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Introduction Let G be a �nitely generated Fuchsian group of the �rst kind,
and @T (G) the Bers boundary of the Teichm�uller space of G. Let �' be the
canonical isomorphism from G to the b-group corresponding to ' 2 @T (G) with
suitable normalizations (cf. Section 1.1), and �' the invariant component of �'(G).
The main result of this paper is the following.

Theorem 1. Let f'ng
1
n=1 � @T (G) be a sequence corresponding to terminal

regular b-groups such that

(a) For any hyperbolic element g 2 G, there exist �(g), N(g) > 0 such that for
n > N(g), if �'n(g) is loxodromic, then jtr2(�'n(g))� 4j � �(g), and

(b) The Euclidean area of C n�'n tends to 0 as n!1.

Then every accumulation point of the sequence corresponds to a totally degenerate
group.

This theorem is proved in Section 3.2. We know that any '0 2 @T (G) has a
sequence f'mg

1
m=1 corresponding to terminal regular b-groups in @T (G) such that

'm converges to '0 and that the area of C n�'m tends to zero (cf. Remark (2) in
Section 3.3).

This paper is organized as follows: In section 1, we �x our notations and recall
some basic de�nitions and facts. Section 2 deals with the lower estimate of the area
of the complement of the invariant component of a b-group which contains triangle
groups as component subgroups. This class of b-groups, by de�nition, involves the
set of terminal regular b-groups. In Section 3, we give the proof of Theorem 1 and
several remarks about our result.

The author would like to express his hearty gratitude to Professor Yoichi Imayoshi
for his constant encouragement. He would like to thank Professor Hiromi Ohtake,
Professor Hiroshige Shiga, and Professor Masahiko Taniguchi for their useful ad-
vices and conversations. He also thanks Professor Yohei Komori for useful and
stimulating conversations.

1. Preliminaries

1.1. Let G be a �nitely generated Fuchsian group of the �rst kind acting on
� := fz 2 Ĉ : jzj > 1g. Let B(G) be the complex Banach space of holomorphic
functions '(z), z 2 � with norm k'k = sup(jzj2 � 1)2j'(z)j=4 < 1 which satisfy
the functional equation of quadratic di�erentials '(g(z))g0(z)2 = '(z), g 2 G. It is
well-known that dimB(G) <1 and that for every ' 2 B(G), there exists the local
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univalent function W'(z), z 2 �, such that the Schwarzian derivative fW'; zg of
W' is equal to '(z) and that W' forms

W'(z) = z +
1X
n=1

bnz
�n

near z = 1. For ' 2 B(G), we denote by �' the homomorphism from G into

M�ob(Ĉ ) de�ned by the equation �'(g) �W' =W' � g, g 2 G.
Let T (G) be the Teichm�uller space of G. T (G) can be identi�ed with a bounded

domain in B(G). We know that for ' 2 @T (G), W' is univalent and G' := �'(G)
is a b-group with the invariant component �' :=W'(�) (see Section 1.2). We call
@T (G) the Bers boundary of T (G) (see [7], [9], and [12]).

1.2. For E � Ĉ , we denote by M�ob(E) the group of M�obius transformations

g satisfying that g(E) = E. Through this paper, all discrete groups in M�ob(Ĉ )
are torsion free. A �nitely generated non-elementary Kleinian group � is called
a b-group if it has precisely one simply connected invariant component �� of its
region of discontinuity 
(�). By Ahlfors's �niteness theorem, a b-group represents
a �nitely many Riemann surfaces, each with a �nite Poincar�e area. By Bers's
second area inequality (cf.[18]), the total Poincar�e area of 
(�)=� is at most twice
the Poincar�e area of ��=�. If equality holds, � is called regular.

Let � be a b-group and f a conformal mapping from � to ��. Let G = f�1�f .
If ff;�g 2 @T (G), � is also called a boundary group. For a Fuchsian group G with
1 2 
(G), we denote by �G the component of 
(G) which contains 1.

Let � be a b-group. For an accidental parabolic transformation (A.P.T.) g 2 G,
we denote by Ag the axis of g (cf. [14, p.611] and [14, Lemma 1]). Let fgig

s
i=1 be

a basis for A.P.T.s in �. (cf. [14, p.612]). Let � be a projection mapping from ��

to ��=�. Then, a system C� := f�(Ag)gg:A:P:T: is a partition on ��=�, that is,
C� is the system of mutually disjoint simple closed geodesics (cf. [14, p.613]). The
system C� and a components of RnC� are called the partition with respect to � and
a block of � respectively.

