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Program

14 February (Saturday)

13:30 — 14:20  Yuuki Tadokoro (Kisarazu National College of Technology)

The period matrix of the hyperelliptic curve w? = 22! — 1

14:30 —15:20  Yuichi Kabaya (Kyoto University)
Exotic components in linear slices of quasi-Fuchsian groups

15:50 — 16:40  Masakazu Shiba (Hiroshima University)
Some new problems in the theory of conformal mappings of an open Riemann surface of
finite genus

15 February (Sunday)

9:00 — 9:50  Hirokazu Shimauchi (Tohoku University)
Numerical quasiconformal mappings by certain linear systems

10:00 —10:50  Lijie Sun (Tohoku University)
Notes on complex hyperbolic triangle groups of type (m,n, o)

11:10 — 12:00  Daisuke Yamaki (Tokyo Institute of Technology)
Holomorphic 1-cochains and combinatorial periods

Lunch

13:30 — 14:20  Yohei Komori (Waseda University)
Projective embeddings of the Teichmiiller spaces

14:30 —15:20  Dariusz Partyka (The John Paul II Catholic University of Lublin)
The Schwarz type inequalities for harmonic mappings in the unit disc with boundary
normalization

15:50 — 16:40  Ken-ichi Sakan (Osaka City University)
On quasiconformality and some properties of harmonic mappings in the unit disk

Banquet



16 February (Monday)

9:00 — 9:50  Masahiro Yanagishita (Waseda University)
Complex analytic structure on the p-integrable Teichmiiller space

10:00 —10:50  Katsuhiko Matsuzaki (Waseda University)
The barycentric extension of circle diffeomorphisms

11:10 — 12:00  Yi Huang (The University of Melbourne)
Flipping numbers and curves

Lunch

13:30 — 14:20  Ryuji Abe (Tokyo Polytechnic University)
Diophantine approximation via Gaussian integers

14:30 -15:20  Sachiko Hamano (Fukushima University)
On the reproducing kernel for the space of semi-exact analytic differentials

15:50 — 16:40  Yukitaka Abe (Toyama University)
Analytic study of singular curves



Abstract

Yuuki Tadokoro (Kisarazu National College of Technology)
The period matrix of the hyperelliptic curve w? = z29*1 — 1

Our talk consists of two parts. First, we explicitly obtain the period matrix of the
hyperelliptic curve defined by the affine equation w? = 229! — 1, its entries being elements
of the (2g + 1)-st cyclotomic field. Second, we introduce an algorithm for obtaining the
period matrix for a compact Riemann surface, which is a p-cyclic covering of CP! branched
over 3 points.

Yuichi Kabaya (Kyoto University)
Exotic components in linear slices of quasi-Fuchsian groups

The linear slice of quasi-Fuchsian punctured torus groups is defined by fixing the length
of some simple closed curve to be a fixed positive real number. It is known that the
linear slice is a union of disks, and it has one standard component containing Fuchsian
groups. Komori-Yamashita proved that there exist non-standard components if the length
is sufficiently large. In this talk, I give another proof based on the theory of complex
projective structures.

Masakazu Shiba (Hiroshima University)
Some new problems in the theory of conformal mappings of an open Riemann
surface of finite genus

Let R be an open (=noncompact) Riemann surface of finite genus g. If a closed (=com-
pact) Riemann surface R’ of genus ¢ contains R as a subregion, R’ is historically called
a “compact continuation of the same genus” of R, but we prefer to use a shorter term a
“closing.” We give a precise definition in modern terminology and construct a closing of
R with a remarkable hydrodynamic property. These closings are used to comprehend the
totality C of the closings of R; if ¢ = 1 in particular, we use the modulus of a torus to
describe C as a closed disk M in H. We generalize this result to g > 1. The hyperbolic
diameter oy (R) of M is called the hyperbolic span of R. If R = R; moves holomorphically
so that the set {(R,t)|t € D} is pseudoconvex, oy (R;) is a subharmonic function.

Hirokazu Shimauchi (Tohoku University)
Numerical quasiconformal mappings by certain linear systems

In this talk, we propose a numerical method for quasiconformal self mappings of the
unit disk. The unit disk is triangulated in a simple way and the quasiconformal mappings
are approximated by piecewise linear mappings. The images of the vertices of the triangles
are defined by an overdetermined system of linear equations. Further the sequence of
the approximation converges to the true solution, at least in the case where the Beltrami
coefficients are in C'. We will also present several numerical experiments. This talk is
based on a joint work with R. Michael Porter (CINVESTAV).



Lijie Sun (Tohoku University)
Notes on complex hyperbolic triangle groups of type (m,n,co)

The triangle groups are not necessarily discrete in complex hyperbolic space which is
different from the real hyperbolic case. Many authors investigated the discreteness of ideal
triangle groups and the triangle groups of type (n,n,00). The difficult point for giving
discrete cases is that there are no totally geodesic real hypersurfaces in HZ. In this talk we
mainly consider the complex hyperbolic triangle groups of type (m,n,c0) and give some
discrete cases using the complex hyperbolic version of Klein’s combination theorem. From
the results more explicit conclusions about non-discrete triangle groups of type (m, oo, 00)
will also be given.

Daisuke Yamaki (Tokyo Institute of Technology)
Holomorphic 1-cochains and combinatorial periods

We discuss holomorphic 1-cochains and periods of holomorphic 1-cochains. Holomor-
phic 1-cochains are defined on Riemann surfaces with triangulations and satisfy Riemann’s
bi-linear relation. Using holomorphic 1-cochains, Wilson defined combinatorial period
matrices and showed that for a triangulated Riemann surface, the combinatorial period
matrix converges to the (conformal) period matrix as the mesh of the triangulation tends
to zero. In this talk, we give another relation between combinatorial period matrices and
(conformal) period matrices and study its applications.

Yohei Komori (Waseda University)
Projective embeddings of the Teichmiiller spaces

Let X be an orientable hyperbolic surface of genus g with n punctures and r holes.
Then the Teichmiiller space 7(X) of X is homeomorphic to the real affine space V' of
dimV = 6g — 6 + 2n + 3r. I have been considering the following question:

Can we find dimV + 1-number of simple closed geodesics whose hyperbolic
lengths embed 7 (X) into the finite dimensional real projective space P(V)?

Because of the PL-Structure of the Thurston boundary, we might expect that the image
of T(X) should be the interior of some convex polyhedron in P(V).

In this talk I will answer this question for surfaces having at least one hole, with few
exceptional cases.

Dariusz Partyka (The John Paul IT Catholic University of Lublin)
The Schwarz type inequalities for harmonic mappings in the unit disc with
boundary normalization

This talk is intended to give an exposition of the Schwarz type inequalities for harmonic
self-mappings of the unit disc with certain additional properties. However this time the
classical normalization condition, with the origin as a fixed point, is replaced by certain
boundary conditions. In particular, the case is considered, where a harmonic mapping is
injective and has a continuous extension to the closed unit disk which keeps the cube roots
of unity fixed. Some other cases of this type are also discussed, especially in the context
of quasiconformal mappings.



Ken-ichi Sakan (Osaka City University)
On quasiconformality and some properties of harmonic mappings in the unit
disk

In this talk we give a summary of our results on quasiconformality and some properties
of harmonic mappings in the unit disk which have been obtained jointly with D. Partyka.To
begin with we first give brief explanations of Lewy’s theorem and Radd-Kneser-Choquet
theorem. Next we state (A) (primitive) Schwarz’s lemma for harmonic mappings. More-
over, for sense-preserving injective harmonic mappings of the unit disk onto itself, we state
(B) (primitive) Heinz’s inequality and (C) a theorem by Pavlovi¢ on quasiconformality of
such mappings.We then explain that under appropriate assumptions we could obtain many
improved or modified forms of the results (A),(B) and (C), respectively.

Masahiro Yanagishita (Waseda University)
Complex analytic structure on the p-integrable Teichmiiller space

The p-integrable Teichmiiller space is a metric subspace of the Teichmiiller space of
Teichmiiller equivalence classes containing Beltrami coefficients with finite hyperbolic LP-
norm. If a Riemann surface R is analytically finite, then the p-integrable Teichmiiller space
of R coincides with the Teichmiiller space of R. Hence, this study has a significance for
Riemann surfaces of analytically infinite type. Cui, Takhtajan-Teo and Tang considered
the complex analytic structure on the p-integrable Teichmiiller space of the unit disk for
p > 2. In this talk, we extend their results to the case of hyperbolic Riemann surfaces.

Katsuhiko Matsuzaki (Waseda University)
The barycentric extension of circle diffeomorphisms

The barycentric extension due to Douady and Earle gives a conformally natural exten-
sion of a quasisymmetric automorphism of the circle to a quasiconformal automorphism
of the unit disk. In this talk, we consider such extensions for circle diffeomorphisms of
Hoelder continuous derivatives and show that this operation is continuous with respect to
an appropriate topology for the space of corresponding Beltrami coefficients.

Yi Huang (The University of Melbourne)
Flipping numbers and curves

Solutions to the equation x? + 3% + 22 = xyz satisfy the following property: given one
solution (z,y, z), we can easy write down a new ”flipped” solution given by (z,y, zy — 2).
In particular, this means that an integer solution is flipped to another integer solution.
These integer solutions are well-known as Markoff triples, and arise in beautiful results in
geometry and number theory.

In recent work with Paul Norbury, we discover similar phenomena for solutions to the
equation (a+b+c+d)? = abed — called Markoff quads. We begin with a gentle motivating
survey of several famous results related to Markoff triples, before introducing their Markoff
quad analogues.



Ryuji Abe (Tokyo Polytechnic University)
Diophantine approximation via Gaussian integers

The Markoff spectrum for the rational number field Q is defined by means of the mini-
mum of binary indefinite quadratic forms with real coefficients and the Lagrange spectrum
is defined with respect to approximation of real numbers by rational ones. It is well-known
that the discrete parts of them coincide.

In this talk, we show that there exists an analogy between the Markoff spectrum for the
imaginary quadratic number field Q(7) and the Lagrange spectrum by rational numbers
of Gaussian integers, using a geometric characterization of the Markoff spectrum for Q(7)
by simple closed geodesics in an immersed totally geodesic twice punctured torus in the
Borromean rings complement.

Sachiko Hamano (Fukushima University)
On the reproducing kernel for the space of semi-exact analytic differentials

We shall discuss the reproducing kernel for the Hilbert space S(R) of all semi-exact L*-
analytic differentials on a finite bordered Riemann surface R. We show that the Bergman
kernel restricted to S(R) has a close relation to the Li-constant with two logarithmic poles,
and then discuss a problem related to a conjecture of Suita type for S(R).

Yukitaka Abe (Toyama University)
Analytic study of singular curves

We study singular curves from analytic point of view. The classical theory of compact
Riemann surfaces and their Jacobi varieties was generalized to singular curves and gener-
alized Jacobi varieties by algebraic way. It seems to us that there is no analytic study of
them. We treat singular curves and generalized Jacobi varieties completely analytically.
We give analytic proofs of the Serre duality and generalized Abel " s theorem without any
help from algebra. Generalized Jacobi varieties are considered as complex Lie groups. We
investigate their properties.
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Introduction

Riemann surface is an important object from
analytic, algebraic, geometric, and topological
viewpoints.

<O e O>

We put emphasis on a complex analytic invariant,
Period matrix
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Introduction

First part
o C,: hyperelliptic curve w? = 2%9+!
g = 2.
o {A;,Bi}i=1,.4 C Hi(Cy;Z): a fixed symplctic
basis(natural type)

— 1 of genus




Introduction f

First part
o C,: hyperelliptic curve w? = 2%9+!

g =2
o {A;, Bi}iz1.., C Hi(Cy;Z): a fixed symplctic

basis(natural type)

— 1 of genus

o 7,: period matrix of C; with respect to
A complex analytic invariant of Riemann
surfaces

—> We explicitly determine 7,



Introduction

Second part

@ X, ;m: compact Riemann surface
w? = 2!(1 —2)" of genus g = (p—1)/2.

@ F = Fy: Fermat curve w" =1 — 2" of genus
g=(N—1)(N-2)/2

—> We made a program which computes

(p,1,m) — period matrix of Xpim
N — period matrix of F

2/20



Introduction

Definition of Period matrix

@ X : a compact Riemann surface of genus g > 1
o {wy,...,w,}: a basis of HYO(X) = CY
o {a;,bi}i=1.. 4 :a symplectic basis of H;(X;Z)

o Uy = </ wi>, Qp = </ wi> : Periods
aj b

Tx = Q' Qp € M,(C)
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Introduction

Properties of 7y

@ A complex analytic invariant of X.

o It depends only on the choice of a symplectic
basis of Hy(X;Z).

@ It is symmetric and its imaginary part is
positive definite.

Tx € H,: Siegel upper halfspace
period map ¢ : M, — Spag(Z) \H,
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Motivation

@ Torelli's theorem

@ XY : compact Riemann surfaces of genus ¢
o J(X)=C"/(Z%+ 7xC9) : its Jacobian varieties

X2Y & J(X)=2J(Y) as p.p.a.v.



Motivation

Q Torelli's theorem
@ XY : compact Riemann surfaces of genus ¢
o J(X)=C"/(Z%+ 7xC9) : its Jacobian varieties

X2Y & J(X)=2J(Y) as p.p.a.v.

@ For generic genus, few examples of period

matrices are known.
The difficulty is in finding a symp. basis
@ only three types of hyperelliptic curves C'
@ no examples of nonhyperelliptic curves (for
generic genus)

We are trying to compute these examples using
our program.



Hyperelliptic curves

Schindler’s results(1993)

Method: Actlon of Aut C, (z,w) — ((z,w)
DC : w?=2%92_1
(€ = Gogr2 = exp(2mv/—1/(29 + 2)))

_ ~ P -1 - 1)
TX<g+1kZ; 1_C2k y
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Hyperelliptic curves

Schindler’s results(1993)

@C =2C,: w?=2z(z% —1)
(C Cég+1)
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Hyperelliptic curves

Schindler’s results(1993)

@C =2C,: w?=2z(z% —1)
(C C2g+1)

o= (1%, t=t¢/(1+),
tiv1 = (1 — chi+k1tktik+2> /(1 +¢7)

k=2
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Hyperelliptic curves

Schindler’s results(1993)

@C =2C,: w?=2z(z% —1)
(C = C2g+1)

Theorem ((4, j)-th entry of 7.’

(3
sij=1— Ztktj—i+k/t1
k=1

forl<i<j<gands;; forg>1i>j>1.

recurrence expression
QC: w?=2(2%9—-1) more complex
expression



Hyperelliptic curves

A symplectic basis of hyperelllptlc curves

C 2 CP! : a hyperelliptic curve, ¢ its involution,
v : [0,1] = C: path from Q) to ¢(Qo)

o t(Qo)
\
Py Pa D S D
Y2;
Qo
e ) -1
= 72i-1- 'Yzi

= Y2i-1- 722 Y 70_1



Hyperelliptic curves

A symplectic basis of hyperelliptic curves

{ Ai = i1 "Yz_ii 1
Bi = 722-_1.72_1,_2.....71.70_
= {Az, Bi}i:1,2,...,g : a symp. basis of Hl(C; Z)

Ag Aj A,y
\ a N @ N @
.EBy :EBj .EBl

7/20



Periods

o C,: hyperelliptic curve w? = 2%t — 1 (g > 2).
o {A;, Bi}iz1.., C Hi(Cy; Z): the fixed symp.
basis

.....

@ (= (yg+1 = exp(2my/—1/(2g + 1))
o 7,: period matrix of C; with respect to

{4, Bi}

Q4 = (/ wZ-), Qp = (/ wz-) were obtained by
Aj B;

Tashiro, Yamazaki, Ito, and Higuchi(1996).
Moreover det 24 and det (2 too.



1_(2 1_C2+C4_C6 1_C2+C4_C6+C8_C10
1_(3 1_C3+C6_C9 1_C3+C6_C9+C12_C15
Qp =
(1—<2 1=C+C—¢t 1=+ Bt )

(1—< 1—(+¢ = ¢ 1—c+c2—c3+c4—c5)

1_C4 1_C2+C4_C8 1_C2+C4_C6+C8_C12
1_(6 1_c3+cﬁ_cl2 1_C3+C6_C9+C12_C18
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Periods

Qq =

1-¢ 1-(+3 = 1=+ -+ -¢
1_c2 1_C2+C4_CG 1—C2+C4—C6+C8—C10
1_c3 1_C3+CG_CQ 1_C3+CG_CQ+CI2_C15

—1+¢
= _1+C2
_1_|_<3
q ¢ ¢
<3 1 C6 C12
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Main theorem

Key lemma(Knuth's book)

@ ay,...,a, : distinct complex constants.
oV, = (ag_1>. ~: A Vandermonde matrix.
0]
@ o;(ay,as,...,a,) : i-th symmetric polynomial.

N Vn_l _ (_1)2-_10”_1'750,1,...,C/l\j,...,an)
Hm:l,m;&j(am o aj) i

?,
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bc ac ab
: )

—a) (a—0b)(c—0b) (a—c)(b—c)

I?+cc B a-+c a+b
a)(c—a) (a-— b)l(c—b) (a—c)l(b—c)

c—a) (a—b)(c—0b) (a—c)(b—c) )



Main theorem

Result(2014)

Theorem ((4, j)-th entry of 7,)
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Result(2014)

T3 —
—¢? 2= (3
2= == (20 -+ 1+ CHEF
(+¢+¢ 1+ +¢+¢ ¢’
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Main theorem

Result(2014)

A relation between Schindler’s result and 7,
—1

—1
Ly = y € My(Z)

S _
=T, = LngLg

") See the symplectic basis for Schindler’s period
matrix

10/20



Program of period matrix

Algorithms and programs

Algorithm
o Tretkoff and Tretkoff
Hurwitz system and Frobenius method
o Kamata C T.T. for Fermat type curves
@ Ours C T.T. Chord slide method for X, ,,

Ours Maple algcurves
Xp,l,m f(xa y) =0

Q(¢) Approximate value
elementary complex




A program

@ p:prime, 0 <I,m < p—1:coprime
© Xpim:={wP=2(1-2)"}:

a compact Riemann surface of g = (p — 1)/2.
o m: Xpim D (2,w) = 2z CPL:

p-cyclic covering branched over 0,1, 00 C CP!

Using " Chord Slide Method(CSM)”, we obtain a

geometric algorithm for finding symp. basis of
Xp,l,m's.
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Program of period matrix

A program

@ p:prime, 0 <I,m < p—1:coprime
© Xpim:={wP=2(1-2)"}:
a compact Riemann surface of g = (p — 1)/2.
o m: Xpim D (2,w) = 2z CPL:
p-cyclic covering branched over 0,1, 00 C CP!
Using " Chord Slide Method(CSM)”, we obtain a

mathematica program for calculating period
matrices of X, ;,'s.

12/20



Program of period matrix

Demonstration

® X, ;m: compact Riemann surface
w? = 2!(1 —2)" of genus g = (p—1)/2.

—> We made a program which computes

(p,1,m) — period matrix of X,

13/20



Program of period matrix

Intersection matrix(Outline)

@ o(z,w) = (z,(w): automorphism with order p.
@ Define¢; : [0,1] = X,im (1 =1,2,...,2¢)
paths
= A = (¢ - ¢j) intersection matrix
@ p-cyclic covering of CP!
@ Dessin d'enfants
@ Chord diagram on S!
Sample: X719 = {w’ = z(1 — 2)%}: Klein quartic
Ky ={X3Y +Y3Z + Z3X =0} Cc CP?
(z=X3YV2Z714+1, w=-XY1)

14/20



Program of period matrix

Intersection matrix(Details)

p-cyclic covering of CP'—DD—CD

INE
; } 1
m: Xpim 3 (2,w) = z € CP, p-cyclic covering

15/20



Program of period matrix

Intersection matrix(Details)

p-cyclic covering of CP'—<DD—CD

X712

CP!

et e e =2

iw
0
lifts of [0, 1]c CP!

15/20



Program of period matrix

Intersection matrix(Details)

p-cyclic covering of CP'—<DD—CD

X712

CP!

—tt e
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Program of period matrix

Intersection matrix(Details)

p-cyclic covering of CP'—<DD—CD

X712

€2

CP!

et e D
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Program of period matrix

Intersection matrix(Details)

p-cyclic covering of CP'—<DD—CD

Co

X712

CP!

—tt e e D
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Program of period matrix

Intersection matrix(Details)

CC—Dessin d’enfants—CD

A dessin d’enfants of C7

15/20



Program of period matrix

Intersection matrix(Details)

CC—DD—Chord diagram

2
A chord diagram of C7

15/20



Program of period matrix

Intersection matrix(Details)

We obtain the intersection matrix A = (¢; - ¢;)

(001010\
0o 0 1 1 11
1 -1 0 0 10
A=19 10 0 11
1 -1 -1 -1 00
\ 0 -1 0 —100)

15/20



Program of period matrix

Chord diagram methods

Find T € My, (Z) st. TA'T = < 0 {)g )

Then, we have a symplectic basis

(al,.. .,ag,bl,. ..,bg) = (61,62,.. .,ng)tT

16 /20



Program of period matrix

Chord diagram methods

Chord diagram—Linear Chord Diagrams

2
A chord diagram of C7 >

16 /20



Program of period matrix

Chord diagram methods

Chord diagram—Linear Chord Diagrams

4 5 6 3 4 6 1 3 5 1 2 3

A linear chord diagram of C7

16 /20



Program of period matrix

Chord diagram methods

c 4 d ¢
CSM(Base Change)

r CZ'—Cj (/C:i),
%—{ck (k # 4).

The advantage of CSM is its applicability to other
curves for generic genus. In fact, we obtain another
symplectic basis of C, different to {A4;, B;}.

16 /20
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Program of period matrix

A basis of holomorphic 1-forms

o oy = |nl/p|, ap, = [nm/p]
od,=|n(l+m)/p| —ay —aym—1
® wyg = 2%(1— 2)mzldz/w"

o S:={(n,d): 0<d<d,and1<n<p-1}
Theorem (Bennama(1998))
{wn,a}tmayes: a basis of H'(X)

(n,d)| (3,0) (5,0) (6,0)
wng |dz/w® (1—2)dz/w’ (1—z)dz/w®

17/20



Periods

o 0y = w; |, Qg = w; | : Periods
o= (L) o= ()
1-¢ ¢(~¢ 1-C+¢-¢
QA: 1_(2 C2_C4 1_C4+C6_C10
1_C4 C4_C8 1_C8+C12_C20
1-¢ 1-¢ ¢+ -¢°
QB: (1_C6 1_(8 CZ_C4+C8_C12>
1_(12 1_(16 C4_C8+C16_C24

18 /20



Program of period matrix

Period matrix

adj A

det A
=~
Euclidean Algorithm

6+38 4+26 —2—¢
T,= | 4426 4+46 -2
—2-¢ 26 243

where ¢ = ¢ and € = C+ 2+ (4 = (—1+/=T7)/2.
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Summary

o We explicitly determine 7, by the affine
equation w? = 2291 — 1, its entries being
elements of the Q((24+1)

@ We made a program which computes
(p,1,m) — period matrix of X
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Summary

o We explicitly determine 7, by the affine
equation w? = 2291 — 1, its entries being
elements of the Q((24+1)

@ We made a program which computes
(p,1,m) — period matrix of X

Find an explicit expression of period matrices
of other curves for generic genus!!

20/20



Thank you very much!

hHYNESTINFELE!



Exotic components in linear slices of
quasi-Fuchsian groups

Yuichi Kabaya

(Kyoto University)
https://www.math.kyoto-u.ac.jp/~kabaya/
(These slides are available.)

Osaka, February 14 2015


https://www.math.kyoto-u.ac.jp/~kabaya/

QOutline

S : once punctured torus
a C S : essential simple closed curve
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QOutline

S : once punctured torus
a C S : essential simple closed curve

QF(S) ={p: m(S) — PSL,C |
injective, p(m1(S)) quasi-Fuchsian}/ ~ o).
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QOutline

S : once punctured torus
a C S : essential simple closed curve

QF(S) ={p: m(S) — PSL,C |
injective, p(m1(S)) quasi-Fuchsian}/ ~ o).

