ON THE AREA OF THE COMPLEMENT OF THE INVARIANT
COMPONENT OF CERTAIN B-GROUPS AND ON SEQUENCES
OF TERMINAL REGULAR B-GROUPS
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Introduction Let G be a finitely generated Fuchsian group of the first kind,
and OT(G) the Bers boundary of the Teichmiiller space of G. Let x, be the
canonical isomorphism from G to the b-group corresponding to ¢ € 90T (G) with
suitable normalizations (cf. Section 1.1), and A, the invariant component of x,(G).
The main result of this paper is the following.

Theorem 1. Let {p,}52, C OT(G) be a sequence corresponding to terminal
reqular b-groups such that

(a) For any hyperbolic element g € G, there exist €(g), N(g) > 0 such that for
n > N(g), if Xy (9) is lozodromic, then [tr?(x,., (9)) — 4| > €(g), and
(b) The Euclidean area of C\ A, tends to 0 as n — cc.

Then every accumulation point of the sequence corresponds to a totally degenerate
group.

This theorem is proved in Section 3.2. We know that any po € 0T (G) has a
sequence {¢m }5°_, corresponding to terminal regular b-groups in 07(G) such that
m converges to o and that the area of C\ A, tends to zero (cf. Remark (2) in
Section 3.3).

This paper is organized as follows: In section 1, we fix our notations and recall
some basic definitions and facts. Section 2 deals with the lower estimate of the area
of the complement of the invariant component of a b-group which contains triangle
groups as component subgroups. This class of b-groups, by definition, involves the
set of terminal regular b-groups. In Section 3, we give the proof of Theorem 1 and
several remarks about our result.

The author would like to express his hearty gratitude to Professor Yoichi Imayoshi
for his constant encouragement. He would like to thank Professor Hiromi Ohtake,
Professor Hiroshige Shiga, and Professor Masahiko Taniguchi for their useful ad-
vices and conversations. He also thanks Professor Yohei Komori for useful and
stimulating conversations.

1. PRELIMINARIES

1.1. Let G be a finitely generated Fuchsian group of the first kind acting on
Y :={zeC: |z >1}. Let B(G) be the complex Banach space of holomorphic
functions ¢(z), z € ¥ with norm ||| = sup(|z|? — 1)?|p(2)|/4 < oo which satisfy
the functional equation of quadratic differentials ¢(g(2))g’(2)? = ¢(2), g € G. Tt is
well-known that dim B(G) < oo and that for every ¢ € B(G), there exists the local
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univalent function W, (z), z € ¥, such that the Schwarzian derivative {W,,, z} of
W, is equal to ¢(z) and that W, forms

W,(2) =2+ Z bnz™"

near z = oo. For ¢ € B(G), we denote by x, the homomorphism from G into

N

Mob(C) defined by the equation x,(g) o W, =W, 09, g € G.

Let T'(G) be the Teichmdiller space of G. T(G) can be identified with a bounded
domain in B(G). We know that for ¢ € 0T (G), W, is univalent and G, := x,(G)
is a b-group with the invariant component A, := W, (X) (see Section 1.2). We call
0T (G) the Bers boundary of T(G) (see [7], [9], and [12]).

1.2. For E C C, we denote by M6b(E) the group of Mébius transformations
g satisfying that g(E) = E. Through this paper, all discrete groups in Méb(@)
are torsion free. A finitely generated non-elementary Kleinian group , is called
a b-group if it has precisely one simply connected invariant component Ap of its
region of discontinuity €(, ). By Ahlfors’s finiteness theorem, a b-group represents
a finitely many Riemann surfaces, each with a finite Poincaré area. By Bers’s
second area inequality (cf.[18]), the total Poincaré area of Q(, )/, is at most twice
the Poincaré area of Ap/, . If equality holds, , is called regular.

Let , be a b-group and f a conformal mapping from ¥ to Ar. Let G = f~1, f.
If {f,—} € 0T (G), , is also called a boundary group. For a Fuchsian group G with
oo € Q(G), we denote by Ag the component of Q(G) which contains oo.

