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Abstract. In this paper, we propose a notion of the local harmonic measure decay
(LHMD) property with exponent � at �nite boundary points of open sets 
 in the

Riemann sphere bC : Using this property, we show that Green's function of 
 is H�older
continuous with exponent � at such a point as well as the boundary regularity of the
Dirichlet problem in 
 for the usual Laplacian at the point in the sense of H�older con-
tinuity with exponent less than �: We further explain that the LHMD property can be
regarded as a localization of the notion of uniform perfectness for the boundary. We also
provide several applications to the theory of conformal mappings.

1. Introduction

1.1. H�older regularity of a boundary point. We consider the boundary regularity
of the bounded solution of the Dirichlet problem in a plane domain (or, more generally,
an open set) 
 in the sense of Perron-Wiener-Brelot:

�u = 0 in 
 and u = ' on @
;(1.1)

where � denotes the usual Laplacian (@=@x)2+(@=@y)2 and ' is a given bounded function.
Throughout this article, we consider only bounded harmonic functions for solutions of the
Dirichlet problem.
For a positive constant �; a point a 2 @
 n f1g will be called an �-H�older regular

boundary point of 
 if the solution u of the Dirichlet problem in 
 is H�older continuous
with exponent � at a whenever the boundary function ' is H�older continuous with expo-
nent �: More precisely, this means that if '(�) = '(a) +O(j� � aj�) as � ! a in @
 then
u(z) = '(a) +O(jz � aj�) as z ! a in 
:
The H�older regularity of boundary points has been investigated by many authors even

for more general uniformly elliptic (possibly non-homogeneous) linear partial di�erential
equations (see [1], [14] and their bibliographies).
When 
 is a disk or a half plane (a ball or a half space in the higher dimensional case),

it is known that each �nite boundary point is �-H�older regular for any � with 0 < � < 1
(see [34, Proposition 3.4] for the unit disk in the plane, or [1, Theorem 3.1] for more
general di�erential equations). On the one hand, any boundary point of the disk is never
1-H�older regular (see x6.9 and Remark made there).
When the boundary is of class C2 and of bounded curvature, O. D. Kellogg [24] showed

the same result (in the case of 3-dimensional space).
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For domains with exterior cone condition, K. Miller [31] gave a satisfactory result on
the H�older regularity of the boundary for uniformly elliptic partial di�erential equations.
We remark that C. Pucci [35] obtained partial results in this direction earlier.
In the case when the boundary is not necessarily smooth, however, such a property

seems to be less known. As one exception, we should draw the attention of the reader
to the paper [19] by A. Hinkkanen, in which he proved �-H�older regularity of each point
of a boundary continuum for 0 < � < 1=2: Actually, he obtained more detailed, almost
sharp global results on the Dirichlet solutions for bounded plane domains each boundary
component of which has at least a de�nite size of diameter.
We should note also that, in the case of higher dimensions (n > 2), there is pioneer

work of V. G. Maz'ya (see [29], [30] and also [16]) in this direction even for uniformly
elliptic di�erential operators.

1.2. Control of boundary behaviour. In order to control the boundary behaviour of
a harmonic function, the notion of barrier has been e�ectively used. In this article, we
propose \local harmonic measures" as good substitutions for barriers. The author learned
this notion from the paper [3] of A. Ancona. The precise de�nition will be given in Section
2. The local harmonic measures have advantage in the sense that they enjoy
1. monotonicity with respect to domain extension and circular symmetrization, and
2. availability to use classical conformal mappings.

In fact, by virtue of these properties, we deduce many estimates for local harmonic mea-
sures in Section 5. These have applications to the theory of conformal mappings, see
Section 7.
We investigate the boundary regularity using the local harmonic measures. As a result,

we give a condition, called \LHMD property," for a boundary point to be H�older regular
in terms of the local harmonic measures in Section 2.

1.3. LHMD property and uniform perfectness. The global LHMD property, which
means the LHMD property in a uniform sense, is shown to be same as the uniform �-
regularity in the sense of Ancona [3] (see Theorem 3.1 below). Ancona [3] proved that
a closed set E in R

n has uniformly �-regular complement if and only if E satis�es a
uniform capacity density condition with respect to the Newtonian capacity in the case
n � 3: The Newtonian capacity being replaced by the logarithmic capacity, the same
result holds even if n = 2 as noted by several authors (cf. [12]). The proof for the case
n = 2 requires slightly di�erent (but standard) techniques from that of [3], so we include
it in Section 3 for the convenience of the reader as well as for getting explicit estimates
with the emphasis on the relation with the LHMD property.
Noting a result of Pommerenke (see x4.1), we see that the global LHMD property of

a domain is nothing but the uniform perfectness of the boundary. Here, a closed set E
in the Riemann sphere bC containing at least two points is said to be uniformly perfect if
there exists a positive constant c such that E \ fz 2 C ; cr < jz � aj < rg 6= ; for any
point a 2 E and 0 < r < diamE; where diamE denotes the Euclidean diameter of E
(diamE = +1 if 1 2 E).
This notion was introduced by [6], and systematically investigated by Ch. Pommerenke

[32], [33]. Nowadays, a number of equivalent conditions for the uniform perfectness are
known. Uniformly perfect objects naturally arise in many branches of complex analysis.
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Indeed, the limit set of a non-elementary Kleinian group of Lehner type (containing �nitely
generated case, see [40]), the Julia set of a rational function of degree at least two (see
[8]), and some kind of self-similar fractals (see [39] and [38]) are uniformly perfect. For a
survey on the uniform perfectness, see [41].
As a consequence of the above chain of ideas, we give another proof for the known fact

that Green's function of a domain with uniformly perfect boundary is H�older continuous
up to the boundary (see Corollary 6.3).

1.4. Structure of this article. Now we brie
y describe the organization of the present
paper.
Section 2 gives the de�nition and fundamental properties of local harmonic measures

as well as basic notions in potential theory. We prove there our key result (Theorem 2.2)
saying that the LHMD property with exponent � at a �nite boundary point a implies
H�older regularity with exponent less than � at the point a:
Section 3 is devoted to (analytic) characterizations of the LHMD property such as a

(lower) capacity density condition with concrete estimates for related quantities.
In Section 4, we further show that the global LHMD property of 
 is actually equiv-

alent to the uniform perfectness of the boundary @
 (Theorem 4.1). In connection with
the uniform perfectness, we also give local, geometric conditions which are suÆcient or
necessary for the LHMD property at a given point.
Section 5 treats several geometric conditions which ensure the LHMD property with a

given exponent at a boundary point such as the exterior circle condition, the generalized
exterior wedge condition. We also consider the case when the domain is bounded by
(positively oriented) suÆciently smooth Jordan curves whose curvature is bounded below.
Then, we require a global property (Theorem 5.4) of simple plane curves with curvature
bounded below. For the convenience of the reader, we shall give a proof for that property
in the appendix (Section 9). This might be of independent interest.
Section 6 explains how to globalize the local results obtained in preceding sections in

the case when 
 satis�es the uniform LHMD property with exponent �: Speci�cally, we
show �-H�older continuity of Green's function of the domain and the boundedness of the
harmonic extension operator H
 on the Lipschitz spaces of exponent less than �:
As an application, we have a lower estimate of Hausdor� dimension of a totally discon-

nected uniformly perfect set (Corollary 6.4). Compare with the similar result in [41].
In Section 7, we will give several applications of H�older continuity of Green's function

to the theory of conformal mappings of �nitely connected bounded domains. As results,
we present a natural generalization of a theorem due to M. Masumoto [28], and Lp-
integrability conditions for the derivatives of conformal mappings from the domain onto
a standard domain. The latter is closely related to the Brennan conjecture when the
domain is simply connected.
In Section 8, we will give a simple example of a bounded domain carrying Green's

function which is H�older (actually Lipschitz) continuous up to the boundary, whereas the
boundary is not uniformly perfect. This example answers a question raised by Siciak in [37]
and produces another example of domain which preserves the global Markov inequality
but not the local Markov inequality (see [26]).
Section 9 is additional and serves a proof of the above-mentioned result on simple plane

curves with curvature bounded below.

3



1.5. Acknowledgements. I sincerely thank Hiroaki Aikawa for fruitful conversations on
the subject presented here. His suggestions have been greatly useful for this research. I
am grateful to J�ozef Siciak for talking with me about the H�older continuity property of
Green's functions for domains with uniformly perfect boundary at Lublin in 1998 and for
sending his paper to me later. It was quite nice for me to discuss with Stephan Gardiner
about this subject when I visited Dublin in 1999. I am also thankful to Rich Stankewitz
for valuable comments.

2. Local harmonic measures

Let 
 be a subdomain, or, more generally, an open subset, of the Riemann sphere.
Throughout this article, to avoid the trivial case, we assume that 
 is of hyperbolic
type, in other words, the boundary @
 consists of at least three points unless otherwise
indicated. Here and hereafter, the boundary @
 and the complement 
c of 
 will be

taken in the Riemann sphere bC : However, the point at in�nity 1 will play a special role
in our arguments below. So, we will employ the special notation @b
 = @
 n f1g:

2.1. PWB-solutions for the Dirichlet problem. First of all, we recall several notions
from potential theory. The reader is referred to [17] and [11] for standard textbooks in
potential theory. However, contrary to the tradition and to the above textbooks, we allow
a superharmonic function to be constantly +1 in a component of 
: More precisely, a
function s : 
! (�1;+1] will be called superharmonic if s is lower semi-continuous and
satis�es the condition that, for any closed Jordan domain � in 
 and for any harmonic
function u on a neighbourhood of �; the condition u � s on @� implies the stronger one
u � s on �: We also adopt the similar rule for subharmonic functions.
For a function ' on @
; let P(') be the set of upper functions for ' in 
; where s is

said to be an upper function for ' in 
 if s is superharmonic and bounded below in 

and satis�es

s(�) := lim inf
z!� in 


s(z) � '(�)

for each � 2 @
: Similarly, the set P(') of lower functions for ' in 
 can be de�ned,
namely, s 2 P(') if and only if �s 2 P(�'): We note that for any u 2 P(') and
any v 2 P(') we have v � u in 
 by the usual minimum principle for superharmonic
functions. Perron's principle says that the function

u(z) = inf
s2P(')

s(z)

is harmonic unless u � +1 in each component of 
: We call the function u the upper

solution of (1.1) for ' in 
 and denote it by H


': Similarly, H
'(z) = sups2P(') s(z) =

�H

(�')(z) is called the lower solution of (1.1). By the above notice, we see that

H
' � H


' always holds in 
: A boundary function ' on @
 is called resolutive in 
 if

H


' = H
'; and then this common function will be denoted by H
'; which is called the

solution of Dirichlet problem (1.1) in the sense of Perron-Wiener-Brelot, or PWB solution

for ' in 
: We make sure that the PWB solution is always a (�nite-valued) harmonic
function in 
 if it exists.
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2.2. Regularity and barriers. A point a in @
 is called a regular boundary point of 

if H
' is continuously extended to '(a) at a for each bounded resolutive function ' on
@
 which is continuous at a: The above regularity is known to be characterized by the
existence of a barrier of 
 at a: In particular, the regularity is a local property. Here, a
function b is called barrier of 
 at a if there exists an open neighbourhood V of a satisfying
the following three properties:

1. b is a positive superharmonic function in 
 \ V;
2. limz!a in 
 b(z) = 0; and
3. infz2
\V nW b(z) > 0 for all neighbourhood W of a:

We note here Kellogg's theorem stating that the set of irregular boundary points of a
domain is polar, i.e., of capacity zero (cf. [17, Theorem 8.34]). Therefore, if a harmonic
function u in 
 is the PWB solution for a bounded continuous function ' on @b
; then
limz!� in 
 u(z) = '(�) for each point � in @b
 except for a polar set. In such a situation,
we will conventionally say that u = ' quasi-everywhere (q.e.) in @b
: Moreover, for a
bounded resolutive measurable function '; we can say that H
' = ' q.e. in the set of
continuity of ':

2.3. The (generalized) minimum principle. Note also the following generalization
of the minimum principle for superharmonic functions (see [43, Theorem III.28] or [17,
Theorem 7.10]), which will be frequently used in the sequel: Let s be a continuous su-

perharmonic function in a domain 
 which is bounded below. If lim z!� in 
s(z) � 0 for

each point � in @
 except for a polar set, then s � 0 in 
: Therefore, a polar set is
negligible for bounded harmonic functions. Since the point at in�nity is polar in the two-
dimensional case, bounded solutions of the Dirichlet problem in 
 are determined by the
data of the boundary function on �nite boundary @b
: Hence, we consider only bounded
Borel (or continuous) functions on @b
 as boundary functions in the following.
We record here another important fact about the resolutivity of standard class of bound-

ary functions. The following result can be seen from [11, Part 1, Chapter VIII] (the case
when 
 is a bounded domain follows also from [17, Theorem 8.13]).