Ao @ QF(S) — C/2m+/—1Z : the (complex) length of «
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QOutline

S : once punctured torus
a C S : essential simple closed curve

QF(S) ={p: m(S) — PSL,C |
injective, p(m1(S)) quasi-Fuchsian}/ ~ o).

Ao @ QF(S) — C/2m\/—17Z : the (complex) length of «
For ¢ > 0, consider a slice of QF(S)
QF(£) = {p € QF(S) | Aulp) = £}.
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QOutline

S : once punctured torus
a C S : essential simple closed curve

QF(S) ={p: m(S) — PSL,C |
injective, p(m1(S)) quasi-Fuchsian}/ ~ o).

Ao @ QF(S) — C/2m\/—17Z : the (complex) length of «
For ¢ > 0, consider a slice of QF(S)
QF(6) ={p € QF(S) | Aalp) = {}.
This can be regarded as a subset of
{reC|—7m<Im(r) <7}
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QOutline
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Outline
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Interested in the shape of QF({) as ¢ getting longer.



QOutline

1. Basics on Kleinian (once punctured torus) groups
2. Linear slices & Main theorem

3. Complex projective structures and complex
earthquake

4. Proof of the main theorem

With many pictures ...
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Basics (Hyperbolic space)

M3 = {(z,t) | z€ C, t € R} : 3-dim hyperbolic space
{t =0} = CU {oo} = CP! : its boundary

PSL,C = SL,C/{+1} acts on CP! by

a b az+ b

This action extends to the interior H® isometrically.
[ < PSL,C : torsion free discrete subgroup

= M = H3/T is a complete hyperbolic 3-manifold
s.t. 7T1(M) =T
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Basics (Deformation space)

S =S, genus g, n punctured surface (x(S) < 0)
X(S) ={p: m(S) — PSL,C |
irreducible, preserving parabolics}/ ~con;.
. the character variety
AH(S) = {[p] € X(S) | faithful, discrete image}

If p € AH(S), then H?/p(71(S)) is a complete
hyperbolic 3-manifold homotopy equivalent to S.

AH(S) is the deformation space of such structures.
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[ < PSL,C : discrete subgroup

Fix a point p € H3. The limit set of I is defined by
A(T) = {accumulation points of I - p on CP'}.

(A(T) € CPL, not depend on the choice of p)



Basics (Limit sets)

[ < PSL,C : discrete subgroup

Fix a point p € H3. The limit set of I is defined by
A(T) = {accumulation points of I - p on CP'}.

(A(T) € CPL, not depend on the choice of p)

Example (Fuchsian groups) - “H
If I < PSLy(R), T preserves
H?(c H3), thus A(T") is a subset
of RU {00} (a ‘round circle’ in
CPY).

limit set

29
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Basics (Quasi-Fuchsian representations)

We can deform a Fuchsian rep a little in PSL,C. The
limit set is no longer a round circle, but may be = St

Definition
Let p € AH(S). If the limit set A(p(71(S))) is
homeomorphic to S!, p is called quasi-Fuchsian.

QF(S) = {p € AH(S) | p is quasi-Fuchsian.}
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Basics (Known properties)

Known facts
@ QF(S) C X(S) open subset
o QF(S) = T(S) x T(S), where T(S) is the
Teichmiiller space of S. (T(S,.,) = Ro%&~6+2m)
@ QF(S) = AH(S) : density theorem
@ AH(S) is parametrized by its end invariants (Ending
Lamination Theorem).

But the shape of QF(S) in X(S) is very complicated!
(e.g. self-bumping, AH(S) is not locally connected.)



Basics (Complex length)

For v € m1(S), p € X(S), p(7) acts on H3.
Define the (complex) length by
Ay (p) = (translation length of p(v))

+ v/ —1 (rotation angle of p(7))
mod 27/ —17Z. This is characterized by

tr(p()) = 2cosh( 1)

10/29



Character variety

S = 511 : once punctured torus
Fix o, 5 € m1(S) so that [, S]
is peripheral.
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Character variety

S = 511 : once punctured torus
Fix o, 5 € m1(S) so that [, S]
is peripheral.

The SL,C-character variety Xs.(S) is defined similarly as
PSL,C case. As affine varieties, we have

Xs.(S) =2 {(x,y,2) € C | x>+ y* + 2° = xyz}
via

[p] = (tr(p(c)), tr(p(B)), tr(p(af))).
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Character variety

S = 511 : once punctured torus
Fix o, 5 € m1(S) so that [, S]
is peripheral.

The SL,C-character variety Xs.(S) is defined similarly as
PSL,C case. As affine varieties, we have

Xs1(S) 2 {(x,y,2) €C | x* + y* + 2* = xyz}
[o] = (tr(p(a)), tr(p(B)), tr(p(a)))-

X(S) is obtained as a quotient of Xs;(S) by the action
of Z /27 generated by

(X,y,Z):(—X, _y72)7 (X,y,Z):(X,—y,—Z).

11/29



Linear slices
Any essential simple closed curve on

S = 511 is represented by a primi-
tive element p[a]+q[5] € Hi(S; Z).
Regard it as p/q € QU {o0}.
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Linear slices
Any essential simple closed curve on

S = 511 is represented by a primi-
tive element p[a]+q[5] € Hi(S; Z).
Regard it as p/q € QU {o0}.

For p/q, take 7,/q € m1(S) freely homotopic to p/q.

Define the length function A,/ : X(S) — C/27v/—1Z
by )‘p/q(P) = )‘vp/q(P)-

Definition
For ¢ > 0, let

X(£) ={p € X(5) | Ayolp) = €}

X(¢) is a slice of X(S) on which (cpx length of o) = ¢,




Complex Fenchel-Nielsen coordinates
For ¢ > 0, define a map

{(reC|—7m<Im(r) <7} — X(0)
by

2cosh(7/2) 2cosh(( +¢)/2)
7 > (2cosh(¢/2), tanh(¢/2) ©  tanh(¢/2) )

This gives a bijection. (Recall tr p(a) = 2 cosh(A10/2).)
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Complex Fenchel-Nielsen coordinates
For ¢ > 0, define a map

{(reC|—7m<Im(r) <7} — X(0)
by

2cosh(7/2) 2cosh((r +¢)/2)
7 > (2cosh(¢/2), tanh(¢/2) ©  tanh(¢/2) )

This gives a bijection. (Recall tr p(a) = 2 cosh(A10/2).)

Note

If we let 7 = t + +/—1b,
t is the twisting distance
and b is the bending angle
along a.

13 /29



Linear slices of QF(S)
Definition
For ¢ > 0, define

QF(¢) = QF(S) N X(¢)

3
2
1
0
1
2
3

6 4 2 0 P 4 5

QF(2.6) C X(2.0) (black region)
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Linear slices of QF(S)

Definition

For ¢ > 0, define

3
2
1
0
1
2
3

QF(¢) = QF(S) N X(¢)

6 4 2 0 P 4 5

QF(3.6) C X(3.0) (black region)
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Linear slices of QF(S)
Definition
For ¢ > 0, define

QF(¢) = QF(S) N X(¢)

3
2
1
0
1
2
3

6 4 2 0 P 4 5

QF(4.6) C X(4.0) (black region)
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Linear slices of QF(S)
Definition
For ¢ > 0, define

QF(¢) = QF(S) N X(¢)

& ) EN o = N w

6 4 2 0 P 4 5

QF(5.6) C X(5.0) (black region)

14 /29



Linear slices of QF(S)

QF(2.0)

2
1
0

A

2

3

Facts
@ The Dehn twist along « acts on X(/) as

T+ 7+ (. (translation)
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1
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@ The Dehn twist along « acts on X(/) as

T+ 7+ (. (translation)

@ The real line {7 | Im(7) = 0} corresponds to the
Fuchsian representations satisfying \, = /.
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Linear slices of QF(S)

QF(2.0)

2
1
0

A

2

3

Facts
@ The Dehn twist along « acts on X(/) as

T+ 7+ (. (translation)

@ The real line {7 | Im(7) = 0} corresponds to the
Fuchsian representations satisfying \, = /.

@ By McMullen's disk convexity of QF(S),
QF(¢) is a union of (open) disks.
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Linear slices of QF(S)

N 7N
- ~ - ~

QF(6.0)

[ N EN o - [N} w

Facts
@ The Dehn twist along « acts on X(/) as

T+ 7+ (. (translation)

@ The real line {7 | Im(7) = 0} corresponds to the
Fuchsian representations satisfying \, = /.

@ By McMullen's disk convexity of QF(S),
QF(¢) is a union of (open) disks.

15/29



Linear slices of QF(S)

For any ¢/ > 0, there exists a unique standard component
containing Fuchsian representations. As pictures suggest;
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Linear slices of QF(S)

For any ¢ > 0, there exists a unique standard component
containing Fuchsian representations. As pictures suggest;

Theorem (Komori-Yamashita, 2012)

QF (¢) has only one component if ¢ is sufficiently small,
has more than one component if { is sufficiently large.

QF(2.0) C QF(5.0)
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Linear slices of QF(S)

For any ¢ > 0, there exists a unique standard component
containing Fuchsian representations. As pictures suggest;

Theorem (Komori-Yamashita, 2012)

QF (¢) has only one component if ¢ is sufficiently small,
has more than one component if { is sufficiently large.

QF(2.0) C QF(5.0)

Today, we will give another proof for the latter part, and
give refined results.

16 /29
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The standard component was extensively studied by
Keen-Series, they called it the BM-slice (denote BM).
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The standard component was extensively studied by
Keen-Series, they called it the BM-slice (denote BM).

For p € QF(S), let pl*(p) € ML(S) be the bending
measures on the convex hull boundary.

Theorem (Keen-Series, 2004)
p € BM iff one of [pl*] coincides with o in PML(S).
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More on QF(S)

The standard component was extensively studied by
Keen-Series, they called it the BM-slice (denote BM).

For p € QF(S), let pl*(p) € ML(S) be the bending
measures on the convex hull boundary.

Theorem (Keen-Series, 2004)
p € BM iff one of [pl*] coincides with o in PML(S).

Roughly, a representation in BM is obtained from a
Fuchsian one by bending along o continuously.

17/29



More on QF(S)

Recall 7 = (twisting dist.) + v/ —1(bending angle).

In the BM-slice of QF(2.0).
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Complex projective structures
S : surface (x(S) < 0)

Definition opl

A complex projective structure or @
CP*-structure on S is a geometric N PSL@C&
structure locally modelled on CP? @

with transition functions in PSL,C.
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S : surface (x(S) < 0)

Definition - op!

A complex projective structure or S @

CP'-structure on S is a geometric (g@ PSL(z,c9
structure locally modelled on CP? Y
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Complex projective structures

S : surface (x(S) < 0)

Definition o op!

A complex projective structure or S @

CP'-structure on S is a geometric (g@ PSL<2,C9
structure locally modelled on CP? Y

with transition functions in PSL,C.
(If S has punctures, assume some boundary conditions.)
Example (Fuchsian uniformization)

A hyperbolic str on S gives an identification S~ H2
Since H? C CP?, this gives a CPl-str.

19/29



Complex projective structures

Similarly as Teichmiiller space, we can define P(S) the
set of marked CP!-structures on S.
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Complex projective structures

Similarly as Teichmiiller space, we can define P(S) the
set of marked CP!-structures on S.

By analytic continuation, we have a holonomy map
hol : P(S) — X(S).

U E p(Y) U
:\7

This is known to be a local homeomorphism.




Grafting

We can construct another CP!-str from a Fuchsian
uniformization.

X :ahypstronS, «oC X : asimple closed geodesic.
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uniformization.

X :ahypstronS, «oC X : asimple closed geodesic.
Let Grpo(X) be the CP!-str obtained

from X by inserting a height b annulus aa

along a.

In the universal cover X, the local picture looks like:



Grafting

We can construct another CPY-str from a Fuchsian
uniformization.

X :ahypstronS, «oC X : asimple closed geodesic.

Let Grp.o(X) be the CP!-str obtained
from X by inserting a height b annulus aa
along a.

In the universal cover X, the local picture looks like:

But there are infinitely many lifts of « - - -



Grafting
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Grafting

The grafting operation Grp., : T(S) — P(S) can be
generalized for measured laminations.

Theorem (Thurston, Kamishima-Tan)
Gr: ML(S) x T(S) — P(S)
(b, X) = Gry(X)

is a homeomorphism (Thurston coordinates).

22/29



CP*-structures with g-F holonomy

Qo = { marked CP*-strs with g-F holonomy and
injective developing maps } C P(S)
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Qo = { marked CP*-strs with g-F holonomy and
injective developing maps } C P(S)
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For n € MLz(S), let Q, be the set of CP-strs
obtained from Qy by 2mp-grafting. (Remark Q, = Qy.)



CP*-structures with g-F holonomy

Qo = { marked CP!-strs with g-F holonomy and
injective developing maps } C P(S)

MLy(S) : the set of multicurves with integral weights.

For n € MLz(S), let Q, be the set of CP-strs
obtained from Qy by 2mp-grafting. (Remark Q, = Qy.)

Theorem (Goldman)
ho '(QF(S) = || Q.

MEMﬁz(S)

The component Qy is called standard, Q, (x # 0) exotic.

23 /29



Complex Earthquake

let H={r=t++/-1beC|b>0}.
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Complex Earthquake

let H={r=t++/—-1bcC|b>0}. Fix/>0.

Let tweq(Xr) = < O g ) e T(S).

Define Eq : H — P(S) by
Eq(t + vV —1b) = Grp.o(twr.o (X)) € P(S)
By Thurston coords, we can regard H C P(S).
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Complex Earthquake

let H={r=t++/—-1bcC|b>0}. Fix/>0.

Let tweq(Xr) = < O g ) e T(S).

Define Eq : H — P(S) by
Eq(t + vV —1b) = Grp.o(twr.o (X)) € P(S)
By Thurston coords, we can regard H C P(S).

Simply denote the image of H by Eq(¢).

24 /29



Complex Earthquake

By construction, hol is the natural projection:

P(S) hol, X(S)
U U
Eq(¢) — X(¢)
I I
{7 | Im(7) > 0} {r|—7m<Im(7) <7}
W

W
T — 7 mod 27/ —1



Complex Earthquake

By construction, hol is the natural projection:

hol

P(S) — X(S)
U U
Eq(¥) — X(0)
I I
{7 | Im(7) > 0} {r|—7m<Im(7) <7}
W W
T > 7 mod 27y/—1

We are interested in QF (¢) C X({), so consider
hol Y (QF (£)) = hol X (X(¢) N QF(S))
= Eq(¢) N hol }(QF(S)).



Com

plex Earthquake

By Goldman's Theorem, we have

16

14 |

12

Eq(¢) Nhol Y (QF(S)) =

MEMﬁz(S)

10 ]

Q2a
Eq(6.0)

| | Ea(0)n Q..
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Complex Earthquake

hol maps each component of
Eq(¢)NQ,, into a comp of QF(¢).

14 |
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Complex Earthquake
hol maps each component of
Eq(¢)NQ,, into a comp of QF(¢).
Thus if
Eq({) N Q. # 0
for some p ¢ {0,c,2a,---},

QF (¢) has a comp other than the
standard one BM.
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Complex Earthquake

hol maps each component of = — pr—
Eq(¢)NQ, into a comp of QF (¢). “W
Thus if S AN 2N
Eq() N Q, 0 INAAY

for some p ¢ {0,q,2a, -}, Ei EE E E

QF (¢) has a comp other than the
standard one BM.  Moreover,
Prop (K.)
Eq(¢) nhol *(BM) = | | Eq(¢) N Qi
k>0
for any ¢ > 0.
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Existence of exotic components in Eq(/)

We need to find ¢ ¢ {0, ,2a,--- } s.t. Eq(¢) N Q, # 0
for sufficiently large ¢ > 0. Consider the case u = (.
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for sufficiently large ¢ > 0. Consider the case u = (.

Let Dg be the Dehn twist along 3. Fix X € T(S).
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We need to find ¢ ¢ {0, ,2a,--- } s.t. Eq(¢) N Q, # 0
for sufficiently large ¢ > 0. Consider the case u = (.

Let Dg be the Dehn twist along 3. Fix X € T(S).
Consider a sequence in P(S) = ML(S) x T(S)

2 7 D, (o)
Q0 n

p
which converges to (275, X) € Qs as n — .
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Existence of exotic components in Eq(/)

We need to find ¢ ¢ {0, ,2a,--- } s.t. Eq(¢) N Q, # 0
for sufficiently large ¢ > 0. Consider the case u = (.

Let Dg be the Dehn twist along 3. Fix X € T(S).
Consider a sequence in P(S) = ML(S) x T(S)

2 7 D, (o)
Q0 n

p
which converges to (275, X) € Qs as n — .
Thus (22Dj(a), X) € Qg for large n.
Apply D;", then (Za, D;"(X)) € Qg for large n.




Existence of exotic components in Eq(/)

We need to find ¢ ¢ {0, ,2a,--- } s.t. Eq(¢) N Q, # 0
for sufficiently large ¢ > 0. Consider the case u = (.

Let Dg be the Dehn twist along 3. Fix X € T(S).
Consider a sequence in P(S) = ML(S) x T(S)

2 7 D, (o)
Q0 n

p
which converges to (275, X) € Qs as n — .

Thus (%”Dg(oz), X) € Qg for large n.

Apply D;", then (Za, D;"(X)) € Qg for large n.

But if we let ¢ = {,(D;"(X)), (Za, D;"(X)) € Eq(¢)
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Final Remarks

@ For k € N, we can show Eq(¢) N Qk.5 # 0 similarly
for large ¢ by considering

<#D§(a), x) 7% (27kB, X) € Qup.

¢=10.0




Final Remarks

@ For k € N, we can show Eq(¢) N Qk.5 # 0 similarly
for large ¢ by considering

<#D§(a), x) 7% (27kB, X) € Qup.

¢ =10.0

& ) EN (<IN ) w

-6 -4 -2 0 2 4 6

@ Moreover we can use € ML(S)z instead of
provided (s, ) # 0.
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N
Abstract

Let R be an open (=noncompact) Riemann surface of finite genus g.
If a closed (=compact) Riemann surface R’ of genus g contains R as a
subregion, R’ is historically called a

“compact continuation of the same genus”
of R, but we prefer to use a shorter term:

“closing.”
We give a precise definition in modern terminology and
construct a closing of R with a remarkable hydrodynamic property.
These closings are used to comprehend

the totality C of the closings of R;
if g =1 in particular, we use the modulus of a torus to describe C as a
closed disk 91 in H. We generalize this result to g > 1.
The hyperbolic diameter oy (R) of 91 is called the hyperbolic span of R.
If R = R; moves holomorphically so that the set {(R;, t)|t € D} is
pseudoconvex, oy(R;) is a subharmonic function.
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Classical Results

Riemann’s Theorem

VG(C @) : simply connected domain whose boundary 0G
consists of more than one point
3f : G — D, conformal [bijection]

(or : 3f: G — C\ D, conformal [bijection])

Koebe’s Theorem

V R : planar (= of genus 0) Riemann surface
d2: horizontal slit plane

(correctly: [extremal] horizontal slit sphere)
3f: R — X, conformal embedding

Remarks:
(1) OR is subject to NO conditions
(2) some of the slits may reduce to a point

February 14, 2015 — Osaka U. Nakanoshima
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An elementary “important” example
Yy =Cu\{weC||Rew| <2,Imw=0}
Joukowski map J:z > w=2z+1/z
J is NOT conformal at z = +1 (w = £2)

J
—

f
—

February 14, 2015 — Osaka U. Nakano/shima
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As a matter of fact - - -

The Joukowski transformation J is a meromorphic function on
C=¢6uU D:

and has the same range on G = C\ D and its mirror image I

February 14, 2015 — Osaka U. Nakano/shima
23
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and therefore one gets a “healthy” idea

Consider
the Schottky double G of G: G = GUD = C, and
JonG=C
The image is the doule cover of C
J
—
February 14, 2015 — Osaka U. Nakanoshima
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Less healthy but more “natural” observation shall be

(1) Throw away the mirror image of G.
(2) consider the given G only, and
(3) identify the points on OG if they have the same value under J

J extends holomorphically onto the new “closed”
Riemann surface — as the identity function on C!

February 14, 2015 — Osaka U. Nakano/shima
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Conformal Mappings of a “Riemann Surface”

R: a fixed open Riemann surface of genus g (0 < g < o0)

While in case of g = 0 a conformal mapping is always supposed to be
f:R— (@, injection
in case g > 0 we have to consider

f:R—[ 7 ] conformal embedding

The most natural candidates are

’closed Riemann surfaces of the same genus‘

(compact continuations of the same genus)
for short:
“closing”

Problem: Characterize the closings of R

(Y ISP E e EY WA S s ETUENISIET I lEE Some new problems in the theory of conform
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Classical “Cut & Paste Method”

g =0: Koebe's generalized Uniformization Thm
g >0: Cut & Paste Method

'-"-‘-'-'-’ "
( e '/ ‘
3 = — [
- ) |

\&L
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-
Hydrodynamic differentials

¢ is called a t-hydrodynamic differential (for short: an S;-differential)
if it is

@ a meromorphaic differential on R

@ outside a compact set

e exact: p=do
o Dirichlet finite

@ on each component of R — in an intuitive sense —

Im [e_%"t CD] = const.

February 14, 2015 — Osaka U. Nakanoshima
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Historical Notes

@ =d® is an Sp-dfrtl <«
@ iy is a canonical semiexact dfrtl of Kusunoki
@ Im ¢ is a distinguished dfrtl of Ahlfors
o Im® is a (multi-valued) (Q)L;-principal fn of Sario

“Si-differential” «— Strémungsfunktion (Klein) with parameter t
# Stream function ¢ describes an ideal fluid flow on R

February 14, 2015 — Osaka U. Nakano/shima
23

(Y ISP E e EY WA S s ETUENISIET I lEE Some new problems in the theory of conform



Realization Theorem or Embedding Theorem
— as a generalized Riemann Mapping Theorem

Vo @ S-differential on R (-1 <t <1)
3 R: compact, of genus g
d7: R — R: conformal injection
3 @ : a meromorphic dfrtl on R
e I"(g) =9 on R (pull back)

o B:=R\i(R)is

a closed null set

@ is holomorphic on B

on each component of B — in a strict sense | —

Im [e_%"t ®| = const.

