| > 3 such that h|S1 is an analytic circle diffeomorphism. Then both of
infinity and the origin are superattracting fixed points with local degree 2,
and thus h ◦ υ = υ ◦ h implies υ(A∞) = A0. Let c be the critical point of h
such that |c| > 1, and thus υ(c) is also a critical point of h.

Assume that the rotation number Rot(h|S1) is irrational. If h is lineariz-
able on S1, then there exists a Herman ring H and thus S1 ⊂ H ⊂ Fh. On the
other hand, if h is not linearizable on S1, then S1 ⊂ Jh. In either case, some
critical point is recurrent (see [Ma]), so that both c and υ(c) are recurrent
by h ◦ υ = υ ◦ h. Therefore, each of superattracting fixed points infinity and
the origin is the only critical point in each immediate basin. We may con-
sider only the immediate basin A∞. So there exists a conformal isomorphism
Φ : Ĉ− D → A∞ such that Φ(∞) = ∞ and Φ−1 ◦ h ◦ Φ(w) = w2.

We consider the dynamics of external rays and the equipotential curves in
the immediate basin A∞. It is easy to see that h(Rt) = R2t, h

−1(Rt)∩A∞ =
Rt/2 ∪R(t+1)/2, h(Er) = Er2 and h−1(Er) ∩ A∞ = E√

r.

Lemma 1.6.1 There are no points in S1 which are biaccessible from A∞.
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Proof. This proof is referred from the last part of the proof of [Za, Theorem
5]. We use proof by contradiction. Assume that there exists a point z0 ∈ S1

which is biaccessible from A∞. Let Rs and Rt be two distinct external rays
landing at z0, let U0 be the component of C − (Rs ∪ {z0} ∪ Rt) which does
not contain S1. Let zn = h◦n(z0) and Un be the component of C− h◦n(Rs ∪
{z0} ∪Rt) which does not contain S1 (see Figure 1.15).

z 0

U0z 1

2z

U1

U2

Figure 1.15

There are no critical points in S1, and so we notice that A(Un) 6= 1/2
for all n ≥ 0. First, we show that A(Un) > 1/2 for some Un. Assume that
A(U0) < 1/2. By the similar method of the proof of (a)⇒(b) in Lemma
1.4.2, we see h is injective on U0. Since z0 is not a critical point, S1 6⊂ h(U0),
therefore, h(U0) = U1 and A(U1) = 2A(U0). If A(U1) < 1/2, then we
similarly have that h(U1) = U2 and A(U2) = 2A(U1). By repeating the
above step, we conclude there exists UN such that A(UN) > 1/2.

We shall see contradiction. Let V = C − UN . Then A(V ) < 1/2 by
A(UN) > 1/2. Since the rotation number Rot(h|S1) is irrational, the orbit
{zn}n≥0 is infinite. So Un ⊂ V for all n ≥ N + 1 (see Figure 1.16).

By the above argument, we obtain that h(Un) = Un+1 and A(Un+1) =
2A(Un) for all n ≥ N + 1. This monotonous increasing contradicts A(Un) <
A(V ) < 1/2 for all n ≥ N + 1.

In the rest of this section, we shall use the above lemma without any
explanation.

Lemma 1.6.2 Let Rs and Rt be two distinct external rays land at z 6= c. Let
U be a component of C− (Rs ∪{z}∪Rt). Then the following two conditions
are equivalent to each other:
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(a) A(U) < 1/2;

(b) U does not contain c.

Proof. (a)⇒(b): Assume that A(U) < 1/2. Then we cut off U along
an equipotential curve Er, and thus have the Jordan domain V which is
contained in U . Then h is injective on ∂V and preserves the orientation. We
may consider the following two cases:

(1) S1 ∩ V = ∅;

(2) S1 ⊂ V .

In the case (1), Lemma 1.3.2 implies that h is injective on V . We could
take a more bigger r > 1, so that h is univalent on U . Therefore, U does not
contain c.

In the case (2), we set W = V − D (see Figure 1.17).
Then h is injective on ∂W and preserves the orientation. So Lemma 1.3.2

implies that h is injective on W , and thus c /∈ W . Since c /∈ D, the domain
V does not contain c. We could take a more bigger r > 1, so that U does
not contain c.