Let , be a b-group. For an accidental parabolic transformation (A.P.T.) g € G,
we denote by A, the axis of g (cf. [14, p.611] and [14, Lemma 1]). Let {g;};_; be
a basis for A.P.T.sin, . (cf. [14, p.612]). Let 7 be a projection mapping from Ap
to Ar/, . Then, a system Cr := {m(A4y)},a.p.7. is & partition on Ar/, , that is,
Cr is the system of mutually disjoint simple closed geodesics (cf. [14, p.613]). The
system Cr and a components of R\ Cr are called the partition with respect to, and
a block of , respectively.

Let , be either a b-group or a Fuchsian group with co € Q(, ). For E C Ar/, ,
a stabilizer group of a component of 7='(E) in , is called a covering group of
E in, (cf. [16, p.251]). For a b-group, a covering group of a block is called a
structure subgroup. We say that a set of structure subgroups {H;}5_, of , is a
basis of structure subgroups of , if each H; are not mutually conjugate in , and
every structure subgroup is conjugate some H; in , . A stabilizer subgroup of a
component of Q(, ) — Ap in , is called a component subgroup. We say that a
Kleinian group , is a b-group with no moduli if |, is a b-group satisfying either
Q(, ) is connected or each component subgroup of , is a triangle group (cf.[7]),
where a Kleinian group is called a triangle group if it conjugate in Mob(C) to the
principal congruence subgroup of level 2:

(z—= 2422 2/(-22+1)).

A b-group , is called terminal regularif , is regular and has no moduli. A b-group
, is called totally degenerate if Q(, ) is connected.
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1.3. Assume that f(2) = 2 + by + Y. po; bz F is univalent on ¥. Then the
following inequality, called the Golusin’s inequality, holds:

(1) >k
forany \; € C, (I=1,2,...,N), and

lOng(O = — i bklszchl (27C € E)

2 —
k=1

(cf. [3, p-91]). The coefficients {bx}75_, are called the Grunsky coefficients of f.
This inequality induces the following:
2

- AP
(2) > bt SZTZ ]

k=1 =1 =1

for A, pux € C (k=1,2,...) such that{k='/2\.}32,, {k="2u )52, € 12

2. THE AREA OF THE COMPLEMENT OF AN INVARIANT COMPONENT

In this section, we will give the lower estimate of the Euclidean area of the
complement of the invariant component of a b-group containing triangle groups
as component groups. For a measurable set E C C, we denote by Area(E) the
Lebesgue measure of E.

2.1. Let FF < Mo6b(C) be a triangle group so that co € Q(F'). Let {A, B} be a
generator of F' such that A, B, and AB are parabolic. Then, we have

Lemma 1. For g(z) = (az + b)/(cz + d), (ad — bc = 1), let ¢, = |¢|. Then
Area(Q(F) \ Ar) = 4n{2(cacp + cpcap + capca) — (¢4 + 5 + )"
> 4r(ch + cp +chp) !

Proof.  The direct calculation gives that the interior of the circumscribing circle
of the triangle whose edges has lengths z,y, and z has the area

1 1 1 y? 22 x> -t
T2 ﬁ"'?"’; - z2m2+w2y2+y2z2 .

Let a, b and ¢ be fixed points of A, B and AB respectively. By Proposition 12.1 in
[11, p.571],

2|c — b 2|a — ¢| and 2|b — al
o4 = — cp—— n I =
AT e=alla—b]’ P la=blb—¢ AP = e — qf
Therefore, we have the assertion. a

2.2.  We have the following lemma (cf. [22, p.372, Section 4]).

Lemma 2. Let A € Mob(X) with A(co) # oo and g € Mob(C) a parabolic
element. Suppose that there exists a univalent function f from X into C with
normalization f(z) =z 4+ O(1) near z = 0o such that go f = f o A. Then

3) cg <AL= [A/(0)])/ tr*(A)]|A"(0)
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Proof.  Let {bri}75—, be the Grunsky coefficient of f. By definition,
g(00) = g~"(00) = f(A(00)) — f(A™"(c0))