Theorem A. Suppose that the boundary of an open set 
 in bC is of positive capacity.

Then, all the bounded Borel functions on @
 are resolutive in 
:

2.4. Harmonic measures. For a while, we assume that a domain (or an open set) 

has boundary of positive capacity. For a Borel subset E of @
; the harmonic measure
of E relative to 
, which will be denoted by !(�; E;
); is de�ned as the PWB solution
in 
 for the boundary value 1E; where 1E denotes the de�ning function of E: Here we
note that 1E is resolutive in 
 by the above theorem. As is well known, the set function
E 7! !(z; E;
) for a �xed point z 2 
 is a Borel probability measure representing the
point-evaluation of harmonic extensions at z; namely,

H
'(z) =

Z
@


'(�)!(z; d�;
)(2.1)

holds for every bounded Borel function ' on @
:
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Let a be a �nite point of the boundary of 
: To measure the size of the boundary of 

near the point a; the harmonic measure is convenient. A standard quantity is

!̂a;r;
 = !(�; @
 nB(a; r);
);
the harmonic measure of @
 nB(a; r) relative to 
; where B(a; r) = fz 2 C ; jz � aj � rg:
Intuitively, we can think that the size of @
 \ B(a; r) is large if !̂a;r;
(z) tends to 0
rapidly when z approaches a: For example, we have the following estimate for a bounded
continuous function ' on @b
 in terms of !̂a;r;
:

jH
'(z)� '(a)j =
����Z

@b


('(�)� '(a))!(z; d�;
)

����
�2k'k1!̂a;r;
(z) + sup

j��aj�r

j'(�)� '(a)j(1� !̂a;r;
(z)):

This simple estimate is, however, sometimes not suÆcient to obtain a sharp order
estimate of H'(z) � '(a) even if we know the precise asymptotic behaviour of !̂a;r;
(z)
as r ! +0 or as z ! a: Furthermore, this quantity is global, and hence, not easy to
calculate directly.

2.5. Local harmonic measures. On the other hand, we will have a great advantage if
we consider the local harmonic measure

!a;r;
 := !(�;
 \ @B(a; r);
 \ BÆ(a; r))

for a 2 @b
 and r > 0 (usually we take r < diam@
). The subscript 
 in the above
will be omitted when we do not need to express 
 explicitly. Noting that each point in
@(
\BÆ(a; r))\ @B(a; r) is regular with respect to 
\BÆ(a; r) (cf. Theorem 5.2 below),
we see that !a;r;
 = 1 in 
\ @B(a; r): On the other hand, !a;r;
 = 0 q.e. in @
\BÆ(a; r):
The relation between !a;r;
 and !̂a;r;
 is as follows:

!̂a;r;
(z) � !a;r;
(z)(2.2)

for z 2 
 \ BÆ(a; r): Thus the local harmonic measure is stronger than the global one in
this sense. To emphasize the contrast, we will call !̂a;r;
 the global harmonic measure for
a and r in this article. Inequality (2.2) is shown by applying the (generalized) minimum
principle in 
\BÆ(a; r) (see also the proof of Lemma 5.1 below). This kind of inequality
is called Carleman's principle of domain extension (see, for instance, [15, Chap. VIII x4]).
We will mention the global harmonic measures in x4.4 again.

2.6. Characterization of the boundary regularity in terms of local harmonic
measures. The local harmonic measures could be good substitutions for barriers in the
following sense, although !a;r;
 does not satisfy the third condition of the barrier above.

Proposition 2.1. Let 
 be an open subset of bC and let a 2 @b
: Then the following are

equivalent.

(a) a is a regular boundary point of 
:
(b) There exists a barrier of 
 at a:
(c) There exists a positive constant r0 such that !a;r;
(z) ! 0 as z ! a in 
 for any r

with 0 < r < r0:
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Proof. The equivalence of (a) and (b) is classical. In particular, from this it follows
that the regularity is a local property. Since (a))(c) is clear, we give the proof only for
(c))(a). The technique presented in this proof will be used in several times in the sequel.
So, we explain it in detail here and we will omit the details after the second appearance.
Assume condition (c) and suppose that a bounded Borel function ' on @b
 is continuous

at a: Without loss of generality, we may assume '(a) = 0: Set u = H
' and let M =
sup�2@b
 j'(�)j: For a given number " > 0; we can choose a number Æ with 0 < Æ � r0
such that j'(�)j � " for all � 2 @
 with j� � aj � Æ:
Now consider the function '0 = ' � 1B(a;Æ) and '1 = ' � '0 and set uj = H
'j

for j = 0; 1: Since j'0j � "; we see that ju0j � " in 
: On the other hand, we have
�M!a;r;
 � u1 � M!a;r;
 in 
 \ BÆ(a; r) for any r < Æ: Indeed, u1 = 0 q.e. in @
 \
BÆ(a; Æ)(� @
 \ B(a; r)) and !a;r;
 = 1 in 
 \ @B(a; r): Since ju1j � M and !a;r;
 � 0;
we see lim supz!�(M!a;r;
(z)� u1(z)) � 0 for each � 2 @(
\BÆ(a; r)) except for a polar
set. Now the (generalized) minimum principle implies M!a;r;
 � u1 � 0 in 
 \ BÆ(a; r):
The other inequality �M!a;r;
 � u1 can be obtained similarly.
By condition (c), we now obtain limz!a u1(z) = 0: Noting u = u0 + u1; we therefore

have

lim sup
z!a

ju(z)j = lim sup
z!a

ju0(z)j � ":

Since " > 0 is arbitrary, we conclude limz!a u(z) = 0 = '(a): Now condition (a) has been
shown.

2.7. LHMD property. As the reader may guess from the above proof, if !a;r;
(z) decay
in some speci�c way when z tends to a the boundary behaviour of H
' may be controlled
at a in a de�nite way. Indeed, we will show this in the following form.
For a point a 2 @b
 and for a constant � 2 (0;+1); consider the condition that

!a;r;
(z) � C

� jz � aj
r

��

for all z 2 
 \BÆ(a; r) and for all 0 < r < r0;(2.3)

where C and r0 are positive constants. This will be called the local harmonic measure decay

property or LHMD property, for short, at a with exponent �: By the above proposition, a
point satisfying LHMD property is a regular boundary point. This kind of property was
implicitly used for NTA(=Non-Tangentially Accessible) domains in [23, Lemma 4.1] by
Jerison and Kenig, and for uniformly John domains with uniformly perfect boundary in
[5, Lemma 1.1] by Balogh and Volberg.

2.8. Main result. The following is our fundamental result. In the course of preparation
of this article, H. Aikawa suggested a simpli�cation of the original proof to the author.
We give here the simpli�ed proof due to Aikawa.

Theorem 2.2. Let 
 be an open subset of the Riemann sphere with boundary of positive

capacity. Suppose that a �nite boundary point a of 
 satis�es LHMD property (2.3) with
exponent � 2 (0; 1] for constants C � 1 and r0 > 0: For a constant 
 2 (0; �); if a bounded

real-valued boundary function ' satis�es that ' � K on @b
 and that '(�) � Lj��aj
 for

7



each � 2 @b
\B(a; r0) for positive constants K and L; then the upper solution u = H


'

of ' satis�es the inequality

u(z) � 2�C

�
K

r
0
+

L

�� 


�
jz � aj
; z 2 
:(2.4)

Furthermore if ' = 0 on @
 \ B(a; r1) for some 0 < r1 � r0; then we have

u(z) � CK

� jz � aj
r1

��

; z 2 
:(2.5)

Proof. Fix a point z0 in 
 and set Æj = 2jjz0 � aj for j = 0; 1; : : : : First we suppose that
jz0 � aj � r0: Let N be the smallest integer such that ÆN > r0: Note the inequality

2�N < jz0 � aj=r0:(2.6)

Set 'j = ' � 1B(a;Æj)nB(a;Æj�1) for j = 1; 2; : : : ; N � 1; '0 = ' � 1B(a;Æ0); and 'N = ' �
1@
nB(a;ÆN�1):

Since ' = '0 + '1 + � � � + 'N ; the subadditivity of the operator H


implies u �

u0 + u1 + � � � + uN ; where uj = H


'j: The inequality 'j � LÆ
j implies uj � LÆ
j for

j = 0; 1; : : : ; N�1: In addition, we have uN � K: Since uj = 0 q.e. in @
\BÆ(a; Æj�1); we
have uj � LÆ
j !a;r on 
\BÆ(a; r) for any r with jz0�aj < r < Æj�1 and for j = 1; : : : ; N�1
by the maximum principle. Now (2.3) yields uj(z0) � CLÆ
j (Æ0=r)

�: Letting r tend to Æj�1;
we obtain

uj(z0) � CLÆ
j

�
Æ0
Æj�1

��

= 2�CL2(
��)j jz0 � aj


for j = 1; : : : ; N � 1: We note that u0(z0) � LÆ
0 = Ljz0 � aj
 � 2�CLjz0 � aj
 and thus
the above inequality is valid also for j = 0: For j = N; by (2.6), we have the similar
inequality

uN(z0) � CK

�
Æ0
ÆN�1

��

= 2�CK2��N < 2�CK

� jz0 � aj
r0

��

� 2�CK

� jz0 � aj
r0

�


:

By summing up these inequalities, we obtain

u(z0) � u0(z0) + � � �+ uN(z0) � 2�C

�
K

r
0
+

L

1� 2
��

�
jz0 � aj
 :

Secondly, if jz0 � aj > r0; then we have u(z0) � K � K(jz0 � aj=r0)
 ; in particular,
the above inequality is still valid in this case. Thus we have shown the �rst part of the
theorem.
Finally, consider the case that ' = 0 on @
 \ B(a; r1) for some 0 < r1 � r0: We may

assume jz0�aj < r1: In the same way as above, we can see that u � K!a;r;
 in 
\BÆ(a; r)
for any r with jz0� aj < r < r1: Using condition (2.3) and letting r ! r1; we obtain (2.5)
for z = z0:

Under the same circumstances in the above theorem, suppose that a Borel function
' on @b
 satis�es j' � '(a)j � K on @b
 and j'(�) � '(a)j � Lj� � aj
 for constants
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K;L and 
 with 0 < 
 < �: Then, by (2.4), the PWB solution u for ' in 
 satis�es the
inequality

ju(z)� '(a)j � 2�C

�
K

r
0
+

L

�� 


�
jz � aj
; z 2 
:(2.7)

In particular, we have the following.

Corollary 2.3. If a �nite boundary point of a plane domain 
 satis�es the LHMD prop-

erty with exponent �; then the point is 
-H�older regular with respect to 
 for all 
 with

0 < 
 < �:

3. Characterizations of LHMD property

We state here characterizations of LHMD property in connection with the capacity
density condition and with the �-regularity.

3.1. Capacity density. First, we recall the notion of (logarithmic) capacity. For a
compact subset E of C ; the (logarithmic) capacity Cap(E) is de�ned to be the number
e�c such that

GD(z;1) = log jzj+ c + o(1)

as z !1; where GD(�;1) denotes Green's function of the (unique) unbounded connected

component D of bC nE with pole at in�nity. The constant c = � logCap(E) is called the
Robin constant of E:
For a closed set E in bC ; de�ne the (lower) capacity density at a 2 E; denoted by

CD(a; E); by

CD(a; E) = lim inf
r!0

Cap(E \B(a; r))
r

= lim
r0!0

CDr0(a; E);

where CDr0(a; E) = inffCap(E \ B(a; r))=r; 0 < r < r0g for 0 < r0 � +1: Since

Cap(B(a; r)) = r; we see 0 � CDr0(a; E) � CD(a; E) � 1: For an open set 
 in bC ; a �nite
boundary point a of it is said to satisfy the capacity density condition with respect to 

if CD(a;
c) > 0: We remark that several kinds of capacity density conditions have been
considered in the literature (see, for instance, [27], [21] and [37]).

3.2. �-regularity. A. Ancona introduced the notion of (uniform) �-regularity in [3]. In
this article, a �nite boundary point a of an open set 
 will be called �-regular if there exist
positive constants " and r0 such that !a;r;
 � 1� " in 
 \ @B(a; r=2) for all 0 < r < r0:
When we try to interpret the �-regularity at the point a as a notion of how the local

harmonic measure at a decreases as we approach a; we come to see that this is nothing
but the LHMD property in the following theorem. As was stated, a prototype of the next
theorem was stated by A. Ancona [3], however his statement handles only the case that
the dimension is greater than two.
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3.3. Characterizations.