(b)⇒(a): Assume that U does not contain c. Then C− U contains c. It
follows from the contraposition of (a)⇒(b) that A(C − U) > 1/2, and thus
A(U) < 1/2.
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Lemma 1.6.3 Assume that z is biaccessible from the immediate basin A∞
such that c /∈ {h◦n(z)}n≥0. Then there exist two distinct external rays Ru

and Rv with a common landing point w such that Ru ∪ {w} ∪ Rv separates
S1 from c.

Proof. Let Rs and Rt be two distinct external rays landing at z. Let U be
the component of C − (Rs ∪ {z} ∪ Rt) which does not contain c. Then U
satisfies A(U) < 1/2 by Lemma 1.6.2. If S1 ⊂ U , we put Ru ∪ {w} ∪ Rv =
Rs∪{z}∪Rt. On the other hand, if S1∩U = ∅, then we see h is univalent on
U and thus A(h(U)) = 2A(U) by the similar method of the proof of (a)⇒(b)
in Lemma 1.4.2.

We consider h(U) instead of U . If h(U) contains neither c nor S1, then
we similarly have that h is univalent on h(U) and thus A(h◦2(U)) = 22A(U).
Otherwise, h(U) contains c or S1.

By repeating the above step, we see that there exists N ≥ 0 such that
h◦N(U) does not contain c nor S1 and h◦N+1(U) contains c or S1. Then
h is univalent on h◦N(U) and thus A(h◦N+1(U)) = 2N+1A(U). So we may
consider the following three cases:

(1) h◦N+1(U) contains S1 but not c;

(2) h◦N+1(U) contains c but not S1;
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(3) h◦N+1(U) contains both c and S1.

In the case (1) and case (2), put Ru ∪ {w} ∪Rv = h◦N+1(Rs ∪ {z} ∪Rt).
Now, we consider the case (3). Since h|

h◦N (U)
: h◦N(U) → h◦N+1(U) is

bijective, h◦N(U) contains the Jordan closed curve γ such that h(γ) = S1.
So h ◦ υ = υ ◦ h implies that h−1(S1) = S1 ∪ γ ∪ υ(γ) (see Figure 1.18).
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To simplify the notation, we set h◦N(Rs) = Rs′ and h◦N(Rt) = Rt′ . Let
Ru = Rs′+1/2, Rv = Rt′+1/2, and w be their landing point. Then h(Ru ∪
{w}∪Rv) = h◦N+1(Rs∪{z}∪Rt). We shall see that Ru∪{w}∪Rv separates
S1 from c as following.

Assume that Ru ∪ {w} ∪ Rv does not separate S1 from c. Let V be the
component of C− (Ru∪{w}∪Rv) which does not contain c, and thus it does
not contain S1. Then A(V ) = A(h◦N(U)) by A(V ) < 1/2. So h is univalent
on V and thus A(h(V )) = 2A(V ). Then A(h(V )) = 2A(V ) = 2A(h◦N(U)) =
A(h◦N+1(U)) implies that h(V ) = h◦N+1(U) ⊃ S1. So V contains a preimage
of S1. This is impossible, for h−1(S1) = S1 ∪ γ ∪ υ(γ).

Proof. (Proof of Theorem 1.1.3) We use proof by contradiction, and
thus assume that c /∈ {h◦n(z0)}n≥0. Then there exist two distinct external
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rays Ru and Rv with a common landing point w such that Ru ∪ {w} ∪ Rv

separates S1 from c by Lemma 1.6.3. Let U be the component of C− (Ru ∪
{w} ∪Rv) which contains S1. We cut off U along an equipotential curve Er,
and thus have the Jordan closed curve γ ⊂ C− D. Then h is injective on γ
and preserves the orientation. Let V ′ be the Jordan annular domain which is
surrounded by γ and S1. Since V ′ does not contain the pole υ(a), it follows
from Lemma 1.3.2 that h is injective on V ′. Then h(V ′) ⊂ C − D implies
that V ′ does not contain the zero a.