= (A(o0) — A7Y( exp{ Z b1 A(co (oo ))_l}_

k,l=1

Since A(co) = {A(0)} ", |A(0)] < 1, and [A(0)] = [A ()], {k /*A(0) }i,,
{k=1/24-1(0) 1(0) 122, are contained in [%. By (2), we have
(

Ol Jg(o0) - g (o0)
= |A(00) — A~ (c0)[? exp{—2Re( S bklmk(—A—l(O))l)}
k=1

|AI |A 2k e — 0|2k 1/2
> o e {- 2(2 > )T
_ IA’ 2 tri(4 )IA’(O)I3
- 1—|A' exp {21001 - L4} = IO

Since ¢ is parabolic, we conclude (3). O

2.3. For a parabolic A € M6b(X) and € > 0, the e-horocycle of A is, by defini-
tion, the cycle C in ¥ through the fixed point of A such that the hyperbolic distance
between z and A(z) is equal to € for z € C. We denote by d(A,€) the hyperbolic
distance between oo to the e-horocycle of A in ¥. For a hyperbolic A € Moéb(X),
we denote by d(A) the hyperbolic distance between oo to the axis of A in X.

For a Fuchsian group G acting on ¥ and € > 0, by the e-thick part thick.(G)
for G we mean that the set of points z € X such that the hyperbolic distance
between z and g(z) is more than ¢ for all parabolic g € G. For b-group , , let f be
a conformal mapping from ¥ to Ar. We define the e-thick part thick.(, ) for , by
f(thick.(f71, f)).

Let P be a subset of ¥/G, where G is a Fuchsian group. For ¢ > 0, we denote
P, := (thick.(G)/G) N P. We say that a closed curve in ¥/G is the e-horocycle if
there exists a primitive parabolic g € G so that C' is the image of the e-horocycle
of g by the projection. For a rectifiable curve C in R := ¥ /G, we denote by I (C)
the hyperbolic length of C' on R. Let P be the Nielsen kernel of a Riemann surface
homeomorphically to a three punctured sphere (cf.[6]). Let j be the number of
cusps of P. In this paper, P is called the pair of pants of type (3 — j,j) (cf. Figure
1.)

Type (3, O) Type (2,1) Type (1,2)

FIGURE 1. Pairs of Pants
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Let €y = 2arcsinhl and € < €. Let P be a pair of pants pf type (3 — 7,j). Then
there exist geodesics {y;}°_7, {a;}3_,, {d;}2_,, e-horocycles {vit3s 1, if 5 #0,
and the point ¢ € P as in Figure 1 by the Collar theorem (cf. [8, Theorem 4.4.6]).
From now on, we fix € < €.

The following lemma can be proved in the argument similar to that of Theorem
2.4.3 and 3.1.8 in [8] and Lemma 4.4 in [20]. Hence we omit the proof. The author
would like to thank Professor Toshihiro Nakanishi for teaching about the joint work
[20] with Professor Marjatta Nadténen.

Lemma 3. Let P be a pair of pants of type (3 — 7,7). Let {vi}3_,, {ai}3,,
{d;}?_,, and q € P as in Figure 1. Let d3 be the shortest geodesic connecting 3
and as. Let l; and 1(d;) be the lengths of v; and d; respectively. Then

(a) ds passes through q.

(b) Let L; =cosh(l;/2) (1 <j<3—j), then
(b-1) If P is of type (3,0), then

(L3 + L3 4+ L3 4+ 2L, Ly L3 — 1)1/?

h i = R = 1,2’ .
cosh(l(d;)) Sinh(0;/2) fori 3
(b-2) If P is of type (2,1), then
Ly + L . 1d L1+ L
cosh(l(d;)) sinh(l;/2)’ Jor j 2, and e sinh(e/2)
(b-3) If P is of type (1,2), then
Li+1 vay L+l _
h — — (dl) = = 2 I:l
cosh(l(dy)) Snh(,72)" and e Snh(e/2)’ fori ,3

2.4. Let , be a b-group which contains triangle groups as structure groups.
We denote by {P;};°, the blocks of , . Let « is the projection from Ar to R and
f the conformal mapping from ¥ to Ar.