Let � be either a b-group or a Fuchsian group with 1 2 
(�). For E � ��=�,
a stabilizer group of a component of ��1(E) in � is called a covering group of
E in � (cf. [16, p.251]). For a b-group, a covering group of a block is called a
structure subgroup. We say that a set of structure subgroups fHjg

s
j=1 of � is a

basis of structure subgroups of � if each Hi are not mutually conjugate in � and
every structure subgroup is conjugate some Hi in �. A stabilizer subgroup of a
component of 
(�) � �� in � is called a component subgroup. We say that a
Kleinian group � is a b-group with no moduli if � is a b-group satisfying either

(�) is connected or each component subgroup of � is a triangle group (cf.[7]),

where a Kleinian group is called a triangle group if it conjugate in M�ob(Ĉ ) to the
principal congruence subgroup of level 2:

hz 7! z + 2; z 7! z=(�2z + 1)i:

A b-group � is called terminal regular if � is regular and has no moduli. A b-group
� is called totally degenerate if 
(�) is connected.
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1.3. Assume that f(z) = z + b0 +
P1
k=1 bkz

�k is univalent on �. Then the
following inequality, called the Golusin's inequality, holds:

1X
k=1

k

�����
NX
l=1

bkl�l

�����
2

�

NX
l=1

j�lj
2

l
;(1)

for any �l 2 C , (l = 1; 2; : : : ; N), and

log
f(z)� f(�)

z � �
= �

1X
k;l=1

bklz
�k��l (z; � 2 �):

(cf. [3, p.91]). The coe�cients fbklg
1
k;l=1 are called the Grunsky coe�cients of f .

This inequality induces the following:������
1X

k;l=1

bkl�k�l

������
2

�

1X
l=1

j�lj
2

l

1X
l=1

j�lj
2

l
:(2)

for �k; �k 2 C (k = 1; 2; : : : ) such thatfk�1=2�kg
1
k=1, fk

�1=2�kg
1
k=1 2 l

2.

2. The area of the complement of an invariant component

In this section, we will give the lower estimate of the Euclidean area of the
complement of the invariant component of a b-group containing triangle groups
as component groups. For a measurable set E � C , we denote by Area(E) the
Lebesgue measure of E.

2.1. Let F < M�ob(Ĉ ) be a triangle group so that 1 2 
(F ). Let fA;Bg be a
generator of F such that A, B, and AB are parabolic. Then, we have

Lemma 1. For g(z) = (az + b)=(cz + d); (ad� bc = 1), let cg = jcj. Then

Area(
(F ) n�F ) = 4�f2(cAcB + cBcAB + cABcA)� (c2A + c2B + c2AB)g
�1

� 4�(c2A + c2B + c2AB)
�1

Proof. The direct calculation gives that the interior of the circumscribing circle
of the triangle whose edges has lengths x,y, and z has the area

�

�
2

�
1

x2
+

1

y2
+

1

z2

�
�

�
y2

z2x2
+

z2

x2y2
+

x2

y2z2

���1
:

Let a, b and c be �xed points of A, B and AB respectively. By Proposition 12.1 in
[11, p.571],

cA =
2jc� bj

jc� ajja� bj
; cB =

2ja� cj

ja� bjjb� cj
; and cAB =

2jb� aj

jb� cjjc� aj
:

Therefore, we have the assertion. �

2.2. We have the following lemma (cf. [22, p.372, Section 4]).

Lemma 2. Let A 2 M�ob(�) with A(1) 6= 1 and g 2 M�ob(Ĉ ) a parabolic

element. Suppose that there exists a univalent function f from � into Ĉ with
normalization f(z) = z +O(1) near z =1 such that g � f = f �A. Then

c2g � 4(1� jA0(0)j)= tr2(A)jA0(0)j3(3)
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Proof. Let fbklg
1
k;l=1 be the Grunsky coe�cient of f . By de�nition,

g(1)� g�1(1) = f(A(1)) � f(A�1(1))

= (A(1) �A�1(1)) exp
n
�

1X
k;l=1

bklA(1)�k(A�1(1))�l
o
:

Since A(1) = fA(0)g�1, jA(0)j < 1, and jA(0)j = jA�1(0)j, fk�1=2A(0)
k
g1k=1,

fk�1=2A�1(0)
k
g1k=1 are contained in l2. By (2), we have

jtr2(g)j

c2g
= jg(1)� g�1(1)j2

= jA(1)�A�1(1)j2 exp
n
�2Re

� 1X
k;l=1

bklA(0)
k
(A�1(0))l

�o

�
tr2(A)jA0(0)j

1� jA0(0)j
exp

n
�2
� 1X
k=1

jA(0)j2k

k

1X
k=1

jA�1(0)j2k

k

�1=2o

=
tr2(A)jA0(0)j

1� jA0(0)j
exp

n
2 log(1� jA(0)j2)

o
=

tr2(A)jA0(0)j3

1� jA0(0)j
:

Since g is parabolic, we conclude (3). �

2.3. For a parabolic A 2 M�ob(�) and � > 0, the �-horocycle of A is, by de�ni-
tion, the cycle C in � through the �xed point of A such that the hyperbolic distance
between z and A(z) is equal to � for z 2 C. We denote by d(A; �) the hyperbolic
distance between 1 to the �-horocycle of A in �. For a hyperbolic A 2 M�ob(�),
we denote by d(A) the hyperbolic distance between 1 to the axis of A in �.