We put V = V ′ ∪S1 ∪ υ(V ′). So V does not contain any of the pole υ(a),
the zero a, two critical points c and υ(c) (see Figure 1.19).
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Moreover, h is injective on V by h ◦ υ = υ ◦ h. It follows from Lemma
1.3.1 that there exists a Jordan annular domain W such that V ⊂ W and
h is univalent on a neighborhood of W . We may suppose that both W and
h(W ) do not contain the origin.

Now we take a Herman compactum H for (h,W ) by Proposition 1.2.3.
Then H meets the outer component of the boundary ∂W but not γ − {w},
so H must contain w. Let Ω be the unbounded component of Ĉ−H. Then
∂Ω − {w} is disconnected, and thus the point w is biaccessible from Ω.
However, the biaccessibility of w contradicts Proposition 1.2.4.
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Chapter 2

Periodic points on the
boundaries of rotation domains
of some rational functions

2.1 Introduction and the main theorem

The dynamics on a periodic Fatou component is well understood, actually
there are three possibilities. They are the attracting case, the parabolic case
or the irrational rotation case. However, it is difficult to see the dynamics
on the boundary of a periodic Fatou component. A positive answer to the
question of local connectivity of the boundary sometimes gives a model of
the dynamics. Even when the boundary fails to be locally connected, we are
interested in the dynamics of the boundary. Especially, we may ask can the
boundary have a dense orbit or a periodic orbit?

It is interesting that the periodic points on the boundary ∂Ω of an im-
mediate attracting or parabolic basin Ω are dense in ∂Ω [PrZ, Theorem A].
According to [RY, Theorem 1], if Ω is a bounded Fatou component of a
polynomial that is not eventually a Siegel disk, then the boundary ∂Ω is a
Jordan curve. For a geometrically finite rational function with connected
Julia set, the Julia set is locally connected [TY, Theorem A], and thus every
Fatou component is locally connected.

We are interested in the topological structures of the boundaries of rota-
tion domains and the dynamics on the boundaries. There are some results
about the Julia sets which contain the boundaries of Siegel disks (see for
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example [ABC, He, Pe, PZ, R, Ro]).
If the boundary ∂Ω of a Siegel disk Ω is locally connected, then it follow

from the Carathéodory’s theorem in conformal mapping theory that ∂Ω is
a Jordan closed curve and the dynamics on ∂Ω is topologically conjugate
to an irrational rotation. In particular, there are no periodic points on the
boundary ∂Ω.

According to R. Pérez-Marco, the injectivity on a simply connected neigh-
borhood of the closure of a Siegel disk implies that no periodic points on the
boundary of the Siegel disk. More precisely, we have the following proposition
[PM, Theorem IV.4.2].

Proposition 2.1.1 Let Ω be an invariant Siegel disk of a rational function
R, and let U be a neighborhood of Ω so that the boundary ∂U consists of a
Jordan closed curve γ. If R is injective on a neighborhood of U , and both of
γ and R(γ) are contained in a component of Ĉ − Ω, then the boundary ∂Ω
contains no periodic points.

In general, it may be hard to find a Jordan domain where the function
is injective. The following theorem implies that there are still no periodic
points except for the Cremer points on the boundary of invariant rotation
domains even when the injective neighborhood is not a Jordan domain.

Theorem 2.1.1 Let Ω be an invariant rotation domain of a rational func-
tion R, and let U be a neighborhood of Ω. If R is injective on U , then the
boundary ∂Ω contains no periodic points except Cremer points.

In the last section, we will discuss some related topics.

2.2 Basic definitions

Let Ĉ = C ∪ {∞} be the Riemann sphere, and let R : Ĉ → Ĉ be a rational
function of degree at least two. We define the Fatou set of R as the union of
all open sets U ⊂ Ĉ such that the family of iterates {Rn} is equicontinuous
on U , and the Julia set of R as the complement of the Fatou set of R. We
denote the Julia set of R by J(R) and the Fatou set of R by F (R). The
Fatou set F (R) is a completely invariant open set and the Julia set J(R)
is a completely invariant compact set. Their fundamental properties can be
found in [Be, Mi].
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For each periodic point z0 with period k, the multiplier is defined as
(Rk)′(z0) and we denote by λ. A connected component of the Fatou set
F (R) is called a Fatou component.