We may assume that for 1 < k < s, Py, is a pair of pants of type (3 — jk, jx). Let
{')/kJ}?Zl be boundary curves of (Py)., We assume that for 1 < j < 3 — ji, Y&, is
a geodesic (see Figure 1).

Lemma 4. Fiz 0 < € < €9 so that pp := wo f(c0) € R.. Then, fork=1,... s,
there exist a structure group , p corresponding to Py and generators {Ck7i}?:1 of
Hy = f~1, of such that

(i) For j = 1,2,3, if Cr,i is hyperbolic (resp. parabolic), the the azis (resp. e-

horocycle) of X;(Ck,i) maps to vi; by mo f.
(ii) Cr3Cr2Cr1 =id
(iii) d(Chk,) (resp. d(Ck,i,€)) < diam(R.) + d(k, i),
where 0(k,3) is I(d;) as in Lemma 3 with respect to curves v; '= Yx4, i = 1,2,3 and
P := Py, and diam(E) is the hyperbolically diameter of E C R.

Proof. Fixk € {1,...,s}. We only show the case where Py is of type (3,0).
Another cases are proved in the similar manner.

On Py, let {vi:}2_, {an.i}3,, and {dki}3_, be geodesics as in Lemma 3. Let
pr. be a intersection point of di,; and di». By Lemma 3, lg(dy ;) = d(k,i). Take
a geodesic B in R connecting po and pg such that [r(8k) < diam(R.). We define
the curve f;,; C By Udy,; connecting py and 7y,; so that

IR(Bk,i) < diam(R.) + 0(k, 7).
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We construct a loop c’,w» = ﬂkﬁklﬂk_} with an initial point py. We give an ori-
entation for ¢ ; such that [} ,][c} 5][c} 3] =1, where [~] is an equivalence class in
m1(R,po), the fundamental group of R with the base point pg.

We take Cy,; € f, f~! corresponding to [c}..;] by the canonical isomorphism
between 7 (R, po) and f, f~1. Let z;, € ¥ be the end point of the lift of 3; whose
initial point is the point at co. Let , x be a structure group which stabilizes the
component of Ar \ Ug.a.p 1Ay containing f(zp). Then, by definition, the system
{Ck,i}3_, generates Hy and satisfies the assertion of lemma. O

2.5. We now prove the following theorem.

Theorem 2. Let , be a b-group such that oo € Ar and that the logarithmic
capacity of the limit set of , is equal to 1. Take 0 < € < €g such that oo € thick.(, ).
Let {Pr};" | be blocks of , each of which is a pair of pants. Then

S0
Area(C\ Ar) > 647 Y A(R, Py,e),

k=1
where R = Ar/, ,

A(R, Py, e) = {z; Se.i(sinh?(ly.:/2), diam(R.) + o(k, i))}_l, and

(x —4)cosh®d ((x — 4) cosh® d + 4)?/z, if 1 <i<3—jp

S i 7d =
ki@, d) {16 sinh?(e/2)e2?(1 + sinh?(e/2)e?%)?, otherwise.

Here (3 — ji,jx) is the type of Py, {lpi}:=7* and {0(k,i)}}_, are defined as in
Lemma 4, and set l,; =0 if 3—jp +1 <1 < 3. Especially, for M > 0 and some k,
if lengths of all closed geodesics in the boundary of Py, are less than M, then there
exists A > 0, depend only on R, M, and €, so that Area(C\ Ar) > A.

Proof.  The direct calculations shows that if A € M6b(X) is hyperbolic,

(4) [A'(0)] = 4/(6r*(4) — 4 tanh?(d(A))) cosh?(d(4)),
and if A is parabolic and oo € thick.({A4)}),
(5) |A"(0)| = 1/(1 + sinh?(e/2)e2d(A:9)).