For a Fuchsian group G acting on � and � > 0, by the �-thick part thick�(G)
for G we mean that the set of points z 2 � such that the hyperbolic distance
between z and g(z) is more than � for all parabolic g 2 G. For b-group �, let f be
a conformal mapping from � to ��. We de�ne the �-thick part thick�(�) for � by
f(thick�(f

�1�f)).
Let P be a subset of �=G, where G is a Fuchsian group. For � > 0, we denote

P� := (thick�(G)=G) \ P . We say that a closed curve in �=G is the �-horocycle if
there exists a primitive parabolic g 2 G so that C is the image of the �-horocycle
of g by the projection. For a recti�able curve C in R := �=G, we denote by lR(C)
the hyperbolic length of C on R. Let P be the Nielsen kernel of a Riemann surface
homeomorphically to a three punctured sphere (cf.[6]). Let j be the number of
cusps of P . In this paper, P is called the pair of pants of type (3� j; j) (cf. Figure
1.)

Figure 1. Pairs of Pants
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Let �0 = 2arcsinh1 and � < �0. Let P be a pair of pants pf type (3� j; j). Then

there exist geodesics f
ig
3�j
i=1 , f�ig

3
i=1, fdig

2
i=1, �-horocycles f
ig

3
j=3�j+1, if j 6= 0,

and the point q 2 P as in Figure 1 by the Collar theorem (cf. [8, Theorem 4.4.6]).
From now on, we �x � < �0.

The following lemma can be proved in the argument similar to that of Theorem
2.4.3 and 3.1.8 in [8] and Lemma 4.4 in [20]. Hence we omit the proof. The author
would like to thank Professor Toshihiro Nakanishi for teaching about the joint work
[20] with Professor Marjatta N�a�at�anen.

Lemma 3. Let P be a pair of pants of type (3 � j; j). Let f
ig
3
i=1, f�ig

3
i=1,

fdig
2
i=1, and q 2 P as in Figure 1. Let d3 be the shortest geodesic connecting 
3

and �3. Let li and l(di) be the lengths of 
i and di respectively. Then

(a) d3 passes through q.
(b) Let Li = cosh(li=2) (1 � j � 3� j), then
(b-1) If P is of type (3; 0), then

cosh(l(di)) =
(L21 + L22 + L23 + 2L1L2L3 � 1)1=2

sinh(li=2)
; for i = 1; 2; 3:

(b-2) If P is of type (2; 1), then

cosh(l(di)) =
L1 + L2
sinh(li=2)

; for j = 1; 2; and el(d3) =
L1 + L2
sinh(�=2)

:

(b-3) If P is of type (1; 2), then

cosh(l(d1)) =
L1 + 1

sinh(l1=2)
; and el(di) =

L1 + 1

sinh(�=2)
; for i = 2; 3:�

2.4. Let � be a b-group which contains triangle groups as structure groups.
We denote by fPkg

s0
k=1 the blocks of �. Let � is the projection from �� to R and

f the conformal mapping from � to ��.
We may assume that for 1 � k � s, Pk is a pair of pants of type (3� jk; jk). Let

f
k;jg
3
j=1 be boundary curves of (Pk)�, We assume that for 1 � j � 3� jk, 
k;j is

a geodesic (see Figure 1).

Lemma 4. Fix 0 < � < �0 so that p0 := � � f(1) 2 R�. Then, for k = 1; : : : ; s,
there exist a structure group �k corresponding to Pk and generators fCk;ig

3
i=1 of

Hk := f�1�kf such that

(i) For j = 1; 2; 3, if Ck;i is hyperbolic (resp. parabolic), the the axis (resp. �-
horocycle) of ��1' (Ck;i) maps to 
k;i by � � f .

(ii) Ck;3Ck;2Ck;1 = id
(iii) d(Ck;i) (resp. d(Ck;i; �)) � diam(R�) + �(k; i),

where �(k; i) is l(di) as in Lemma 3 with respect to curves 
i := 
k;i, i = 1; 2; 3 and
P := Pk, and diam(E) is the hyperbolically diameter of E � R.