A periodic point z0 with period k is called attracting if |λ| < 1. Then
the point z0 is contained in the Fatou set F (R). The Fatou component Ω
containing the point z0 is called the immediate attracting basin of z0. Then
{(Rk)n} converges locally uniformly to z0 on Ω.

A periodic point z0 with period k is called parabolic if λ is a root of unity,
or equivalently there exists an rational number p/q such that λ = e2πip/q.
Then the point z0 is contained in the Julia set J(R). A Fatou component Ω
whose boundary contains the point z0 is called an immediate parabolic basin
of z0 if {(Rkq)n} converges locally uniformly to z0 on Ω.

A periodic point z0 with period k is called irrationally indifferent if |λ| = 1
but λ is not a root of unity, or equivalently there exists an irrational number
θ such that λ = e2πiθ. Then we distinguish between two possibilities. If the
point z0 lies in the Fatou set F (R), we say that a Siegel point. The Fatou
component Ω containing the Siegel point z0 is called the Siegel disk with
center z0. Then Ω is conformally isomorphic to the unit disk D, and the
dynamics of Rk on Ω corresponds to the dynamics of the irrational rotation
λz on D. Otherwise, if the point z0 belongs to the Julia set J(R), we say
that a Cremer point.

A periodic point z0 is called weakly repelling if λ = 1 or |λ| > 1, in
particular, is called repelling if |λ| > 1. It well known that the repelling
periodic points are dense in the Julia set J(R) and the non-repelling periodic
points are finite.

A periodic Fatou component Ω with period k is called a Herman ring
if Ω is conformally isomorphic to some annulus Ar = {z : 1/r < |z| < r}.
Then the dynamics of Rk on Ω corresponds to the dynamics of an irrational
rotation on Ar. We say that a Siegel disk or a Herman ring is a rotation
domain. It well known that every Fatou component is eventually periodic,
and a periodic Fatou component is either an immediate attracting basin or
an immediate parabolic basin or a Siegel disk or a Herman ring.

2.3 Local surjectivity

In this section, we shall see local surjectivity of rational function R of degree
at least two. The notion of local surjectivity is referred from [Sch].
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Definition 2.3.1 Let Ω be a Fatou component, and let z0 ∈ ∂Ω. We say R
is locally surjective for (z0,Ω), if there exists ε > 0 such that R(N ∩ Ω) =
R(N) ∩R(Ω) for any neighborhood N ⊂ Bε(z0) = {z : d(z, z0) < ε} of z0.

Lemma 2.3.1 Let Ω be a Fatou component, and let z0 ∈ ∂Ω. Assume that R
is locally surjective for (z0,Ω), (R(z0), R(Ω)), · · · , (Rn−1(z0), R

n−1(Ω)). Then
Rn is locally surjective for (z0,Ω).

Proof. It follows from the assumption that there exists ε > 0 such that

R(N ∩ Ω) = R(N) ∩R(Ω),

R(R(N) ∩R(Ω)) = R(R(N)) ∩R(R(Ω)),

...

R(Rn−1(N) ∩Rn−1(Ω)) = R(Rn−1(N)) ∩R(Rn−1(Ω)),

for any neighborhood N ⊂ Bε(z0) of z0. So Rn(N ∩ Ω) = Rn(N) ∩Rn(Ω).

The following two propositions are described in [Sch]. Since the proofs
are not given in [Sch], we will give proofs for the sake of completeness.

Proposition 2.3.1 Let Ω be a Fatou component, and let z0 ∈ ∂Ω. Assume
that z0 is not a critical point, and there exists a Fatou component Ω′ 6= Ω
such that z0 ∈ ∂Ω′ and R(Ω′) = R(Ω). Then R is not locally surjective for
(z0,Ω).

Proof. Since z0 is not a critical point, for any ε > 0 there is a sufficiently
small neighborhood N ⊂ Bε(z0) of z0 such that R|N : N → R(N) is a
homeomorphism. Then R(N ∩Ω)∩R(N ∩Ω′) = ∅ and R(N ∩Ω′) ⊂ R(N)∩
R(Ω′) = R(N)∩R(Ω). Therefore, R(N ∩Ω) ⊂ R(N)∩R(Ω)−R(N ∩Ω′) (
R(N) ∩R(Ω).