Let f be the conformal mapping from ¥ to Ar such that f(z) = z + O(1) near
z = oo (cf. [21, p.207, Corollary 9.9]). For k € {1,...,s}. let Hj, and {Cy;}?_; be
as in Lemma 4. Since co € thick.((g)) for every parabolic g € G, by Lemma 2, and
(4) and (5), we have

(Cfck,if’1)2 S Sk,i(tlj(ck,’i), d(C;m))/IG for i = ]., 2,3.
Hence, by Lemma 1 and 4, we conclude the assertion. a

Corollary 1. For a b-group , , let f be a conformal mapping from ¥ to Ar.
Then it holds that

MA-HI< 5 (1= 645 A(AL/, , Ploen)}

where each Py, is a block of , which is a pair of pants.
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Proof. Let G := f~!, f. Since G is torsion free, for ¢ € B(G), it holds ||¢|| =
sup{(|z|> = 1)%|p(2)|/4 | z € thick¢,(G)} (cf. [23, Lemma 1] and [4, p.198,Exercise
8.2]). Hence by an argument similar to that of Lemma 6.7 in [9, p.151] (the Nehari-
Kraus theorem), we conclude the assertion. O

3. SEQUENCES OF TERMINAL REGULAR B-GROUPS

In this section, by using Theorem 2, we study a behavior of a sequence corre-
sponding to terminal regular b-groups contained in a Bers boundary.

3.1. Let G be a finitely generated Fuchsian group of the first kind acting on
Y. For ¢ € OT(G), we denote by C, the partition with respect to G,. We show
the following lemma.

Lemma 5. Let {pn,}>_, C 0T (G) be a sequence corresponding to terminal
regular b-groups. Then there exist a subsequence {Qm, }]‘?';1, a mazximal partition

{Ck}i’;H" on R, a number ko € {0,1,...,3p — 3 + n}, and homeomorphisms
{fi}521 of R onto itself such that

(1) Forj >1, C‘ij = {fj(ck) 2;;—134-11’

(2) If ko > 0, then Ig(f;(Cr)) = 00 as j = oo for 1 < k < ko, and

(3) If ko < 3p—3+mn, then f;(Cr) = Cy, for k> k.
If, in addition, Area(C \ Awm]-) — 0 as j — oo, then it also holds that

(4) No component of R\ Ug>k,Cr is a pair of pants, and hence ko > 0.

Proof.  Since the number of graphs induced by the maximal partition on R
is finite (cf.[2],[11]), we may assume that all graphs induced from {C,,, }>>_, are

the same. Let us denote C,, = {C}, i’;“”. Then, there exist homeomorphisms
{hm}2_, of R onto itself such that C,, = {hm(Ch)}:P>T™ (cf.[8, Appendix]).

By taking the subsequence of {h,,}35_, and renumbering the curves {C}}:7°*™ if

necessary, we may suppose that there exist ko € {0,1,...,3p—3+n}and M >0
such that if kg > 0, then lg(h.(C})) = 00 as m — oo for 1 < k < ko, and that if
ko < 3p—3+n, then lg(hm(C})) < M for ko <k <3p—3+nand m > 1.

Since the number of closed geodesics in R whose hyperbolic length are less than
M is finite (cf.[2]), there exists a subsequence {¢m;}32; such that hn, (C}) =
hm, (C},) for j,1 > 1 and kg < k < 3p—3+n.

Let f; = hp, o (hy,)™" and Cp = hy, (Cp) for j > 1and 1 < k < 3p—3+n.
Then, by definition, the subsequence {y,,;}32;, the partition {Cj 2’;_13+” on R,
the number ko, and homeomorphisms {f;}52, satisfy (1)-(3) in this lemma.

From now on, we assume that Area(C\ A, ) — 0 as j — oo. Suppose that
there exists a component P; of R\ Upsk,C such that P; is a pair of pants. Since
{Cr}rsk, C Conm, for each j > 1 and P; does not contain the simple closed geodesic
which is not homotopic to boundary components of P;, P; is a block of va]_ for
every j > 1. Hence each va]_ contains a triangle group as a structure group
corresponding to P;.