February 14, 2015 — Osaka U. Nakano/shima
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Precision of definition — topological property

x = {A;}, Bj}?_, : Canonical homology basis of R mod dR
{

%= {A, éj}le : Canonical homology basis of R

Condition : i(A;) ~ A;, i(B))~B;, j=1,2,...,g

Object of study :

R, % and ©:(R,x)— (RX)

February 14, 2015 — Osaka U. Nakanoshima
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Precision — Closing as an equiv. class

B
>

=

3
(R, x) O h:conformal

February 14, 2015 — Osaka U. Nakano/shima
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-
Problem setting

Definition

C(R,x) : the set of closings of (R, X)

Problem:

Find/describe/characterize C(R, x)

Label of an element of C(R, )

C(R,x) 3 (R,%,0) = T =T(R,%) : Riemann’s period matrix

Period set

M(R, x) == {T(é’ X)}EC(R,X)

y
February 14, 2015 — Osaka U. Nakano;,hima
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Riemann’s period matrices

For a compact Riemann surface (ﬁ,)%) of genus g >0

there exist g holomorphic differentials @; with Oj = Ojk
Ak
(j?k: 1’2""7g)

T11 T2 e %1g
~ ~ 1 T2 ... T2 ~ ~
T=T(R,%):= £, i ::/~ B;

;- . ;. . DY -h'. . Bk

Tgl Tg2 +onnnn Tgg

is symmetric and
its imaginary part is positive definite

T is a point of Siegel upper half space &,

February 14, 2015 — Osaka U. Nakano/shima
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Some of the results for g =1

Theorem
(1) M(R,x) = {r € C| 7 is the modulus of (R, %,7) € C(R, x)}
(i) is a closed disk in H:= {7 € C | Im7 > 0}
(i) reduces to a point iff R € Oap
(2) V7 e dM(R,x) 31 (R, %,7) € C(R, x) with modulus 7
(3) The area a of R\ i(R)
(i) vanishes on OM(R, x)
(i) attains its maximum at the center of M(R, x)
- and so on
Remarks
(a) (R, x) is realized as a “parallel slit torus” on the (R, ¥, %) in (2)

(b) More precisely: C(R, x) is described in H x R* as

,02 _ ’T _ 7_*’2
2p

February 14, 2015 — Osaka U. Nakano/shima
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|
A sketch of C(R, x) (g =1)

S ug frea( R \ ¢CR)
& =~

February 14, 2015 — Osaka U. Nakano/shima
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|
Euclidean Span and Hyperbolic Span

Definition & Notation

Euclidean span ofg := the euclidean diameter of MM(R, x)
Hyperbolic span o := the hyperbolic diameter of (R, x)

Remark

ok and oy describe the behavior of R\ i(R)

Proposition

on is independent of x

February 14, 2015 — Osaka U. Nakanoshima
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|
a-modulus of (R, %,%) € C(R, x)

For a :=(a1,az,...,a;) € R&\ {(0,0,...,0)} define

“the a-modulus” of (R, %) : 75 =7 (R,X,0)=aTa’
and

“the a-moduli set” of (R, ¥) :
M, ={reC|r=17(R %17 for (R,%,7) € C(R,x)}}
respectively N o
T = T(R,X,?)

a’ . transpose of a

February 14, 2015 — Osaka U. Nakano/shima
23

(Y ISP E e EY WA S s ETUENISIET I lEE Some new problems in the theory of conform



Generalization to g > 1

Theorem (with Yamaguchi)
V a = (a1, az,...,a5) € RE\ {(0,0,...,0)}
375 €eH(={r€C|Im7 >0})
dpg €Rwith 0<p, <Im7y
such that the closed disk
My = (|- 731 < pa)
satisfies
(1) My CcM; CH
(2) oMy C My
(2') Each point of 90 is realized by a hydrodynamic closing — a

closing constructed by an S;-differential
— Extremality of S;-differentials

- and, in particular,
February 14, 2015 — Osaka U. Nakanoshima
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|
M(R, x) is bounded

(1) Each element of the diagonal of T € 9M(R, x) is inside a closed disk
(N 37° € &,

(1) ¥ @ = (a1, 2., 35) € RE\ {(0,0,....,0)}
3 pg > 0 such that

a(T—-T"a'l<p, (VT e M(R, x))

(2) There exists a hydrodynamic closing
whose period matrix T vyields the equality sign

February 14, 2015 — Osaka U. Nakano/shima
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-
Hyperbolic Span and Pseudoconvexity

Theorem (with Yamaguchi and Hamano)
Suppose that

R = {(Re:x¢)}een
is a pseudo convex family of finite Riemann surfaces of genus one
Then, the hyperbolic span oy (R;) is
(1) a subharmonic function of ( € D
(2) harmonic iff

R is a product: R = Ryg x D
Remark.
A more general result will be reported at the annual meeting of

Math. Soc. Japan, March 24, 2015

February 14, 2015 — Osaka U. Nakanoshima
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Motivation
Applications of quasiconformal mappings

@ Lipman, Y., Kim, V. G., and Funkhouser, T. A. (2012). Simple formulas
for quasiconformal plane deformations. ACM Transactions on Graphics
(TOG), 31(5), 124.

@ Astala, K., Mueller, J. L., Paivarinta, L., Peramaki, A., and Siltanen, S.
(2011). Direct electrical impedance tomography for nonsmooth
conductivities. Inverse Probl. Imaging, 5(3), 531-549.

@ Gaidashev, D., and Yampolsky, M. (2007). Cylinder renormalization of
Siegel disks. Experimental Mathematics, 16(2), 215-226.

@ etc.
With this increasing use of computer applications it has become of
great interest to know how construct the quasiconformal mappings
numerically.




Numerical
quasiconformal
mappings

Quasiconformal
mappings

Quasiconformal mapping

Let K > 1 and D, D’ be the domains in the complex plane C. An
orientation-preserving homeomorphism f : D — D’ is a

K-quasiconformal mapping if f satisfies the following:

@ For any closed rectangle R:={z=z+iy|la<z <bc<y<d}
in D, f is absolutely continuous on almost every horizontal and
vertical line in R.

@ The dilatation condition

£2)] < B2 1£(2)] (1)

K+1

holds almost everywhere in D, where

o= (fe —ify)/2, fz = (fo +ify)/2 and z = = + iy.
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It follows from the definition that the quasiconformal mapping
f: D — D' has partial derivatives f., fz almost everywhere in D.

Quasiconformal Further f is differentiable a.e. in D, i.e. the real-linear approximation

mappings

f(2) = f(20) = f2(20)(2 = 20) + f2(20) (2 = 20) + 0(|z — 20])

holds a.e. in zg € D.

The Beltrami coefficients can be defined as

_ f=(»)

a.e. in D for a qausiconformal mapping f.

If ps(z0) =0 at zg € D, f is conformal at zo.

~



Numerical L% (D)1 :={p: D — C | pis measurable on D with ||u||c < 1}.

quasiconformal
mappings

Theorem (Measurable Riemann mapping theorem)

H. Shimauch
For given i € L*°(C)1, there exists a quasiconformal mappings
f : C — C whose Beltrami coefficient coincides with p almost
Quasiconformal

mappings everywhere in C. This mapping is uniquely determined up to a
conformal mapping of C onto itself.

Corollary

Let D, D’ be bounded simply connected domains in C and

wu € L*(D)1. Then there exists a quasiconformal mapping f : D — D’
whose Beltrami coefficient coincides with 1 almost everywhere in D.
This mapping is uniquely determined up to a conformal mapping of D’
onto it self.

We say a quasiconformal mapping of D is u-comformal if its Beltrami
coefficients coincide with & almost everywhere in D.

A quasiconformal mapping f : D — D’ is a homeomorphism which
satisfies the Beltrami equation fz = uf. almost everywhere in D.
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Proposition (Composition with conformal mapping)

Let y1 be a measurable function on a domain Dy with ||pt]|ce < 1.
Assume that f1 : D1 — D3 is a u-conformal mapping and h : Dy — D3
a conformal mapping. Then fo = h o fi is u-conformal.

A

Remark If we have self p-conformal mappings of the unit disk, then we
can obtain p-conformal mapping from the unit disk to arbitrary simply
connected domains by the classical Riemann mapping. Further there are
many efficient methods for the numerical conformal mappings.
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For given p € L* (D)4, let f* is self u-conformal mapping f* : D — D
of the unit disk which fixes 0 and 1 (self pu-conformal mapping of D can
be extended to a self homeomorphism of D). We want to obtain either

(A) calculation method of a point wy which reduce |wi — f*(z1)| for a
given point 2z € D, or

(B) construction method of a function g : D — C which reduce
sup,ep |9(2) — f*(z)| where D C D.
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Quasiconformal
mappings

@ Methods based on finite difference based method and finite
elements method (1978-)

@ Method based on Circle packing Riemann mapping theorem which
suggested by Thurston, proved by Rodin and Sullivan (1990-)

@ Methods based on the proof of the existence theorem for
quasiconformal mapping by Ahlfors-Bers (1993-)

@ Methods based on the Beltrami holomorphic flow (2005-)
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@ Computational cost

Aim of this study

@ Discretization error
o Guarantee for convergence and quasiconformality

@ Limitation of Beltrami coefficient

To obtain a practical method of numerical quasiconformal mapping

which has reasonable guarantee for convergence.
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Formulation

of problem
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We say a Euclidian simplicial complex 7', which consist of finite closed
2-simplices {7;} in C, form a triangulation of D if:

@ P :=|T|is a closed simple jordan polygon whose vertices lies on
the boundary of the unit disk D where |T'| is the union of all

2-simplices in T',
@ each 1-face li of any 2-simplex 7; of T is either:

Triangulation
o an edge of P, or
o there exists unique j(j # ¢) such that lj is an edge of a 2-simplex

7 in T

ATAYAVAVAVA
00
Y
X
X2

i
VAV
8

L5

i

RERPKL

R
<>

0
PORSER]
WATAYS

AR

X5
KL

vavis

QR
KK
K5t

A

s
VAo

XS
RO
PRSXIRER
AYAAVAYAY
AVAY, VAVAY
YAVATAVAYS

vatus
Vi

Yavy
\Vav,
X

Figure. An triangulation of D which consists of 4096 2-simplices.
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PL mapping

o Let T, T, be triangulations of . If T, and T, are simplicially
equivalent, then the piecewise linear mapping f : |T%| — |Tw|
which sent 2-simplex in T, to the corresponding 2-simplex in T,
linearly, is a homeomorphism between |T.| and |T',|. We say f is
induced piecewise mapping by 7. and T,.

For given triangulation of the unit disk 7%, we say f : |T.| — Cis in
PL(T.) if f is continuous on |7%|, and is linear on each 2-simplex in
T3]
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@ The Beltrami coefficients uy of f : |T.| — |Tw| is defined on each
interior of 2-simplex.

{64, 32}
0.012

0.010

PL mapping

0.008

0.006

0.004

0.002

T Y
10 20 30 40 50 60
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PL mapping

Lemma (Good approximation lemma)

Let {pn € L*°(D)1}nen be measurable functions which satisfies
l[pnlloo <k <1

for all n € N, and such that the pointwise limit

L= (D)1 3 p(z) := lim pn(2)

n—00

exists almost everywhere. Let f,, : D — D be the u-conformal mappings
with f,(0) = fn(1) —1=0. Then f,(z) converges to the p-conformal

mapping f(z) with f(0) = f(1) — 1 = 0 uniformly on compact subsets

of D.
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Formulation of our problem

We want to obtain an algorithm as the following.

Input:

[ VRS L™ (]D))l
@ A triangulations of the unit disk T, whose vertices include 0 and 1.
Output:
@ A triangulations of the unit disk T°, = T, whose vertices include 0
and 1 in suitable position, so that the Beltrami coefficient pg of

the induced piecewise linear mapping g : |T%| — |Tw| € PL(T%.),
reduce || — pglcc ON each 7 € T,.
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Algorithm

Algorithm

9

-
58
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Logarithmic cordinates

@ Let p be a measurable function with ||u|lc < 1.

o Set pu(z) i= Zu(L) for z € C\D.

@ Then, there exists self p-conformal mapping f : C — C of the
complex plane which fix 0 and 1.

@ Actually f|p is desired quasiconformal mapping.

Corollary

Let p € L=(C)1 and f : C — C be the u-conformal mapping with
FO) = f(1) =1 =0. If u(z) = u(1/2)z% /2>, then the restriction

flp : D — D is a self u|p-conformal mapping of the unit disk with

flp(0) = flp(1) =1 =0.
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()
N

Z =Logz Z =Logz

F(Z)

@ Take the logarithmic coordinates Z = log z and set

F(Z) :=log f(e%).

@ Then F' have the symmetry with respect to the imaginary axis.

o First we approximate F'(Z) on a finite rectangle.
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Triangulation

Take M, N € N. We define (M + 1)N vertices

Zje =

V3rj  2n(k+ (j mod 2)/2) .
-+ ~ i (3)

for —-M <j<0and 0 <k <N —1. The M x N rightward pointing
2-simplexes are defined by

) Conv(Zjrk-r, Zj-1s Zjx), J even, (a)
Tk Conv(Zj—1,k, Zj-1k+1, Zjk), Jodd,

for —M 4+ 1 < j < 0 where Conv(Z1, Z2, Z3) is the 2-simplex which
vertices are Z1, Z2, Z3. We also define M x N leftward pointing
2-simplexes

S Conv(Zji1,6—1, Zj+1,k, Zjk), J even, (5)
ok Conv(Zj i1,k Zjt1k+1, Zjk), J odd,

for —M < j < —1.
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Triangulation

We extend this mesh symmetrically to the right half-plane as
Zjk = 0o(Z—jk)
where g is the reflection of the imaginary axis
0(2) =-Z. (6)

Now we have (2M + 1)N vertices and 4M N 2-simplexes. In the case

the simplexes Tﬁ are equilateral. We say this the basic mesh in the

logarithmic coordinates.
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Proposition

Let z1, z2, w1, w2 € C with z1 # 2o and w1 # wa. For given complex
constant p € D, there is a unique p-conformal affine linear mapping
B(z) = Blu; z1, z2; w1, w2](z) which sends z; to w; (i =1,2).

Linear system

Blu;2,,2,;w,,w, 1
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e Let 4, a, b be complex constants with a # 0, |u| < 1. We consider a

p-conformal real-linear mapping

z+ uz
L,(z) := . 7
ue) = L ™
Proposition
B(z) is given by
w2 — Wy
B(z) = wi+————Lu(2—2
Linear system ( ) ! LH(ZQ - Zl) H( 1)
L, (22— z) L,u(z1 —2)
= w1 + wa.
Lu(zz—21) © Lu(zi—2) °

Remark We note that the coefficients of w1, w2 in the last expression
are never 0, 1, or oo if z1, 22, 23 are distinct.
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Linear system

Corollary

Let z; € C (i = 1,2,3) noncollinear, w; € C (i = 1,2,3) noncollinear
and i € D. If an p-conformal affine linear map B takes z1, z2, 23 to
w1, w2, ws respectively, then the following holds:

L (22—23) LL(Zl —2’3)
w3 = B(z3) = =& wy + = w
=B = ) T Taler = 2)
<~ LH(ZQ—ZQ,)UM+LM(Z3—Z1)’LU2+LH(21 —2’2)11)3:0. (8)

Corollary

Let z; € C (i = 1,2,3) noncollinear and w; € C (i =1,2,3)
noncollinear. There is a unique affine linear mapping which sends z; to
w; (¢ =1,2,3). Further its Beltrami coefficient is equal to

(22 — z1) (w3 —w1) — (23 — 21) (w2 — wn)
(72 — 71) (w3 — w1) — (5 — Z1) (w2 — w1)’

(9)

H= =
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Beltrami coefficient of F

The Beltrami coefficient of F/(Z) are given as follows:
v(Z) = ,u(ez)e—z = p(e?)e '™ 7 Re Z < 0. (10)

Using v, we set the Beltrami coefficients as v(Z) = v(o(Z)) for
Re Z > 0.

We will write I/Jik for the average value of v(Z) on the 2-simplexes Tlik
(or, the average of v(Z) over the three vertices as an approximation of
this average, at least when v is continuous). Let us note that
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For all rightward pointing 2-simplicies T;; € TvnN = {T]ik} we
construct following M N linear equations by Corollary 3:

a;rijk + bjijka + cjijkaH =0 (12)
where
ot = Ly (Zj—1,k-1— Zj-1,k), J even,
ik Luj (Zj—1,k — Zj—1,54+1), J odd,
Linear system I Lo (Zj-1k — Zjx), j even, 13
gk L, (2 - Z; i odd (13)
Vik j—1,k+1 jk), J O )
4= Ly (Zjk — Zj—1,6—1), J even,
ik Lyjk(Zj — Zj—l,k)7 j odd.
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ajk

b

Linear system

Cjk

|
|
2

L
L
L
L
L

Vik

Vik

Vik

Vik

Vik

VJk

(Z
(Z
(Z
(Z
(Z;
(Z;

Further M N linear equations for the leftward pointing 2-simplexes 77,
are constructed Corollary 3,

a Wik + b5 Wit k-1 4 ¢ Wiprr =0 (14)

i+1,k—1 — Zj41,k), J even,
i+1,k — Zj+1,k+1), J odd,

i1,k — Zjk)s j even, (15)
j+1k+1 — Zj k), J odd,

Zjt1,6—1). J even,
Zj+1k),  Jodd.

Remark We have totally 4M N triangle equations.
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Linear system

Boundary equations

Originally, the image of the inner boundary circle by a quasiconformal
mapping is approximately an ellipse. The shape of this ellipse is depend
on the Beltrami coefficients at the origin. Under this situation, we will
add the following equations.

30/58



Numerical
quasiconformal
mappings

H. Shimauch

Linear system

Let ex be the images of these points under the real-linear mapping L,
i.e.

er = Lug(10g Z-ar ) = r—arLpg (€2™FN), 0< k<N -1,

where o denotes the average value of u(z) inside of the inner boundary
circle. We want a condition that the images {W} lie on unknown
complex nonzero constant multiple of the ellipse which include {ex}.
Hence the boundary equations which achieve above condition are the
following 2(IN — 1) equations

Weme —W_pmr—1 = Dz,
Wyuk —Wymr—1 = Dx, (16)

where Dy, = loger —loger—1 and 1 < k < N — 1. The magnitude of
r_pr does not influence the value of Dy.
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Linear system

Nomalization

Finally, for normalization of the solution we add one more equation,
Wo,0 = 0.

This says that F'(0) = 0, or equivalently, f(1) = 1.

(17)
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Linear system

Associated linear system

In argument above, we construct ne = 4M N + 2(N — 1) + 1 complex
linear equations for the n, = (2M + 1)N unknown variables Wy,
—M<j<M,0<k<N-—1. Let p=p(j, k) be an fixed bijection
from the set of index pairs {(j,k)} to {p € N: 1 < p < n,}. Using this
bijection p, we will rename the variables in a single vector W with

W= {Wp} = {Wjk} (18)
for the convenience. The linear system now takes the form:
AW =B (19)

where A = (A; ) is the ne X ny-type complex matrix and B = (By) is
a complex vector of length n.. When we take a pair of N, M, the mesh
{Z;1} is fixed, and linear system above is defined. We will say that this
linear system (A, B) is the associated linear system to the collection of
v-values {v;i}.
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Least squares solution

Since our linear system is over determined, we chose the standard least

squares method for the approximation.

Let m,n € N with m > n. Let AW = B an overdetermined linear
system where A € M, ,(C), B € C™ and unknown vector W € C".
We call W is the least squares solution of (A, B) if W minimize the
residual vector ||[AW — B)||2.
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Figure. An exmaple of A (M =64, N = 32, u(z) = 0.3).
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Least squares solution
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e _

Input: The measurable function p: D — C with ||u||s < 1 and the
dimensions M, N for a simplicial complex {Z; 1.} in the Z-plane.

@ Calculate the averages of the Beltrami coefficients v; 5 on each
triangle in the logarithmic coodrinates via (10) (or we use averages
on the 3 vertices if u is continuous on D).

@ Calculate the coefficients of the associated linear system (A, B) of
{vjr} and TN as prescribed by equations (12), (14), (16), and

(7).
@ Calculate the least squares solution W to the associated linear
Summary of the system (A, B), and arrange the entries of W to form the mesh
algorithm
{Wik}.

@ 4. Calculate wjr =expWjg for —M <3 <0and 0 <k <N — 1.

Output: The piecewise linear mapping such that z;, — w;, where

Zjk = €xXp Ljk.-
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Numerical experiments

Numerical experiments
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The image of the circle |z| = 1 under the mapping L, is an ellipse with
semiaxes 1, (1 — |u|)/(1 + |p|) slanted in the directions (1/2) arg p,
(1/2)(arg p + m) respectively, modulo 7. This ellipse is sent by the
conformal linear mapping Hi/(2,/m),0 to the ellipse with semiaxes a, b.
Then the ellipse is transformed conformally to the unit disk, by an
explicit formula for the conformal mapping to D from this ellipse.
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The algorithm was applied for the constant Beltrami derivatives
pn=0.1, 0.3, 0.5, 0.7, and meshes defined by N = 16, 32, 48, 64, 72,
84, with M equal to the least multiple of 4 no less than N log N/(7+/3).
In the last case there are 24359 equations in 14196 variables. It took
about 1.5 seconds to calculate the part of the matrix in the left
half-plane, and about 10 seconds to solve the full set of equations.

N) || (12,16) | (24,32) | (36,48) | (52,64) | (60,72) | (72,84)

©n=0.3 0.0274 0.007 0.0031 | 0.0018 | 0.0014 0.001
n=0.5 0.0615 | 0.0205 | 0.0109 | 0.0065 | 0.0051 | 0.0038
n=0.7 0.2439 | 0.1201 | 0.0856 | 0.0627 0.053 0.0412

I 01 0.012 0.0031 | 0.0014 | 0.0008 | 0.0006 | 0.0004

Table: The maximum of the absolute errors between the solutions and the real
values of some constant Beltrami derivative and M ~ N log N/(7+/3).



Numerical
quasiconformal
mappings

H. Shimauch

Numerical experiments

Radial quasiconformal mappings

Let ¢: [0,1] — [0,1] be an increasing diffeomorphism of the unit
interval. Then the radially symmetric function

£(2) = p(|z])e' == = w(\z\)ﬁ (20)

has Beltrami derivative equal to

(2) = 2l¢’(2)/p(2) =1 2
|2l¢’(2)/p(2) + 1%

when z # 0. As an illustration we will take
@(r) = (1 —cos3r)/(1 — cos3).

The resulting Beltrami derivative satisfies ||1t]|oc = 0.65 approximately.
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Error

| (12,16) | (24,32) | (36,48) | (52,64) | (60,72) | (72,84)
| 0.0398 | 0.0135 | 0.0058 | 0.0034 | 0.0027 | 0.0020

Table. |¢(|z]) — f(2)]
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Numerical experiments

Sectrial quasiconformal mappings

In a similar spirit, we let ¥: [0,27] — [0, 27] be an increasing
diffeomorphism. Write 1)(e*?) = e?®_ Then the sectorially symmetric
function
~( z
&=k () 22)

has Beltrami derivative equal to

_1=9'(0)

= (23)

when z # 0. As an example we will take

The arguments of the final boundary values on the unit circle were
compared with the true values (0).



Numerical
quasiconformal
mappings

Numerical experiments

1 2 3 4 5 6
Figure. ¥(0) and T,

(MN) || (12,16) | (24,32) | (36,48) | (52,64) | (60,72) | (72,84)
Error || 0.0712 | 0.0362 | 0.0251 | 0.0193 | 0.0173 | 0.0150

Table. [¢(0) — f(e")]
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Let 4 € L (D) with ||pt]|eo < 1. If the corresponding normalized
solution f* satisfies f*(z) = z on the unit circle, u called a trivial
Beltrami coefficient. Trivial Beltrami coefficients play an important role
in the theory of Teichmiiller space. Prof. Sugawa showed a criterion for
the triviality of the Beltrami coefficients, and gave an example for a
trivial Beltrami coefficient. Let N be a non-negative integer and a; ()
(1 €5 < N) be essentially bounded measurable functions in ¢ > 0 so

that v -
o) = Y (log ) (&)

satisfies ||t]loo < 1. Then his results implies that p is a trivial Beltrami
Nurmerical experiments coefficient. For the experiment, we chose

2 (sin10z\7"
aj(z) = 3 3 .

47 /58
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Convergence
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Theorem

Theorem (Porter, S ,2014)
Let s € N and Ms, Ns € N be strictly increasing sequences which satisfy

c1Nslog Ns < M, < coNglog N (24)

for constants ci1, ca where c1 > 1/(mv/3). If 1 € Loo(D)1 U C*(D), then
the following holds.

i. If s is large enough, the points {z;ig} and the points {wj(sli
produced by the algorithm form the vertex sets of triangulations
T and T2 of the unit disk I. Furthermore, for any fixed
compact set K C intD, K C |T{¥| and K C |T| hold when s is
large enough.

ii. The mappings ) converge to the u-conformal mapping f

normalized by f(0) = f(1) — 1 = 0 uniformly on compact subsets
of D as s — oo.
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Input:

o 1€ CY(D)N L=(D);.

@ My, Ns — 0o as s — 0o with ¢1 Nslog Ny < My < coNslog Ns.
Output:

o {g® € PL(T!)} st. g — f* as s — .

Remark We conjecture that the condition ;1 € C' is overly restrictive by
the numerical experiments.