Proposition 2.3.2 Let Ω be a Fatou component, and let z0 ∈ ∂Ω. Assume
that R is not locally surjective for (z0,Ω). Then there exists a Fatou compo-
nent Ω′ 6= Ω such that z0 ∈ ∂Ω′ and R(Ω′) = R(Ω).

Proof. From the assumption, for each n ∈ N there exists a neighborhood
Nn ⊂ B1/n(z0) of z0 such that R(Nn ∩Ω) ( R(Nn)∩R(Ω). Hence, there is a
point zn ∈ Nn−Ω so that R(zn) ∈ R(Nn)∩R(Ω)−R(Nk∩Ω). Let Ωn be the
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Fatou component contains zn. Then, Ωn 6= Ω and R(Ωn) = R(Ω). Thus, we
can set Ω′ = Ωni

for a subsequence {ni}. Then zni
∈ Ω′ and limi→+∞ zni

= z0,
therefore, z0 ∈ ∂Ω′.

As it has been pointed out in [Sch], the above proposition implies that if
Ω is a completely invariant Fatou component and z0 ∈ ∂Ω, then R is locally
surjective for (z0,Ω).

Lemma 2.3.2 Let Ω be a Fatou component, and let z0 ∈ ∂Ω. If R is injective
on a neighborhood V of the boundary ∂Ω, then R is locally surjective for
(z0,Ω).

Proof. Since R is injective on the neighborhood V of ∂Ω, there are no
Fatou components of R−1(R(Ω)) which contain z0 on their boundaries. By
the contraposition of Proposition 2.3.2, the proof is finished.

For a Fatou component whose boundary contains no critical point, the
injectivity on the closure implies local surjectivity.

Theorem 2.3.1 Let Ω be a Fatou component. Assume that R is injective
on Ω and the boundary ∂Ω contains no critical points. Then, either R is
injective on the boundary ∂Ω or there exists z0 ∈ ∂Ω such that R is not
locally surjective for (z0,Ω).

Proof. Suppose that R is injective on ∂Ω and let z0 ∈ ∂Ω. Then, R is
injective on a neighborhood V of the boundary ∂Ω (see also [Im1, Lemma
3.1]). Therefore, R is locally surjective for (z0,Ω) by Lemma 2.3.2.

Now suppose that R is not injective on ∂Ω. Then, there are two distinct
points z0 ∈ ∂Ω and w0 ∈ ∂Ω such that R(z0) = R(w0). Since the boundary
∂Ω contains no critical points, there exists ε > 0 such that Bε(z0)∩Bε(w0) = ∅
and R|Bε(z0) : Bε(z0) → R(Bε(z0)) is a homeomorphism. Let wn ∈ Ω be a
sequence so that limn→+∞ wn = w0. For any neighborhood N ⊂ Bε(z0) of
z0, the image R(N) is a neighborhood of R(z0). Since limn→+∞ R(wn) =
R(w0) = R(z0), there is some point R(wn) in R(N). From the injectivity of
R|Ω, there is no point in N ∩ Ω whose image is equal to the point R(wn).
Then, R(wn) ∈ R(N)∩R(Ω)−R(N∩Ω), and thus R(N∩Ω) ( R(N)∩R(Ω).
Therefore, R is not locally surjective for (z0,Ω).

Since R is injective on a rotation domain, the following corollary argues
that the injectivity on the boundary implies local surjectivity.
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Corollary 2.3.1 Let Ω be an invariant rotation domain. Assume that the
boundary ∂Ω contains no critical points. Then, either R is injective on the
boundary ∂Ω or there exists z0 ∈ ∂Ω such that R is not locally surjective for
(z0,Ω).

2.4 The proof of the main theorem

Definition 2.4.1 Let Ω ⊂ Ĉ be a Fatou component. A point z ∈ ∂Ω is
called accessible from Ω if there exists a continuous curve γ : [0, 1) → Ω
such that lims↗1 γ(s) = z. We say that such a curve γ is a periodic curve if
Rk(γ) ⊂ γ or Rk(γ) ⊃ γ for some k.