Proof. Fix k 2 f1; : : : ; sg. We only show the case where Pk is of type (3; 0).
Another cases are proved in the similar manner.

On Pk, let f
k;ig
3
i=1, f�k;ig

3
i=1, and fdk;ig

3
i=1 be geodesics as in Lemma 3. Let

pk be a intersection point of dk;1 and dk;2. By Lemma 3, lR(dk;i) = �(k; i). Take
a geodesic �k in R connecting p0 and pk such that lR(�k) � diam(R�). We de�ne
the curve �k;i � �k [ dk;i connecting p0 and 
k;i so that

lR(�k;i) � diam(R�) + �(k; i):
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We construct a loop c0k;i := �k;i
k;i�
�1
k;i with an initial point p0. We give an ori-

entation for c0k;i such that [c0k;1][c
0
k;2][c

0
k;3] = 1, where [�] is an equivalence class in

�1(R; p0), the fundamental group of R with the base point p0.
We take Ck;i 2 f�f�1 corresponding to [c0k;i] by the canonical isomorphism

between �1(R; p0) and f�f
�1. Let zk 2 � be the end point of the lift of �k whose

initial point is the point at 1. Let �k be a structure group which stabilizes the
component of �� n [g:A:P:TAg containing f(zk). Then, by de�nition, the system
fCk;ig

3
i=1 generates Hk and satis�es the assertion of lemma. �

2.5. We now prove the following theorem.

Theorem 2. Let � be a b-group such that 1 2 �� and that the logarithmic
capacity of the limit set of � is equal to 1. Take 0 < � < �0 such that 1 2 thick�(�).
Let fPkg

s0
k=1 be blocks of � each of which is a pair of pants. Then

Area(C n��) � 64�

s0X
k=1

A(R;Pk; �);

where R = ��=�,

A(R;Pk; �) :=
nP3

i=1 Sk;i(sinh
2(lk;i=2); diam(R�) + �(k; i))

o�1
; and

Sk;i(x; d) :=

(
(x� 4) cosh2 d ((x � 4) cosh2 d+ 4)2=x; if 1 � i � 3� jk

16 sinh2(�=2)e2d(1 + sinh2(�=2)e2d)2; otherwise:

Here (3 � jk; jk) is the type of Pk, flk;ig
3�jk
i=1 and f�(k; i)g3i=1 are de�ned as in

Lemma 4, and set lk;i = 0 if 3� jk +1 � i � 3. Especially, for M > 0 and some k,
if lengths of all closed geodesics in the boundary of Pk are less than M , then there
exists A > 0, depend only on R;M , and �, so that Area(C n��) � A:

Proof. The direct calculations shows that if A 2 M�ob(�) is hyperbolic,

jA0(0)j = 4=(tr2(A)� 4 tanh2(d(A))) cosh2(d(A));(4)

and if A is parabolic and 1 2 thick�(hAi),

jA0(0)j = 1=(1 + sinh2(�=2)e2d(A;�)):(5)

Let f be the conformal mapping from � to �� such that f(z) = z + O(1) near
z =1 (cf. [21, p.207, Corollary 9.9]). For k 2 f1; : : : ; sg. let Hk and fCk;ig

3
i=1 be

as in Lemma 4. Since 1 2 thick�(hgi) for every parabolic g 2 G, by Lemma 2, and
(4) and (5), we have

(cfCk;if�1)
2 � Sk;i(tr

2(Ck;i); d(Ck;i))=16 for i = 1; 2; 3:

Hence, by Lemma 1 and 4, we conclude the assertion. �

Corollary 1. For a b-group �, let f be a conformal mapping from � to ��.
Then it holds that

kff;�gk �
3

2
f1� 64

P
k A(��=�; Pk; �0)g

1=2
;

where each Pk is a block of � which is a pair of pants.
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Proof. Let G := f�1�f . Since G is torsion free, for ' 2 B(G), it holds k'k =
sup

�
(jzj2 � 1)2j'(z)j=4 j z 2 thick�0(G)

	
(cf. [23, Lemma 1] and [4, p.198,Exercise

8.2]). Hence by an argument similar to that of Lemma 6.7 in [9, p.151] (the Nehari-
Kraus theorem), we conclude the assertion. �

3. Sequences of terminal regular b-groups

In this section, by using Theorem 2, we study a behavior of a sequence corre-
sponding to terminal regular b-groups contained in a Bers boundary.

3.1. Let G be a �nitely generated Fuchsian group of the �rst kind acting on
�. For ' 2 @T (G), we denote by C' the partition with respect to G'. We show
the following lemma.