Theorem 3.1. For a �xed r0 with 0 < r0 � +1 and for a �nite boundary point a of an

open set 
 in bC ; the following are equivalent.

(1) a satis�es the capacity density condition with respect to 
; namely, there exists a

positive constant c such that Cap(B(a; r) \ 
c) � cr holds for any 0 < r < r0:
(2) For any 0 < t < 1; there exists a constant " 2 (0; 1) such that !a;r;
 � 1 � " on


 \ @B(a; tr) for any 0 < r < r0:
(3) There exist constants t; " 2 (0; 1) such that !a;r;
 � 1� " on 
 \ @B(a; tr) for any

0 < r < r0:
(4) There exist positive constants C and � such that

!a;r;
(z) � C

� jz � aj
r

��

for any 0 < r < r0 and z 2 BÆ(a; r) \ 
:

Moreover, these constants depend only on each other, not on the particular point a:

Remark. In [43, p. 104], as a consequence of Wiener's criterion, it is stated that the
condition lim supr!0Cap(B(a; r) \ 
c)=r > 0 implies the regularity of a with respect to

:

3.4. Some technical quantities. To make our statement brief, we de�ne several tech-
nical quantities. Let �r0(a;
) denote the supremum of possible exponents of LHMD
property at a 2 @b
 with respect to 
 for 0 < r < r0; in other words,

�r0(a;
) = lim
Æ!0

inf
0<r<r0

inf
z2
\B(a;Ær)

log!a;r;
(z)

log(jz � aj=r) :

By the monotonicity !a;r;
 � !a;r0;
 in 
\BÆ(a; r0) for 0 < r0 < r (proved by the minimum
principle), it is clear that this quantity does not depend on the particular choice of r0 > 0
if r0 is �nite. Hence we can write simply �r0(a;
) = �(a;
) for 0 < r0 < +1:
Furthermore, we use the more technical quantities "r0(a; t;
) and "(a; t;
) for 0 < t <

1; a 2 @b
 and 0 < r0 � +1 which are de�ned by

"r0(a; t;
) = 1� sup
0<r<r0

sup
z2
\BÆ(a;tr)

!a;r;
(z);

and "(a; t;
) = limr0!0 "r0(a; t;
): The �-regularity at a means that "(a; 1=2;
) > 0:
By using these quantities, apart from the dependence of the constants in the statement,

we can restate the above theorem as the equivalence of the following four conditions:

(1') CDr0(a;

c) > 0:

(2') "r0(a; t;
) > 0 for all 0 < t < 1:
(3') "r0(a; t;
) > 0 for some 0 < t < 1:
(4') �r0(a;
) > 0:

In the case r0 < +1; as we remarked, �r0(a;
) = �(a;
): Therefore, these conditions
do not depend on the particular choice of r0 as far as r0 < +1: In particular, we can
eliminate r0 from the above four conditions.

10



From now on, we concentrate on the proof of the equivalence of the above four condi-
tions. The dependence of the constants can be observed in the proof below, so we will
omit the detailed discussion for it. The implication (2'))(3') is trivial.

3.5. Proof of (3'),(4'). The equivalence (3'),(4') can be seen from the following
lemma.

Lemma 3.2. Let 0 < r0 � +1: For any t 2 (0; 1); we have the inequality

log(1� "r0(a; t;
))

log t
� �r0(a;
) � lim inf

Æ!0

log(1� "r0(a; Æ;
))

log Æ
:(3.1)

As an immediate consequence of the above inequality, we see that the limit exists and
satis�es the identity

�r0(a;
) = lim
t!0

log(1� "r0(a; t;
))

log t
:

Proof of Lemma 3.2. Set " = "r0(a; t;
): Since !a;r � 1 � " on 
 \ @B(a; tr) for
0 < r < r0; we can show

!a;r � (1� ")!a;tr on 
 \BÆ(a; tr)

by the generalized minimum principle. The repetition of this gives us the estimate

!a;r � (1� ")n!a;tnr on 
 \BÆ(a; tnr)

for any 0 < r < r0: Therefore, for z 2 
 \ BÆ(a; r) if we choose an integer n such that
tn+1r � jz � aj < tnr; then we have

!a;r(z) � (1� ")n!a;tnr(z) < (1� ")n � 1

1� "

� jz � aj
r

��

;

where � = log(1� ")= log t: It is worthwhile recording this inequality separately:

!a;r;
(z) � 1

1� "r0(a; t;
)

� jz � aj
r

��

; for z 2 
 \B(a; tr); 0 < r < r0;(3.2)

where

� =
log(1� "r0(a; t;
))

log t
:(3.3)

Hence, we obtain �r0(a;
) � log(1� "r0(a; t;
))= log t: Thus the left-hand side in (3.1) is
proved.
In order to show the right-hand side, we take any � with 0 < � < �r0(a;
): Then,

there exists a small number Æ0 > 0 such that log!a;r(z)= log(jz � aj=r) > �; namely,
!a;r(z) < (jz � aj=r)� for z 2 
 \ B(a; Ær); 0 < r < r0 and for 0 < Æ < Æ0: In particular,
we have "r0(a; Æ;
) � 1�Æ�; in other words, � � log(1�"r0(a; Æ;
))= log Æ for 0 < Æ < Æ0:
The last inequality implies � � lim infÆ!0 log(1 � "r0(a; Æ;
))= log Æ: Thus we get the
conclusion.
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3.6. Proof of (4'))(1'))(2'). The implications (4'))(1'))(2') (and thus the comple-
tion of the proof of Theorem 3.1) follows from the arguments below. In particular, we
will obtain the next result.

Proposition 3.3. Let a 2 @b
 and let 0 < r0 � +1: Suppose that LHMD property (2.3)
with exponent � > 0 holds for a constant C � 1: Then, we have the inequality

� logCDr0(a;

c) � '(C) + 1

�
;(3.4)

where ' : [1;+1)! [0;+1) is the inverse function of x 7! ex=(1 + x): In particular, we

have

�r0(a;
) �
'(C) + 1

� logCDr0(a;

c)
:

Conversely, for any given number m with 0 < m < 1; there exists a positive number K0

depending only on m such that

m

minf� logCDr0(a;

c); K0g � �r0(a;
):(3.5)

Remark. Note that the asymptotic behaviour of ' :

'(C) = logC + log logC + (1 + o(1))
log logC

logC
; C !1:

On the other hand, it is quite elementary to show the inequality cosh(3x=4) < ex=(1 +
x) < cosh(x) for all positive x: Therefore, we obtain the useful estimate cosh�1(C) =
log(C +

p
C2 � 1) < '(C) < 4 cosh�1(C)=3 for C > 1:

For simplicity, we assume that a = 0 and write Br = B(0; r) and !r = !0;r;
: Denote
by gr Green's function of 
r with pole at in�nity, where 
r is the connected component
of bC n (Br \ 
c) containing 1: Then gr(z) = log jzj � logCr + o(1) as z ! 1; where
Cr = Cap(Br \ 
c):
First we show inequality (3.4). Set " = "r0(a; t;
) and �x 0 < r < r0: Also set

M = supz2@Br\
 gr(z): Then, noting that gr = 0 q.e. on @
\Br; we can seeM!r�gr � 0
on 
 \ BÆ

r by the minimum principle. Therefore, gr � M!r � (1� ")M on 
 \ @Btr: In
particular,

gr(z)� log(jzj=tr) � (1� ")M(3.6)

on 
r \ @Btr: Since gr(z) � log(jzj=tr) is harmonic near the point at in�nity, we see
inequality (3.6) remains valid also in 
rnBtr: Using this, we haveM � (1�")M+log(1=t);
which implies "M � log(1=t): By (3.6) again, gr(z) � log(jzj=tr) � (1=" � 1) log(1=t)
for z 2 
r with jzj > tr: Applying this for z = 1; we then have � logCr � (1=" �
1) log(1=t) + log(1=tr) = log(1=t)=" � log r; thus Cr � t1="r: The last inequality means
CDr0(a;


c) � t1="r0 (a;t;
); in other words,

� logCDr0(a;

c) � log(1=t)

"r0(a; t;
)
:(3.7)
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Assume now condition (2.3) for �;C; r0: Taking 0 < t < 1 so that Ct� < 1; from inequality
(3.7) we obtain

� logCDr0(a;

c) � log(1=t)

1� Ct�
=

x

1� Ce��x
=: f(x);

where we set t = e�x for x > 0: Now we minimize f(x): Let x0 be the unique positive
solution of the equation f 0(x) = 0; equivalently, e�x = C(1 + �x): In terms of ' de�ned
in the statement of Proposition 3.3, we can write x0 = '(C)=�: Since f(x0) = x0 + 1=�;
we get (3.4).
Secondly, we show (3.5) and implication (1'))(2'). To prove these, we will use a variant

of the Harnack inequality:

Lemma 3.4. For a positive constant r > 0; let u be a positive harmonic function in the

domain D �r := fz 2 C ; jzj > rg which satis�es u(z) = log jzj + c + o(1) as z ! 1: Then
u(z) > log(jzj=r) for z 2 D �r ; in particular, c � log 1=r: Moreover, the inequality

jzj � r

jzj+ r
� u(z)� log(jzj=r)

c+ log r
� jzj+ r

jzj � r

holds for z 2 D �r :

Noting v(z) = u(z)� log(jzj=r) > 0 by the minimum principle, we apply the ordinary
Harnack inequality to the positive harmonic function v(1=w) in jwj < 1=r to show the
above inequality.
Now �x an arbitrary number Æ with 0 < Æ < t and set K = � logCDr0(a;


c) � 0 for
some r0 > 0: By Lemma 3.4,

jzj � Ær

jzj+ Ær
� gÆr(z)� log jzj=Ær

log Ær=CÆr
� jzj+ Ær

jzj � Ær
;

for jzj > Ær: In particular, we then have

L := min
jzj=r

gÆr(z) � log
1

Æ
+
1� Æ

1 + Æ
log

Ær

CÆr
;

L0 := max
jzj=tr

gÆr(z) � log
t

Æ
+
t+ Æ

t� Æ
log

Ær

CÆr
:

Applying Lemma 3.4 to gÆr � L; we get the inequality � logCÆr � L + log r � 0: On
the other hand, noting that gÆr � L!r on 
 \ Br; we obtain M := supz2
\@Btr

!r(z) �
supjzj=tr gÆr(z)=L = L0=L: Hence, using CÆr � e�KÆr; we have

M � log t
Æ
+ t+Æ

t�Æ
log Ær

CÆr

log 1
Æ
+ 1�Æ

1+Æ
log Ær

CÆr

� 1� log 1
t
�K( t+Æ

t�Æ
� 1�Æ

1+Æ
)

log 1
Æ
+K 1�Æ

1+Æ

:

Since r can be taken arbitrarily as long as 0 < r < r0; we conclude

log(1� "r0(a; t;
))

log t
� "r0(a; t;
)

log 1
t

� 1�K( t+Æ
t�Æ

� 1�Æ
1+Æ

)= log 1
t

log 1
Æ
+K 1�Æ

1+Æ

(3.8)

for any pair (t; Æ) with 0 < Æ < t < 1: We can easily see that, for a �xed t; the right-most
term in (3.8) is positive for suÆciently small Æ; and thus, we have proved the implication
(1'))(2').
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In order to get inequality (3.5) we choose Æ and t so that t = minf(CDr0(a;

c))�; xg and

Æ = t2; where the positive numbers x and � will be speci�ed later. Set K 0 = log(1=t)=� =
maxfK; log(1=x)=�g: By (3.8), we now have

log(1� "r0(a; t;
))

log 1
t

� 1�K(1+t
1�t

� 1�t2

1+t2
)=�K 0

2�K 0 +K 1�t2

1+t2

� 1� (1+t
1�t

� 1�t2

1+t2
)=�

(2� + 1�t2

1+t2
)K 0

=
h�(t)

K 0
� h�(x)

K 0
;

where

h�(x) =
1 + x2 � 2x(1 + x)=�(1� x)

2�(1 + x2) + 1� x2
:

The last inequality follows from the fact that the function h�(x) is monotonically decreas-
ing in 0 < x < 1: Actually, a direct calculation yields h0�(x) = �2(1 + x)2(2�(1 � x +

x2) + 1� x2)=(1� x)2(2�(1 + x2) + 1� x2)2 < 0: Since lim�!0 limx!0 h�(x) = 1; we can
choose suÆciently small x > 0 and � > 0 so that h�(x) > m: By Lemma 3.2, if we set
K0 = log(1=x)=�; we have (3.5).