We show Theorem 2.1.1 by using the following key proposition [Sch,
Theorem 1].

Proposition 2.4.1 Let Ω be an invariant Fatou component, and let z0 ∈ ∂Ω
be a weakly repelling fixed point. If R is locally surjective for (z0,Ω), then z0
is accessible from Ω by a periodic curve.

So we have the following lemma.

Lemma 2.4.1 Let Ω be an invariant Fatou component, and let z0 ∈ ∂Ω be a
parabolic fixed point. If R is locally surjective for (z0,Ω), then z0 is accessible
from Ω by a periodic curve.

Proof. Let λ = e2πip/q be the multiplier at z0. It is clear that Ω is an
invariant Fatou component for Rq. So (Rq)′(z0) = λq = 1 and thus z0 is a
weakly repelling fixed point of Rq. Since Rn(z0) = z0 and Rn(Ω) = Ω for
0 ≤ n ≤ q, Lemma 2.3.1 implies that Rq is locally surjective for (z0,Ω). From
Proposition 2.4.1, z0 is accessible from Ω by a periodic curve for Rq. This
curve is periodic for R.

Proof. (Proof of Theorem 2.1.1) We give the proof by contradiction.
Suppose that the boundary ∂Ω contains a periodic point z0 with period k
which is not a Cremer point. So the point z0 is a parabolic or repelling
fixed point of Rk. It is clear that Rn(Ω) = Ω and Rn(z0) ∈ ∂Ω for 0 ≤
n ≤ k, and thus Ω is an invariant Fatou component for Rk. Since R is
injective on U , it follows from Lemma 2.3.2 that R is locally surjective for
(z0,Ω), (R(z0),Ω), · · · , (Rk−1(z0),Ω). Lemma 2.3.1 implies that Rk is locally
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surjective for (z0,Ω). By Proposition 2.4.1 and Lemma 2.4.1, the point z0 is
accessible from Ω by a periodic curve for Rk. This contradicts that Ω is a
rotation domain.

2.5 Some related topics

In this section, we shall give some results on related topics. First, similarly to
Proposition 2.1.1, we formulate the following proposition related to Herman
rings and give the proof.

Proposition 2.5.1 Let Ω be an invariant Herman ring of a rational function
R, and let U be a neighborhood of Ω so that the boundary ∂U consists of two
Jordan closed curves γ and γ′ which are separated by invariant curves in the
Herman ring Ω. If R is injective on a neighborhood of U , and both of γ and
R(γ) are contained in a component V of Ĉ−Ω, and both of γ′ and R(γ′) are

contained in a component V ′ of Ĉ − Ω, then the boundary ∂Ω contains no
periodic points.

Proof. This proof is referred from the proof of [PM, Theorem IV.4.2]. We
give the proof by contradiction. Suppose that the boundary ∂Ω contains a
periodic point with period k. Then, the periodic orbit O = {z1, z2, · · · , zk}
is contained in a component L of the boundary ∂Ω. Let {Kn} be a sequence
of invariant closed annuli in the Herman ring Ω such that Kn ⊂ IntKn+1

and
∪+∞

n=1Kn = Ω. Then {Kn} converges to Ω in the sense of Hausdorff

convergence. Let Ω̃ be the filled set of Ω such that Ω̃ = Ĉ − (V ∪ V ′). By

the assumption, we note that R|Ω̃ : Ω̃ → Ω̃ is a homeomorphism.
The component L contains either ∂V or ∂V ′. For the sake of convenience,

we may assume that L contains ∂V , and furthermore, V contains infinity ∞.
Let Vn be the component of Ĉ−Kn which contains ∞. Since {Kn} converges
to Ω in the sense of Hausdorff convergence, {Vn} converges to V with respect
to ∞ in the sense of Carathéodory kernel convergence. We consider the
following conformal isomorphisms

Φn : Ĉ− D → Vn, Φ : Ĉ− D → V

so that Φn(∞) = Φ(∞) = ∞, limz→∞ Φn(z)/z > 0 and limz→∞Φ(z)/z >
0. So {Φn} converges locally uniformly to Φ by the Carathéodory kernel
theorem (see for example [Po, Theorem 1.8]). There exists r > 1 such that
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gn = Φ−1
n ◦R ◦Φn and g = Φ−1 ◦R ◦Φ are injective on {z : 1 < |z| < r}. By

the reflection principle, gn and g are extended and injective on Ar. We fix
r′ such that 1 < r′ < r. Since {Φn} converges locally uniformly to Φ, {gn}
converges uniformly to g on r′S1. Thus, {gn} converges uniformly to g on
(1/r′)S1. By the maximum principle, {gn} converges uniformly to g on Ar′ ,
particularly on the unit circle S1.