Take € > 0 so that oo € thick.(G). Since the lengths of all closed geodesics in
the boundary of P; are less than M, by Theorem 2, there exists A > 0, depend
only on R, M, and € such that

Area(C\ A, ) > A
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for j > 1. This contradicts the assumption. a

3.2. To prove Theorem 1, it suffices to show the following proposition.

Proposition 6. Let {©mnm}5>_; be a sequence corresponding to terminal regu-
lar b-groups in 0T (G) satisfying (1)-(3) in Lemma 5 with respect to a partition
{CLEPPY" ) a number ko, and homeomorphisms {fn}o_, of R onto itself. Sup-
pose that the sequence satisfies (a) in Theorem 1 and converges to po € OT(QG).
Then Gy, is a b-group with no moduli such that Cpy = {Cr}rsk,. Especially, if no
component of R\ Uk, Ck is a pair of pants, then G, is totally degenerate.

Proof.  We prove the case kg < 3p — 3 + n. The case where kg = 3p — 3 +n is
proved by the similar manner.

Let g € G be primitive hyperbolic elements corresponding to Cy for 1 < k <
3p — 3 +n. We denote by {P;}:2; the components of R\ Ups,Cr each of which is
not a pair of pants. Let {P;};L, , be components of R\ (Ur>x,Cr UU2, P;). Fix
a stabilizer group H; corresponding to P; in G. Let G; . = X, (H;) for m > 0.
For m > 1, since G, is a terminal regular b-group and, P; is not a pair of pants
for 1 < i < sg, Gim is also a terminal regular b-group such that Ag, /G is
homeomorphic to P; if 1 < i < sg (cf.[11]). By definition, for i > so, G;m is a
triangle group.

We first show that {G;0};L; is a basis of the structure groups of G,,. It is clear
that for & > ko, Xy, (gx) is an A P.T. in G,,. Since G0 = X4, (H;), it suffices
to show that x,,(g) is loxodromic for any hyperbolic element g € G which is not
conjugate to a power of g for any k.

If the geodesic corresponding to g meets C}, for some k > ko, then x,,(g) is
loxodromic. Hence we can take €(g), N(g) satisfying (a) for g in this theorem.
Thus we assume that the geodesic corresponding to g is contained in some P;. By
(2) in Lemma 5, there exists N(g) > 0 so that x.,.(g) is loxodromic for m > N(g).
By assumption (a), there exist e(g) > 0 such that for m > N(g), inequalities

|67° (X (9)) — 4] > €(g)

hold. Since x,..(g) = X, (g) as m — oo, we have that tr?(x,,(g)) # 4. Since X,
is an isomorphism and G is torsion free, x,,(g) is loxodromic.

Thus, if 1 <7 < sg, G0 is either a quasi-Fuchsian group or a totally degenerate
group without A.P.T.s (cf.[15], [17, p.225, Theorem D.21], and [17, p.268, Theorem
C.25]). We assume that G, o is a quasi-Fuchsian group for some 7. By the arguments
above, for m > 1, the isomorphism x,,,, o x! from G;o onto G, is allowable in
the sence of Bers (cf. [5, p.574]). Since x,,, ox;o1 converges to the identity on Gj o,
by the quasiconformally stability for quasi-Fuchsian groups (cf. [5, Proposition 6]),
G;,m is quasi-Fuchsian for sufficiently large m. This is contradiction. Thus, G,

is a totally degenerate group without A.P.T.s for i = 1,...,so. Thus, G, is a
b-group with no moduli such that C,, = {Ck } >k O
3.3. Remark. (1) Any sequence correponding to terminal regular b-groups

which converges to o € 8T (G) corresponding to totally degenerate group without
A.P.T.s satisfies (a) and (b) in Theorem 1.

(2) For any o € OT(G), there exists {om}oo_; in OT(G) corresponding to
terminal regular b-groups such that (2-i) Area(C\ A,,,) tends to zero, and (2-ii)
{om }5o_, converges to @g.
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(3) Any totally degenerate group G, with A.P.T.s has {¢,}0°_; in 0T (G)
conresponding to terminal regular b-groups which converges to ¢ such that (3-i)
Area(C\ A, ) tends to zero, and (3-ii) {pm }oo—; does not satisfy (a) in Theorem
1.