Remark. It is not diÆcult to obtain practically an explicit valueK0 for a givenm between
0 and 1: For example, suppose we are givenm = 1=4: Then, if we choose � = 1 and x = 0:1;
we have h1(0:1) = 0:254 � � � > 1=4: Therefore, we can take K0 = � log 0:1 � 2:3:

4. LHMD property and uniform perfectness

4.1. Global and uniform capacity density conditions. Ch. Pommerenke [32] proved

that a compact set E in the Riemann sphere bC is uniformly perfect if and only if E
satis�es the global capacity density condition: CDd(E) > 0; where d = diamE and we
write CDr0(E) = infa2Enf1gCDr0(a; E) for 0 < r0 � +1: Moreover, he gave the explicit
estimate

k(E)2=32 � CDd(E) � k(E);(4.1)

where k(E) is the supremum of numbers c � 0 so that E \fz; cr � jz�aj � rg 6= ; holds
for any a 2 E n f1g and 0 < r < diamE:
We will say that E satis�es the uniform capacity density condition if CD(E) > 0; where

CD(E) = limr0!0CDr0(E): When diamE < +1; the global capacity density condition
is same as uniform capacity density condition. Note that this is not true in general if
diamE = +1:

4.2. Global and uniform LHMD properties. In an analogous way, we introduce
two kinds of LHMD properties for open sets. An open set 
 will be said to satisfy the
uniform LHMD property with exponent � > 0 if there exist constants 1 � C < +1 and
0 < r0 � +1 such that !a;r;
(z) � C(jz � aj=r)� for all r with 0 < r < r0; a 2 @b

and z 2 
 \ B(a; r): Furthermore if we can take r0 = d = diam@
; we will say that 

satis�es the global LHMD property. Note that the global LHMD property coincides with
the uniform LHMD property if d < +1 (cf. x4.3).
By this terminology, we can say that the complement of an open subset 
 of bC with

#@
 � 2 is uniformly perfect if and only if 
 satis�es the global LHMD property. In
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particular, the global LHMD property is preserved by quasiconformal mappings on 

although the exponent may change, because the uniform perfectness is invariant under
quasiconformal mappings (see, for instance, [41]).

4.3. Example. In order to illustrate the need to distinguish the term \global LHMD"
from \uniform LHMD", we give a simple example. Let fang be a sequence of real numbers
satisfying the condition an+1 � an ! +1 as n ! 1: Then, the domain 
 = C nS1

n=1B(an; 1) satis�es the uniform LHMD property with exponent 1 for any positive
�nite number r0 > 0 (see Theorem 5.2 below), but not for r0 = +1 because 
c is not
uniformly perfect.

4.4. Relation between local and global harmonic measures. We mention here
an important relation between local and global harmonic measures. In view of (2.2),
if a boundary point a satis�es LHMD property (2.3) with exponent �; then the global
harmonic measure !̂a;r;
 satis�es the same inequality. It is a remarkable fact that the
converse is also true in general. For a bounded domain in Rn (n � 2); H. Aikawa [2] proved
the following: Suppose that the global harmonic measures satisfy !̂a;r;
(z) � C(jz�aj=r)�
for all a 2 @b
; r with 0 < r < r0 and z 2 
 \ BÆ(a; r); where �; C and r0 are positive
constants. Then !a;r;
(z) � C 0(jz � aj)� holds for all a 2 @b
; r with 0 < r < r00 and
z 2 
 \ BÆ(a; r); where C 0 and r00 are constants.

4.5. Characterization of uniform perfectness in terms of hyperbolic metric.
The uniform perfectness can be characterized also in terms of the hyperbolic metric. Let

 be an open set in bC of hyperbolic type, namely, #@
 � 3: Then the hyperbolic metric
�
(z)jdzj of curvature �4 can be de�ned on each connected component of 
: Let Æ
 be
the distance function of 
; namely Æ
(z) = dist(z; @b
) = minfjz � aj; a 2 @b
g: For
0 < r � +1; we consider the open subset 
(r) = fz 2 
; Æ
(z) < rg: The following
result is essentially due to Beardon and Pommerenke [6]. (In the case when 1 2 
; we
need something more but we omit it.)

Theorem B. Let 
 be an open subset of bC of hyperbolic type. Then the complement 
c

is uniformly perfect if and only if

inf
z2
(d)

Æ
(z)�
(z) > 0;

where d = diam@
:

4.6. Localized quantities measuring boundary. In view of the relation

inf
z2
(d)

Æ
(z)�
(z) = inf
z2
(d)

inf
a2@b


jz � aj�
(z) = inf
a2@b


inf
z2
(d)

jz � aj�
(z);

it may be natural to introduce the quantities

�r(a;
) = inf
z2
\B(a;r)

jz � aj�
(z) and �r(a;
) = inf
z2
\B(a;r)

Æ
(z)�
(z)

for 0 < r � +1 and a 2 C n 
: We conventionally de�ne these values to be +1 if

 \ B(a; r) is empty. Note that Zheng [44] introduced a similar quantity (which is, in
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fact, same as �1(a;
)) and proved several related results. Since Æ
(z) � jz � aj; we
always have �r(a;
) � �r(a;
): Then, actually, one can easily check

inf
z2
(r)

Æ
(z)�
(z) = inf
a2@b


�r(a;
) = inf
a2@b


�r(a;
)

for any 0 < r � +1: Letting r = diam@
; we can summarize these observations as
follows.

Theorem 4.1. Let 
 be an open set in bC with #@
 � 3 and set d = diam@
: Then, the
following conditions are equivalent.

(a) @
 is uniformly perfect.

(b) 
 satis�es global LHMD property. In other words, there exist constants C � 1
and � > 0 such that !a;r;
(z) � C(jz � aj=r)� for all a 2 @b
; 0 < r < d and

z 2 
 \ BÆ(a; r):
(c) inffCDd(a;


c); a 2 @b
g > 0:
(d) inff�d(a;
); a 2 @b
g > 0:
(e) inff�d(a;
); a 2 @b
g > 0:

Moreover, if d < +1; we can replace d by any positive number r0 in the above conditions.

4.7. A geometric localized quantity. Now we further introduce a geometric quantity.
We say that A is a round annulus centered at a if A has the form fz 2 C ; r1 < jz�aj < r2g
for constants 0 � r1 < r2 � +1 and set M(A) =

p
r1r2 and mod(A) = log(r2=r1): Let

a 2 C n 
: For 0 < r � +1; we denote by Ar(a;
) the set of round annuli A in 

centered at a with M(A) � r: Note that, if 2r � d = diam@
; each annulus in Ar(a;
)
separates @
: Finally, set

mr(a;
) = sup
A2Ar(a;
)

mod(A):

Here, we de�ne mr(a;
) = 0 if Ar(a;
) is empty. We note the obvious relation

� log k(
c) = sup
a2Cn


md(a;
);(4.2)

where d = diam@
:
Using the inequality due to J. A. Hempel [18] and J. A. Jenkins [22]:

�Da;b
(z) � 1

jz � aj(2j log j z�a
b�a
jj+K)

;(4.3)

where Da;b = C n fa; bg and K = �(1=4)4=2�2 � 8:7537; we can show the following result.

Proposition 4.2. Let a 2 C n 
 and 0 < r � +1: Then

1

mr(a;
) +K
� �r(a;
) � �

2mr(a;
)
:

Proof. The proof can proceed as in [6]. Let A 2 Ar(a;
) and take a point z0 2 A so that
jz0 � aj = M(A)(� r): Since �
(z0) � �A(z0) = �=2mod(A)M(A) = �=2jz0 � ajmod(A)
(see [6]), we see �r(a;
) � jz0 � aj�
(z0) � �=2mod(A): Thus, the right-hand side has
been obtained.
Next, we prove the left-hand side. Take any number m with m > mr(a;
): Fix an

arbitrary point z0 in 
\B(a; r) and set r0 = jz0�aj: Then, the annulus A = fz; e�m=2r0 <
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jz � aj < em=2r0g must not belong to Ar(a;
); so we can �nd a point b 2 @b
 \ A: Since
e�m=2 < j(z0�a)=(b�a)j < em=2; by (4.3), we have �
(z0) � �Da;b

(z0) � 1=jz0�aj(m+K):
Now the conclusion easily follows.

Corollary 4.3. Let a 2 @b
: Then
lim inf
z!a in 


jz � aj�
(z) > 0 , lim sup
r!0

mr(a;
) < +1:

4.8. Comparisons between localized quantities. As was seen before, the LHMD
property of 
 at a can be characterized by the condition CD(a;
) > 0: Occasionally, a
geometric characterization of it would be more preferable for us. In view of Theorem 4.1,
one may expect that CDr(a;


c) > 0 is equivalent to �r(a;
) > 0 or to �r(a;
) > 0:
Unfortunately, neither is true in general as we shall see later. However, these conditions
are good geometric criteria to test the validity of the inequality CDr(a;


c) > 0:

Theorem 4.4. Let a 2 @b
 and 0 < r � diam@
: Then we have

1

�r(a;
)
� �(1=4)4

2�2
� � logCDr(a;


c) � �

�r(a;
)
+ 5 log 2

Proof. Obviously, � logCDr(a;

c) � mr(a;
)=2; so we get the left-hand side inequality

from Proposition 4.2. Next, we prove the right-hand side. Set � = �r(a;
): First, note the
inequality � � 1=2: Actually, if we choose z0 in 
\B(a; r=2); then there exists a point b 2
@
\B(a; r) such that r0 := Æ
(z0) = jz0�bj: Note that the disk � = fz 2 C ; jz�z0 j < r0g
is contained in 
: Set zt = z0+t(b�z0) for each t 2 [0; 1): Since, Æ
(zt) = jzt�bj = (1�t)r0;
we obtain Æ
(zt)�
(zt) � Æ
(zt)��(zt) = (1� t)r0 �1=r0(1� t2) = 1=(1+ t): Letting t! 1;
we have � � 1=2:
Consider the open subset 
0 = 
 \ BÆ(a; r) of 
: We show the inequality

inf
z2
0

Æ
0
(z)�
0

(z) � �:

Clearly, Æ
0
(z) = minfÆ
(z); r�jz�ajg holds for z 2 
0: Since Æ
(z)�
0

(z) � Æ
(z)�
(z) �
�; and since (r � jz � aj)�
0

(z) � (r � jz � aj)�BÆ(a;r)(z) = r=(r + jz � aj) > 1=2 � �; we
obtain the desired inequality.
Set d0 = diam
0 � 2r: From Proposition 4.2, we deduce � � �d0(b;
0) � �d0(b;
0) �

�=2md0(b;
0) for each b 2 C n 
0: Noting the relation (4.2), we get � log k(
c
0) � �=2�:

Now we can use (4.1) to prove � logCD1(

c
0) � log(32=k(
c

0)
2) � �=� + 5 log 2: Since

CDr(a;

c) � CD1(a;


c
0); we conclude the �nal inequality.

As a direct consequence of the above theorem, we have the following implications:

lim
r!0

�r(a;
) = lim inf
z!a in 


Æ
(z)�
(z) > 0

) CD(a;
c) = lim inf
r!0

Cap(
c \ B(a; r))
r

> 0

) lim
r!0

�r(a;
) = lim inf
z!a in 


jz � aj�
(z) > 0:

However, as we announced, these implications are both strict. We end this section with
showing it by simple examples.
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Example 4.1. Let H denote the right half plane fz 2 C ; Re z > 0g and set 
 = H n
f2n;n 2 Zg; where Z stands for the set of integers. Since each 2n is an isolated boundary
point of 
; we can see that Æ
(z)�
(z)! 0 as z ! 2n: Therefore, lim infz!0 Æ
(z)�
(z) =
0:
On the other hand, since a countable set is polar, we obtain Cap(
c \ B(0; r)) =

Cap(H c \ B(0; r)) = C0r for r > 0; where C0 = Cap(H c \ B(0; 1)) > 0: Hence, we have
CD(0;
c) = C0 > 0: This example shows that the �rst implication is strict.

Example 4.2. Next consider the domain 
 = C � n f2n;n 2 Zg; where C � = C n f0g:
Then, mr(0;
) = log 2 for all 0 < r < +1: Therefore, by Corollary 4.3, we see
lim infz!0 jzj�
(z) > 0:
On the other hand, clearly, we have CD(0;
c) = 0: Hence, this example shows that the

second implication is strict.

We remark that, in the above examples, we can replace each singleton f2ng by a suÆ-
ciently small closed disk B(2n; rn) to obtain a domain without isolated boundary point.