Let Ln be the component of ∂Kn which is close to L. We notice that the
dynamics of gn on S1 corresponds to the dynamics of R on Ln. Since Ln is an
invariant curve in the Herman ring Ω, the dynamics of R on Ln corresponds
to the dynamics of an irrational rotation z 7→ e2πiθz. Therefore, the rotation
number Rot(g|S1) is calculated as follows:

Rot(g|S1) = lim
n→+∞

Rot(gn|S1) = lim
n→+∞

θ = θ.

Now let O′
n = Φ−1

n (O), so O′
n is a periodic orbit of gn with period k. Since

{Kn} converges to Ω in the sense of Hausdorff convergence, we see that O′
n

get close to S1 as n → +∞. More precisely, there are subsequence {O′
ni
}

and a set O′ ⊂ S1 so that {O′
ni
} converges to O′ in the sense of Hausdorff

convergence. Since O′
ni

= Φ−1
ni
(O) are finite sets, so the limit set O′ is a

finite set. Moreover, gni
(O′

ni
) = O′

ni
implies that g(O′) = O′ (see also [PM,

Lemma III.1.2]), and thus g has a periodic point on S1. This contradicts that
the rotation number Rot(g|S1) = θ is irrational.

We consider the topology of the boundary of a Siegel disk.

Definition 2.5.1 Let K ⊂ Ĉ be a non-degenerate continuum. We say z0 ∈
K is a cut point of K if K − {z0} is disconnected.

Theorem 2.1.1 implies the following corollary, which asserts that the
finiteness of cut points on the boundary of a Siegel disk follows from the
injectivity of a neighborhood of the boundary.

Corollary 2.5.1 Let Ω be an invariant Siegel disk of a rational function R,
and let U be a neighborhood of Ω. If R is injective on U , then there are at
most finitely many cut points of the boundary ∂Ω.

Proof. Assume that z0 ∈ ∂Ω is a cut point of the boundary ∂Ω. Then, z0
is biaccessible from Ω, and thus z0 is a periodic point (see [Im1, Definition
1.1 and Proposition 1.1]). It follows from Theorem 2.1.1 that z0 must be
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a Cremer point. Since there are at most finitely many Cremer points, the
proof is finished.

Now we consider the following two functions. Let P (z) = e2πiθz + z2 be
a quadratic polynomial with θ ∈ R − Q. Let B(z) = e2πiτ(θ)z2(z − a)/(1 −
āz) be a cubic Blaschke product so that |a| > 3 and the rotation number
Rot(B |S1 ) = θ ∈ R − Q. We compare the dynamics of P and the Julia set
J(P ) with the dynamics of B and the Julia set J(B).

Definition 2.5.2 If there exists a local holomorphic change of coordinate
z = Φ(w), with Φ(0) = 0, such that Φ−1 ◦ P ◦ Φ is the irrational rotation
w 7→ e2πiθw near the origin, then we say that P is linearizable at the origin.

The origin is either a Siegel point or a Cremer point, according to whether
P is linearizable at the origin or not.

Definition 2.5.3 If there exists an analytic circle diffeomorphism Φ : S1 →
S1 such that Φ−1 ◦ B ◦ Φ is the irrational rotation w 7→ e2πiθw, then we say
that B is linearizable on the unit circle.

The unit circle is contained in either the Fatou set F (B) or the Julia set
J(B), according to whether B is linearizable on the unit circle or not.