Theorem
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The following Lemma is important for proof of main theorem.
Lemma

Let T, := {7;} be a triangulation of the unit disk D with P, := |T%| is a
simple jordan polygon of k sides. Suppose f: |T,| — D € PL(T.)
preserve the orientation on each 7 € T, and maps 0|T|
homeomorphically to a boundary of a simple Jordan polygon P,, with k
sides. Then f is a orientation preserving homeomorphism from P, to
1B-

Theorem
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Proof:

We will replace pi(z) with p(rz) for r < 1 arbitrarily close to 1, and
then apply the standard approximation arguments. Thus we assume
that u(z) belongs to the class C'* on a neighborhood of the closed unit
disk. This condition implies that the corresponding normalized
pi-conformal mapping f is in the class C?. Let {ZJ(S,C)} be the vertices of
the simplicial complex Tés) in the logarithmic coordinates which are
produced by our algorithm. For fixed s, we take the least squares
solution for the associated linear system (As, Bs) which we will call
W'. W’ minimizes the La-norm ||R;]|2 of the residual vector

R, = A,W/, — B,. (25)

Let vs := {l/fyk} denote the collection of average values of the

function v which are defined by (10) on the triangles of Tés).
Now we consider another linear system. Let Wy be defined by

W= (W5} = {F(Z;)} (26)

which contains the images of the vertices under the true v-conformal
mapping F(Z) = log f(¢?) in the logarithmic coordinates.
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Let F; be the secant map which is induced by the correspondence Tés)
and F', and let v7 := {v] ; .} be the Beltrami coefficient of F. By the
construction, Fy coincides with F' on the vertices of {ZJ(’k)} However
the Beltrami coefficient of F' is constant on each 2-simplex. Let

(A3, B}) be the associated linears system which is induced by Tés)
and v;. We will consider the following:

where
1 (1/2)
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Proposition

max
75 k€T,

*
o —
) S |Tj,k Tj.k

:o(z\lfs) (30)

We have
IR loe < IRz = [|AsW — Bs|l2 < [|AsW s — Bs|2
by minimality of ||A; W, — B,||2 = || R%]|2 (recall (25) and (29)).

HASWS_BSH2 S HASWS_AZWSHQJ’-”Atws _B:HQ
+1Bs — Bl
= |(As — ADW.|2 + |lesll2 + | B — Bsl2
= 0 (31)

by the regularity of the Beltrami coefficient, sparseness of the associated
linear systems and (30).
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By (27) and (28), we obtain

AW =W < AW = Bs|lec + | Bs = B[l
[Rslloo + |1 Bs = Bslloo + ll€s]loo
+ (AL = A)W | (32)

Further we can proved: If {X} € C™ is such that A, X, — 0, then
X — 0. Hence we have

W, - W] — 0. (33)

We apply the exponential mapping to obtain the sequence of
PL-mappings [ e PL(\TZ(S)\) which send each 2-simplices (z1, 22, 23)
€ T to the 2-simplices (w1, ws, ws) where w; := exp oF; o log(z;).
Let fJ be the secant map which is induced by f and 79, and let s be
the Beltrami coefficients of fJ. Since quasiconformal mapping

f € C*(D), we see that f; is a quasiconformal mapping if s is large
enough, and it converges to the true solution f locally uniformly on D by
good approximation lemma. We obtain that f; is also a quasiconformal
mapping if s is large enough and f; — f locally uniformly in D. O
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@ We propose an algorithm for numerical quasiconformal mappings
which converge to the true solution at least in the case the
Beltrami coefficients are in C''. Qur algorithm behave numerically
well for some difficult cases.

@ We use characteristic properties of quasiconformal mappings for
our piecewise linear mapping.

@ The computational cost of our algorithm is O(M®N) for one
approximation (not for a point).

Theorem
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Background Main tools and non-discrete results Thought about discrete triangle groups

@ Background
— Complex hyperbolic space, Complex reflections, Complex
hyperbolic triangle groups

@ Main tools for non-discrete results
— Jgrgensen’s inequality, Shimizu’s lemma

@ Thought about discrete cases
— Cygan ball, Ford domain, Klein’s combination theorem
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Complex hyperbolic space

Let CZ! denote the vector space C> equipped with the Hermitian form
p quipp
(Z, W) = Z1W| + 22Wr — Z3W3

of signature (2,1). Let P : C>! — {0} —s CP? be the projection map.
o V.={zeC :(5,2) <0}, Vo={zeC> —{0}:(z2) =0},
V. ={zeC> :(z,2) > 0}.
o HZ2 =PV_ ={(z1,22) € C* : z1]* + |z2/* < 1} Unit ball model 2.
(91[-]% =PVy = {(z1,22) € C? : |z1]> + |z2/*> = 1} homeo. to S3.

@ The Bergman metric on Hé is given by

Shz(p(x’ )’)) _ (%, y)(j}, X)

2
= ——— x,yeHzg,
2 (X, )3, ) c

where %, ¥ are standard lifts in C>! of x, y respectively.

Lijie Sun Complex Triangle Groups 4/25



Background

Choose a line spanned by the null vector Q. representing a point ge
in aHé There is unique complex projective hyperplanes H,, c CP?
that is tangent to 8Hé at ¢oo. Using affine coordinates on CP? — H,,
complex hyperbolic space is realised as a Siegel domain model S
with horospherical coordinates. In these coordinates z € € is given by
7=, v,u) e CXRXR,.

In or_der to see how & relates to P(V_), we define the map
¥ : @ — CP? by

£

Y Evauw)— | S0 - —u+iv) |,
1A+ P + u - iv)
0

oo — | -1

1

Lijie Sun Complex Triangle Groups 5/25
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Heisenberg group and Cygan metric

The 3-dimensional Heisenberg group H is the set C X R with the
group law

(1, 1) * (E2,v2) = (1 + E,v1 +v2 + 2Re (16)).

1
Note that (&, v1)™ = (=&1, —v1), [E )] = |léP - iv]*.
The Cygan metric pg on the Heisenberg group is

po((E1.v1). (€2,v2) = |1 vD) ™ * (&2, v2)|
= i1 — &l — vy + vy — 2iRe G B

Lijie Sun Complex Triangle Groups 6/25



Background Main tools and non-discrete results Thought about discrete triangle groups

Heisenberg group and Cygan metric

The 3-dimensional Heisenberg group H is the set C X R with the
group law

(1, 1) * (E2,v2) = (1 + E,v1 +v2 + 2Re (16)).

1
Note that (&, v1)™ = (=&1, —v1), [E )] = |léP - iv]*.
The Cygan metric pg on the Heisenberg group is

Po((E1. 1), (€2,v2)) = |1 vD) ™ * (&2, v2)|
= i1 — &l — vy + vy — 2iRe G B

We can extend the Cygan metric to ]HTé — g as follows

Po((&1, V1, 11), (€2, v2, 1) = lE1—Eal+uty—t|—ivy +iva—2i Re (6157
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Background Main tools and non-discrete results Thought about discrete triangle groups

Complex geodesic and complex reflection

o Giveux, y € ]I-ITé. Take C = spanc{X, ¥}, X, y € C2! are lifts of x, y
respectively. We define the complex geodesic C = P(C), which
can be uniquely determined by a positive vector p € C>!, i.e.

C=P(zeC> :(z,p)=0).

We call p a polar vector to C.
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Background Main tools and non-discrete results Thought about discrete triangle groups

Complex geodesic and complex reflection

o Giveux, y € ]I-ITé. Take C = spanc{X, ¥}, X, y € C2! are lifts of x, y
respectively. We define the complex geodesic C = P(C), which
can be uniquely determined by a positive vector p € C>!, i.e.

C=P(zeC> :(z,p)=0).

We call p a polar vector to C.

@ The complex reflection in C is represented by an element
Ic € SU(2, 1) that is given by

where p is a polar vector of C.
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Background Main tools and non-discrete results Thought about discrete triangle groups

Two kinds of chain

@ 7z —chain (z € C) is the chain having polar vector

The z — chain is the vertical chain in H through the point (z, 0).

@ (z, r) —chain (z, r € R) is the chain having polar vector

0
1+r2+iz
1-r2—iz

The (z, r) — chain is the cicle of radius r centered at the origin in
Cx{z} CcH.
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Background Main tools and non-discrete results Thought about discrete triangle groups

Classification of complex hyperbolic isometries

Let PU(2, 1) be the projectivisation of the group U(2, 1), which
preserves (-, -). We pass between matrix groups and isometries
without comment. An isometry g of ]H[é is
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Background Main tools and non-discrete results Thought about discrete triangle groups

Classification of complex hyperbolic isometries

Let PU(2, 1) be the projectivisation of the group U(2, 1), which
preserves (-, -). We pass between matrix groups and isometries
without comment. An isometry g of ]H[é is

o elliptic if it fixes at least one point in H2;
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Background Main tools and non-discrete results Thought about discrete triangle groups

Classification of complex hyperbolic isometries

Let PU(2, 1) be the projectivisation of the group U(2, 1), which
preserves (-, -). We pass between matrix groups and isometries
without comment. An isometry g of ]H[é is

o elliptic if it fixes at least one point in H2;
e parabolic if it has a unique fixed point on JHZ;
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Background Main tools and non-discrete results Thought about discrete triangle groups

Classification of complex hyperbolic isometries

Let PU(2, 1) be the projectivisation of the group U(2, 1), which
preserves (-, -). We pass between matrix groups and isometries
without comment. An isometry g of ]H[é is

o elliptic if it fixes at least one point in H2;
e parabolic if it has a unique fixed point on JHZ;
@ loxodromic if it fixes a unique pair of points on aHé.
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Background Main tools and non-discrete results Thought about discrete triangle groups

Classification of complex hyperbolic isometries

Let PU(2, 1) be the projectivisation of the group U(2, 1), which
preserves (-, -). We pass between matrix groups and isometries
without comment. An isometry g of ]H[(zC is

o elliptic if it fixes at least one point in H2;
e parabolic if it has a unique fixed point on JHZ;
@ loxodromic if it fixes a unique pair of points on aHé.

NOTE:

@ An elliptic element g is called regular elliptic if all its
eigenvalues are distinct.

@ Define the discriminant polynomial
f@) = lzI* - 8Re(z)) + 18}z - 27.

An element g € SU(2,1) is regular elliptic if and only if
f(r(g)) <0, where 7(g) is the trace of g.
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Background Main tools and non-discrete results Thought about discrete triangle groups

Complex triangle groups

Assume that integers p, g, r, with p, g, r € N,.
A complex hyperbolic triangle is a triple (Cy, C,, C3) of complex
geodesics in Hé.

Definition of the angle of two complex geodesics

Let Cy, C; be two complex geodesics with two polar vectors py, p»
respectively. Define the angle between C; and C; as follows

L(Cy, C) = 4(p1, p2) = )gn}g {£(x1, x2) : x; € spang(p;)},

where / denotes the angle between the two vectors measured
normally.

Note that 0 < £(Cy, Cy) < 7/2.
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Background Main tools and non-discrete results Thought about discrete triangle groups

Complex triangle groups
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Background Main tools and non-discrete results Thought about discrete triangle groups

Complex triangle groups

o If the complex geodesics Cx_; and Cy meet at the angle ;7’, g, %
(», g, r € N,), where the indices are taken mod 3, we call the

triangle (Cy, Co, C3) a (p, g, r) — triangle.
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Background Main tools and non-discrete results Thought about discrete triangle groups

Complex triangle groups

o If the complex geodesics Cy—; and Cy meet at the angle O
(», g, r € N,), where the indices are taken mod 3, we call the

triangle (Cy, Co, C3) a (p, g, r) — triangle.

T o
>q’r

e WecallI a(p, g, r) — triangle group, if I is generated by three
complex reflections 11, I, I3 in the sides C, C, C3z of a (p, g, 1) —
triangle.
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Background Main tools and non-discrete results Thought about discrete triangle groups

Complex triangle groups

o If the complex geodesics Cy—; and Cy meet at the angle ;7’, g, -

(», g, r € N,), where the indices are taken mod 3, we call the
triangle (Cy, Co, C3) a (p, g, r) — triangle.

e WecallI a(p, g, r) — triangle group, if I is generated by three
complex reflections 11, I, I3 in the sides C, C, C3z of a (p, g, 1) —
triangle.

In this talk, we consider (m, n, o) — triangle groups. In this case
ord(/113) = m, ord(l11,) = n and I;15 is a Heisenberg translation.
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Background Main tools and non-discrete results Thought about discrete triangle groups

1992, W. M. Goldman, J. R. Parker ~ Groups of type (co, co, 00)
2007, Kamiya  Groups of type (1, n, co)

2008, J. R. Parker  Groups of type (n, n, n)

2010, Kamiya, Parker, Thompson  Groups of type (p, g, r; 1)

2012, Kamiya, Parker, Thompson  Groups of type (n, n, o0; k)
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Background

Any (m, n, o) — triangle group is PU(2, 1) — equivalent to one
generated by inversions in the (0, 1) — chain and in two vertical chains.

By conjugation in PU(2, 1), we can take three involutions /; in C; such
that 9Cy, 0C,, 0Cs are (0,1) — chain, z; — chain, z; — chain resp.,
where z; = cos(/n), zo = € cos(t/m).

The three polar vectors correspondingly are:

0 1 1
pi=|11| p=|-za| p=|-2
0 21 2

Define the parameter of the (m, n, co) — triangle angular invariant « by

3

= arg(n(Pi—l,Pm)) = arg(z122) = 0
i=1
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Main tools and non-discrete results

Main tools and non-discrete results
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Main tools and non-discrete results

Let g € PU(2, 1) be a parabolic element. Define the translation length
t,(2) of g at 7 € H by 1,(2) = po(g(2), 2).

Ford isometric sphere of a map h in SU(2, 1) that does not
projectively fix g is the spinal hypersurface given by

I(h) = {z € HZ : |z, 00)| = (2, h™ ' oo))},

where Z and oo are standard lifts in C>! of z and ¢, respectively.

Let G be a discrete subgroup of PU(2, 1) that contains the Heisenberg
translation g = (&, ). Let h be any element of G not fixing co and with
isometric sphere of radius rj,. Then

i < to(h™(00)) tg((c0)) + 4T,
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Main tools and non-discrete results

Let A € SU(2, 1) be a regular elliptic element of order n > 7 that
preserves a Lagrangian plane (i.e. tr(A) is real). Suppose that A fixes a
point z € Hé. Let B be any element of PU(2, 1) with B(z) # z. If

osh (p(BZZ’ Z)) sin (%) < %,

then (A, B) is not discrete and consequently any group containing A
and B is not discrete.
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Main tools and non-discrete results

I" of type (m, n, o) is not discrete if m, n, 8 satisfy one of the two
following conditions
(1)7 <n < ocoand

’cosz(g) + 20082(%) - 4cos(g)cos(n£1) cos @ + 1' < %sin(;—r);
2)Letu = cosz(%) + cosz(’ﬁ’) — 2cos(2-)cos(%) cos 6,
v = cos(Z-)cos(%) sin 6,

1
—2iv|+4u < —.
lu — 2iv| + 4u
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Main tools and non-discrete results

Example 1: Let m = 8. Show the interval of a corresponding to the
non-discrete I' when a € (¢,, 1) or a € (d,,, 1), where a = cos 6.

Table: Approximations of ¢, d,.

n Cn d,

4 — 0.99961
5 — 0.99419
6 — 0.99289
7 | 0.99170 | 0.99279
8 | 0.98685 | 0.99299

20 | 0.98750 | 0.99442
30 | 0.99147 | 0.99464
100 | 0.99911 | 0.99480
200 — 0.99481
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Main tools and non-discrete results

I" of type (m, n, o) (m # n) is not discrete if 111515 is regular elliptic. J

o Example 2: Show the interval of a corresponding to the
non-discrete I of type (8, n, c0) when a, < a < b,,.

Table: Approximations of a,, b,,.

n a, b,

11 | 0.93067 | 0.93114
15 | 0.93437 | 0.93512
20 | 0.93575 | 0.93654
30 | 0.93662 | 0.93733
40 | 0.93690 | 0.93757
100 | 0.93719 | 0.93780

NOTE: There are no solutions for a when n < 10.
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Thought about discrete triangle groups

Thought about discrete triangle groups

Lijie Sun Complex Triangle Groups 20/25



Thought about discrete triangle groups

Let y be a point of (’)Hé. For an element & € PU(2, 1) with A(y) # y, we
define the generalized isometric sphere I,(h) of h at y as

Li(h) = {z € HZ : K2, )| = K&, A G

Correspondingly, Ext I,(h) = {z € HZ : KZ. )| < |G A~ G)I}.
Int Iy(h) = {z € HZ : K&, 3| > [, h G-

Let G be a discrete subgroup of PU(2, 1). Let co be a point of Q(G)
and the stabilizer of co only consist of identity. If y € Q(G) N 8Hé
such that G, = {id}, then

Py(G) = ﬂ Ext I,(f)

feG-lid)

is a fundamental domain for G.
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Background Main tools and non-discrete results Thought about discrete triangle groups

A Cygan ball S with center at xq € 6Hé and radius r is defined as
S={zeH2: po(z Xo) < r}.
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Background Main tools and non-discrete results Thought about discrete triangle groups

A Cygan ball S with center at xq € 6]H[é and radius r is defined as

S ={z € HZ : po(Z, %) < r}.

Assume that f = I11,, g = I1I5. Find elements A, B € PU(2, 1) which
conjugate f, g to normalized form f;, go respectively. We take the
normalised form A~!'fA for example,

L + 1) 0 L - 1)
fo= 0 e 0

2in 2in

Iew -1 0 v+

By considering the the construction of Ford domain, we shall know
that the exterior of a F. D. of {fp), UZ;} Int 1 (fé‘) is contained in a

Cygan ball S; with center at the origin and radius ./ 1:1%;7”/)")
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Thought about discrete triangle groups

We show the relation between the Ford isometric sphere I(fy) w. r. t
infinity and 1,(f), where y = A(c0).
z € IntI(fy) & Kz, o) > [z, f5 (o))
& [(z,00)] > [(z, A7 f *A(e0))
& Az, )l > KAz, f )
& Az € Int Iy(fk).

Therefore J}Z; Int I,(f*) = A(U;Z| Int I(f¥)) € A(S)).

Similarly, the exterior of the F. D of (g) will be contained in B(S>),
where S, is a Cygan ball containing ani_ll Int I(g}).
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Thought about discrete triangle groups

Let G1, G, be discrete subgroups of PU(2, 1) with connected
fundamental domains D; and D,. Let E; and E, be the interior of the
complement of D and D; in Hé respectively. Suppose that

EiNE;, =0and D; N D, # 0. Then G = (Gq, G») is discrete.

If A(S1) N B(S2) = 0, then from the above theorem we know
(I11,1113) is discrete. It follows that the triangle group is discrete
because (11, 1;13) is of index two of I' = (I, I, I3).
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Background Main tools and non-discrete results Thought about discrete triangle groups

Thank you for your attention!
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1 Introduction
Let M be a hyperbolic Riemann surface of genus g with n punctures

and 7 holes. The Teichmiiller space 7 ,, , is the space of isotopy classes

of hyperbolic metrics on M which is homeomorphic to the real affine

space of dimension 6g — 6 + 2n + 3r.




By using hyperbolic lengths of simple closed geodesics we can embed
1,.n,r into the real affine space of dimension, for example 9g —9+3n+4r
> 6g— 06+ 2n+ 3r: Fix a pants decomposition P on M, i.e. a multicurve
such that M\ P is homeomorphic to the disjoint union of thrice punctured
spheres. P consists of 3g — 3 + n + r numbers of disjoint simple close

curves.

n=4, r=3




The Fenchel-Nielsen coordinates associate to each m € 7, ,, , the
length of each components of P and boundary geodesics, and the twist
of each components of P, which is a diffeomorphism from 7, , onto
R‘j’rg_3+”+2r x R3973+7+7"  On the other hand the twist of each com-
ponents of P can be determined by the lengths of two more curves for
each components so that 7, ,, , can be embedded into the affine space of

dimension

Bg—3+n+r+r)+2x3B3g—3+n+r)=99—9+3n+4r

by length functions of simple closed geodesics. Schmutz showed

that the minimal number of simple closed geodesics whose hy-

perbolic lengths globally parametrize 7, , for r = 1 is equal to

dimr7,, r = 69 — 6+ 2n + 3r, so that the image of 7, , becomes an
4



unbounded domain in R%mr7Zg,n,r

Moreover Okumura and Schmutz showed that the minimal number of
simple closed geodesics whose hyperbolic lengths globally parametrize
1,.n is equal to dimgp7,, +1 =69 — 6+ 2n + 1.

Now we have the following natural question:

Can we find dimpr7, , , + 1 simple closed geodesics whose hy-
perbolic lengths embed 7, ,, , into the real projective space of di-

mension equal to dimr7Z, ,, 7

Because of the PL-Structure of the Thurston boundary, we might expect
that the image of 7, ,, » should be the interior of some convex polyhedron

in the projective space.



2.1 Bordered surfaces with no handles

Let M be a bordered hyperbolic Riemann surface of type (0,n,r).
We denote the boundary geodesics x,a1,as,- - ,ap+r-—1 and dividing
geodesics by, bo, -+ ,by1,—3 Wwhich decompose M into disjoint union of

(degenerate) pair of pants.

n=4, r=3




Foreachi=1,2,--- ,n+r—3, let X; be the subsurface of type (0, n;, ;)
where n; + r; = 4 with boundary geodesics a;11,a;12,0;_1,0;11. Choose
geodesics ¢; and d; in X; so that the triple {b;, ¢;, d;} mutually intersect

exactly twice.

n=4, r=3




Proposition 1. (cf. Proposition2 [S1])
The hyperbolic lengths of 2n + 3r — 6 geodesics

a1,a2,** yQptr—1, b17 C1,C2,Cn+4r—3,, d17 d27 dn—l—r—S

embeds 1¢ . tntO R27+37=6  Here we remark that the length of aj is

equal to 0 when ap corresponds to a puncture.

n=4, r=3




2.2 Bordered surfaces of type (g,0,1) with g = 1

Next we consider a hyperbolic Riemann surface M of type (g,0,1).

We denote the boundary geodesic by x. Choose non-dividing geodesics

ai,az, -+ ,Qg,02,03, - ,b4,c2,c3, -+ ,c, which decompose M into dis-

joint union of pair of pants.




For eachi =2,---,g—1, let X; be the subsurface of type (0,0,4) with
boundary geodesics b;, ¢;, b;11,c;11, Choose geodesics d; 11 and e; 11 in

X; so that the triple {a;11,d;11,e;11} mutually intersect exactly twice.

10



Let X; be the subsurface of M of type (0,0,4) with boundary
geodesics a1, a1, b, co, and choose dy and e; on X so that the triple
{as,ds,es} mutually intersect exactly twice. Moreover let f be a
geodesic intersecting with ay,b2,b3,---,04,c2,c3,--- ,c, exactly once.
Then fori = 2,--- , g, we can find geodesics 1, 52,53, -+ , 84, t2,t3, -+ .t
so that {a1,71, f},{bi,s:, f} and {¢;, t;, f} mutually intersect exactly

once.

11



Proposition 2. (cf. Proposition3 [S1])
The hyperbolic lengths of 6g — 3 geodesics

a17a2’°oo’a,g,bQ,O.-’bg,d27~--’d97627""eg’f”r'1782,oo-’Sg7t2,...’tg

embeds T 0,1 1nto R69—3

12



2.3 Bordered surfaces of type (g,n,r) with ¢ = 1 in general

Finally we consider a Riemann surface M of type (g, n,r) where g = 1
r 2 1 in general. First we choose a dividing geodesic x to decompose M

into subsurfaces M’ of type (g,0,1) and N’ of type (0,n,7 + 1).

13



Let N be the subsurface of M consisting of N’ and the pair of pants
whose boundary curves are x, b, and c,. Then from the above argument
we can choose 6g — 3 curves from M’ and 2n + 3(r + 2) — 6 curves from

N which determines M’ and N in T, o1 and T, 42 respectively.

14



On the other hand the lengths of curves x, b, and ¢, are counted twice

in M’ and N so that we can find

(6g—3)+(2n+3(r+2)—6)—3=6g+2n+3r —6

geodesics whose hyperbolic lengths embed Ty, ,, ,- into R69F27+57=6,

15



3 A lemma of Kerckhoff on the Thurston compact-

ification of T,

Let S be the non-trivial and non-peripheral free homotopy classes of
simple closed curves on M. For any hyperbolic structure m € T,
and any free homotopy class a € S, we denote the hyperbolic length
of a unique simple closed geodesic belonging to a by I(m, ). Then the
mapping 1. : Ty, — RS defined by 1.(m) = (I(m, a))aes is injective.