5. Estimates of local harmonic measures

In the last section, we investigated geometric and analytic characterizations of the
LHMD property. In particular, we saw that a domain has the global LHMD property if
and only if the boundary of the domain is uniformly perfect. The exponent of LHMD is,
however, not very explicit with respect to the uniform perfectness constant, or at least, it
is not easy to calculate it accurately.
So, in this section, for a given exponent � > 0; we present several geometric conditions

which guarantee the LHMD property with the exponent � at a boundary point.
In our argument, it is crucial to use some monotonicity principles for harmonic mea-

sures, one of which is the following.

Lemma 5.1. Suppose that domains 
 and ~
 satisfy 
 � ~
 and a 2 C n ~
: Then, we
have !a;r;
 � !a;r;~
 on 
 \BÆ(a; r):

This can be easily veri�ed by the generalized minimum principle.

5.1. Exterior circle condition. We start with a suÆcient condition for local harmonic
measures to have linear growth.
In this article, for a number � > 0; a domain 
 will be said to satisfy the exterior circle

condition with radius � at a �nite boundary point a of 
; if there exists a closed disk �
with radius � satisfying a 2 @� and �\
 = ;: This kind of condition was �rst considered
by H. Poincar�e.
If 
 satis�es the exterior circle condition with �xed radius � at every �nite boundary

point, then 
 is said to satisfy the uniform exterior circle condition with radius �: A
domain 
 is convex if and only if 
 satis�es the exterior circle condition with arbitrarily
large radius � > 0:
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Theorem 5.2. Let 
 be a domain in the Riemann sphere satisfying the exterior circle

condition with radius � at a 2 @b
: Then the inequality

!a;r;
(z) �
arcsin

�q
1�(r=2�)2

1+(jz�aj=r)2+jz�aj=�
� jz�aj

r

�
arcsin

p
1� (r=2�)2

� 2
jz � aj
r

(5.1)

holds for any 0 < r < 2� and any point z 2 
 with jz � aj < r:

Proof. Without loss of generality, we may assume that a = 0; r = 1 and � = fjz��j � �g;
and hence 1 < 2�: Let �0 = ei' be the intersection point of the unit circle and @� with
positive imaginary part (so 0 < ' < �=2). The angle ' is determined by the relation

cos' = 1=2�: We set ~
 = bC n� and write ! = !0;1;
 and ~! = !0;1;~
: Since the function

[(1� �0z)=(1� ��0z)]
�=' maps ~
 \ BÆ(0; 1) conformally onto the upper half plane, we can

compute ~! directly as

~!(z) =
1

'
arg

�
1� �0z

1� ��0z

�
=

1

'

�
2'� arg

�
�0 � z
��0 � z

��
:

If jzj = t < 1; then we have ~!(z) � ~!(�t) = 2('� arg(�0 + t))='; because the equipo-
tential curves of ~! consists of those open circular arcs in ~
\BÆ(0; 1) whose endpoints are
�0 and ��0: Setting � = '� arg(�0 + t); by the sine formula, we obtain

t

sin �
=
j�0 + tj
sin'

=

p
1 + t2 + t=�

sin'
� 1

sin'
:

Hence,

~!(z) =
2�

'
=

2

'
arcsin

 s
1� 1=4�2

1 + jzj2 + jzj=� jzj
!
� 2

'
arcsin(jzj sin') � 2jzj:

Finally, applying Lemma 5.1, we get the conclusion.

As we see from the proof, the �rst inequality in (5.1) is sharp.

5.2. Domains with smooth boundary of curvature bounded below. A bounded
domain whose boundary is of class C2; of course, satis�es the uniform exterior circle
condition with suÆciently small constant �: However, in order to get an explicit estimate,
we should impose on the curvature bound for the boundary curves. Now we formulate
one of the results in this direction.
For an oriented regular C2 simple closed plane curve � : I ! C parametrized by the

arclength, we can de�ne the curvature � : I ! R by

�(t) = Im
�00(t)

�0(t)
=

d

dt
arg �0(t):

As elementary di�erential geometry tells us, the curvature �(t) represents the (signed)
reciprocal of curvature radius of the curve � at the point �(t): If the curvature is non-
negative, then the domain bounded by the curve is convex. In particular, if the curvature
is bounded by a positive constant from below, the domain is strictly convex.
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Let 
 � bC be a domain whose boundary in C consists of �nitely many disjoint smooth
regular simple curves of class C2: We will always assume that the inclusion of each curve
into C is a proper map. Therefore, if a boundary curve is not closed, it must terminate at
the point at in�nity in both directions. Note that we do not assume any di�erentiability
of boundary curves at the point at in�nity and admit the situation that several boundary
curves meet at the point at in�nity.
Here and hereafter, the boundary curves will be positively oriented with respect to

the domain 
; in other words, if we proceed along the boundary curve according to
the orientation, we can see the domain 
 in the left. The curvature will be de�ned in
accordance with this orientation.
We denote by p
 the inner distance on 
; precisely, p
(z; w) = inf� diam �; where

the in�mum is taken over all paths � connecting z and w in 
 and diam � denotes the
Euclidean diameter of the curve �: Because 
 has smooth boundary, p
 can be extended
continuously on 
 n f1g: Note that jz � wj � p
(z; w) by de�nition.
Now we are ready to state our theorem.

Theorem 5.3. Let 
 � bC be a domain whose boundary in C consists of smooth curves of

class C2 with curvature not less than �1=�; where � is a positive constant or +1: Then,
for each �nite boundary point a of 
; estimate (5.1) holds for any 0 < r < 2� and any

point z 2 
 with p
(a; z) � r:

The assertion above can be shown by the same method as in the proof of Theorem 5.2
if we know the following global property of plane curves.

Proposition 5.4. Let � be an oriented regular simple closed plane curve of class C2 whose

curvature � satis�es � � �1=� at every point on �; where � is a positive constant. For

each point a on �; let � denote the open disk of radius � which is tangent to and sitting

on the right of the curve � at the point a: Suppose that a subarc �1 of � starting from the

point a intersects �: Then the Euclidean diameter of �1 is at least 2�:

This proposition is intuitively trivial, however it seems not to be easy to give a rigorous
proof of it. We could not �nd a reference for this result, so we will include a proof of this
proposition in Appendix for the convenience of the reader.

Remark. As is seen from the proof, the assumption on � can be weakened in the above
proposition as follows: � is an oriented regular simple closed plane curve of class C1 for

which �0 is absolutely continuous and � = Im (�00=�0) � �1=� a.e., where � is parametrized

by arclength. In particular, if � is of class C1;1; i.e., � is of class C1 and �0 is Lipschitz
continuous, then the above proposition is applicable.

5.3. Generalized exterior wedge condition. Our next theorem treats domains with a
generalized exterior wedge condition. For the precise statement, we prepare some notation.
Let 
 be an open set in the Riemann sphere. For a 2 C and 0 < r <1; we set

Lr(a;
) =

(
�1 if @B(a; r) � 
;

j@B(a; r) \ 
cj=r otherwise,

here j � j denotes the one-dimensional Lebesgue measure. In particular, 0 � Lr(a;
) � 2�
or Lr(a;
) = �1:
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For � 2 [0; 2�); an open set 
 such that Lr(a;
) � � for a 2 @b
 and 0 < r < �; where
� is a positive constant, will be said to satisfy the generalized exterior wedge condition at
a with opening � (and with height �). This notion is, of course, a generalization of the
usual exterior wedge condition, which means that there is a (closed) wedge of opening �
and height � with vertex at a which lies in the complement of the domain.
For � 2 [0; 2�); if there exists a positive constant � such that Lr(a;
) � � for any

a 2 @b
 and for any 0 < r < �; the domain 
 is said to satisfy the uniform generalized

exterior wedge condition of opening � (with height �). Actually, it is clear that there does
not exist a domain satisfying the uniform generalized exterior wedge condition of opening
� with � > �:

Theorem 5.5. Let 
 be an open subset in bC and let � 2 [0; 2�) and � > 0 be constants.

Suppose that Lr(a;
) � � for a �nite boundary point a of 
 and for all r with 0 < r < �:
Then the estimate

!a;r;
(z) � 4

�
arctan

 � jz � aj
r

� �
2���

!
<

4

�

� jz � aj
r

� �
2���

(5.2)

is valid for any 0 < r < � and z 2 
 \ BÆ(a; r): In particular, 
 satis�es the LHMD

property with exponent �=(2� � �) at the point a:

When the domain satis�es the (usual) exterior wedge condition, the above theorem
agrees with a special case of the result of K. Miller [31] concerning the boundary H�older
regularity.
When the boundary component of 
 containing a is non-degenerate, namely, it is a

continuum, then 
 satis�es the generalized exterior wedge condition at a with opening
0: Hence, by the above theorem, 
 enjoys the LHMD property with exponent 1=2 at a:
Combining with Theorem 2.2, we can see that a is an �-H�older regular boundary point for
any � with 0 < � < 1=2: This agrees with a result of A. Hinkkanen [19]. More speci�cally,
if � = 0; a = 0 and r = 1; the �rst inequality in (5.2) takes the form

!0;1;
(z) � 4

�
arctan

�p
jzj
�
=

2

�
arccos

�
1� jzj
1 + jzj

�
:

This inequality is known in this case, namely, when @
 contains a continuum connecting
0 with the unit circle ([36], see also [15, Chap. VIII x4]).
Proof. We may assume that a = 0 and r = 1: Let 
� denote the circular symmetrization
of 
; precisely, 
� = ftei�; 0 < t <1; 2j�j < 2��Lt(a;
)g: The following is a deep result
due to A. Baernstein II.

Lemma 5.6 (Baernstein II [4, Theorem 7]). !0;1;
(z) � !0;1;
�(jzj) for z 2 
 \BÆ(0; 1):

By assumption, we know 
�\BÆ(0; 1) � ~
\BÆ(0; 1); where ~
 = ftei�; 0 < t < 1; 2j�j <
2� � �g: The function w = z�=(2���) maps ~
 \ BÆ(0; 1) conformally onto the right half
unit disk. Therefore, we can see

!0;1;~
(z) =
2

�

�
� � arg

��i� w

i� w

��
:
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In particular, !0;1;~
(jzj) = 4
�
(�
2
� arctan 1

jwj
) = 4

�
arctan jwj = 4

�
arctan(jzj�=(2���)): Now,

combining Lemma 5.6 with Lemma 5.1, we obtain !0;1;
(z) � !0;1;
�(jzj) � !0;1;~
(jzj);
and thus we have shown the desired estimate.

5.4. H�older regularity at outward pointing cusps. From the above result, we know
the existence of domains which admit �-H�older regular boundary points for � � 1: For
example, consider the sector 
 = fz 2 C � ; 0 < arg z < �g for � 2 (0; �): Then the origin
is �-H�older regular with respect to 
 for any � < �=� by Theorem 2.2. Of course, such
points are not generic in the boundary.
Moreover, we can observe that an outward pointing cusp is �-H�older regular for any

positive �:

Theorem 5.7. Let a be a �nite boundary point of an open set 
 in bC : Suppose that

Lr(a;
) � 2��r=� for all 0 < r < r0; where � and r0 are positive constants with r0 � 2�:
Then, we have

!a;r;
(z) <
4

�
exp

�
��(jz � aj � r)

rjz � aj
�
<

4

�
exp

�
��

r0

�
1� r

jz � aj
��

(5.3)

for 0 < r < r0 and for z 2 
 \BÆ(a; r): In particular, the point a is �-H�older regular for
any positive number �:

Proof. The proof is similar to that of Theorem 5.5. We may assume that a = 0: Let

� be the circular symmetrization of 
 described in the proof of Theorem 5.5. Since
Lr(a;
) � 2� � 2 arcsin(r=2�) for 0 < r < r0; we obtain 
� � ~
 = frei�; 0 < r <
r0; j�j < arcsin(r=2�)g: Geometrically, ~
 is the right component of the open set BÆ(0; r0)n
(B(i�; �) [B(�i�; �)):
Now �x r with 0 < r < r0: Consider the domain ~
r = ~
 \ BÆ(r=2; r=2) and set u =

!(�; @ ~
r\@B(r=2; r=2); ~
r): Then, by the minimum principle, we can see that !0;r;~
 < u in
~
r: Therefore, using Lemmas 5.1 and 5.6, we obtain !0;r;
(z) � !0;r;
�(jzj) � !0;r;~
(jzj) <
u(jzj) for any z 2 
 \ BÆ(0; r):
We next compute the value u(x) for positive x: Note that the M�obius transformation

z 7! ��(r � z)=rz maps ~
r onto the domain fw 2 C ; Re w > 0; jImwj < �=2g: Hence,
the function f(z) = exp(��(r� z)=rz) maps ~
r conformally onto the domain W = fw 2
C ; Re w > 0; jwj > 1g in such a way that f(@ ~
r \ @B(r=2; r=2)) = f�; j�j = 1;Re � >
0g =: I: Since !(y; I;W ) = 2(arg(y + i) � arg(y � i))=� = 4 arctan(1=y)=� < 4=�y for
y > 1; we obtain u(x) < 4=�f(x) = 4 exp(���(r � x)=rx)=�: Taking x = jzj; we get the
desired inequality.