Lemma 5. Let f'mg
1
m=1 � @T (G) be a sequence corresponding to terminal

regular b-groups. Then there exist a subsequence f'mj
g1j=1, a maximal partition

fCkg
3p�3+n
k=1 on R, a number k0 2 f0; 1; : : : ; 3p � 3 + ng, and homeomorphisms

ffjg
1
j=1 of R onto itself such that

(1) For j � 1, C'mj
= ffj(Ck)g

3p�3+n
k=1 ,

(2) If k0 > 0, then lR(fj(Ck))!1 as j !1 for 1 � k � k0, and
(3) If k0 < 3p� 3 + n, then fj(Ck) = Ck for k > k0.

If, in addition, Area(C n�'mj
)! 0 as j !1, then it also holds that

(4) No component of R n [k>k0Ck is a pair of pants, and hence k0 > 0.

Proof. Since the number of graphs induced by the maximal partition on R
is �nite (cf.[2],[11]), we may assume that all graphs induced from fC'mg

1
m=1 are

the same. Let us denote C'1 = fC 0kg
3p�3+n
k=1 . Then, there exist homeomorphisms

fhmg
1
m=1 of R onto itself such that C'm = fhm(C

0
k)g

3p�3+n
k=1 (cf.[8, Appendix]).

By taking the subsequence of fhmg
1
m=1 and renumbering the curves fC 0kg

3p�3+n
k=1 if

necessary, we may suppose that there exist k0 2 f0; 1; : : : ; 3p� 3 + ng and M > 0
such that if k0 > 0, then lR(hm(C

0
k)) ! 1 as m ! 1 for 1 � k � k0, and that if

k0 < 3p� 3 + n, then lR(hm(C
0
k)) < M for k0 < k � 3p� 3 + n and m � 1.

Since the number of closed geodesics in R whose hyperbolic length are less than
M is �nite (cf.[2]), there exists a subsequence f'mj

g1j=1 such that hmj
(C 0k) =

hml
(C 0k) for j; l � 1 and k0 < k � 3p� 3 + n.
Let fj = hnj � (hn1)

�1 and Ck = hn1(C
0
k) for j � 1 and 1 � k � 3p � 3 + n.

Then, by de�nition, the subsequence f'mj
g1j=1, the partition fCkg

3p�3+n
k=1 on R,

the number k0, and homeomorphisms ffjg
1
j=1 satisfy (1)-(3) in this lemma.

From now on, we assume that Area(C n �'mj
) ! 0 as j ! 1. Suppose that

there exists a component Pi of R n [k>k0Ck such that Pi is a pair of pants. Since
fCkgk>k0 � C'mj

for each j � 1 and Pi does not contain the simple closed geodesic

which is not homotopic to boundary components of Pi, Pi is a block of G'mj
for

every j � 1. Hence each G'mj
contains a triangle group as a structure group

corresponding to Pi.
Take � > 0 so that 1 2 thick�(G). Since the lengths of all closed geodesics in

the boundary of Pi are less than M , by Theorem 2, there exists A > 0, depend
only on R, M , and � such that

Area(C n�'mj
) � A
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for j � 1. This contradicts the assumption. �

3.2. To prove Theorem 1, it su�ces to show the following proposition.

Proposition 6. Let f'mg
1
m=1 be a sequence corresponding to terminal regu-

lar b-groups in @T (G) satisfying (1)-(3) in Lemma 5 with respect to a partition

fCkg
3p�3+n
k=1 , a number k0, and homeomorphisms ffmg

1
m=1 of R onto itself. Sup-

pose that the sequence satis�es (a) in Theorem 1 and converges to '0 2 @T (G).
Then G'0 is a b-group with no moduli such that C'0 = fCkgk>k0 . Especially, if no
component of R n [k>k0Ck is a pair of pants, then G'0 is totally degenerate.

Proof. We prove the case k0 < 3p� 3 + n. The case where k0 = 3p� 3 + n is
proved by the similar manner.

Let gk 2 G be primitive hyperbolic elements corresponding to Ck for 1 � k �
3p� 3+n. We denote by fPig

s0
i=1 the components of R n [k>k0Ck each of which is

not a pair of pants. Let fPig
s1
i=s+1 be components of R n ([k>k0Ck [ [

s0
i=1Pi). Fix

a stabilizer group Hi corresponding to Pi in G. Let Gi;m = �'m(Hi) for m � 0.
For m � 1, since G'm is a terminal regular b-group and, Pi is not a pair of pants
for 1 � i � s0, Gi;m is also a terminal regular b-group such that �Gi;m

=Gi;m is
homeomorphic to Pi if 1 � i � s0 (cf.[11]). By de�nition, for i > s0, Gi;m is a
triangle group.

We �rst show that fGi;0g
s1
i=1 is a basis of the structure groups of G'0 . It is clear

that for k > k0, �'0(gk) is an A.P.T. in G'0 . Since Gi;0 = �'0(Hi), it su�ces
to show that �'0(g) is loxodromic for any hyperbolic element g 2 G which is not
conjugate to a power of gk for any k.