Let 7 be the projection from RS \ {0} to the infinite-dimensional real
projective space P(R®). In Proposition 6 of Exposé 7 [FLP] Kerckhoff
showed that the composition map mol, : T, ,, — P(R®) is also injective:
In his argument, it is essential that the surface M has at least one handle,

because he used the fact that for the case g > 1 we can find two simple

16



closed curves y; and 2 whose intersection number is equal to one.
Then simple closed curves 3 and 74 which are freely homotopic to

v1 - v2 and 7y L. 49 respectively satisfy the key identity for his proof:

1 +1 l1 —1 [ l
LT 2) + cosh(=—2) = COSh(§3) +cosh(§4).

where [; := l(m, |[y;]) for m € T(X) and i = 1,2, 3, 4.

Lemma 1. Let o, 3,7 and ¢ be four nonnegative numbers and let k # 1

be a positive number. If

cosh a + cosh 8 = cosh vy + cosh ¢
cosh ko + cosh k3 = cosh kv + cosh k0,

then {a, B} = {~,6}.
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4 Projective embeddings of T, ,,, for g = 1

Theorem 1. Assume that g = 1. Then the Teichmiiller space Ty ., » of a
bordered Riemann surface can be embedded into the real projective space
of dimrTy pn = 69 + 2n + 3r — 6 by the hyperbolic length functions of

dimgr7, . + 1 simple closed geodesics.

18



(Proof.) Suppose M is a bordered (i.e. » = 1) Riemann surface of type
(g,n,r) with g = 1. Then there is a subsurface X of M with a geodesic
boundary, which is a tubular neighborhood of the union of geodesics a;
and f. X is homeomorphic to a torus with a hole on which the triple
{ai,7r1, f} mutually intersect exactly once. Then the proportion of the
hyperbolic lengths of 6g + 2n 4+ 3r — 6+ 1 = 6g + 2n + 3r — 5 geodesics

embeds T}, ,, , into P(R%9H2n+3r=5),
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5 Cook hats and Crowns

5.1 Cook hats

We call a hyperbolic torus with a hole a cook hat.

U

20



Three simple closed geodesics (a, 3,7) on a cook hat is called a canon-
ical triple if each pair of them has the intersection number equal to one.
We remark that the hyperbolic lengths of a canonical triple («, 3,7) sat-
isfy triangle inequalities. For the lengths of a canonical triple («, 3, 7)
and the boundary geodesic 0 on a cook-hat, we have the following equal-

ity and inequality.

Proposition 3. For any cook-hat with the boundary geodesic o and a
canonical triple («, 8,7), their hyperbolic lengths l(«),l(3),l(y) and [(J)
satisfy the following equality and inequality:

cosh? % = (cosh Hp) —; ) cosh @)(cosh Ho) cosh HB) ; i)

).
(1)
[(a) +1(B) + 1) > 1(9). (2)
21



By means of the equality (1) in Proposition 3, we can embed the Te-
ichmiiller space 7 (T') of a cook hat T  into the 3-dimensional real projec-

tive space P(R%).

Theorem 2. For a cook hat with a canonical triple (o, 3,7v) and the

boundary geodesic 9, their hyperbolic lengths (), l(8), () and [(d) sat-
isfy

2 51(9) [(B) + sl(v) sl(a) sl(a) [(8) — sl(v)

cosh < (cosh i 5 —cosh )(cosh —cosh 2 5 )
for any s > 1. In particular the system of length functions
L = ((«),l(B),l(v),l(d)) gives homogeneous coordinates of the

Teichmiiller space T(T) of a cook hat T into P(R?).
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By means of the triangle inequalities of I(«),1(3), () and the inequal-
ity (2) in Proposition 3, we can determine the image of 7(7T') in P(R*)

as follows.

Theorem 3. The image of T (T') the Teichmiiller space of a cook-hat T
under the map L := (I(a) : I(B) : I(7y) : I(6)) is the convex polyhedron A
in P(R*) defined by

A:={(a:b:c:d) €ePRY)|a>0b>0,¢c>0,d>0,
a<b+c, b<cH+a,c<a+b d<a+b+c}.
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5.2 Crowns

We call a hyperbolic thrice-punctured sphere with a hole a crown.

Definition 1. Three simple closed geodesics (a, 3,7) on a crown is called
a canonical triple if each pair of them has the intersection number equal

to two.
24



We will show that similar results of cook hats also hold for crowns
with the help of an “algebraic” bijection between the Teichmiiller space
of cook hats 7(7") and that of crowns 7 (S) explained below. For this
purpose we realize 7 (T) and 7(S) as hypersurfaces in R* in terms of

trace functions:
Theorem 4. (Theorem 2 of [L] and Proposition 3.1 of [NN])

1. We uniformize a cook-hat m € T(T) by a Fuchsian group
and denote the traces of elements representing a canonical
triple o, 3,7 and boundary geodesic § by to(m),tg(m),ty(m)
and ts(m). Then the map or : T(T) — R* defined by
er(m) = (ta(m),tg(m),t5(m),ts(m)) is injective and the image
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or (T (T)) is described as follows:

{(a,b,c,d) € R*|a >2,b>2,¢>2,d> 2,
abc —a* —b* — ¢ +2 =d}.

. We wuniformize a crown m € T(S) by a Fuchsian group
and denote the traces of elements representing a canonical
triple o, 8,y and boundary geodesic § by to(m),tg(m),ty(m)
and ts(m). Then the map ps : T(S) — R* defined by
ps(m) := (ta(m),tg(m),ty(m),t5(m)) is injective and the image
ws(7T(S)) is described as follows:

{(p,q;m8) €RY [p>2,¢> 2,1 >2,5>2,
"+ 2(p+q+r+4)s+Ap+q+r)+p° + ¢ +r° —pgr+8=0}.
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Then by means of trace functions, we have the following “algebraic”
bijection between 7 (T') and 7 (5):

Theorem 5. There is a bijection from T (T') to T (S) which sends a cook-
hat T with the lengths of a canonical triple and the boundary geodesic
equal to (l1,12,13,1l4) to a crown S with the lengths of a canonical triple

and the boundary geodesic equal to (211, 2ls,2l3,1y).

Proof. When we substitute (a® — 2,b* — 2,¢? — 2,d) for (p,q,r,s), the
equation s +2(p+q+r+4)s+4(p+q+71)+p*+q* +1r° —pgr +8

factorizes as

@ +2p+q+r+4)d+4p+q+r)+p*+ ¢+ —per+38
= (d — (abc — a* —b* — * + 2))(d — (—abc — a* — b* — ¢* + 2)).
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Hence the map ¥ : op(7(T)) — ¢s(7(S)) defined by ¥(a,b,c,d) :=
(a® — 2,0* — 2,c? — 2,d) is bijective. Also the relation between trace

functions and length functions
[
1t(c)| = 2 cosh %

tells us the length relations between m € T (T) and pg' o W o pr(m) €
T(S). ]

Remark 1. For the limiting case 1(0) = 0, this bijection reduces to the
well-known correspondence between punctured tori and forth-punctured

spheres, which follows from the commensurability of uniformizing Fuch-
sian groups (see [ASWY]).
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Corollary 1. For any crown with the boundary geodesic 0 and a canoni-

cal triple (a, B,7), their hyperbolic lengths (), 1(B),1(7y) and () satisfy
the following inequality:

l(a) +1(B) + 1(y) > 21(5).
Next result is the counterpart of Theorem 2 and 3 for crowns.

Corollary 2. For a crown with a canonical triple (o, 3,7) and the bound-
ary geodesic §, the system of length functions (I(«),1(3),1(7),1()) gives
a homogeneous coordinate of the Teichmiiller space T(S) into P(R?Y).
The image of T (S) is the convex polyhedron in P(R*) defined by

{(a:b:c:d) € PRY) |a>0,b>0,c>0,d>0,
a<bt+c,b<cH+a, c<a+bd 2d<a+b+c}.
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Corollary 3. The composition map 7o l, : Ty, — P(R®) is also in-
jective. (Hence we can talk about the Thurston compactification of Tp

without worrying now.)
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6 Projective embeddings of Tj ., for n = 3

Suppose M is a bordered hyperbolic Riemann surface of type (0,n, 7).
with n > 3 and a1, as, a3z are punctures. Then the subsurface X; bounded
by ai,as,a3 and by is a thrice-punctured sphere with a hole, on which

the triple {b1, c1,d;} mutually intersect exactly twice.

n=4, r=3
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Therefore the hyperbolic lengths of 2n + 3r — 5 geodesics
ai,az, .- -, an—|—7“—17 bl) C1,C2, Cn+7"—37 ) d17 d27 dn—l—?“—37 b2

embeds Tp ., into P(R?"+37=5),

n=4, r=3
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7 Problems

1. What is a polyhedral shape of 7}, ,? How does the Thurston

boundary of T} ,, , collapse when T, , , is realized as a projective

polyhedron?

2. What is a geometric meaning of the “algebraic” correspondence

between cook hats and crowns?

3. How about projective embeddings for 7 , , with n =0, 1,27

4. Also how about projective embeddings for T, ,,7
Only cases of (¢,n) = (1,1),(0,4) and (2,0) are known.
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Lewy’'s T heorem
Let U C C be a domain and F : U — C be a harmonic mapping.
Then
F' is locally injective in U
«— J(F)(2) := |0F(2)|? — |0F (2)|%2 # 0 for Vz € U.

D:={2e€C:|z| <1}
If FF: D — Cisaharmonic mapping, then F has the unique representation
F=H+ G, where H and G are holomorphic in D and G(0) = 0.



{zeC:lz| <1}
{z€C:|z| =1}

Rado-Kneser-Choquet Theorem
Let 2 € C be a bounded convex domain whose boundary is a Jordan

curve I'. Let f be a homeomorphism of T onto .
u -+ z

= P(N) = [ f@Re“Z|dul, ze D

IS an injective harmonic mapping of D onto Q.

Theorem (Bshouty and Hengartner [BH1994, Th.2.7])
Let €2 C C be a bounded Jordan domain,let f: T — 02 be
a homeomorphic surjection and F := P(f). Then

F' is injective in D if and only if F(D) =




Under the weaker assumption that f : T — [ is a continuous surjection
such that f(e‘t) runs once around I monotonically as €'t runs around T
(that is, for Vw € I', f~1(w) is connected), the same result holds. f is
not required to be a homeomorphism ; f may have arcs of constancy.
The Rado-Kneser-Choquet theorem has a partial converse that every in-
jective harmonic mapping F of D onto a bounded strict convex domain
can be extended continuously to the boundary. And on the boundary F
is a continuous surjection such that F(e't) runs once around I mono-
tonically as e't runs around T (see [HS1986]). To say that a bounded
convex domain is strictly convex means that its boundary contains no
line segments. The boundary function need not be a homeomorphism;
it can be constant on some arcs of the circle.



D:={2z€C:|z| <1}

Lemma A (Schwarz’s lemma for harmonic mappings).
Let FF: D — C be a harmonic function with F(0) = 0 and |F(z)| < 1.

4
Then |F(z)| < —arctan|z|, and this inequality is sharp for each point
7T

z in D. Furthermore, the bound is sharp everywhere (but is attained only
at the origin) for injective harmonic mappings F' of D onto itself with

4
F(0) =0. (Note that |[z| < —arctan]|z| for 0 <|z| <1.)
7

[Heinz 1959] showed the lemma by using Schwarz's lemma for analytic
functions (see [Duren 2004]). In [Axler-Bourdon-Ramey 2001], R" (n >
2) version of the lemma was shown, where the cases such that the
equality holds for some nonzero z were determined.

Remark. In [Duren2004], an injective harmonic function defined in a
domain €2 in C is said to be "simply” a harmonic mapping in <2.



In 1959, by using Lemma A, E. Heinz proved the following.

Lemma B (Heinz's inequality for harmonic mappings

([Heinz 1959])).

Assume that F' is a sense-preserving injective harmonic mapping of the
unit disk D onto itself and normalized by F'(0) = 0.

1
[OF (2)] > —
T

2
72’

|0, F (2)|% + |8y F(2)|* > 2eD .



Let f: T — C be a function of bounded variation. T hen we put

f(z) = ;l—];ew) ae. z=¢%eT,
f'(z) = lim fluw) = 1(2) a.e. z¢eT,
u—=z u—z
dy = eiseglclf\f(z>|,
ef = esssup|f(z)].
zeT

For he LI(T) and z €T

1 2 elt 4rz
A(h = _— |lim h(e't)Im = dt ,
()= 5 I Jo MM G
whenever the limit exists and A(h)(z) := 0 otherwise. It is known that

for a.e. z € T the limit exists and that

AR (2) ‘= — lim h(eity cot

T e—0T Je<|t—z|<m

dt |

a.e. z=emeT.



_|_ . .
Hom™ (T) := {f T-T homeomorphisms

sense-preserving }

Theorem C ([Pavlovic 2002]).
Let f € Hom™(T) and F = P(f). Then
(i) & (i) < (iii).
(i) F is a quasiconformal self-mapping of D,
(ii) F' is a bi-Lipschitz self-mapping of D,
(iii) f is absolutely continuous on T,
0 < df < ef < OO and A(f) e L°°(T).



Fxmtle

+>$

-t 4 A€ (0,7)

h:R—R, h(z+27) = h(z) + 27
f(ei:c) — eih(z)

P({.) s not gua:icoafomal.



The Schwarz lemma applies naturally to the theory of subordination.
First recall that for any holomorphic functions F and G on the unit
disk D, F' is subordinated to G on D — which is denoted by F < G —
provided F' = (G o w for some holomorphic function w : D — D such that
w(0) = 0. Such a function w is usually called a Schwarz function.

Lemma 1 ([PS2006, Lemma 1.1]).
Given a harmonic function v : D — R let F be a holomorphic function
on D such that

ReF(z)=u(z), z€D.
If F < G for some holomorphic function G on D, then
u(z) < max{ReG((¢) : |¢| =|z]} , =ze€D.

In particular, the above estimate holds provided G is an injective holo-
morphic function on D such that

F(0) = G(0) and F(D)c G(D) .



Example D ([PS2006, Example 1.3]).
Let FF: D — D be a harmonic function normalized by F(0) = 0. Then

F:=ReF +i(ReF)T is a holomorphic function on D satisfying
ReF(z) =ReF(2), z€eD.

and
F(D) c{weC:|Rew| <1} .

It is easy to show that the function G defined by the formula

21 1
G(z) ::—llog +Z, zeD,

s l—=2
maps conformally D onto the strip {w € C: |Rew| < 1}. Then by

FD)c{weC:|Rew| <1} .
- the condition

F(0)=G(0) and F(D)c GD) .



holds. Thus Lemma 1 implies that

ReF(z) < max{Re (2—ilog 1—+C> ¢ = |z|}
T

1-¢
2 2Im
= max ——arctan—c ¢ = |7
m 1—[¢|?
2 2|z 4
< —arctan—— = —arctan|z|, zeD.
iy 1—122 =

Since for each a € T the function aF' is also harmonic on D as well as
aF(D) Cc D and aF'(0) = 0, we deduce from the above inequalities that

4
(i) |IF(z)| < —arctan|z|, zeD.
T

Moreover, the above estimate is sharp. The equality in (i) holds if
F'=ReG and if a point z € D satisfies Rez = 0.



By applying Lemma 1 to a linear function G we obtain the following.

Lemma 2 ([PS2006, Lemma 1.4]).
Suppose that F' is a harmonic function on D which has a continuous

extension F* to the closure D. If F(D) c D and F(0) = 0, then
F(2)| < (A+Lp)ls|, z€D,

provided
F*(ei(t+9)) . F*(eie) it
elt —1

1 7
— Sup
T —n<f<mJ—m

Ly = dt < 400 .




Theorem 1 ([PS2006, Theorem 1.5]).

If K> 1, , F = P(f) is the Poisson integral of some sense-preserving
homeomorphism f of the unit circle which admits a K-quasiconformal
extension F of D satisfying F(0) = 0 and F(0) = 0, then

1/V2 P (x) — Py /(@)

xy\/ 1 — x?

where ®© ;- denotes the Hersch-Pfluger distortion function defined for any
K > 0 by the equalities

3
|F(z)| < 1—|——/ dx|l|z|, =ze€D,
™ JO

Sp(r) i =p N p@)/K), 0<r<1l; &p0):=0,dx(1):=1,

where p stands for the module of the Grotzsch extremal domain D\ [O; 7].

Note that
§/1/\/§ Py (z) — P/ (x) 322
7™ JO

da < (K2—5/<2K>—i2—5f</2) . 2€eD.

/1 — z2 7T K



Theorem 2 ([PS2006, Theorem 2.1]).

If K> 1 and F = P(f) is the Poisson integral of some sense-preserving
homeomorphism f of the unit circle which admits a K-quasiconformal
extension F of D satisfying £(0) = 0, then

[F(2)| < P[WKI(z)) , zeD,

where
/ 2
. zch(cosg) 1 ,O< |t <,
W(e'’) = i\ 2 1 2 -
Note that

PIWi](Jz]) =1z] , zeD.



Theorem 3 ([PS2006, Theorem 3.3]).

If K > 1, F = P(f) is the Poisson integral of some sense-preserving
homeomorphism f of the unit circle which admits a K-quasiconformal
extension £ of D satisfying £'(0) = 0 and F(0) = 0, then for every z € D,

[F(2)| < Ak (]z])

dt

8|2|(1 — |2]2) /vr/z (cost)Pq /k(sin(t/2))?
7r 0 (14 2]%)2 — 4|z|?(cost)?

812 (1 — |2[2) /w/z (cost) [(sin(t/2))? — Py (sin(t/2))?]
i 0 (1 4 |2]2)2 — 4|z|?(cost)?

Moreover, A1(|z|) = |z|] and the following equalities hold:

A 1-A
im limsup 2T — 1 im liminf k() _
K—1T r—ot r K—1t r—1- 1l —r

4
= —arctan|z| —
T

= [z] +

1.




Lemma B (Heinz’'s inequality for harmonic mappings

([Heinz 1959])).

Assume that F' is a sense-preserving injective harmonic mapping of the
unit disk D onto itself and normalized by F(0) = O.

1
[0F (2)| > —
7

00 F(2)[2 + |9, (2)2 > % . zeD.
Theorem C ([Pavlovic 2002}).
Let f € Hom™(T) and F = P(f). Then
(i) < (ii) < (iii).
(i) F is a quasiconformal self-mapping of D,
(ii) F' is a bi-Lipschitz self-mapping of D,
(iii) f is absolutely continuous on T,
0 < df < ef < 00 and A(f) e L°°(T).



Theorem 4 ([PS2002, Theorem 0.4]).
If f € Hom™T(T) and if F = P(f) satisfies F(0) = 0, then

1 1 1
: 2 2 3
;2£|8F(Z)| > _71'2 +de—|—z|||a>({df , Qdf}

and

: 2 2 2 1, 1 3
;215(|6xF(Z)| + [0y F'(2)] )Zﬁ_l_adf_l_amax{dfa 2dy}.



Recall that &, denotes the Hersch-Pfluger distortion function defined
for any K > 0 by the equalities

Sp(r) =p N p@r)/K), 0<r<l; &r0):=0,d(1):=1,

where p stands for the module of the Grotzsch extremal domain D\ [O; r].
For K > 1 let

L

. _:g/cbl/K(l/ﬁ)z dt
N e
Then



Lemma 3 ([PS2005, Lemma 1.4]).
. 2 1/\/§d¢1/K(8)2
7™ JO si/1 — s 2
2
4 1 1/vV2 1 — 242
__;¢UK<;§> _/° Za 2)3/2c|>1/1,<(3)ds.

Moreover, L}( is a strictly decreasing function of K > 1 such that

im L% =Li=1 and im LT =0
K—1 K . K——+oc K
as well as
|L?(2_L?(1|§L|K2_K1| 3 K17K221 ’
where

—*1+65I2) .
7T



Theorem 5 ([PS2005, Theorem 2.1]). Given K > 1 let F be a K-
quasiconformal and harmonic self-mapping of D satisfying F(0) = 0. If
f is the boundary limiting valued function of F', then

1 2
de > —max{—, L3 } :
;= K 70y L&
Moreover, the right hand side in the above inequality is a decreasing and
continuous function of K > 1 with values in (0; 1].



Theorem 6 ([PS2005, Theorem 2.2]).
Given K > 1 let F' be a K-quasiconformal and harmonic self-mapping of
D satisfying F/(0) = 0. Then the inequalities

K+1 2
OF > max{—,L*}
0F (2)| > T —» Lk
and

02 F (2)]° + |0y F (2) ]2 > % (1 + %)2 max {iz L%Q}

T
hold for every z € [D. Moreover, the right hand sides in the above

inequalities are decreasing and continuous functions of K > 1 with values
in (1/m; 1] and (2/72; 2], respectively.



Theorem 7 ([PS2007, Theorem 1.2]).
If f € Hom™T(T) is absolutely continuous on T, then for a.e. z € T, the
following limits exist and

2 Crlf1(2) = 2f(2) (VIfI(z) +iVf1(2))
fu) 1 [ fu)

Crlfl(z) = PVg ru—z0 T I o i) u— 2
o1 £ (u) = F()I?
VI = lim o f e ldul
) 1 Im[f(u)f(2)]
V*[f1(z) = €|_I>FQ+W[E\T(Z,€) u— 22 [ dul .



Lemma 4 ([PS2007, Lemma 1.3]).
For every K > 1 the following inequalities hold:

1< Mg = i/l/ﬁ ((DK(T))HUK A7 < g2251-1/K)/2
< A <

T T 1_,,42
and
Lo AV (VTR dy | g25G-KF/CK)
B K._;/O ( r ) 12  KP+K-1 |

In particular, Ly — 1 and Mg — 1 as K — 1T,



Theorem 8 ([PS2007, Lemma 1.4]).
G:D—D K-qc, f=dG|r, G(0O)=0

= L(f~ N YE < V[f(z) < Mg (FT )11 E

where

fr(z) =

f(z) =

sup
ueT\{z}

inf
ueT\{z}

fu) — f(2)

u—z

fu) — f(2)

u—z

€ [0, 4o0] ,

e [0,4+00) .

zeT.



Lemma 5 ([PS2007, Lemma 1.5]).
Suppose that f € Homt(T) is absolutely continuous on T.

= sup fT(z) = ef :=esssup |f'(2)]
zeT zeT

g =

Lemma 6 ([PS2007, Corollary 1.6]).
G:D—D K-qc, f =G|, G(O) =0, f is absolutely continuous on T

= Lgd; T < V[f1(2) = 2Re [27(2) Crlf1(2)] < Mye; V/F

for a.e. z € T.



Derivatives of quasiconformal harmonic mappings and Hardy
spaces

Lemma 7 ([PS2007, Lemma 2.1).
F:D—Q(cC) K-qc, harmonic, I := 902 a rectifiable Jordan curve

K 1
— sup I0F (2)]|d z| < i I [1
O<r<1 /T,
_ K —1
sup 0F (2)||dz| < LIF!
O<r<1 /T,

where T, := {z € C : |z| = r}, |1 the length of I'. In particular, OF,
OF € H1(D).

Corollary 1 ([PS2007, Corollary 2.2).
Under the hypotheses of Lemma 7
f = F|r is absolutely continuous.



Lemma 8 ([PS2007, Lemma 2.3). Under the hypotheses of Lemma
.

[fuw) = f) < Llu—v|, wveT,

for some L > 0 where f = F|g

K+1
+ L

= sup |0F (z)| <
zeD

K-1
L .

sup |0F (z)] <
z€D

In particular, 8F, F € H®°(D).



The bi-Lipschitz property for quasiconformal harmonic
self-mappings of the unit disk

Theorem 9 ([PS2007, Theorem 3.1).
feHom™T(T),F=P(f) K-qc
= for a.e. z €T,

VIZIG) + IV — (K + D17 ()] < (K = DI G-

In particular, for a.e. z €T,

1 ., / - 1 N,
= @ = VIfl(z) = K|f(2)],  |VILflG2)] = S(K = 22)IF(2)] .



Theorem 10 ([PS2007, Theorem 3.2).

f e Homt(T),F =P(f) K-qc, F(0)=0

= for a.e. z € T,
~>5(1-K?)/2

<
(K2+ K — 1)K —
< |f'(2)] € (MpK)K < g3K5(K=1/K)/2

(Li/K)®



Theorem 11 ([PS2007, Theorem 3.3).
F:D—D K-qc, harmonic, F(0) =0
= for all z,w € D,

|F(2) — F(w)| < K(MgK)* |z —w)
< K3K—|—125(K—1/K)/2|Z
L .
K4K—|—1MII§
~>5(1-K?)(3+1/K)/2
= K3K+1(K2 + K — 1)3K|z -

—'w|,

[F(2) — F(w)| 2 w|

w| .