As we can read from the above proof, the following geometric form also holds. Suppose
that, for a 2 @b
; there exist two closed disks B1; B2 of the same radius � in the outside

of 
 satisfying B1 \ B2 = fag: Then, the same inequality as (5.3) holds for r0 = 2�:
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6. Globalization

In the previous sections, we mainly investigated the local behaviour of bounded har-
monic functions at a boundary point. In this section, we use results proved there to obtain
global H�older continuity of Green's function and of PWB solutions of Dirichlet problems
under the assumption of a uniform property of the boundary.

6.1. Reduction of global H�older continuity of Green's function. Let 
 be a do-

main with boundary of positive capacity such that 1 2 
 � bC : Then, 
 admits Green's
function with pole at in�nity, which will be denoted by G = G
: Since G(z) � log jzj
is harmonic and log jzj is Lipschitz continuous near the point at in�nity, we only have
to consider the H�older continuity of G near the boundary of 
: So, we may restrict our
attention to the subset 
(r0) = fz 2 
; Æ
(z) < r0g of 
; where r0 is a �xed positive
number. Of course, the following results are still valid for Green's function with pole at
an arbitrary point under a suitable modi�cation of the statement near the pole.
The �rst assertion enables us to reduce the problem involving two variables to that of

one variable. A similar, more general result can be found, for example, in [19, Lemma A].

Lemma 6.1. Let 
 be a domain containing 1 in bC with regular boundary in the sense

of Dirichlet. For constants � 2 (0; 1] and r0 > 0; the following conditions are equivalent:

(i) G
 is H�older continuous with exponent � in 
(r0); namely, there exists a constant

C1 such that

jG
(z)�G
(w)j � C1jz � wj�
for any pair of points z; w 2 
(r0);

(ii) there exists a constant C2 such that

G
(z) � C2Æ
(z)
�

for any point z 2 
(r0):

In fact, we have C2 � C1 � 21+�C2 for the possible smallest constants C1 and C2 in the

above.

Proof. For simplicity, we write G = G
: By regularity of the boundary, G(z) ! 0 as
z ! � 2 @
: Hence, condition (ii) immediately follows from (i) with the same constant.
Now we show the opposite direction. Assume condition (ii) and let z; w 2 
(r0):

Case 1: 2jz � wj � maxfÆ
(z); Æ
(w)g:
In this case, we have

jG(z)�G(w)j � G(z) +G(w) � C2(Æ
(z)
� + Æ
(w)

�) � 2C2(2jz � wj)�:

Case 2: 2jz � wj < maxfÆ
(z); Æ
(w)g:
We assume that 2jz � wj < Æ
(z) and take an arbitrary Æ 2 (0; Æ
(z)):
For any � 2 D ; we have the Poisson's formula

G(z + Æ�) =
1

2�

Z 2�

0

1� j�j2
jei� � �j2G(z + Æei�)d�:
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Here note the elementary estimate j1 � (1 � j�j2)=jei� � �j2j � 2j�j=(1 � j�j) � 4j�j for
j�j � 1=2: Letting Æ suÆciently near to Æ(z); we can make the modulus of � := (w� z)=Æ
less than 1=2: Thus

jG(w)�G(z)j � 4j�j � 1

2�

Z 2�

0

G(z + Æei�)d� = 4j�jG(z) = 4
jw � zj

Æ
G(z):(6.1)

Letting Æ ! Æ
(z); we have

jG(w)�G(z)j � 4
jw � zj
Æ
(z)

G(z) � 4C2jw � zjÆ
(z)��1

= 4C2jw � zj�
� jw � zj
Æ
(z)

�1��

< 4C2jw � zj�
�
1

2

�1��

= 21+�C2jw � zj�:

In any case, we have the �rst condition with C1 = 21+�C2:

6.2. H�older continuity of Green's function. By the aid of the previous lemma, we
can prove the following. Note that, in the case when 1 2 
; the domain 
 satis�es the
uniform LHMD property if and only if @
 is uniformly perfect (see Theorem 4.1).

Theorem 6.2. Let 
 be a plane domain satisfying the uniform LHMD property with

exponent � > 0: Then Green's function of 
 is H�older continuous with exponent � near

the boundary.

Proof. As before, G denotes Green's function of 
 with pole at 1: By assumption, the
local harmonic measure !a;r;
 satis�es !a;r;
(z) � C(jz � aj=r)� for a 2 @
; 0 < r � r0;
where C and r0 are positive constants. We denote by K the supremum of G(z) in the set

(2r0): Note that G can be regarded as the PWB solution H
(2r0)' for '; where ' = 0
on @
 and ' = G on @
(2r0) \ 
:
Let z 2 
(r0): Then we can take a point a 2 @
 with jz � aj = Æ
(z) = Æ
(2r0)(z): We

now make use of the latter part of Theorem 2.2 to claim

G(z) � CK

� jz � aj
r0

��

= CKr��0 Æ
(z)
�:

Now Lemma 6.1 immediately yields the desired result.

6.3. Applications to uniformly perfect sets. As we have seen, an open set 
 has
uniformly perfect boundary if and only if 
 satis�es global LHMD property (Theorem
4.1). Therefore, the next result, which was �rst stated in [8], immediately follows as a
corollary.

Corollary 6.3. Let 
 � bC be a domain whose boundary is uniformly perfect. Then

Green's function of 
 is H�older continuous up to the boundary.
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Using the quantitative results obtained before, we could have explicit estimates for the
exponent of H�older continuity of Green's function in terms of constants characterizing
uniform perfectness, however those would be, more or less, indirect.
We also note that the following result is obtained by combining with a theorem of

Carleson [7], which asserts the removability of a compact set of Hausdor� dimension less
than � for H�older continuous harmonic functions with exponent � o� the set.

Corollary 6.4. Let � be a number with 0 < � � 1: If an open set 
 � C satis�es the

uniform LHMD property with exponent �; then Hausdor� dimension of its boundary is at

least �:

In particular, a uniformly perfect set has positive Hausdor� dimension (cf. [8]). A
similar result can be found in [41, Theorem 7.2]. If a compact set E contains a continuum,
then, of course, E has Hausdor� dimension at least 1: Therefore, the above corollary
actually makes sense only if @
 is totally disconnected. We know abundant examples of
totally disconnected, uniformly perfect sets such as limit sets in the complex dynamics as
we noted in Introduction.

6.4. Historical remarks. The present research was originally motivated by the above-
mentioned fact that Green's function on a domain with uniformly perfect boundary has
a H�older continuous extension to the boundary. We now explain a little bit more about
the history.
In the book [8] of Carleson and Gamelin published in 1993, it is stated without proof

that Green's function of a domain with uniformly perfect boundary can be extended to
the boundary in a H�older continuous way. (In [9], an outline of the proof is presented
in the case that the domain is a Fatou set, i.e., the complement of a Julia set.) They
remarked that, from this fact, it follows that the Julia set of a rational function of degree
at least two is of positive Hausdor� dimension as was stated above.
The �rst complete proof of this fact appeared in J. Lithner's paper [26] in the literature.

He showed that a compact set is uniformly perfect if and only if the set preserves the local
Markov inequality. To prove that the local Markov inequality implies the global one, he
used and proved the above fact (see also x8.1). His method consists of two steps; the
�rst is to show that a uniformly perfect set necessarily contains a Cantor set with some
uniform property, and the second is to show the complement of such a Cantor set carries
Green's function with H�older continuity property.
Later, J. Siciak gave in [37] an explicit exponent of H�older continuity of Green's function

in terms of condenser capacity density. He also noted in [37] the history of this result
around 1994.

6.5. Applications to domains with uniform exterior conditions. We also have the
following results from Theorems 5.2 and 5.5.

Corollary 6.5. If a plane domain 
 satis�es the uniform exterior circle condition, Green's

function of 
 is Lipschitz continuous near the boundary.

Corollary 6.6. If a plane domain 
 satis�es the uniform generalized exterior wedge con-

dition with opening �; then Green's function of 
 is H�older continuous with exponent

�=(2� � �) near the boundary.
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In particular, any hyperbolic simply connected domain satis�es the generalized exterior
wedge condition with opening 0; and thus its Green's function is H�older continuous with
exponent 1=2; which is a classical result (see also Proposition 7.1 below).

6.6. Lipschitz spaces. Next, we consider the (global) H�older continuity of PWB solu-
tions for bounded, H�older continuous boundary functions.
To make our results more comprehensive, it is desirable to employ the Banach spaces of

H�older continuous functions on subsets of C : For a constant � 2 (0; 1] and for a subset E
of C ; we denote by ��(E) the (real) Banach space consisting of all (real-valued) functions
' on E such that

k'k��(E) := sup
x2E

j'(x)j+ sup
x;y2E;x6=y

j'(x)� '(y)j
jx� yj� <1:

Sometimes, ��(E) is called the Lipschitz space (or the H�older space) on E with exponent
�: Note that ��(E) is continuously embedded in ��(E) if � > �: For convenience, though

somewhat arti�cially, we de�ne ��(E) as ��(Enf1g) even for a subset E of bC containing
1:

6.7. H�older continuity of PWB solutions. Using this notation, we can state one of
our main results as in the following.

Theorem 6.7. Let 
 be a plane domain satisfying uniform LHMD property with exponent

�: Then, for any 
 with 0 < 
 < �; there exists a constant B such that kH
'k�
(
) �
Bk'k�
(@b
) for all ' 2 �
(@b
):

Assume the uniform LHMD property with exponent � for 
; namely, there are some
constants 1 � C < +1 and 0 < r0 � +1 such that !a;r;
(z) � C(jz � aj=r)� holds for
all 0 < r < r0 and z 2 
\BÆ(a; r): Let z 2 
 and take a 2 @b
 such that jz�aj = Æ
(z):
Let ' 2 �
(@b
) for some 
 < �: Then, by Theorem 2.2, we have

jH
'(z)� '(a)j �2�C
�
r�
0 sup

�2@b

j'(�)� '(a)j+ 1

�� 

sup

�;�2@b


j'(�)� '(�)j
j� � �j


�
jz � aj


�2�C �2r�
0 + 1=(�� 
)
� k'k�
(@b
)Æ
(z)
 :

Therefore, we can get the expected conclusion by the following lemma.

Lemma 6.8. Let � 2 (0; 1] and ' 2 ��(@b
): Suppose that a constant C � 1 satis�es

the inequality

jH
'(z)� '(a)j � Ck'k��(@b
)Æ
(z)�

for all ' 2 ��(@b
); z 2 
 and a 2 @b
 such that Æ
(z) = jz � aj: Then kH
'k��(
) �
16Ck'k��(@b
) holds for all ' 2 ��(@b
):

Proof. We write u = H
' for a given ' 2 ��(@b
): Let z; w 2 
:

Case 1: 2jz � wj � maxfÆ
(z); Æ
(w)g:
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Take a and b in @b
 such that jz � aj = Æ
(z) and jw � bj = Æ
(w): Then we have

ju(z)� u(w)j � ju(z)� '(a)j+ j'(a)� '(b)j+ ju(w)� '(b)j
� Ck'k��(@b
)jz � aj� + k'k��(@b
)ja� bj� + Ck'k��(@b
)jw � bj�
� (21+�C + 5�)k'k��(@b
)jz � wj� � 9Ck'k��(@b
)jz � wj�

since ja� bj � ja� zj + jz � wj+ jw � bj � 5jz � wj:
Case 2: 2jz � wj < maxfÆ
(z); Æ
(w)g:
We assume 2jz�wj < Æ
(z) and take a point a in @b
 such that Æ
(z) = jz�aj: Under

the additional assumption that '(a) = 0; we �rst show the following estimate:

ju(z)� u(w)j � 8Ck'k��(@b
)jz � wj�:(6.2)

We can write ' = '+ � '�; where '+ = (j'j+ ')=2 and '� = (j'j � ')=2: Here note
that k'�k��(@b
) � k'k��(@b
): Set u+ = H
'+ and u� = H
'�: Then, in the same way
as in the proof of (6.1), we can show

ju+(z)� u+(w)j � 4jz � wj
Æ
(z)

u+(z):

By assumption u+(z) = u+(z)� '+(a) � Ck'k��(@b
)jz � aj�; we have

ju+(z)� u+(w)j � 4Ck'k��(@b
)
� jz � wj
Æ
(z)

�1��

jz � wj� � 4Ck'k��(@b
)jz � wj�:

Similarly, we have ju�(z)� u�(w)j � 4Ck'k��(@b
)jz �wj�: Now we have estimate (6.2).
In the case '(a) 6= 0; we replace ' by '� '(a); then have

ju(z)� u(w)j � 8Ck'� '(a)k��(@b
)jz � wj� � 16Ck'k��(@b
)jz � wj�:
Summing up the above, we have ju(z)� u(w)j � 16Ck'k��(@b
)jz � wj� for any z and

w in 
; and thus the proof is complete.