If the geodesic corresponding to g meets Ck for some k > k0, then �'0(g) is
loxodromic. Hence we can take �(g), N(g) satisfying (a) for g in this theorem.
Thus we assume that the geodesic corresponding to g is contained in some Pk. By
(2) in Lemma 5, there exists N(g) > 0 so that �'m(g) is loxodromic for m � N(g).
By assumption (a), there exist �(g) > 0 such that for m � N(g), inequalities

jtr2(�'m(g))� 4j � �(g)

hold. Since �'m(g)! �'0(g) as m!1, we have that tr2(�'0(g)) 6= 4. Since �'0
is an isomorphism and G is torsion free, �'0(g) is loxodromic.

Thus, if 1 � i � s0, Gi;0 is either a quasi-Fuchsian group or a totally degenerate
group without A.P.T.s (cf.[15], [17, p.225, Theorem D.21], and [17, p.268, Theorem
C.25]). We assume that Gi;0 is a quasi-Fuchsian group for some i. By the arguments
above, for m � 1, the isomorphism �'m � ��1'0 from Gi;0 onto Gi;m is allowable in

the sence of Bers (cf. [5, p.574]). Since �'m ��
�1
'0 converges to the identity on Gi;0,

by the quasiconformally stability for quasi-Fuchsian groups (cf. [5, Proposition 6]),
Gi;m is quasi-Fuchsian for su�ciently large m. This is contradiction. Thus, Gi;0
is a totally degenerate group without A.P.T.s for i = 1; : : : ; s0. Thus, G'0 is a
b-group with no moduli such that C'0 = fCkgk>k0 . �

3.3. Remark. (1) Any sequence correponding to terminal regular b-groups
which converges to '0 2 @T (G) corresponding to totally degenerate group without
A.P.T.s satis�es (a) and (b) in Theorem 1.

(2) For any '0 2 @T (G), there exists f'mg
1
m=1 in @T (G) corresponding to

terminal regular b-groups such that (2-i) Area(C n �'m) tends to zero, and (2-ii)
f'mg

1
m=1 converges to '0.
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(3) Any totally degenerate group G'0 with A.P.T.s has f'mg
1
m=1 in @T (G)

conresponding to terminal regular b-groups which converges to '0 such that (3-i)
Area(C n�'m) tends to zero, and (3-ii) f'mg

1
m=1 does not satisfy (a) in Theorem

1.

(4) If dimT (G) > 1, there exists f'mg
1
m=1 corresponding to terminal regular

b-groups in @T (G) satisfying (a) in Theorem 1 such that fG'mg
1
m=1 converges to

a b-group but not a totally degenerate group.

Proof. Before proving (1)-(4) above, we note that f'mg
1
m=1 corresponding to

terminal regular b-groups in @T (G) which converges to '0 2 @T (G) corresponding
to a totally degenerate group without A.P.T.s satis�es that Area(C n �'m) ! 0
as m ! 1. Indeed, it follow from the following two facts; (1) The measure of
C n �'0 = �(G'0) is zero by Thurston's theorem (cf.[18]), and (2) f�'mg

1
m=1

converges to �'0 in the sence of kernel convergence with respect to w0 = 1 (cf.
[21, Theorem 1.8]).

Let us prove Remark (1)-(4).

(1) By the argument above, the sequence satis�es (a) in Theorem 1. Since G'0
has no A.P.T.s, that also satis�es (a) in Theorem 1. �

(2) Since the set of di�erentials corresponding to terminal regular b-groups
and the set of those corresponding to totally degenerate groups without A.P.T.s
are dense in @T (G) (cf.[19] and [5, Theorem 14]), by the standerd arguments and
Remark (1), we �nd a sequence satisfying (2-i) and (2-ii). This remark was pointed
out to the author by Professor Hiroshige Shiga. �

(3) Let fgkg
s
k=1 be hyperbolic elements in G so that f�'0(gk)g

s
k=1 is a basis

of A.P.T.s of G'0 . Take L0 > 0 so that 2 cosh(L0=2) := max1�k�s jtr(gk)j. By ap-
plying the argument in Lemma 5 for f mg

1
m=1 corresponding to totally degenerate

groups without A.P.T.s in @T (G) which converges to '0, there exists a terminal reg-
ular b-group G'm such that l�=G(C) > mL0 for each C 2 C'm , k'm� mk < 1=m,
and that Area(C n �'m) < 1=m for m � 1. By the de�nition of L0, �'m(gk) is
loxodromic for each m � 1 and k = 1; : : : ; s.