Theorem 12 ([PS2007, Theorem 3.3).
F:D—D K-gc, harmonic, F(0) =0
= for all z,w € D,

1 2
F(2) = Fw)] > - max{>, LicHz—w
7T



Set D(R) :=D(0,R) :={z€C: |z]| < R} for R > 0.
( D(a,R) :=={2z€C:|z—al| <R} foraecCand R>0.)
Assume that F' is a sense-preserving injective harmonic mapping of the
unit disk D :=1D(1) onto itself and normalized by F(0) = 0.
(Recall that in 1959,) E. Heinz proved that

1
0F(2)] = —
.

2

72’

0:F (2)]? + |9y F(2)|? > 2eD .

Theorem E ([Kalaj 2003]).

If F' is a sense-preserving injective harmonic mapping of D onto a convex
domain 2 satisfying 2 D D(R1) and F(0) = 0, then

1
0uF () + |0yF()|° > SR, 2€D.



Lemma 9 ([PS2009, Lemma 1.1]).
Given a harmonic function v : D — R and a, b € R satisfying a < b, assume

that «(0) = 0 and
a<u(z) <b, zebD.

Then
b — b
u(z) <2 ®arctan |Zl_l_“D'—l— +a, zeD,
1 + |p||#] 2
where
_ b+ a
p .= —Itan— :
4 b — a



By using Lemma 9, we showed the following Theorem 13 and T heorem
14.

Theorem 13 (Partyka-Sakan [PS2009,Theorem 2.2]).

If FF is a sense-preserving injective harmonic mapping of D onto a
bounded convex domain €2 including 0 and F(0) = 0, then for all
R1, R> > 0 satisfying D(R1) C 2 C D(R5) the following inequalities hold

R
A SR S |
2 2R1 + Ro

OF (w)| > ) , web,

as well as

2
Ry + R» r Ry
Oz F(w)|? + |0y F(w)|* > 2 tan ( — D .
O )R+ loyF ) 2 2 (F B an (7B ) e




Let f: T — C be a function of bounded variation. Then (recall that) we
put

f(z) = ;Z—‘Zew) ae. z2=¢eleT,
f(2) = lim f) =1 Lo Ler
U—z u—z
dy = eszséiqpflf(z)l,
ef = esssup|f(z)| .
zeT

A function f : T — C is called Dini-smooth if f is differentiable on T
and the derivative f is not vanishing, and Dini-continuous on T, i.e. its
modulus of continuity

w(8) == sup{|f(e') — f(&®)|:t,seR, [t—s| <8, b§el0;2n],

satisfies the following condition

27Tw(t)



Theorem 14 ([PS2009, Theorem 2.1]).

Given a Dini-smooth function f : T — C assume that F := P(f) is a
sense-preserving injective harmonic mapping of D onto a convex domain
Q2 including 0 such that F(0) = 0.Then the following inequalities

R
1 TRy, T Py
2Ry + Ro

1 ;
G )+ 3 minls'G)

as well as

2
2 2 Ry + Ra T Ry 1
10z F' ()< + |0y F(C)]= > 2 ( > tan <2R1 = R2> + > i | f (Z)l)

hold for every ¢ € D and all Ry, Ry > 0 satisfying D(0, R1) C 2 C D(0, R»).



In [PS2014b], Theorem 14 was generalized into the following Theorem
15. By using Theorem 13 above and Theorem F and Lemma G below

we obtained Theorem 15.

Theorem 15 ([PS2014b, Th.4.4]).

Given a function f : T — C of bounded variation assume that F := P(f)
IS @ sense-preserving injective harmonic mapping of D onto a bounded

convex domain <2, then

Ri1+ Ro T Ry 1 Ry 1
OF(O)| > tan | = “dy>—=+ =d D
| (C)|_ o an <2R1+R2>+2 f = 4 +2 f o CE ,

for all Rq, Ro > O satisfying
D(F(0), R1) C €2 C D(¥(0), R2) -



If f: T — C is a function of bounded variation, then we write

u

PANQ =5 [[Re“2d s . ceD

Uu

- it
A F)(2) = 2 tim [ Tim &t

Tr—1—J0 eit —TZz

df(e'),
whenever the limit exists and A(d f)(z) := 0 otherwise. Note that

PN =PWANEQ), ¢=re’eD

1 21 it , :
9PN +irorP(NQ =5 [T S earE@ . c=rdfeD.

Note that
AN =A)(E=), zeT,

provided f is an absolutely continuous function.



Theorem F ([PS2014b, Corollary 2.4]).
Given a function f : T — C of bounded variation assume that F := P(f)
is a locally injective mapping in D, J(F)(0) > 0 and

2 »
sup OF (re'”)|7Pd o < 400
O<r<1J0

for a certain p > 0, where
J(F)(2) :=|0F(2)|? = |0F(2)|?, zeD.
Then for every ¢ € D,

- 1/2
OF(Q)] > S essinf(| AW NI +17()I? +2ReGIG) AWM N()))

> %essinf( A(d ()% + |f (=) 2>1/2

z€T

1
> —essinf | f’ .
= 5 el | f'(2)]



Lemma G ([PS2014b, Lemma 4.3]).
Let f : T — C be a function of bounded variation and differentiable

at a pomt z € T such that P(f)(0) = 0 # J(P(f))(0), the Ilimit
lim,_._ 1- d P(f)(rz) exists and liminf_._ ;- J(P(f))(rz) > 0 . holds.
If there exists ¢ € T satisfying

Re(€P(f)(u)) <Re(f(z)), weD,

then

A@NEI = van (]

7min(a,b) < min(a, b)
2 a-+b - 2

and

Re(zf'(2) A(d £)(2)) > | f(2)|*

b mmin(a,b) mln(a b)
an (5 (l-l-b ) |f( >| )



Let us recall that a function f: T — C is said to be Hdblder-smooth if f
is differentiable on T and the derivative f is not vanishing and Hélder-
continuous on T, i.e., there exist L > 0 and « € (0; 1] such that

If(el) — f(e)| < LIt—s|®, tscR.



Theorem H.
Suppose that 2 is a Jordan domain in C and that there exists a Holder-
smooth and injective function h : T — C such that h(T) is the boundary

curve of a Q. Let F : D — Q be a sense-preserving injective (onto)
harmonic mapping.

(i) (Kalaj '08) If 2 is convex, then

F' is quasiconformal «<— F' is bi-Lipschitz
(ii) (Bozin and Mateljevi¢, to appear 7)

F' is quasiconformal <= F'is bi-Lipschitz



Theorem I ([Clunie and Sheil-Small 1984,Cor.5.8]).
If F = H+ G is a sense-preserving injective harmonic mapping of D onto
a convex domain, then

|G(22) — G(z1)| < |H(22) — H(z1)| , 21,20€ D, 21 # 22,
where H and G are holomorphic mappings in D satisfying G(0) = 0.



Theorem 16 ([Partyka-Sakan [PS2012, Th.3.8]).

Let F' be a sense-preserving injective harmonic mapping of D onto a
convex domain in C.Then the following five conditions are equivalent to
each other:

(i) Fis a quasiconformal mapping;

(ii)) 3 a constant Lq such that 1 < L7 <2 and
|[F(22) — F(21)| < L1|H(22) — H(21)| , 21,20€ D ;

(iii) 3 a constant [ such that 0 <[y <1 and
|G(22) — G(21)| < 1|H(22) — H(21)| , 21,220€ D

(iv) 3 a constant L, > 1 such that
|H(22) — H(21)| < La|F(22) — F(21)| , 21,22€D ;

(V) Ho F~1 and Fo H=1 are bi-Lipschtz mappings.
Moreover, (ii) = |pFlloc < L1 =1, (iii) = ||urlloo < 1,
(V) = [luplloo < 1 — 75, where

.__ O0F(2) _ G'(z
up(z) = 5EE = G2

z € D.




L

i(z+1)
11—z

H:D—{zeC|Imz>0}, H()=

@ — BN

the Schwarz-Christoffel mapping H(z), conformal, not Lipschitz

- conformal, not Lipschitz

F(z)=H(z)+tH(z), |[t| <1, quasiconformal, not Lipschitz



Theorem 17 ([Partyka-Sakan [PS2014a, Th.3.4]).

Let ' : D — C be a sense-preserving injective harmonic mapping such

that F(ID) is a bounded convex domain in C. Then the following condi-

tions are equivalent to each other:

(i) F'is a quasiconformal and Lipschitz mapping;

(ii) F'is a quasiconformal mapping and its boundary limiting valued func-
tion f is a Lipschitz mapping;

(iii) F' is a quasiconformal mapping and a holomorphic part H of F' is a
bi-Lipschitz mapping;

(iv) F is a bi-Lipschitz mapping;

(v) F has a continuous extension to the closure D and its boundary
limiting valued function f is absolutely continuous and satisfies the
following condition

0<ds, |flloo<+doo and [[A(f)]lec < +too.



Corollary 2 ([Partyka-Sakan [PS2014a, Cor.4.1}]).

Let f: T — C be a Dini-smooth and injective function. If f(T) is the
boundary curve of a convex domain € in C, then dy > 0, ||f|lcc < o0
and F := P|[f] is a bi-Lipschitz mapping of D onto 2 with

4 .
L(F) < \/ﬁD% + 11115

and

L(F-1) = L(F) - 2R1+ Ry) ~ 2L(F)
provided R1, R> > O satisfy

1 d dtR
> Y -R1+R2tan<ﬂ Ry >> R

D(F(0),R1) C 2 C D(F(0),R>) . (1)

In particular, if additionally J[F](0) > 0, then F is L(F)L(F~1)-
quasiconformal.
(D(a,R) :={2z€C:|z—a|< R} foraeC and R > 0.)



Corollary 3 ([Partyka-Sakan [PS2014a, Cor.4.3]).

Let h : T — C be a Holder-smooth and injective function such that

h(T) is the boundary curve of a convex domain 2 in C. Then for every

sense-preserving injective harmonic mapping F of D onto €2 the following

conditions are equivalent to each other:

(i) F is a quasiconformal mapping;

(ii) F' is a bi-Lipschitz mapping;

(iii) F has a continuous extension to the closure D and its boundary
limiting valued function f is absolutely continuous and satisfies the
condition

0<ds, |flloo<4oo and [[A(f)|lco<—+oo.
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Teichmuiller space

— Deformation space of Fuchsian groups (Riemann surfaces)

Teichmiller space of I’

T(T') = Bel(A,T')/ ~p

@ I': Fuchsian group acting on the unit disk A
@ Bel(A,I'): Beltrami coefficients

[1]loo = ess Sup [n(z)| <1 (Vi € Bel(A,I))
zE

=]

(Hov)=pn (Vyel)

2
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Teichmuiller space

Teichmiller space of I

T(T) = Bel(A,T)/ ~p

def v
o u~rp v <= fPloa = f|on
f*: the quasiconformal self-mapping on A with Beltrami coeff.
fixing 1,7, —1

[i]: Teichmiiller equivalence class represented by p € Bel(A,T')
0 := [0]: the base point of T'(T")

4 /30
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Teichmuiller space

Basic fact

Teichmiiller distance - - - difference between two conformal structures

drwy(pra) = g t{log K(Fo g™ )If €pg € a} (g € T(T))

_ I llelles

K= T

maximal dilatation of gq.c. f

fo € Tisextremal & K(fo) < K(f) (Vfer)

The metric space (T(T'), dpry) is complete and contractible.
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p-integrable Teichmiiller space

p-integrable Teichmiiller space (p > 1)

TP(T) ={r € T(I)|3p € 7 s.t. p € AelP(AT)}

o Acl?(A,T'): p-integrable Beltrami coefficients

1

I = ([[ oPotres)" < o

N: fundamental region of A for I', d?z = dady (2 = = + iy)
pa(z) = (1 —|z|*)~!: the Poinca r é metric on A

@ The space Ael’(A,T) is open with norm

tllp.c0 = Nl + llallco-
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p-integrable Teichmiiller space

If I" is cofinite (i.e. A/T is of analytically finite type),
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p-integrable Teichmiiller space

If I" is cofinite (i.e. A/T is of analytically finite type),

\LHence

This study is significant for coinfinite Fuchsian groups.
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Background

2000 G. Cui considered T?(1).

o Introduction of a complex structure on T2(1)
o Completeness of Weil-Petersson metric on T%(1)

2000 L. A. Takhtajan, L.-P. Teo also considered T2(1).

o Kihlerity of Weil-Petersson metric on T2(1)
o Curvatures of Weil-Petersson metric on 72(1)

2013 S. Tang extended the arguments of Cui to p > 2.
Purpose of this study
We extend their arguments to non-trivial Fuchsian groups.

M. Yanagishita (Waseda Univ.)
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Main results

Let p > 2.
(1) For every Fuchsian group I', TP(I") has a complex structure
modeled on a Banach space.

(2) For every Fuchsian group I" with Lehner's condition, the
Teichmiiller distance on TP(I") coincides with the Kobayashi
distance.
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e B(A*,T): bounded holomorphic quadratic differentials
lelloc = sup o(2)lpas(x)7* < oo (Ve € B(A™T))

pa-(z) = (|z]> = 1)7! : the Poincaré metric on A*

(poy?=¢ (Vyel)
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e B(A*,T): bounded holomorphic quadratic differentials

[ellso = sup lio(2)lpar(2) 7 <00 (Ve € B(A™,T))
ZEA*
pa-(z) = (|z]> = 1)7! : the Poincaré metric on A*
(por?=¢ (¥yel)

o AP(A*,T'): p-integrable holomorphic quadratic differentials

||so|rp—(// Poac(s )2—2pd2z>’1’<oo (Vi € AP(A",T))

N*: fundamental region of A* for I
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e B(A*,T): bounded holomorphic quadratic differentials

[ellso = sup lio(2)lpar(2) 7 <00 (Ve € B(A™,T))
ZEA*
pa-(z) = (|z]> = 1)7! : the Poincaré metric on A*
(por?=¢ (¥yel)

o AP(A*,T'): p-integrable holomorphic quadratic differentials

||so|rp—(// Poac(s )2—2pd2z>’1’<oo (Vi € AP(A",T))

N*: fundamental region of A* for I
o AY(A*T) = B(A*,T') N AP(A*,T"): Banach sp. with norm

[ellp.co = llellp + llelloo
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0 p-integrable Teichmiller space
@ Introduction of complex structure

© Teichmiiller distance and Kobayashi distance
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Background

For every Fuchsian group I', T'(I") has a complex structure modeled on
B(A*,T).

This follows from the following proposition.

Proposition (Bers 1965)

The Bers embedding 8 is a homeomorphism of (T'(T'), dp(ry) into

Indeed, {(T'(T"), )} is an atlas of T'(T").
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Background

Bers embedding

B:T(T) > [u] = Sy, . € B(A%T)

o fu: self-q.c. of C with i, lim, o0 (f(2) — 2) =0

() = {u(z) (2 €4)
0 (z € A¥).

o Sy =(f"/f") —1/2(f"/f")? Schwarzian derivative of hol. func. f
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— To introduce a complex structure on 7%(I")
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— To introduce a complex structure on 7%(I")

What we have to show?

The Bers embedding 3 is a homeomorphism of (T?(I'), £} ) into
(A5 (A%, T), 1| llp,co)-

@ /), o quotient topology induced by Ael”(A,TI)

— Then {(T?(T"), B)} is an atlas for T7(I").
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How to achieve our purpose?

The estimation of hyperbolic LP-norm (Cui, Tang)
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How to achieve our purpose?

The estimation of hyperbolic LP-norm (Cui, Tang)

+
cod?y = 2,

W [f EF//@ d

(2) (V(W;EZ_V;((ZUU))V = G —1w)2 (v : Mobius transformation)
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Outline of the proof

Step 1. Continuity of 8

Proposition (Cui 2000, Y. 2014)

o (TP(T),Lpoo) D T+ k() € (AelP(A,T), || - [|oo) is continuous.

e E(7): Douady-Earle extension for 7

Proposition (Cui 2000, Tang 2013, Y. 2014)

For every 7, € TP(T"), there exists a constant C'(7,n) > 0 such that

o(r) —a(n)

18(r) = Bl < C(r,m) 1—o(r)o(n)
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Outline of the proof

Step 2. Continuity of 371

For every ¢ € B(T'(I")), there exists a continuous section
s : Uy — Bel(A,T'), where U, C B(A*,T") is a neighborhood at ¢.

— As the case of ¢ € (TP(T")), we can show the continuity of
sp 2 Ul — Ael’(A,T) (U], C AJ(A*,T): a nbd. at ).
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Conclusion 1

Theorem (Cui 2000, Takhtajan-Teo 2000, Tang 2013, Y. 2014)

Let p > 2. For every Fuchsian group I', TP(I") has a complex structure
modeled on AP(A*,T).

By the continuous of o, we have

Proposition (Douady-Earle 1986, Y. 2014)

Let p > 2. For every Fuchsian group I', (T?(T"), ¢, «) is contractible.
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0 p-integrable Teichmiller space
@ Introduction of complex structure

© Teichmiiller distance and Kobayashi distance
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Teichmiiller distance and Kobayashi distance

Kobayashi distance: the distance defined on complex manifolds

Contractivity of Kobayashi distance
M, N: complex manifolds, dg ar,dg n: Kobayashi distances,
F : M — N holomorphic

dr,n(F(p),F(q)) < dxm(p,q) (Vp,q€ M)

February 16th, 2015
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Background

Theorem (Royden 1971, Gardiner 1984)

For every Fuchsian group T', the Teichmiiller distance drr) on T'(T')
coincides with the Kobayashi distance dg (r).
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Background

Theorem (Royden 1971, Gardiner 1984)

For every Fuchsian group T', the Teichmiiller distance drr) on T'(T')
coincides with the Kobayashi distance dg (r).

Theorem (Earle-Gardiner-Lakic 2004, Hu-Jiang-Wang 2011)

For every Fuchsian group T', the Teichmiiller distance on Ty(T") coincides
with the Kobayashi distance.

A g.c. f on the Riemann surface R = A/I" is asymptotically conformal if
Ve > 0, dE C 'R: compact s.t.

To(T') = {7 € T(I")|3f € 7 : asymptotically conformal}

M. Yanagishita (Waseda Univ.) Complex analytic structure on TP (T") February 16th, 2015 21 /30



—— The coincidence of the Teichmuller distance and
Kobayashi distance on T?(I")
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—— The coincidence of the Teichmuller distance and
Kobayashi distance on T?(I")

drrry = drr)l o), dxrr): Kobayashi distance on T7(I')

What point is difficult to show?

dre(r) 2 dicr(r)

Since ¢ : TP(I") — T'(T") is holomorphic,
dre(ry(T:1) = d(ry(L(7), t(n)) < dgerry(T,1)

for Vr,n € TP(I).
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How to overcome the difficulty?

The argument in the proof by Hu-Jiang-Wang
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How to overcome the difficulty?

The argument in the proof by Hu-Jiang-Wang

|—|—

Existence of an exhaustion

There exists a sequence {E,,} of relatively compact domains for every
non-compact Riemann surface:

(1) EnCEni; (2) |JE=7R;
n=1

(3) OE, = |_|{ana|ytic Jordan curves of R};

(4) Each connected component of R \ E,, is non-compact.
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More precisely . ..

— We modify an extremal quasiconformal mapping by
using an exhaustion.
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More precisely . ..

— We modify an extremal quasiconformal mapping by
using an exhaustion.

Key theorem (Strebel's frame mapping theorem)

For every frame mapping f, there exists the unique extremal
quasiconformal mapping fy € [f] such that

Po
tfo = lleglloo—-
fo fo OO|§00|

Here, g is a holomorphic quadratic differential with [ [ [o| = 1.

A g.c. fis a frame mapping if dE C R s.t.

K(flr\g) < K(fo) (fo: extremal for [f]).
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A geometric condition for Riemann surfaces

Lehner's condition
I': Fuchsian group, R = A/I'

inf{lengths of simple closed geodesics on R} > 0

Proposition A

I': Fuchsian group with Lehner's condition
Then for every 7 € TP(I"), the projection of the Douady-Earle extension
E(7) to R is asymptotically conformal.
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Outline of the proof dr»ry > dgr(r)

It is sufficient to show
dgr(r)(0,7) < dper)(0,7) (V7 € TP(D)).
f: proj. of E(1) to R =A/T", {E,}: exhaustion of R

fu(2) =

f(2) (z € R\ Ep).

fn: extremal mapping for [f|z,] € T(E,)

M. Yanagishita (Waseda Univ.)
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Outline of the proof dr»ry > dgr(r)

Since

is holomorphic, we have

Lo 1+l llos
dicr(r)(0,7) = dier(r) (9n(0), gn (17, 1l00)) < 5 log W
Let )
K, = 1+ llaglloe
1=l lloo
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Outline of the proof dr»ry > dgr(r)

Since f is a frame mapping for 7 (Proposition A), 31 fp € T s.t.

||uf0\|oo / 00| = 1).

Because f|g, is a frame mapping for [f|g,] € T(En),

Hufnuoo,% // ol = 1).
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Outline of the proof dr»ry > dgr(r)

By taking a subsequence,

Inzllo = 3%, =3¢ (f[ 112D,
From the uniqueness for extremal q.c.,

E* =gl ©" = wo.

1 1
5 log Kn = 5 log K(fo) = drw(r) (0, 7).
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Conclusion 2

Theorem (Y. 2014)

For p > 2 and a Fuchsian group with Lehner’s condition I', the
Teichmiiller distance on T?(I") coincides with the Kobayashi distance.

Noting the red colored points, we have

Corollary (Earle-Gardiner-Lakic 2004, Hu-Jiang-Wang 2011, Y. 2014)

For every Fuchsian group T', the Teichmiiller distance on Ty(T") coincides
with the Kobayashi distance.
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What is so special about the following integer quadruples?

(1,5,24,30), (1,6,14,21), (1,8,9,18), (1,9,10,10),
(23,10,15),  (2558), (3.3.6,6), (4.4,44)
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Flipping numbers and curves

Yi Huang

The University of Melbourne
(soon to be Tsinghua University)

February 16th, 2015
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Markoff triples

Markoff triples

A Markoff triple is a triple of numbers (x, y, z) satisfying:

x2 +y2 + 22 = Xyz.
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Markoff triples

Markoff triples

A Markoff triple is a triple of numbers (x, y, z) satisfying:

x2 +y2 + 22 = Xyz.

Any (x,y,z) € R3 arises as ( —+, 2 cosh Z”)
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Markoff triples

Markoff triples

A Markoff triple is a triple of numbers (x, y, z) satisfying:
x2 +y2 + 22 = Xyz.

—+, 2 cosh b ),

Any (x,y,z) € R3 arises as (2cos

or as A-lengths of an ideal triangulation (04, ,08,,0+,).
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Markoff triples

Representations

Given a 1-cusped torus S11, m1(S11) = (&, n | —).

Any non-zero Markoff triple (x, y, z) arises as the traces of the
following representation p : m1(S51,1) — SL(2, C):

R A O R i

z| xz y z| —yz X
-1

p(&n) = E 5 ]
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Markoff triples

Representations

Given a 1-cusped torus S11, m1(S11) = (&, n | —).

Any non-zero Markoff triple (x, y, z) arises as the traces of the
following representation p : m1(S51,1) — SL(2, C):

R A O R i

z| xz y z | —yz X
z —z_1
p(én) = [Z 0 ]

= Markoff triples arise as the characters of (type-preserving)
representations.

Yi Huang Flipping numbers and curves



Markoff triples

Character varieties

» The traces of p(£), p(n) and p(&n) of any
p :m1(51,1) — SL(2, C) satisfy the Markoff triples relation.
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Markoff triples

Character varieties

» The traces of p(£), p(n) and p(&n) of any
p :m1(51,1) — SL(2, C) satisfy the Markoff triples relation.

» The set of Markoff triples is the character variety for Sy ;.
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Markoff triples

Character varieties

» The traces of p(£), p(n) and p(&n) of any
p :m1(51,1) — SL(2, C) satisfy the Markoff triples relation.

» The set of Markoff triples is the character variety for Sy ;.