(4) If dimT(G) > 1, there exists {pm,}2°_; corresponding to terminal regular
b-groups in 0T (G) satisfying (a) in Theorem 1 such that {G,,, }>°_, converges to
a b-group but not a totally degenerate group.

Proof.  Before proving (1)-(4) above, we note that {¢m }5°_, corresponding to
terminal regular b-groups in 97 (G) which converges to g € T (G) corresponding
to a totally degenerate group without A.P.T.s satisfies that Area(C \ A,,) — 0
as m — o0o. Indeed, it follow from the following two facts; (1) The measure of
C\ A,, = A(G,,) is zero by Thurston’s theorem (cf.[18]), and (2) {A,,, }ro_,
converges to A, in the sence of kernel convergence with respect to wg = oo (cf.
[21, Theorem 1.8]).

Let us prove Remark (1)-(4).

(1) By the argument above, the sequence satisfies (a) in Theorem 1. Since G,
has no A.P.T.s, that also satisfies (a) in Theorem 1. O

(2) Since the set of differentials corresponding to terminal regular b-groups
and the set of those corresponding to totally degenerate groups without A.P.T.s
are dense in OT(G) (cf.[19] and [5, Theorem 14]), by the standerd arguments and
Remark (1), we find a sequence satisfying (2-i) and (2-ii). This remark was pointed
out to the author by Professor Hiroshige Shiga. O

(3) Let {gr}i_; be hyperbolic elements in G so that {x,,(gx)};_; is a basis
of A.P.T.s of Gy,. Take Ly > 0 so that 2 cosh(Lo/2) := maxi<k<s [tr(gx)|- By ap-
plying the argument in Lemma 5 for {¢,,}3°_; corresponding to totally degenerate
groups without A.P.T.s in 0T (G) which converges to (g, there exists a terminal reg-
ular b-group G, such that 5,/ (C) > mlLg for each C € C,,,,, |lom —ml|| < 1/m,
and that Area(C\ A,,,) < 1/m for m > 1. By the definition of Lo, xy., (gx) is
loxodromic for each m > 1and k=1,... s.

Since Xy, (gx) is parabolic, {¢m, }oo_; satisfies (3-1) and (3-ii). O

(4) Let R = ¥/G and C = {C}¢_, a maximal partition on R. Let {P;}IL,
be the components of R \ Upx1Cy, such that C1 C Pi. Since d = dimT'(G) > 1,
we may suppose that s; > 1 and that P, is a pair of pants. Let R; be the infinite
Nielsen extension of P; (cf.[6]), , 1 the Fuchsian group of Ri, and (, 1)y, a totally
degenerate group without A.P.T.s. We define {¢m }5°_, of a sequence corresponding
to terminal regular b-groups and ¢y € 0T (G) satisfying the conditions (a), (b), (c),
and (d) in Theorem 3 in Section 3.4 for the partition C, so = 1, and the boundary
group Fi :=(, 1)y,. Then {p.,}o0_, satisfies the assertion. O

If dimT(G@) = 1, then G, has an A.P.T. if and only if G,, is a terminal regular
b-group. By Remark (1) and the proof of Proposition 6, we have

Corollary 2. Suppose that dimT(G) = 1. For a sequence ® corresponding to
terminal regular b-groups in OT(G) which converges to py € OT(G), the following
three conditions are equivalent:

(1) Gy, is a totally degenerate group.
(2) @ contains a subsequence with (a) and (b) in Theorem 1.
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(3) @ contains a subsequence which consists of mutually distinct elements and
satisfies (a) in Theorem 1.