Suppose that P is not linearizable at the origin and B is not linearizable
on the unit circle. It follows from [PM, Theorem 1 and Theorem V.1.1] that
there are Siegel compacta in J(P ) and Herman compacta in J(B). There is
a recurrent critical point cP ∈ J(P ) whose forward orbit {P n(cP )}n≥0 accu-
mulates the origin, and there is a recurrent critical point cB ∈ J(B) whose
forward orbit {Bn(cB)}n≥0 accumulates the unit circle (see [Ma, Theorem
I]).

Let ΩP be the immediate attracting basin of infinity with respect to the
dynamics of P , and let ΩB be the immediate attracting basin of infinity
with respect to the dynamics of B. A. Douady and D. Sullivan [Su, Theo-
rem 8] has shown that ∂ΩP = J(P ) is not locally connected (see also [Mi,
Corollary 18.6]). It follows from [R, Lemma 1.7 and Proposition 1.6] that
the unit circle is contained in the boundary ∂ΩB, and the boundary ∂ΩB is
not locally connected. In particularly, the Julia set J(B) is not locally con-
nected. Therefore, we conclude that both of the Julia sets J(P ) and J(B)
are connected but not locally connected.

43



It is well known that every repelling periodic point on the boundary
∂ΩP = J(P ) is accessible from ΩP by a periodic curve. Furthermore, we
have the following proposition.

Proposition 2.5.2 Let B(z) = e2πiτ(θ)z2(z−a)/(1− āz) be a cubic Blaschke
product so that |a| > 3 and the rotation number Rot(B |S1 ) = θ, let ΩB be
the immediate attracting basin of infinity. Assume that θ is irrational and B
is not linearizable on the unit circle. Then, every repelling periodic point on
the boundary ∂ΩB is accessible from ΩB by a periodic curve.

Proof. Let z0 be a repelling periodic point on the boundary ∂ΩB with
period k. It is clear that Bn(ΩB) = ΩB and Bn(z0) ∈ ∂ΩB for 0 ≤ n ≤ k,
and thus ΩB is an invariant Fatou component for Bk. Let Ω′ be the Fatou
component containing the pole 1/ā. Then, B−1(ΩB) = Ω′ ∪ ΩB. Since the
unit circle S1 is contained in the Julia set J(B), the Fatou component Ω′

is contained in the unit disk D and ΩB is contained in Ĉ − D. Therefore,
injectivity of B|S1 implies ∂Ω′ ∩ ∂ΩB = ∅.

It follows from the contraposition of Proposition 2.3.2 that B is locally
surjective for (z0,ΩB), (B(z0),ΩB), · · · , (Bk−1(z0),ΩB). Lemma 2.3.1 implies
that Bk is locally surjective for (z0,ΩB). By Proposition 2.4.1, the point z0
is accessible from Ω by a periodic curve for Rk.

From the results [SZ, Theorem 3] and [Im1, Theorem 1.3] of biaccessi-
bility, we note that each of the repelling periodic points on ∂ΩP = J(P ) or
∂ΩB has only one external ray landing at the point.

Finally, we consider buried points in the Julia sets. It follows from ∂ΩP =
J(P ) that the Julia set J(P ) has no buried points, however, we see that the
Julia set J(B) has buried points.

Definition 2.5.4 Let R : Ĉ → Ĉ be a rational function of degree at least
two. A point z in the Julia set J(R) is called buried if z is not lying in the
boundary of any Fatou component.

Interestingly, we have the following (see [CMTT, Proposition 1.4] and
[CMMR, Lemma 1]).

Proposition 2.5.3 Let R : Ĉ → Ĉ be a rational function of degree at least
two. Then there exists a buried point iff there is no periodic Fatou component
U such that ∂U = J(R).
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So we have the following proposition.

Proposition 2.5.4 Let B(z) = e2πiτ(θ)z2(z−a)/(1− āz) be a cubic Blaschke
product so that |a| > 3 and the rotation number Rot(B |S1 ) = θ. Assume that
θ is irrational and B is not linearizable on the unit circle. Then there exists
a buried point.

Proof. The unit circle S1 is contained in the Julia set J(B). There exist two
points in J(B) which are separated by S1 (for example, the recurrent critical
points cB and 1/c̄B). Consequently, there is no periodic Fatou component U
such that ∂U = J(B), and there exists a buried point by Proposition 2.5.3.
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