» Any maximal dimensional component of the real character
subvariety is the Teichmiiller space 7(51.1), e.g.:

T(S11) = {(x,y,z) e R" | 2 +y? 422 = xyz}

Yi Huang Flipping numbers and curves



Markoff triples

Flippin' out!

We can generate new Markoff triples using flips:

(X,y,Z) = (X7}/7X}/_Z)-
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Markoff triples

Flippin' out!

We can generate new Markoff triples using flips:

(X,y,Z) = (X7}/7X}/_Z)-

» There's a corresponding flipping of geodesics.
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Markoff triples

Flippin' out!

We can generate new Markoff triples using flips:

(X,y,Z) = (X7}/7X}/_Z)-

» There's a corresponding flipping of geodesics.
> A triple of such geodesics can be flipped to any other triple.
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Markoff triples

Flippin' out!

We can generate new Markoff triples using flips:

(X,y,Z) = (X7}/7X}/_Z)-

» There's a corresponding flipping of geodesics.
> A triple of such geodesics can be flipped to any other triple.

> Flips can be thought of as extended mapping classes —
(potentially non-orientable) homeomorphisms of Sy 1 up to
isotopy.
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Markoff triples

Flippin' out!

We can generate new Markoff triples using flips:

(X,y,Z) = (X7}/7X}/_Z)-

v

There's a corresponding flipping of geodesics.

v

A triple of such geodesics can be flipped to any other triple.

v

Flips can be thought of as extended mapping classes —
(potentially non-orientable) homeomorphisms of Sy 1 up to
isotopy.

v

Flips and coordinate permutations generate the entire
extended mapping class group of 5 1.

Yi Huang Flipping numbers and curves



Classical results

Systolic geometry

Flips give us a simple geodesic length generating algorithm for any
1-cusped hyperbolic torus.

» Algorithm for working out the shortest geodesic (systole).
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Classical results

Systolic geometry

Flips give us a simple geodesic length generating algorithm for any
1-cusped hyperbolic torus.

» Algorithm for working out the shortest geodesic (systole).

» The maximum of the systole function over Teichmiiller space
(and moduli space) is the “(3,3,3)" 1-cusped torus.
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Classical results

Systolic geometry

Flips give us a simple geodesic length generating algorithm for any
1-cusped hyperbolic torus.

» Algorithm for working out the shortest geodesic (systole).

» The maximum of the systole function over Teichmiiller space
(and moduli space) is the “(3,3,3)" 1-cusped torus.

» The shortest geodesic for any 1-cusped hyperbolic torus is at
most 2arccosh(3).

Yi Huang Flipping numbers and curves



Classical results

Geodesic growth rates

Let (x,y,z) and (x' = yz — x, y, z) be flips of each other where
x < x'. Generically, yz > x, thus:

log(x") ~ log(y) + log(z).

= Fibonacci growth.
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Classical results

Geodesic growth rates

Let (x,y,z) and (x' = yz — x, y, z) be flips of each other where
x < x'. Generically, yz > x, thus:

log(x") ~ log(y) + log(z).
= Fibonacci growth.

The length of a simple closed geodesics is roughly 2 log(-) of its
corresponding trace. Consider:

Ns(L) := { simple closed geodesics on S shorter than L},

Fibonacci growth = Ns(L) is asymptotically o - L.

Yi Huang Flipping numbers and curves



Classical results

McShane identity

Rewriting the Markoff triples equation and the flipping relation:

/ /
yz = xz Xy vz yz Yz Xz Xy
= Break up the (rewritten) Markoff triples equation into finer and

finer summands.
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Classical results

McShane identity

Rewriting the Markoff triples equation and the flipping relation:

/ /
yz = xz Xy yz yz yz Xz Xy
= Break up the (rewritten) Markoff triples equation into finer and

finer summands.

1

In the limit, we obtain McShane identities:

2
D S
~v€Simm(S) 1+ep B’y

where Sim;(S) is the set of simple closed geodesics on S.

Yi Huang Flipping numbers and curves



Classical results

McShane identity

Rewriting the Markoff triples equation and the flipping relation:

/ /
yz = xz Xy yz yz yz Xz Xy
= Break up the (rewritten) Markoff triples equation into finer and

finer summands.

1

In the limit, we obtain McShane identities:
2
=Y i
~v€Simm(S) 1+ep B’y

where Sim;(S) is the set of simple closed geodesics on S.

Each term is the chance a geodesic shot out from the cusp on S
won't hit v before self-intersecting.

Yi Huang Flipping numbers and curves



Markoff quads

Markoff quads

A Markoff quad is a 4-tuple of numbers (a, b, c, d) satisfying:
(a+ b+ c+d)? = abcd.
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Markoff quads

Markoff quads

A Markoff quad is a 4-tuple of numbers (a, b, c, d) satisfying:
(a+ b+ c+d)? = abcd.

Any (a, b, c,d) € R% arises as 2sinh(3-) of geodesic lengths:
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Markoff quads

Markoff quads

A Markoff quad is a 4-tuple of numbers (a, b, c, d) satisfying:
(a+ b+ c+d)? = abcd.

Any (a, b, c,d) € R% arises as 2sinh(3-) of geodesic lengths:

{Markoffquads} = character variety for 3-cusped projective planes.
Maximal dimension components of real character subvariety <>
Teichmiiller space.

Yi Huang Flipping numbers and curves



Markoff quads

Representations

Given a 3-cusped projective plane S, m1(S) = (o, 8,7 | —).

Any non-zero Markoff quad (a, b, ¢, d) arises as the traces of the
following representation p : m1(S) — SL*(2, C):

p:F3={a,B,v) = SL*(2,C)

N 1 [ ab b(a+ ¢) ]
at+b+c+d|a(at+d) ala+c+d)|’
Bes 1 [ ab —b(b+d)}
at+b+c+d|—-alb+c) b(b+cH+d)]’
1 fab+c(a+b+c+d) bla+ <)
7'_>a+b+c—|—d_ —a(b+¢) —ab }
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Markoff quads

> We can generate new Markoff quads using flips:

(a, b,c,d) — (a,b,c,abc —2a—2b—2c — d).
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Markoff quads

> We can generate new Markoff quads using flips:
(a, b,c,d) — (a,b,c,abc —2a—2b—2c — d).

» There's a corresponding flipping of geodesics.
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Markoff quads

> We can generate new Markoff quads using flips:
(a, b,c,d) — (a,b,c,abc —2a—2b—2c — d).

» There's a corresponding flipping of geodesics.

» A quad of such geodesics can be flipped to any other quad =
geodesic length generating algorithm.
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Markoff quads

> We can generate new Markoff quads using flips:
(a, b,c,d) — (a,b,c,abc —2a—2b—2c — d).

» There's a corresponding flipping of geodesics.

» A quad of such geodesics can be flipped to any other quad =
geodesic length generating algorithm.

» Flips can be thought of as extended mapping classes, and
flips+-even permutations generate the (extended) mapping
class group.

Yi Huang Flipping numbers and curves



Our results

Systolic geometry

Theorem
The maximum of the systole function over the moduli space of

3-cusped projective plane is 2arcsinh(2), and uniquely attained by
the (4,4,4,4) surface.

Yi Huang Flipping numbers and curves



Our results

Geodesic growth rates

Let (a,b,c,d) and (4, b, ¢, d) be flips of each other where a < 4/,
generically:

log(a’) ~ log(b) + log(c) + log(d).

= Fibonacci growth.
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Our results

Geodesic growth rates

Let (a,b,c,d) and (4, b, ¢, d) be flips of each other where a < 4/,
generically:

log(a’) ~ log(b) + log(c) + log(d).
= Fibonacci growth.
Consider

Ns(L) := { 1-sided simple closed geodesics on S shorter than L},

Fibonacci growth = Ns(L) is between O(L%430) and O(L%#77).

Yi Huang Flipping numbers and curves



Our results

McShane identity

We similarly obtain the following sum refinement:

at+b+c+d a+bt+c+d a+b+c+d a+b+c+d
+ + +

1= bed acd abd abc
aMl_a+b+c+d+d+b+c+d
N bcd bcd '
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Our results

McShane identity

We similarly obtain the following sum refinement:

at+b+c+d a+bt+c+d a+b+c+d a+b+c+d
+ + +

1= bed acd abd abc
aMl_a+b+c+d+d+b+c+d
N bcd bcd '
Theorem

Given any 3-cusped projective plane S,

2
S D
y€Sim}(S) 1+exp 67

where Simm}(S) is the set of 2-sided simple closed geodesics on S.
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Our results

Future research - Geometry

» Are BQ-conditions trace-based characterisations of
quasi-Fuchsian representations?

> Are there geometric interpretations for more general
Markoff-Hurwitz numbers (to do with Hengnan Hu's thesis
work with Ser Peow Tan)?

» Mapping class group equivariant map from the Teichmiiller
space of 3-bordered projective planes to the Teichmiiller space
of 3-cusped projective planes.

Yi Huang Flipping numbers and curves



Our results

Future research - Number theory

Integer Markoff triples flip to integer Markoff triples, and integer
Markoff triples are central in number theory:

> rational approximation;
» Markoff's theorem for indefinite binary quadratic forms;
> the unicity conjecture.

Do they have Markoff quad equivalents?

Yi Huang Flipping numbers and curves



Our results

(And just before we finish...)

What is so special about the following integer quadruples?

(1,5,24,30), (1,6,14,21), (1,8,9,18), (1,9,10,10),
(23,10,15), (2.558), (33.6,6), (4.444)
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Our results

(And just before we finish...)

What is so special about the following integer quadruples?

(1,5,24,30), (1,6,14,21), (1,8,9,18), (1,9,10,10),
(23,10,15), (2.558), (33.6,6), (4.444)

Answer: every (no-where zero) integral solution to the Markoff
quad equation can be obtained from a sequence of flips and
coordinate swaps of these eight Markoff quads.

Yi Huang Flipping numbers and curves



Diophantine approximation via Gaussian integers

Ryuji ABE

2015.2.16

(joint work with I. R. Aitchison)



Plan

1. Introduction
Lagrange spectrum, Markoff spectrum

2. Geometric problem
hyperbolic upper half-space, geodesic, horosphere, action of SL(2, Z[])

3. Ford’s method
4. Two-color Markoff graph

5. Outline of proof



1. Introduction

Definition :

e For an irrational number &, we define

k(€) = sup {k ‘fs - §

1
<2 has infinitely many co-prime integer solutions (p, q) € ZQ}
q

o L:={k(§)| &€ R—Q}: the Lagrange spectrum for the rational number field Q
e HC :=inf L : the Hurwitz constant
Well-known facts :

e HC = /5 (the first proof by Hurwitz in 1891 using continued fractions, a geometric
proof by Ford in 1917)

e The discrete part of £ coincides with the discrete part of the Markoff spectrum for
Q.

Theorem 1 (Markoff). For any irrational number &, k(€) > /5, the sign of equality being
necessary if € is equivalent under SL(2,7) to & = (1++/5)/2. If € is not equivalent to &;
then k(&) > /8, the sign of equality being necessary if € is equivalent to &5 = 14+ /2. If
€ is not equivalent to &, & then k(€) > /221/5. And so on indefinitely, there exists the

sequence of numbers
4
9 — 72 k=1,2,513,29,--

Two points £, 7 are said to be equivalent under SL(2,Z) if there exists M € SL(2,Z) with
M(&) = n.

converges to 3.

e A geometric proof of Theorem 1 is given by Nicolls in 1978.



Definition :

e For an irrational complex number! ¢, we define

ke (€) = sup {k: £ g

<

1
pE has infinitely many co-prime integer solutions (p,q) € Z[z’]Q}
q

o L1 :={ki(§)| £ € C—-Q(i)} : the Lagrange spectrum for the imaginary quadratic
number field Q(7)

e H(Cy :=inf L; : the Hurwitz constant for Q(7)
Well-known facts :
e HC; = /3 (a geometric proof by Ford in 1925)

e The discrete part of £1 coincides with the discrete part of the Markoff spectrum for
Q).
Theorem 2. For any irrational complexr number & € C — Q(3), k1(&) > /3, the sign of
equality being necessary if € is equivalent under SL(2,Z[i]) to & = (1+£+/3i)/2. If € is not
equivalent to & then k1(§) > v/99/5, the sign of equality being necessary if £ is equivalent

to&s =1/24+i(1£+/99/5)/2. If £ is not equivalent to &1, &5 then ki(€) > v/3363/29. And
so on indefinitely, there exists the sequence of numbers

1
4— 5. A=1,5,29,65160 -

converges to 2 11,

Two points &, 1 are said to be equivalent under SL(2,Z[i]) if there exists M € SL(2, Z][i])
with M (&) = n.

Aim : Give a geometric proof of Theorem 2.

tHere an irrational complex number is a number not expressible as a rational complex fraction whose
numerator and denominator are complex integers.
HThis is another description of Theorem 3 analogous to Theorem 1. In this talk, we do not consider the

second smallest value 1/3+/41/5 in Theorem 3, so it is not complete in this point.
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Definition :

e For a binary infinite quadratic form f(z,y) = ax? + bry + cy? with complex coeffi-
cients and with discriminant D(f) = b — 4ac, we define

— inf Lyl
m(f)=nf )

o M; = {\/]D(f)]/ml(f) ‘ D(f) # ()} : the Markoff spectrum for Q(7)

T1+ T2 = 2192

we define
20129 = y% + y%

For Vulakh’s equation {

e N(A)=1{1,5,29,65,169,--} : the set of integer solutions as x1, x2,

e N(M)=1{1,3,11,17,41,---} : the set of integer solutions as y1, yo.

Note that Vulakh’s equation is equivalent to 222 + y? + y3 = 4zy1yo.

Theorem 3. The discrete part of the Markoff spectrum for Q(i) is described as

{ 1 AGN(A)}U{ gm}

e This is first proved by Vulakh in 1971. Schmidt gave another proof depending on
continued fractional expansion in 1975.

Theorem 4 (A.-A. 2013). For each A\ € N(A) we can get an element Ay of the Picard
group SL(2, Z[i]) such that the Euclidean height of its azis is equal to 51/4 — 1/X2 and the
axis of Ay projects to a simple closed geodesic on a twice punctured torus immersed in the
Borromean rings complement.

e The matrix Ay is defined by using the two-color Markoff graph which will be shown
later and plays a crucial role in a proof of Theorem 2.



2. Geometric problem

H3 = {z+jt| z =2+ iy € C,t > 0} : the upper half-space endowed with the hyperbolic
dz? + dy? + dt?
$2

metric ds® =

e A geodesic is a semicircle or a ray perpendicular to the complex plane C.

e A horosphere is a sphere in H? tangent to C or a plane in H? parallel to C.

The action of a matrix N = < 5 Z ) € SL(2,C) on C and in H?:

N(z):pz—l—r for z € C,
qz + s
N(z+tj) = (pz 4 r){gz + 5) + pat” + 1) for z+ it € H.

gz + s[> + [g[*t?



Proposition 1. The image of a horosphere t = h by N = < Z

Z ) is a horosphere
tangent to C at p/q of radius 1/(2|q|*h).

The height of a plane parallel to C and a radius of a horosphere is measured by the
Fuclidean metric.

H(oo; h)

|
|

Y

Notation :
e H(oo;h) : a horosphere parallel to C of height h

e H(p,q;h) : a horosphere tangent to C at p/q of radius 1/(2|q|?h); the image of
H(oo; h) by N

Basic fact
Let C be a semicircle perpendicular to the complex plane. If C properly intersects some
horosphere H(p, q; h) then C has an image of larger radius than h.



If € is an irrational complex number then ¢ is a point of approximation for SL(2, Z[i]):
there exists a sequence {V,,} of distinct transforms of SL(2,Z[i]) such that V,(c0) — «
and V,,(§) — B with a # S.

Lemma 1.

k(€)= sup Ja—f],
(.B)EE(E)

where E(§) = {(a, B) | Vi (00) = o, Vi (&) — B for a sequence of distinct transforms}.
Recall

1
k1(€) := sup {k ‘g — p’ < P has infinitely many co-prime integer solutions (p, q) € Z[i]Q}
q q

The first assertion of Theorem 2, HC; = /3, can be described in the following way:

Lemma 2. If C is a semicircle perpendicular to the complex plane then V(C) has radius
at least \/3/2 for some V € SL(2, Z[i]).

We will give a geometric proof of this lemma following Ford’s method.



3. Ford’s method

A fundamental region of the Picard group SL(2, Z[i]):

1 1
{z+jt:x+iy+jt€H3 PPt >1, |z < 2’ 0<y< 2}.
Since the Euclidean height of the lowest point of this region is v/2/2, we only to show that
when the radius r of a semicircle C perpendicular to C satisfies

V2 _ V3
Vi _ V2
2 2

C properly intersects some images of H (0o; %5%).

In the images of H (oc; @) by the action of SL(2, Z[i]),

e the radius of the horospheres tangent to C at the Gaussian integer points {m +

in‘m,nEZ} is %,

e the radius of the horospheres tangent to C at {% +m+in ‘ m,n € Z} is ﬁ = %.



*7

N
She-
N———

The left is the projection of horospheres tangent to C at m+ni (m,n = —1,0,1)
of radius 2/+/3. The right is the vertical slice of them by the plane z = 0.
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The left is the horizontal slice of horospheres tangent to C at m + ni (m,n =
—1,0,1) of radius 2/v/3 by the plane ¢t = v/3/2 or t = 1/3/6. The right is the
vertical slice of them by the plane z = 1/2.

We find that a geodesic on the plane x = 1/2, which is the axis of the matrix

0 (2—i 2
A _< -2 241 )’

is tangent to H (oo; @) and its images H(m + ni, 1; @), (m=0,1;n=-1,0,1).

11



The left is the horizontal slice by the plane t = /3 /4 of horospheres tangent
at m +ni (m,n = —1,0,1) of radius 2/v/3 and at m + ni (m,n = —1/2,1/2)
of radius v/3/6. The right is the vertical slice by the plane z = 1/2.

The plane t = /3 /4, except for a set of points, is covered by the disks determined by the
intersection with the horospheres tangent to the complex plane at {m +in | m,n € Z}
and {% +m +in ‘ m,n € Z}. The exceptional points are on the lines which are the
intersection of ¢ = v/3/4 with the planes x = 1/2+m, m € Z and y = (1/2 +n)i, n € Z.
Geodesics through exceptional points, except for ones such as the axis of Afl, properly

intersects some images of H (oo; @) The action of Afl maps the tangent point P to P,
so there are infinitely many horospheres tangent to the axis. This is the case of the largest

radius of a geodesic which does not properly intersect the images of H (oo; @) Lemma 2

is thus proved.

12



4. Two-color Markoff graph

Two-color Markoff graph of numbers: a graph obtained from a noncommutative infinite
checkerboard whose faces are labeled by the following rule

Uy

1 . Y1 . X

Y2 : 1) : Yy

.vd

e Vertex relation z; + x2 = 29192, 22122 = y% + y%

e Edge relation v’ = 4oy —ys. Besides vy’ = 4z1ys—y1, vy = 4x1y1—y2, Yy = 4woys—11.

13



Two-color Markoff graph of numbers built from a vertex (1,1;1,1)

3 3

5 5

1

1 .
9\ L
7 . 1 . 17,
. 5 . - 5 )
f.g : ..3.‘f
59 1T N AN TN B9
349|765 | 1) 711 ] 65N | 349

e N(A)={1,5,29,65,169,--} : the set of integers labelling the white faces

e N(M)=1{1,3,11,17,41,---} : the set of integers labelling the black faces

14



Two-color Markoff graph of matrices: a graph obtained from a noncommutative infinite
checkerboard with directed edges whose faces labeled by the following rule

Uy )
b a A M M A
‘vr v 171 v v
c d . AM - AM?2 M2A y- MA -
lb’[}d

type [ type II

15



Two-color Markoff graph of matrices built from a vertex (A1, As; My, M3)

Ay

As

- - Mir o N
Msg2361 - Mig71
Noarsaag | ./ Missssi .M11.77' ' M339. A1521 Ago9ss
2+ -2 1 (140 1—i
Al_( 2 2—i>’M1_ﬂ< 2 3—i>
B (8450 2-12 B 1 (5430 1-7Ti
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Recall
e N(A)=1{1,5,29,65,169,---} : the set of integer solutions as x1, z2,
e N(M)=1{1,3,11,17,41,- - -} : the set of integer solutions as y1, ya,

for z1 + z2 = 2y192, 27179 = y§ + y5. Each element of N'(A) (or N(M)) labels a white
(or black) face.

Theorem 5. Matrices Ay, X € N(A) and M,,, m € N(M) defined by the two-color
Markoff graph of matrices built from a vertex (A1, As; M1, M3) have the following form:

o (1+)\Z b"‘CZ 4 o o
A)\—< o\ d—)\z’>’ (a,bye,d) € Z°, tr(Ay) = 4N, det(Ay) =1,
1 . .
M, — <a+mz B+ i

=7 omi 8 — mi ) . (o, 8,7,0) € Z*, tr(My,) = 2v2m, det(M,,) = 1.

17



The axis of Ay, A € N(A) is on the plane z = 1/2 and is depicted as follows:

The axis of M,,, m € N (M) is on the plane x = 1/2 and is depicted as follows:

H(oo;h)

18



5. Outline of proof

The picture used in Ford’s method is obtained from a vertex of the two-color Markoff
graph of matrices:

_ 1 3+i —1—1 -
1_ _~ 1
MMy = 2< % 1—i > MMy
2+i -2 L L/ 1+i 1—i
A1_< 2 2—é> A M Ml_\/§< 2i 3—i>

|
~
-/ N
|
[ NI
o
[ I
—
~
|

For each vertex of the two-color Markoff graph of matrices, we get a geodesic and
horospheres which satisfy the similar property.
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(A) For M,, = Ay My, in a vertex of type I, we get the axis of My, to which three special

horospheres are tangent.

1

. a1 +x11 by + e
Aey = < 2z10 dy — @1 > Ao
1 az +y2t Bo+ 21 _—
My, = V2 ( 291 o — Yot ' My2.

My, (H(co; h))
B =

20

M,

Y1 —

1

V2

(

a1 + Y1t
2y1i

B1 + 7t
01 — Y1t

)



(B) For My, = My, A, in a vertex of type II, we get the axis of M, to which three special
horospheres are tangent.

1 ar +y1i B+ i ' ' [ ar+xii b+
My, = V2 < 2y11 01—yt Myl_ Ay Ay = 2x1i dy — x18

I _ 1 ag +yoi P2+ 2t
.My2 . My =75 < 2yt 0o — Yot

Ay, (H (o0;h))
h =

21



(C) For Ap, = My, M,, in a vertex of type I, we get the axis of A,, to which three special
horospheres are tangent.

Lo I (ar+yi Br+mi
M. . - =
. y1. Myl \/5 ( 2y1i 51 — yli
M. L[ a2ty Brti Y A A — [ a2ta byt
NG 291 o — Yot vz 2 2 2x9i  dy — x9i

My, (H (o0; h))

SAA

2y
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(D) For A, = M,, My, in a vertex of type II, we get the axis of A,, to which three special
horospheres are tangent.

L (oqg+yii B+t > —_—
M, = — . . - M,
V) < 219 61—yt

. as + x9t by + cot ' ' o L o9 + Yot B2 + Yot
sz o < 2191 do — X9l > sz .MyQ . My2 N < 2y91 0o — Yot

My, (H (o0; h))

t
_ Q2
2y2

Thus the two-color Markoff graph of matrices determines a system of geodesics on
x = 1/2 which have special kissing horospheres.
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Now let us examine geodesics on = = 1/2 which intersect horospheres and are close to
a geodesic in the system.