Remark. By the above proof, we get information on the operator norm ofH
 : �(@b
)!
�(
); namely,

kH
'k�
(
) � 25+�C
�
2r�
0 + 1=(�� 
)

� k'k�
(@b
):
6.8. Operator norm of harmonic extension. Combining Theorems 5.2, 5.5 and the
remark just above, we obtain the following results.

Corollary 6.9. If a plane domain 
 satis�es the uniform exterior circle condition with

radius �; for any � 2 (0; 1); the harmonic extension operator H
 : ��(@b
) ! ��(
) is
bounded and its operator norm satis�es

kH
k�� � C

�
��� +

1

1� �

�
;(6.3)

where C is an absolute constant.
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Corollary 6.10. If a plane domain 
 satis�es the uniform generalized exterior wedge

condition with opening �; for any � < �=(2� � �); the harmonic extension operator

H
 : ��(@b
)! ��(
) is bounded.

In the proof of Theorem 6.7, for a given z 2 
; we needed only to consider a boundary
point a with Æ(z) = jz � aj: In this case, we have p
(z; a) = jz � aj = Æ(z): Hence, from
Theorem 5.3, we also have the following corollary.

Corollary 6.11. Let 
 be a plane domain whose boundary is of class C2 and has cur-

vature not less than �1=�; where � is a positive constant. Then the harmonic extension

operator H
 : ��(@b
)! ��(
) satis�es the same norm estimate as (6.3) for an absolute

constant C:

6.9. Examples. We cannot expect that the above results would be still valid in general
when 
 = �; as the following simple examples show.

Example 6.1. We take the unit disk D as 
: Consider the function '(�) = jIm �j on @D ;
which is, of course, Lipschitz continuous on @D : But the harmonic extension u of ' is not
Lipschitz continuous in D because u(r); where �1 < r < 1; can be expressed by

u(r) =
1

2�

Z 2�

0

1� r2

1� 2r cos t+ r2
j sin tjdt = 1� r2

�r
log

1 + r

1� r
:

Therefore, the image of �1(@D ) under the harmonic extension operator HD to D is not
contained in �1(D ): Note that a similar example was constructed by Hinkkanen (Example
(5.11) of [19]).
By transformation under the map h(z) = (1 � z)=(1 + z); we obtain the right half

plane 
 = H + = fz; Re z > 0g and the boundary function  (iy) = 2jyj=(1 + y2); whose
harmonic extension v has the expression

v(x) =
2x

�(x2 � 1)
logx

on the positive real axis R+ :

In order to show that Corollary 6.10 is sharp, we bend the above example.

Example 6.2. For 1=2 � � � 1; we consider the domain H �
+ = fz 2 C n f0g; j arg zj <

�=2�g: This satis�es the uniform (generalized) exterior wedge condition with opening
� = 2� � �=�: By Theorem 5.5, H �

+ has the global LHMD property with exponent
� = �=(2� � �): Hence Corollary 6.10 ensures boundedness of the harmonic extension
operator H from �
(@bH

�
+) into �
(H

�
+) for 
 < �: However, the corresponding statement

for 
 = � no longer holds. Indeed, the function �(re��i=2�) =  (�ir�) = 2r�=(1 + r2�)
belongs to ��(@bH

�
+) while its harmonic extension w(z) = v(z�) has the expression

w(x) =
2�x�

�(x2� � 1)
log x

on the positive real axis R+ ; where  and v are the functions de�ned in the previous
example, in particular, w =2 ��(H

�
+):
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To obtain a bounded domain 
 with the same property when 1=2 < � < 1; we have
only to transform H

�
+ by h(z) = (1� z)=(1 + z): The resulting domain is

h�1(H �
+) =

�
z 2 C ;

���z + i cot
�

2�

��� < 1

sin �
2�

or
���z � i cot

�

2�

��� < 1

sin �
2�

�
:

We note that we can modify this example to obtain a bounded domain 
 with global
LHMD property with exponent 1=2 for which H
 does not preserve H�older spaces with
exponent 1=2: However, when 0 < � < 1=2; the author does not know if we could get
a (bounded) domain satisfying global LHMD property with exponent � for which the
harmonic extension operator does not preserve H�older spaces with exponent �:

Remark. Quite recently, Aikawa [2] proved the remarkable result that there is no
bounded domain 
 in R

n (n � 2) for which H
(�1(@
)) � �1(
) holds. Moreover,
he established the converse of Theorem 6.7, in other words, for a bounded domain 

with regular boundary, if the harmonic extension operator H
 preserves �� for some
� > 0; then 
 enjoys the global LHMD property with exponent �: In particular, a
bounded domain 
 with regular boundary has uniformly perfect boundary if and only if
H
(��(@
)) � ��(
) for some � > 0:

7. Application to conformal mappings

7.1. Boundary behaviour of a conformal mapping and Green's function. In
this section, we present applications of Theorem 6.2 to the theory of conformal mappings.
We consider a �nitely connected bounded domain 
 in C without degenerate boundary
components even if the boundary is bounded. As is well known, the domain 
 is can
be mapped by a conformal mapping g onto a plane domain, say 
0; bounded by �nitely
many closed analytic curves. Let f = g�1 : 
0 ! 
: Here and hereafter an analytic curve
will mean a simple closed curve of class C! in the complex plane C : (Furthermore, by
Koebe's theorem, we can choose 
0 so that each component of its boundary is a circle.)
Take a point a 2 
 and set a0 = g(a): We denote by G and G0 the Green's functions of

 and 
0 with pole at a and a0; respectively. Hence, G(f(z)) = G0(z) for each z 2 
0:
By conformal invariance of the hyperbolic metric, we note the identity �
(f(z))jf 0(z)j =

�
0
(z): Since @
 is uniformly perfect, by Theorem B,

c � Æ
(w)�
(w) � 1(7.1)

holds for some positive constant c:
Let � be a constant with 0 < � � 1: By Lemma 6.1, G is H�older continuous of exponent

� near the boundary if and only if G(w) � CÆ
(w)
� holds near the boundary for some

constant C: By (7.1), this property is equivalent to the condition

G0(z) = G(f(z)) � const:�
(f(z))
�� = const:(jf 0(z)j=�
0(z))

�

when z is suÆciently close to @
0: By using Schwarz' re
ection principle, we can see
G0(z) � Æ
0

(z) � 1=�
0
(z) near the boundary of 
0: Now we can easily verify the

following proposition.
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Proposition 7.1. Let 
 be a �nitely connected bounded domain in C without punctures.

Let � 2 (0; 1] be a constant and f : 
0 ! 
 be a conformal mapping, where 
0 is a plane

domain bounded by �nitely many analytic curves. Then, Green's function of 
 is H�older

continuous of exponent � near the boundary if and only if there exists a positive constant

m such that

1

jf 0(z)j � m�
0
(z)

1

�
�1(7.2)

for z 2 
0:

If 
 is simply connected and if 
0 is the unit disk, the inequality (7.2) with � = 1=2
immediately follows from the Koebe distortion theorem for univalent functions. This, of
course, agrees with the statement of Corollary 6.6.
Now Corollary 6.6 yields the next result, which is a natural generalization of Theorem

I in [28] shown by M. Masumoto.

Corollary 7.2. Let f : 
0 ! 
 be as above. Suppose that 
 satis�es the uniform

generalized exterior wedge condition with opening � 2 [0; �]: Then there exists a positive

constant m such that
1

jf 0(z)j � m�
0
(z)1��=�

for z 2 
0:

Note that an arbitrary, �nitely connected, bounded domain without degenerate bound-
ary components satis�es the generalized wedge condition with opening 0:

7.2. Non-integrability of subharmonic functions. By virtue of the above corollary,
the same argument as in [28] yields the following result.

Theorem 7.3. Let 
 be a �nitely connected bounded domain in C without punctures.

Suppose that Green's function of 
 is H�older continuous of exponent � 2 (0; 1] near the

boundary. We set 
(p; �) = 2��minf1; pg for 0 < p <1: If a nonnegative subharmonic

function s on 
 satis�esZZ



Æ
(z)
�
(p;�)s(z)pdxdy < +1; z = x + iy

for some 0 < p <1; then s must vanish identically.

In the case when the boundary of 
 is of class C1;1; N. Suzuki [42] proved the above
result with � = 1: Actually, our general statement can be deduced from Suzuki's special
one as is described in [28]. For convenience, we now reproduce it.

Proof. Let 
 = 
(p; �) and 
0 = 
(p; 1): Note 
 � 2 and that s0 := sÆf is subharmonic in
the domain 
0: By (7.1), we may suppose that s satis�es

RR


�
(w)


s(w)pdudv < +1:
Noting estimate (7.2), by a change of variables, we haveZZ




�
(w)

s(w)pdudv =

ZZ

0

�
0
(z)
 jf 0(z)j2�
s0(z)pdxdy

� 1

m

ZZ

0

�
0
(z)
0s0(z)

pdxdy:
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Hence, by Suzuki's result, we have s0 = 0:

Corollary 7.4. If a �nitely connected bounded domain 
 satis�es the uniform generalized

exterior wedge condition with opening � 2 [0; �]; then there does not exist a non-negative

subharmonic function s 6= 0 on 
 withZZ



Æ
(z)
�
ps(z)pdxdy < +1; z = x+ iy

for some 0 < p <1; where 
p = 2�minfp; 1g=(2� �=�):

7.3. Integrability of the derivatives of conformal mappings. We now give another
application of estimate (7.2). Consider the inverse mapping g : 
! 
0 of f: It is trivial
that

RR


jg0(w)j2dudv = Area (
0) < +1: In our case, we can say more.

Theorem 7.5. Let 
 be a �nitely connected bounded domain without punctures of which

Green's function is H�older continuous with exponent �: Suppose that g is a conformal

mapping from 
 onto a domain 
0 bounded by �nitely many analytic curves. Then we

have ZZ



jg0(z)jpdxdy < +1
for any 0 < p < 2 + �=(1� �): In particular, for a domain 
 satisfying the generalized

wedge condition with opening �; we have the above result for any 0 < p < 2 + �=(� � �):

Proof. We will give a proof for the case that 
 is simply connected and that 
0 is the
unit disk D : The general case can be treated in the quite same way as follows.
We may assume 2 < p < 2 + �=(1� �): By (7.2), we haveZZ




jg0(w)jpdudv =
ZZ

D

jf 0(z)j2�pdxdy �M

ZZ
D

(1� jzj)�(p�2)(1��)=�dxdy

� 2�M

Z 1

0

(1� r)�(p�2)(1��)=�dr;

where M is a constant. The last term is �nite if (p� 2)(1� �)=� > 1:

In particular, if 
 is bounded and simply connected and if 
0 is the unit disk, the above
yields

RR


jg0(w)jpdudv < +1 for any 0 < p < 2 + �=(1� �): Note again that � � 1=2

always holds, and hence 2 + �=(1� �) � 3:
We should remark that the Brennan conjecture asserts that

RR


jg0(w)jpdudv < +1

for any simply connected domain 
 and for any 0 < p < 4; but this is unsolved yet so far.
The best result up to now is p < 3:39; which is due to Ch. Pommerenke (see [34, Chapter
8]). Therefore, our result above must not be sharp.
Finally, we mention a couple of results involving the exterior wedge condition. F. D.

Lesley [25] proved that for a bounded Jordan domain 
 with exterior wedge condition of
opening � > 0 the inverse of the Riemann mapping function g = f�1 : 
 ! D is H�older
continuous with exponent 1=(2� �=�): Under the same condition, C. H. Fitzgerald and
Lesley [13] proved that 1=f 0 2 Hp for 0 < p < 1=(1� �=�); where Hp denotes the Hardy
space on the unit disk with exponent p: Our results above are closely related to their
results, however, there seem to be no immediate implications between them.
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8. Counterexample

8.1. Application to Markov inequalities. We construct here a simple counterexample
showing that H�older continuity property of Green's function does not necessarily imply
uniform perfectness of the boundary. Actually, our domain here carries Lipschitz con-
tinuous Green's functions, whereas its boundary is not uniformly perfect. This answers
negatively one of the questions raised in [37]. J. Lithner [26] has constructed a certain
kind of Cantor set preserving the local Markov inequality, but not preserving the global
Markov inequality. Lithner [26] also proved that the global H�older continuity of Green's
function implies the global Markov inequality, as well as that uniform perfectness is equiv-
alent to the preservation of local Markov inequality. Therefore, our example gives another
example similar to Lithner's one (also note that our example has no degenerate boundary
components).