Since �'0(gk) is parabolic, f'mg
1
m=1 satis�es (3-i) and (3-ii). �

(4) Let R = �=G and C = fCkg
d
k=1 a maximal partition on R. Let fPsg

s1
s=1

be the components of R n [k 6=1Ck such that C1 � P1. Since d = dim T (G) > 1,
we may suppose that s1 > 1 and that P2 is a pair of pants. Let R1 be the in�nite
Nielsen extension of P1 (cf.[6]), �1 the Fuchsian group of R1, and (�1) 0 a totally
degenerate group without A.P.T.s. We de�ne f'mg

1
m=1 of a sequence corresponding

to terminal regular b-groups and '0 2 @T (G) satisfying the conditions (a), (b), (c),
and (d) in Theorem 3 in Section 3.4 for the partition C, s0 = 1, and the boundary
group F1 := (�1) 0 . Then f'mg

1
m=1 satis�es the assertion. �

If dimT (G) = 1, then G' has an A.P.T. if and only if G' is a terminal regular
b-group. By Remark (1) and the proof of Proposition 6, we have

Corollary 2. Suppose that dimT (G) = 1. For a sequence � corresponding to
terminal regular b-groups in @T (G) which converges to '0 2 @T (G), the following
three conditions are equivalent:

(1) G'0 is a totally degenerate group.
(2) � contains a subsequence with (a) and (b) in Theorem 1.
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(3) � contains a subsequence which consists of mutually distinct elements and
satis�es (a) in Theorem 1.

3.4. To complete the proof of Remark (4) in the previous subsection, we will
show the following theorem.

Theorem 3. Let G be a �nitely generated Fuchsian group of the �rst kind acting
on � and R = �=G. Let C = fCkg

k0
k=1 be a partition on R and fPsg

s0
s=1 the

components of R n [k0k=1Ck each of which is not a pair of pants. For i = 1; : : : ; s0,
let Fi be a boundary group such that �Fi=Fi is homeomorphic to Pi. Then there
exist '0 2 @T (G) and f'mg

1
m=1 corresponding to terminal regular b-groups such

that

(a) 'm ! '0 as m!1,
(b) C � C'm for m � 0, and
(c) A covering group of Pi in G'0 is quasiconformally conjugate to Fi,

If, in addition, each Fi is a totally degenerate group without A.P.T.s, then

(d) � satis�es (a) in Theorem 1.

This theorem is proved in Section 3.6.

3.5. The following lemma is well-known. However, the author has never seen
what is stated in this form.

Lemma 7. Let R and S be a hyperbolic Riemann surface of type (p; n). Let
P be a domain in R such that P is homeomorphic to R and that the inclusion
mapping i from P to R is homotopic to a homeomorphsm of P onto R. Then, for
K � 1, there exists K0 = K0(K;P; p; n) > 1 such that if a K-quasiconformal(q.c.)
mapping h from P into S which is homotopic to a homeomorphism from P onto S
exists, there exists a K0-q.c.mapping g from R to S so that g � i is homotopic to h.

Proof. Let T (R) be a Teichm�uller space of R (cf. [9, p.120]). Let M be a
Riemann surface of type (p; n). If there exists aK-q.c.mapping hM from P toM ho-
motopic to a homeomorphism of P ontoM , then there exists a q.c.mapping f(P;K;M)

from R onto S such that f(P;K;M) � i is homotopic to hM . We denote by X(P;K)

the closure of the set of such [M; f(P;K;M)] in T (R). Let î be a homeomorphism

form P to R homotopic to i. Let f
ig
N
i=1 be a system of simple closed geodesics �ll

up R (cf. [10, p.249]). By the decreasing property for the hyperbolic metric and

Wolpert's Theorem (cf. [8, p.153]),
PN

i=1 lS(f(P;K;M)(
i)) �
PN
i=1KlP (̂i

�1(
i)).
Hence X(P;K) is compact (cf. [10, Lemma 3.1]). Let d0 be the diameter of
X(P;K) with respect to the Teichm�uller distance of T (R) (cf. [9, p.125]). Then,
K0 := ed0 satis�es the assertion. �

3.6. Let us prove Theorem 3. We only show the case where s0 = 1. Another
cases are proved by the similar manner.

Let fPig
s
i=1 be the components of Rn[

k0
k=1Ck such that P1 is not a pair of pants.