Lemma 3. A geodesic centered on a point ¢ € C of radius s properly intersects a horo-
sphere H (p, q; s) if and only if

1 2 1
82—T< C—Z2 <52+T.
2| q 2|
{ -1 .
M (H(5:5)) : M (H(0i )
! l /
| o o 1
_a 2 VR
2\ 2\

For the image of H(oo;s) by Ay we define

C’;'\_:s:\/<c—i—2a)\)2—41)\2, Cf\+:s:\/<c+;>\>2+41\2,

which are curves on (¢, s)-plane.
For the image by A;l we define

d\? 1 d\?> 1
d— . _ d+ . _
Cx 'S_\/<02)\) “Dz O ’S_\/<02)\> T

Corollary 1. A geodesic on the plane x = 1/2 centered on a point ¢ of radius s properly
intersects the image of H(oo; s)

(i) by Ay if and only if (c,s) is between the curves Cﬁ\_ and Cf\+.

i) by AYY if and only if (c,s) is between the curves C3~ and C9.
A A A
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Lemma 4. If a vertex v is of type I, the shape of the curves ng, C’gl_, CZI, and C’;l_

around their intersection points is depicted as in (A). If v is of type II, that of Cfcf, C}g,
C4*, and C’gl_ is depicted as in (B).

Y1
d+ i+ d+ i+
Cxl Cg}l Cyl C;fl
d— . d— )

Cxl a Clll/l_ C’y1 b C;:I
> C > C

b B B B B2 b

2z1 2y2 2y1 2y1 22 2z

(A) type I (B) type IT

e the point a is attained by the following geodesic and horospheres.

H(oo;h)

My, (H (o0; h))

h =

e the point b is attained by the following geodesic and horospheres.

H(oo;h)

Az, (H (003 h))
h=




Lemma 5. If a vertex v is of type I, the shape of the curves C’ff;, C’g;, CZI, and C’;l_

around their intersection points is depicted as in (C). If v is of type II, that of Céj, Cé;,
C* . and C’gl_ is depicted as in (D).

Y1’

d+ i+ d+ i+
0112 Cllll Cyl CZlJQ
d— . d— .
Cy2 x Cf;l Cyl d CZ:L/2
> C > C

B2 by B B by B2

2y9 2o 2y1 2y1 2o 2y9

(C) type I (D) type IT

e the point c¢ is attained by the following geodesic and horospheres.

My, (H (o0; h))

a1 02
2y1 2x2 2y2

Y2 (H (oo;h))

o4
N

2y2




Using Lemmas 4 and 5 repeatedly, a neighborhood of the valley point a (or b,c,d) is
covered by two bands between four new curves, and we get two new valley points. The
height of them is larger than that of a. Thus we obtain successively values of the Lagrange

spectrum.
Ay, M,
My2 ’ A:B2
d+ i+
Ca, O
d—
e it on
> C
by B2 B
2x1 2y2 2y
(A) type I
d+ i+
0112 Cllll
d— -
Cha ¢ ci,
> C
B2 by B
2y 2x2 2y1
(C) type I

27

M, Ay,
AI2 ’ Myz
d i+
Oy Cal
df
Cyl b C;:
> C
B B2 b
2y1 2y2 2z
(B) type II
d+ i+
Cyl CZlJQ
d—
Cu, L Cia
> C
B by B2
2y1  2x2 2y2
(D) type II



Example.

Gl

D=
(S

o

\

fS)

N
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ON THE REPRODUCING KERNEL FOR THE SPACE OF
SEMI-EXACT ANALYTIC DIFFERENTIALS

SACHIKO HAMANO

We discuss here some analytic invariants associated with a holomorphic
family of Riemann surfaces.

Let R be a bordered Riemann surface of genus g(> 0) with a finite number
of C¥-smooth contours C; (j = 1,...,v) in a larger Riemann surface R. Let

S(R) be the space of semi-ezact L*-analytic differentials on R. Let K(z, ()
denote the reproducing kernel function for S(R).

Definition. Let R be as above. Fix two points a, b € R with local co-
ordinates U, : |z — (| < rq and Uy : |z| < rp, where a and b correspond
to ¢ and 0, respectively (where U, and U, have no relations). Among all
harmonic functions v on R\ {a, b} with two logarithmic poles of log |z — (|
at a and —log|z| at b normalized so that lim, o(u(z) + log|z|) = 0, we
have uniquely determined functions h; (i = 1,0) with the L;-boundary con-
ditions (i = 1,0): (Ly) for each Cj, hy satisfies hq(z) = ¢; (constant) on C;
and fC]- g—ﬁidsz = 0; (Lg) ho satisfies ah#(j) = 0 on Cj. We call h;(z) the
Li-principal function and p; := lim,_,¢(h;(z) — log|z — (|) the L;-constant
for (R,b,a) with respect to the local coordinates U, and U, (simply, for
(1,0,0)).

Theorem 1 ([3]). Let the notation be as above. We have

o 20%h(=0) 10%m(0)

K(z0) = 920 IN((C’O:W acac

Let 7 : R — B be a holomorphic family such that R is a complex 2-
dimensional manifold, 7 is a holomorphic projection from R onto a disk B
in Cy, and cach fiber R(t) = 7~ 1(t), t € B is irreducible and non-singular in
R. We set R = Usep(t, R(t)). Let R = Usep(t, R(t)) be a subdomain with
C* smooth boundary R = Usep(t, OR(t)) in R such that R(t) 3 R(t) # 0

for t € B, R(t) is a bordered Riemann surface of genus g(> 0) in R(¢),

and OR(t) in R(t) consists of a finite number of C* smooth contours C}(t)
G=1...,v).
Theorem 2 ([3]). We assume that the total space R = Uiep(t, R(t)) is 2-

dimensional pseudoconver in R. Then log K(t,(,() is a plurisubharmonic
function on R.

This phenomenon is the same as the Bergman metrics (see [5]).
Here we recall the definition of Schiffer spans for planar Riemann surfaces.
Let R be a finite bordered planar Riemann surface. Let P(R) be the set of

Partly supported by JSPS Grant-in-Aid for Young Scientists (B), 23740098.
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all univalent functions P on R with the expression

P(z)]A<.+0+A1(Z—C)—|—A2(z—<)2+...

at a given point ¢ € R. The Schiffer span s for (R, () is defined by
2
s:=— sup {the Euclidean area Ep of Ep:=C\ P(R)}.
T PeP(R)
The Schiffer span s(¢) induces the metric s(¢)|d¢|? on R.

Theorem 3 ([3]). Let R be a finite bordered planar Riemann surface. Then
we have the following:

. . iy 2
(i) The metrics K (¢, Q)[d¢ %, L2288 ac[2, —L ZL9C |ac 2, and 5(C)|dC |

are all identical on R;
(i) K (¢, Q)|dC¢|? is of negative curvature at every point ¢ € R;
(iii) K(¢,¢)|dC|? is complete on R.

For the proofs of the above theorems, we use the following variational
formulas for principal functions and the plurisubharmonic variation of the
Schiffer span under pseudoconvexity ([2]).

Lemma 4 ([1], [4]). Let R(t) is of genus g(> 0), and let {A;(t), Bi(t)}]_,
be a canonical homology basis on R(t) such that each A;(t) and B(t) varies
continuously with t € B. Then we have

82,u1(t) - 1 8h1(t Z 82h1 t Z .
oot /BR(t)kz(t’ Z)’ z / / "otz s a;
Ouo(t) 1 Ohy(t, 2) 0?ho(t, 2)
atar .\« /8R(§2(t’z>‘ 82 / /R(t T otor d"”dy

_ Im{z o (/Al :;dho(t,z)> gf (/Bl(:;dho(t,z)> }

Here, for the defining function ¢(t,z) of OR,
0%\ g
020Z ) | 0z

Folt, 2) = 0% 8<,0 o 0% Op Op n dp
B W otoz ot 0z | | ot

[1] S.Hamano, Variation formulas for Li-principal functions and the application to simul-
taneous uniformization problem, Michigan Math. J. 60 No.2 (2011), 271-288.

[2] S.Hamano, Uniformity of holomorphic families of non-homeomorphic planar Riemann
surfaces, Annales Polonici Mathematici 111 No.2 (2014), 165-182.

[3] S.Hamano, Log-plurisubharmonicity of metric deformations induced by Schiffer and
harmonic spans (submitted).

[4] S. Hamano, F. Maitani and H. Yamaguchi, Variation formulas for principal functions
(1I) Applications to variation for the harmonic spans, Nagoya Math. J. 204 No.2
(2011), 19-56.

[5] F. Maitani and H. Yamaguchi, Variation of Bergman metrics on Riemann surfaces,
Math. Ann. 330 (2004), 477-489.

REFERENCES

DEPARTMENT OF MATHEMATICS, FUKUSHIMA UNIVERSITY, 960-1296 JAPAN
E-mail address: hamano@educ.fukushima-u.ac. jp

2



Analytic Study of Singular Curves

Yukitaka Abe
University of Toyama

Feb. 16, 2015



Introduction

Generalized Jacobi varieties for singular curves were algebraically de-
fined by Rosenlicht in 1954. Since then, the theory has been developed
extremely. A genaralized Jacobi variety is analytically considered as
a complex Lie group. We generalize the analytic theory for compact
Riemann surfaces to singular curves. We expect to get some analytic

properties of generalized Jacobi varieties from our treatment.



1 Construction of singular curves

X: an irreducible non-singular complex projective algebraic curve (i.e.
a compact Riemann surface)

Ox : the structure sheaf on X

S C X : a finite subset

R : an equivalent relation on S

p:X — X the canonical projection
We use notations according to
J. -P. Serre, Groupes algébriques et corps de classes, Hermann, Paris,

1959.

Definition 1. m : a modulus with support S

= VP € S, m(P) > 0 integer

We may assume deg m = 2.
Mer(X) : the field of meromorphic functions on X

Vf e Mer(X), VP € X, ordp(f) : the order of f at P



Definition 2. f,g € Mer(X)
f=g modm
if ordp(f — g) > m(P) for any P € S.

p+Ox : the direct image of Ox by p
VQ e S
Zg: the ideal of (p.Ox)¢g formed by the function f with
ordp(f) =m(P), VP € p(Q)
We define a sheaf O, on X by
(pO0x)g=0x0 Qe X\S
C+1g if Q eS.

Om . =

(X, Oy) : 1-dimensional compact reduced complex space
We denote it by Xi,.
Conversely, any reduced and irreducible singular curve is obtained

as above.

2 Genus of X,
V@) € Xn
dg = dim((p:Ox)q/Om )

0= Y  0g=degm— #S5.
QeXnm



g: the genus of X

=g+ 9d: the genus of X,

dim H' (X ,0n ) =7

3 Riemann-Roch Theorem

Definition 3. A divisor D on X is said to be prime to S if D(P) =0

for P S.

Div(Xy, ) : the group of divisors prime to S

Mer(Xy, ) : the field of meromorphic functions on Xy,
p*Mer(Xy ) C Mer(X)

f € Mer(Xy, )

(f)= > ordo(f)@Q,

QeXnm
where ordg(f) = >_pe,-1(g) orde(f 0 p).

Definition 4. Dy, Dy € Div(Xy, )

Dy~ Dy = 3f € Mer(Xw ) s.t. D1 — Ds = (f)

Div(Xy ) := Div(Xy )/ ~, Div)(Xy ) := Divl( Xy )/ ~



D € Div(Xa ) C Div(X)
L(D) = {f € Mex(X); (f) 2 ~ D}
L(D) : sheafication of L(D)
£, (D)g = Ong Q€S
L(D)g ifQeX\S.
Theorem 1 (Riemann-Roch Theorem). Let X, S, m, Xy, be as above.
Let D € Div(Xy ). Then, H'( Xy , Ly (D)) and HY(Xy , Ly (D)) are

finite dimensional, and we have

dim H*( Xy , L (D)) — dim H( Xy , L (D)) =deg D +1 — 7.

4 Serre duality

U C Xu: an open set

Qm (U) := {a mero. 1-form w on p~*(U) satisfying the condition (*)}
The condition (x):

VQeU,VfeOnyg

Z Resp(p* fw) = 0.

Pep~1(Q)

Qm : the sheaf defined by {Qn (U), ¥} (the duality sheaf on Xy,)

Q2 : the sheaf of germs of hol. 1-forms on X

6



D € Div(Xy, ) € Div(X)

W C X : an open subset
Q(D)(W) := { a meromorphic 1-form n on W with (n) > —D on W}.

Q(D) : the sheaf on X defined by {Q(D)(W),r}}

We define a sheaf , (D) on Xy, by

Omg ifQeS
Qu (D)q =
Q(D)g ifQeX\S.

Theorem 2 (Serre duality). For any D € Div(Xy, ) we have
H (X, (—=D)) = H (Xn , Ln (D))",
where HY( Xy , Ly (D))* is the dual space of HY (X , L (D)).

For a completely analytic proof of Theorem 2, we need special
sheaves 5&1’0) and 5&2), some modifications of the proof of non-singular
case. However we omit details.

Using Theorem 2, we can rewrite the Riemann-Roch Theorem as

follows

Theorem 3 (Riemann-Roch Theorem (second version)). For any D €

Div(Xy ) we have

dim H(Xy , L (D)) — dim H*(Xy , QO (—D)) = deg D + 1 — 7.



5 Generalized Abel's Theorem

Rosenlich first formulated and proved a generalized Abel’s theorem
for a singular curve which was considered algebraically.
Jambois tried to treat it analytically. However, we think Jambois’
argument was imcomplete.
(T. Jambois, The theorem of Torelli for singular curves, Trans. Amer.
Math. Soc., 239 (1978),123-146)

Rosenlicht and Jambois considered functions f satisfying

f=1mod m|

This means that f takes the common value 1 at all singular points.
Then it is a special function for the number of singular points # 1 in
general.

We assign a non-zero constant cg to each point () in S. We call

c(S) = (cq)oes

a multiconstant on S.



Definition 5. f € Mer(X), ¢(S): a multiconstant on S
We write

f =¢(S) mod m
if ordp(f —cg) > m (P) for any P € S with p(P) = Q at any Q € S.
Our formulation of a generalized Abel’s theorem is the following.

Theorem 4. D € Div(Xy, ) with deg D =0
Af € Mer(X) with f = ¢(S) mod m for some c(S) such that D = (f)
<~

3 1-chain ¢ € C1(X \ S) with Oc = D such that

/p*w:O, Vw € H (X , Q)

6 Proof of Theorem 4
D € Div(Xy ), Xp :={P € X;D(P) 20}

Definition 6. A C* function f on Xp is called a weak solution of D
if it satisfies the following condition:

VP e X

(U, z): a coordinate nbd. of P with z(P) =0

Jip: C™ function on U with ¢(P) # 0 such that

=" on UNXp

9



Sheaf &V

U C Xu: an open set We define
gy (U) :={a O 1-form w on U \ (U N S) satisfying the condition (%x)}.

The condition (%x):
Let Q € UNS. Weset p~1(Q) = {Py,...,P}. Let V. C U be an open

neighbourhood of () such that

k
p (V) = |_|Vz (P e Vi),

1=1

(Vi, 2;) is a coordinate neighbourhood of P, with z;(P;) = 0 and there

exist C™ functions ¢; and ¥; on V; \ {P;} with
prw = pidz; + ¥ dz; on Vi \{P}.

Then limits

lim (PP and Jim v (P)5(P)

exist.

Then a presheaf {&211 ) (U), 7Y} defines a sheaf e on Xy .

10



Lemma 1. Suppose that ¢ : [0,1] — X \ S is a curve and U is a
relatively compact open neighbourhood of ¢([0,1]) in X\ S. Then there
exists a weak solution f of Oc with f|(X \ U) =1 such that for every

1-form w € H*( Xy, L&D ) with dw = 0 we have

i [ e [

Lemma 2. For any D € Div(Xy, ) the following two conditions are

equivalent.
(1) There ezists a meromorphic function g on X such that D = (g)
and we have a branch f of log g defined in a neighbourhood of S with

the property

Z Resp(fw) =0

Pep~1(Q)
for any point Q € S and for any w € H(X, p*Qn ).

(2) There exist a meromorphic function g on X and a multiconstant

c(S) such that
D= (g) and g=c(S) mod m.

Proof of Theorem 4 (Necessity)

IAssumption|

31 — chain ¢ € Cy(X \ 5) with 0c = D s.t.

/p*w =0, Ywé€ H' Xn,%)

11



By Lemma 1

3f : a weak solution of D = dc s.t. f|(X \U) =1 and

w— /_A’“"_/p“

for every w € H(Xw,EW ) with dw = 0, where U is an open

neighbourhood of the support of ¢ with U CC X \ S.
Since H)( Xy, ) C HO(Xm,&sll) ), we obtain for every w €

HY( X0, Q)

o~ o spim = m f] Yo

by the assumption.

o= 8f : C* (0,1)-form on X

f
Since H*(X,Q) C p*H* (X , U )5

// ocAn=0, VneH(X,Q)
X

of
N

F = e 9f is also a weak solution of D, and meromorphic on X. Since

1
2w/ —1

. C* function on X s.t. 0g =0 =

f =1 on a neighborhood of S, F' = e™9 there. Hence, —g is a branch
of log F' on a neighborhood of S.

For any w € HY( Xy , Q) we have

dg N\ = — A = *w=0.
i e [ Yo

12




QE?, p_l(Q):{Pl,...,PN}

Bj(e): a small disc centered at P; with radius € > 0

Since
! (9 A 1 // 8 A pfw
w = lim
21/ —1 GNP 027r\/ X\(u ganp
=i *w
20 (Z%F aB.E( 97 )
Z Resp (( W),
Pep=(Q)
we obtain

This is the condition (1) in Lemma 2. Then the condition (2) in
Lemma 2 is satisfied: i.e.

Jh € Mer(X), 3¢(S) : multiconstant s.t.
D= (h) and h=c(S) modm

(Sufficiency)

Assumption|

f € Mer(X) s.t.
D=(f) and f=c(S) mod m for some multiconstant c(S)

F : X — P! holomorphic map defined by f
Vw € HY (X, Q)

13



Trace(p*w): the trace of p*w by F

Trace(p*w) is a meromorphic 1-form on P!

F(S) = {eq; @ € 5)

It is obvious that Trace(p*w) is holomorphic on P!\ F(S5).

By a careful investigation at a point in F(S), we see it is holomorphic
on the whole of P!,

Then Trace(p*w) = 0.

Therefore we can apply the usual argument.

7 Albanese varieties

X @ asingular curve of genus m =g+ ¢

{wi,...,wr} 1 abasis of H'( Xy , Q) s.t.

{p*wr,...,p*w,} : a basis of H'(X, Q)

{a1,B1, ..., a4, B4} : a canonical homology basis of X.
S={P,...,P}

7v; + a small circle centered at P; with anticlockwise direction

{a1,B1,...,a4,By,7,---,7s} : abasisof Hi(X\S,Z) = H(Xn \S,Z)

A=H"(Xn, 0 ) /H(X0 \ S, 7).

14



I': a discrete subgroup generated by the following 2g + s vectors over

(/ p*wl,...,/p*wﬂ>, i=1,...,q,
o Q;
</p*w1,...,/p*wﬂ), i=1,...,q,

/p*wl,...,/ﬁkw7T , Jj=1,...,s
" 5

Z

J

A=H"Xp Q0 ) /H(X\S,Z)=C"/I" asa complex Lie group

We write it Alb® (X, ) emphasizing its analytic structure.

We define a period map ¢ with base point Py € X \ S by
P P

p: X\S — A" (Xyn), Pr— [(/ p*wl,...,/ p*wﬂ)].
Py Py

G : a commutative complex Lie group

Y X\ S — G: a holomorphic map, VD € Div(Xy, )

Y(D):= Y  D(P)y(P)

PeX\S
g € Mer(X) with g = ¢(S) mod m for some ¢(.5)
P((g)) = > ordp(g)(P) well-defined

PeX\S

15



Definition 7. A holomorphic map ¥ : X \ S — G admits m for a

modulus

= U((f)) =0, Vf € Mer(X) with f = ¢(S) mod m for some c(.5)

Remark. In [R] and [Ser],| f =1 mod m|is considered.

[R] M. Rosenlicht, Generalized jacobian varieties, Ann. of Math., 59

(1954), 505-530.
[Ser] J.-P. Serre, Groupes algébriques et corps de classes, Hermann,

Paris, 1959.

Proposition 1. The period map ¢ : X \ S — A" (X, ) defined
above admits m for a modulus. Furthermore, it is a holomorphic em-

bedding if g > 1.
Theorem 5. The map ¢ : (X \ )™ — AIb"(X,, ) is surjective.

(X \ S)™: the 7-symmetric product of X \ S
Corollary 1. Div’(X, ) & AIb"(X,, ) as groups

Theorem 6. The map ¢ : (X \ S)™ — AIb™(X,, ) is bimeromor-

phic.
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AID™( Xy ) = CP x (C*)1 x 9

£ : an r-dimensional quasi-abelian variety of kind 0, p+¢q+r =
Q=C"/Ty, rank I'y =r + s

Q — Ap : principal (C*)""*-bundle over an abelian variety A

Q : the standard compactification of Q

A" (X, ) = (PP x 9 : the standard compactification of

ALD™ (X, )

Remark. The map ¢ : X \ S — Alb™ (X ) does not extend to a

holomorphic map @ : X — Alb™ (X, ).

Theorem 7 (Universality Property). Let G be a commutative complex
Lie group, and let Py be the base point of the map ¢ : X \ § —
AIb" (X ). Then, for any holomorphic map ¥ : X \ S — G which
admits mv for a modulus there exists uniquely a homomorphism U :
A" (X ) — G between complex Lie groups such that v = Wop+go,

where gy = Y (Fy).
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8 The reason why Div(X,,) is sufficient

D € Div(Xy) <= D : a divisor prime to S
We should consider divisors on the whole X,,.
M. the quotient sheaf of Oy

The divisor sheaf D, on X, is
Dy = M,/ Or,.

An element in H(Xy,, Dy) is identified with a divisor

D= > DQQ

QEXn

D(Q) = > pe,1( 1P, np € Z with |np| 2 m(P) and npnp >0,
VP, P € p7(Q) if Q € S and D(Q) # 0,

D(Q)EZifQ ¢ Xu\S.

The number of points with D(Q) # 0 is finite.

m(Xm): the group of all such divisors

Vf e Mer(Xy), f#0

(f) = ordo(f)Q € Dive(Xp)

REeXn

Definition 8. Dy, Dy € Divyn(Xum)

Di~nDy < 3f €Mer(Xu) st. Dy =Dy = (f)

18



Lemma 3. VD € ]f)\i;m(Xm)

~

f € Mer(Xy) s.t. D — (f) € Div(Xy)

Proof. Assume: Q € S, M := ﬁ(@) #0
It suffices to consider the case M > 0.

p—l(Q) :{Pla"wPN}
VP, In; € N with n; 2 m(P,) s.t. M = le\il n;

z;. a local coordinate at P,

ri(zi) == 2"

VP e S\{P.,..., Py}, rp(zp) =1+ 25"

zp: a local coordinate at P

df € Mer(X) s.t.

p

ordp(f —rp) >m(P) if Pe S\{P,...,Py}

\

dg € Mer(Xy,) s.t. f=p'g

~

D—(g)=0atQ

[ﬁi?m(xm)] = Divan(Xu)/ ~m
Div,(Xm) := {D € Divm(Xun); deg D = 0}
Divyy (X)| = Diviy(Xa)/ ~an

19
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Proposition 2.

[ﬁzmm)} ~ Div(Xn)

[ﬁi(xm)] ~ Div)(X)

20



9 Appendix

p.14 lines 56
Let Q € S
VP € p~HQ), m(= m(P)): the multiplicity of F at P
dt: a local coordinate at cg

Jw: a local coordinate at P s.t.

F is represented as t = w™.

Jh(w): meromorphic function in a nbd. of P s.t.

p'w=h(w)dw and h(w)= Z cLw™.
n=—m(P)
h(w)

mwmfl

By dt = mw™ ldw, p*w = dt

C'w (i=0,1,...,m — 1): the preimages of t = w™
(€ = exp(v/~1%))
Then

T h(Gw)

dt
mwm—l
1=0

1 m—1 (*)
_ i(n—m+1) n—m-+1
- Cn ( E ¢ ) w dt
n=—m(P)

1=0
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If n—m + 1 # km, then 37 ' ¢in=m+D) = (.
Since n 2 —m(P) and m = m(P), we have

(%) =) Crmnt™dt.

k=0

Noting ¢_; = Resp(p*w), we obtain the expression of Trace(p*w) at

cq as follows:

1
Trace(p'w) = Z Resp(p*w) n + holomorphic part | dt
Pep~1(Q)
Z Resp(p*w) =0 for we H'(Xqp, Un)
Pep~H(Q)

Then Trace(p*w) is holomorphic at cq.
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