8.2. Construction. Let a sequence rn of positive numbers satisfying rn < 1=8 be given.
Let "n and Mn (n = 1; 2; : : : ) be sequences of positive numbers monotonically decreasing
to 0; which we will specify later. We take "1 < 1=2: Setb
0 =fz 2 C ; jIm zj < 1=2;Re z > �1g

n
1[
n=1

�
B(2n� 1 + (1 + "n)i=2; 1=2) [ B(2n� 1� (1 + "n)i=2; 1=2)

�
:

Note that b
0 is simply connected and satis�es the exterior circle condition with constant
� = 1=2: We now consider the domain b
 := b
0 n

S1
n=1B(2n; rn) and its inversion 
 :=

fz 2 bC ; 1=z 2 b
g: Let G be the Green's function of 
 with pole at in�nity and Ĝ be the

Green's function of b
 with pole at the origin, and hence G(1=z) = Ĝ(z): If we denote by

Ĝ0 the Green's function of b
0 with pole at the origin, then we have Ĝ < Ĝ0 on b
 by the
minimum principle. Note that the majorant Ĝ0 does not depend on the sequence rn:
We begin with the comparison between Æ := Æ
 and Æ̂ := Æ

b
: Set Dn := fz 2 b
; 2n�1 <

Re z < 2n+ 1g and ~Dn := fz 2 b
0; 2n� 1 < Re z < 2n+ 1g:
Lemma 8.1. For z 2 Dn (n � 0); we have Æ̂(z) � 4(n+ 1)2Æ(1=z):

Proof. Let a 2 @b
 such that Æ(1=z) = j1=z � 1=aj = jz � aj=jazj: Then the point a is

contained in the boundary of a disk in b
 containing z: Thus jaj � 2n+ 1 + "(1 + "=2) �
2n+ 2: Now we have Æ(1=z) � jz � aj=4(n+ 1)2 � Æ̂(z)=4(n + 1)2:

It is easy to see that, for a given sequence Mn of positive numbers, there exists a
sequence "n such that Ĝ0 � Mn on ~Dn (n = 1; 2; : : : ): The maximum principle implies

that Ĝ � Mn on Dn for each n = 1; 2; : : : : By the proof of Theorem 6.2, we can show
Ĝ(z) � CMnÆ̂0(z) on Dn; where Æ̂0 = Æ

b
0
and C is an absolute constant not less than one.

If z 2 Dn satis�es Æ̂0(z) = Æ̂(z); then we have Ĝ(z) � CMnÆ̂(z): If not, it is clear that the
point z satis�es jz � 2nj < 1=2: We set An := fz 2 C ; rn < jz � 2nj < 1=2g and denote
by !n the harmonic measure of fjz � 2nj = 1=2g relative to An for each n = 1; 2; : : : :
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Explicitly, we can write !n(z) = (log jz � 2nj=rn)=�n; where �n denotes the modulus of

An; i.e., �n = log 1=2rn: Then we see that Ĝ � Mn!n on An: In other words,

Ĝ(z) � Mn

�n
log

jz � 2nj
rn

� Mn

�n

jz � 2nj � rn
rn

=
Mn

�nrn
Æ̂(z):

Now we take

Mn =
�nrn

4(n+ 1)2
=
rn log 1=2rn
4(n+ 1)2

:

Then we have Ĝ(z) � CÆ̂(z)=4(n + 1)2 for z 2 Dn: This estimate can be made still valid
for n = 0 and z 2 D0 nB(0; 1=4) by replacing the constant C by another one if necessary.
Now, by Lemma 8.1, we have G(z) � CÆ(z) for z 2 
 with jzj � 4; which implies the
Lipschitz continuity of G near the boundary (cf. Lemma 6.1).
Choosing the sequence rn so that rn ! 0 as n!1; the moduli �n of essential annuli

An of b
 tend to in�nity as n ! 1; therefore b
; and hence 
 does not have uniformly
perfect boundary (cf. [41]).

9. Appendix

In this appendix, we will present a proof of Proposition 5.4. To this end, �rst we give
preparatory results which are true also for regular plane curves with the same curvature
bound.
Let � be a continuous function from an interval I with 0 2 I into R: Denote by �(�)

the open disk of radius � and centered at �i�: We set �(t) =
R t
0
�(s)ds and consider the

regular curve � : I ! C given by �(t) =
R t
0
ei�(s)ds:We write �(t) = X(t)+ iY (t); in other

words,

X(t) =

Z t

0

cos �(s)ds and Y (t) =

Z t

0

sin �(s)ds:(9.1)

Of course, the curve � is not necessarily simple, but the following lemmas can be shown.
(In the case when j�j � 1=�; we can deduce stronger global properties for the curve. See,
for example, [20] and the references cited therein.)

Lemma 9.1. Suppose that �(t0) = 0; �(t1) = ��=2; �(t) = �0(t) � �1=� and 0 � �(t) �
��=2 for t0 � t � t1; where � is a positive constant. Then

X(t)�X(t0) � � sin
t� t0
�

and Y (t)� Y (t0) � �

�
cos

t� t0
�

� 1

�
(9.2)

for t0 � t � t1; in particular, the curve �(t)� �(t0) is injective and does not intersect the

disk �(�) on the interval [t0; t1]: Moreover, the following hold:

X(t1)�X(t0) � � and Y (t1)� Y (t0) � ��:(9.3)

Proof. Since ��=2 � �(t0+ s) � �s=�; we see sin �(t0+ s) � � sin s=� and cos �(t0+ s) �
1� cos s=�: Now inequalities (9.2) follow from the expression (9.1). In particular, letting
t = t1; we have the �rst inequality in (9.3). To prove the second inequality in (9.3), we
need more analysis.
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We de�ne the monotone decreasing continuous function �̂ by

�̂(t) = min
t0�s�t

�(s):

Then �̂(t) � �(t): Noting that ��=2 � �(t) =
R t1
t
�0(s)ds � �(t1 � t)=�; we have

t1 � t � �(�(t) + �=2) � �(�̂(t) + �=2) for t0 � t � t1:

Since � = �̂ on the support E of the probability measure �d sin �̂(t) on [t0; t1] and since
sin �(t) � 0 on [t0; t1]; by integrations by parts, we have

Y (t1)� Y (t0) =

Z t1

t0

sin �(t)dt �
Z
E

sin �̂(t)dt

= �
Z
E

(t� t1)d sin �̂(t) = �
Z t1

t0

(t� t1)d sin �̂(t)

�
Z t1

t0

�(�̂(t) + �=2)d sin �̂(t) = �

Z ��=2

0

(� + �=2)d sin � = ��:

Lemma 9.2. Suppose that �(t0) = 0; �0(t) � �1=� and ��=2 � �(t) � �=2 for t0 � t �
t1: Then the curve �(t) � �(t0) is injective and does not intersect the disk �(�) on the

interval [t0; t1]:

Proof. First we observe, by assumption, X(t) is non-decreasing in [t0; t1]: By the approx-
imation argument, we may assume that the function � has at most �nitely many zeros
in [t0; t1]: We divide the interval [t0; t1] into subintervals I1; : : : ; IN with Ij = [aj; bj] such
that a1 = t0; bj = aj�1 and bN = t1; j�j > 0 on (aj; bj) and that �(aj) = 0 for j = 1; : : : ; N:
We assume that the assertion in the lemma is true for I1 [ � � � [ In�1: In the case when
� > 0 on In; Y (t) is monotone increasing in this interval, therefore the assertion is true
also for I1 [ � � � [ In: In the case when � < 0 on In; we can use Lemma 9.1 to conclude
truth of the assertion for this case. Hence, by induction, we have shown the assertion on
the whole interval [t0; t1]:

Lemma 9.3. Suppose that �(t0) = 0; �(t1) = ��; �0(t) � �1=� and 0 � �(t) � �� for

t0 � t � t1: Then Y (t) is non-increasing, in particular, � is injective on this interval [t0; t1]:
Furthermore the curve �(t) � �(t0) does not intersect the disk �(�) and the Euclidean

diameter of �([t0; t1]) is at least 2�:

Proof. The �rst assertion easily follows from Y 0(t) = sin �(t) � 0: Next let s0 = minfs >
0; �(s) = ��=2g: By Lemma 9.1, �([t0; s0]) does not intersect �(�) and the endpoint
X(s0)+ iY (s0) satis�es X(s0) � � and Y (s0) � ��: Now Lemma 9.2 is applicable for the
curve i� on the interval [s0; t1] to conclude that �(t) � �(t0) does not intersect the disk
�(�): Let s1 = maxfs > 0; �(s) = ��=2g: Applying Lemma 9.1 to the curve �([s1; t1]);
we obtain Y (t1)� Y (s0) � Y (t1)� Y (s1) � ��: Therefore, the last assertion now follows
from this and Y (s0) � ��:
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Of course, to obtain the statement of Proposition 5.4, we must make essential use of
simpleness of the curve �: Before the proof, observe that the mirror image ~�; which will
be de�ned here by ~�(t) = ��(�t); has the same curvature bound because ~�(t) = �(�t):
We consider the situation stated in the proposition. Let L be the length of the curve

�: Since � is simple, the rotation index
R L
0
�(t)dt=2� is �1 by the theorem of turning

tangents (cf. [10]). The signature depends only on the orientation of the curve. Note that
this notion can easily be de�ned and the above is still true in the case that the curve has
�nitely many corners. See [34] for more detailed account.
Without loss of generality, we may assume that a = �(0) = 0 and that �0(0) = 1; and

hence � = �(�) = fz; jz + i�j < �g: Then, by the function �(t) =
R t
0
�(s)ds; the unit

velocity vector �0(t) can be represented as exp(i�(t)):
Now suppose that the curve � intersects �: Set t� = infft > 0; �(t) 2 �g and �� = �(t�):

We can de�ne '(t) = arg(�(t)+i�)��=2 as a continuous function on [0; t�] with '(0) = 0:
We set '� = '(t�): From Lemma 9.2, j'�j > 0 follows. Since � is simple, we note that
j'�j < 2�: If j'�j � �; we can quite easily show that diam �([t0; t�]) � 2�: Hence, we
assume j'�j < � in the sequel.

Case 1: �� < '� < 0:
We now consider the simple closed curve �� which consists of the subarc �j[0;t�] and the

two segments [i�(ei'� � 1);�i�] and [�i�; 0]: Let ! be the turning tangent of �� at the
point �(t�); then ! = '� � �=2� �� + 2n� for some integer n and j!j � �=2:
Then it is clear that the rotation index (�� +!+(���'�)� �=2)=2� equals �1: This

forces n = 0; and hence j'� � �� � �=2j � �=2; i.e.,

'� � � � �� � '� < 0:(9.4)

Next we consider the case when

sup
0�t<t0�t�

j�(t)� �(t0)j � �:(9.5)

In this case, there exist t0 and t1 with t0 < t1 in [0; t�] such that �(t1)� �(t0) = �� and
�(t) lies between �(t0) and �(t1) for all t0 � t � t1: If �(t1)� �(t0) = ��; then, essentially,
Lemma 9.3 can be applied to obtain diam �([t0; t1]) � 2�; and thus the expected assertion

follows. Otherwise, we have only to consider the mirror image ~� to deduce the same
assertion.
Finally, suppose that (9.5) does not hold. We set �max = max0�t�t� �(t); t0 := minft 2

[0; t�]; �(t) = �maxg and �0 := f�0(t0)z + �(t0); z 2 �g:
By Lemma 9.3, the curve �([t0; t�]) does not intersect the disk �0: By applying Lemma

9.3 to the mirror image ~�; we can show that the curve �([0; t0]) does not intersect the disk
�0; too.
Now the curve �([0; t�]) [ fei�; 0 � t � t�g should enclose the domain D := (�0)Æ n�;

and thus diam �([0; t�]) � diamD � 2�:

Case 2: 0 < '� < �:
Suppose that diam �([0; t�]) < 2�: Let D be the domain bounded by this subarc �([0; t�])

and the segment [0; �(t�)]: Then we have diamD < 2�:

We consider the mirror image ~�(�t) = ��(t) of �: Then the subarc ~�([0; ~t�]); where ~t� is

the parameter value determined for ~� in the similar way to t� above, would be contained
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in the mirror image of D; and hence diam ~�([0; ~t�]) � diamD < 2�; which is impossible
by Case 1.
Now the proof of Proposition 5.4 is complete.
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