Let R̂1 be the in�nite Nielsen extension of P1. Since R1 := �F1=F1 is homeomorphic

to P1, there exists a K1-q.c.mapping h0 from R̂1 onto R1. Let Q := h0(P1), i
an inclusion mapping from Q to R1. Then, by de�nition, i is homotopic to a
homeomorphism from Q onto R1. Let f be a conformal mapping from � to �F1

and �1 = f�1F1f . We take f mg
1
m=1 in @T (�1) corresponding to terminal regular
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b-groups which converges to  0 := ff;�g 2 @T (�1). Let C m = fC 0k;mg
k1
k=1 and

Ck;m the geodesic in P1 (and hence in R) such that i�h0(Ck;m) is homotopic to C
0
k;m

for k = 1; : : : ; k1. Then, Cm := fCi;m; Cjgi=1;::: ;k1;j=1;::: ;k0 is a maximal partition
on R for m � 1. Take the terminal regular b-group G'm so that C'm = Cm (cf.[1,
Theorem 6]). We may suppose that � := f'mg

1
m=1 converges to some '0 2 @T (G).

By de�nition, � and '0 satisfy (a) and (b) in this Theorem.

We prove that � satis�es (c). Let � be the projection from � to R and ~P1 a

component of ��1(P1). We may assume that 1 2 ~P1. Let H1 be the stabilizer

subgroup of ~P1 in G and Gm := �'m(H1) for m � 0. Then for m � 1, Gm is a
covering group of P1 in G'm and is a terminal regular b-group (cf.[11]).

Let Sm = �Gm
=Gm and �m the projection from �Gm

to Sm. Then there
exists the injective holomorphic mapping hn from P1 to Sm such that hm � � j ~P1=

�m �W'm j ~P1 . By de�nition, hn is homotopic to a homeomorphism from P1 to

Sm (cf.[14]). Hence, by Lemma 7, there exist K0 = K0(K1; Q; p; n) > 0, and the
K0-q.c.mapping gm from R1 to Sm so that gm � i is homotopic to hm � (h0 jP1)

�1.

Fix the lift ~h0 of i�h0 jP1 from ~P1 into �. ~h0 de�nes the isomorphism � from H1

to �1 by �(h) � ~h0 = ~h0 � h for h 2 H1. By de�nition, hm induces the isomorphism
�'m jH1

. Since for m � 1, gm � i � h0 jP1 is homotopic to hm, there exists the lift
~gm of gm from � onto �Gm

so that the isomorphism ~�m from �1 to Gm de�ned by
~�m(
) = ~gm
~g

�1
m satis�es that ~�m � � = �'m jH1

.

Let wm = ~gm �W�1
 m

. Then wm is a K0-q.c.mapping from � m onto �Gm
and

de�nes the isomorphism �m from G m to Gm by �m(g) = wmgw
�1
m . Then, �m

satis�es that �m = �'m jH1
�(� m � �)�1. Since gm � i is homotopic to hm, �m

is type preserving. Since G m and Gm are terminal regular, by the rigidity of

triangle groups, wm can be extended to the K0-q.c.mapping on Ĉ conpatible with
G m . This extension is denoted by the same symbol wm for short.

To prove (c) in Theorem 3, it su�ces to show that the family fwmg
1
m=1 con-

tains a subsequece which converges to a K0-q.c.mapping w0 on Ĉ . Indeed, since
wmG mw

�1
m = �m(G m) = Gm for m � 1, w0G 0w

�1
0 = G0.

Take primitive hyperbolic g1; g2 2 H1 so that g1 is not conjugate to g2 in H1

and that �i;0 := �'0(gi) and �i;0 := � 0 ��(gi) are loxodromic. Let �i;m = �'m(gi)
and �i;m := � m � �(gi). Then there exists N1 > 0 such that for m � N1, �i;m
and �i;m are loxodromic. For m � N1, let fa2i�1;m; a2i;mg and fb2i�1;m; b2i;mg
be the set of the �xed points of �i;m and �i;m respectively. By discreteness, the
cardinality of faj;mg

4
i=1 and fbi;mg

4
i=1 are equal to 4 for m � N1 or m = 0. Since

�i;m ! �i;0 and �i;m ! �i;0, we may suppose that there exist N0 � N1 and d > 0
such that k(aj;m; aj;0); k(bj;m; bj;0) < d for j = 1; : : : ; 4 and m � N0 and that
k(ai;0; aj;0); k(bi;0; bj;0) > 4d for i 6= j, where k(�;�) is the spherical distance

on Ĉ . Let Bi = fz 2 Ĉ j k(z; ai;0) � dg. Since wm(fai;mg
4
i=1) = fbi;mg

4
i=1, by

applying an argument similar to that of Theorem 4.2 in [13, p.70] for domains

fĈ n Bi [ Bjgi 6=j , there exists a subsequence fwmj
g1j=1 and a K0-q.c.mapping w0

so that wmj
converges uniformly to w0.

It is easy to observe that if each Fi is a totally degenerate group without A.P.T.s,
then f'mg

1
m=1 satis�es (d). �
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