3.4. To complete the proof of Remark (4) in the previous subsection, we will
show the following theorem.

Theorem 3. Let G be a finitely generated Fuchsian group of the first kind acting
on Y and R = $/G. Let C = {C,}{°, be a partition on R and {P,}3°, the
components of R\ UZOZICk each of which is not a pair of pants. Fori=1,...,so,
let F; be a boundary group such that Ap,/F; is homeomorphic to P;. Then there
exist o € OT(G) and {om}5°_, corresponding to terminal regular b-groups such
that

(a) ©m — @o as m — oo,

(b) C CC,,, form >0, and

(c) A covering group of P; in Gy, is quasiconformally conjugate to Fj,

If, in addition, each F; is a totally degenerate group without A.P.T.s, then
(d) ® satisfies (a) in Theorem 1.

This theorem is proved in Section 3.6.

3.5. The following lemma is well-known. However, the author has never seen
what is stated in this form.

Lemma 7. Let R and S be a hyperbolic Riemann surface of type (p,n). Let
P be a domain in R such that P is homeomorphic to R and that the inclusion
mapping i from P to R is homotopic to a homeomorphsm of P onto R. Then, for
K > 1, there exists Ko = Ko(K, P,p,n) > 1 such that if a K-quasiconformal(q.c.)
mapping h from P into S which is homotopic to a homeomorphism from P onto S
exists, there exists a Ky-q.c.mapping g from R to S so that g oi is homotopic to h.

Proof.  Let T(R) be a Teichmiiller space of R (cf. [9, p.120]). Let M be a
Riemann surface of type (p,n). If there exists a K-q.c.mapping hys from P to M ho-
motopic to a homeomorphism of P onto M, then there exists a q.c.mapping f(p k)
from R onto S such that f(p x ar) o is homotopic to hpr. We denote by X (P, K)
the closure of the set of such [M, f(p k)] in T(R). Let i be a homeomorphism
form P to R homotopic to i. Let {7;}Y, be a system of simple closed geodesics fill
up R (cf. [10, p.249]). By the decreasing property for the hyperbolic metric and
Wolpert’s Theorem (cf. [8, p.153]), S, Is(fpxan () < Yo, Klp(i™' (7))
Hence X (P, K) is compact (cf. [10, Lemma 3.1]). Let dy be the diameter of
X (P, K) with respect to the Teichmiiller distance of T'(R) (cf. [9, p.125]). Then,
K, := e satisfies the assertion. O

3.6. Let us prove Theorem 3. We only show the case where sg = 1. Another
cases are proved by the similar manner.

Let {P;}3_, be the components of R\ UZOZICk such that P; is not a pair of pants.
Let Rl be the infinite Nielsen extension of P;. Since Ry := Ap, /F is homeomorphic
to Pp, there exists a K;-q.c.mapping hg from R, onto R;. Let Q = ho(Pr), i
an inclusion mapping from @ to R;. Then, by definition, ¢ is homotopic to a
homeomorphism from @ onto R;. Let f be a conformal mapping from ¥ to Ap,
and , 1 = f1F f. We take {1,,}3°_, in OT(, 1) corresponding to terminal regular
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b-groups which converges to ¢ := {f,—} € 9T(, 1). Let Cy,, = {C} ,, M and
Ch,m the geodesic in P; (and hence in R) such that iohg(C,n, ) is homotopic to C,’C,m
for k =1,... k. Then, Cp, := {Cim,Cj}i=1,... k1,j=1,.. .k, 1S & maximal partition
on R for m > 1. Take the terminal regular b-group G, so that C,,, = Cn (cf[1,
Theorem 6]). We may suppose that ® := {¢,,}2°_; converges to some ¢g € 0T (G).
By definition, ® and g satisfy (a) and (b) in this Theorem.

We prove that @ satisfies (c). Let 7 be the projection from ¥ to R and P; a
component of 7' (P;). We may assume that co € P;. Let H; be the stabilizer
subgroup of P, in G and G,, := X, (H1) for m > 0. Then for m > 1, Gy, is a
covering group of P; in G, and is a terminal regular b-group (cf.[11]).

Let S, = Ag,,/Gm and m, the projection from Ag, to S,. Then there
exists the injective holomorphic mapping h,, from P; to S,, such that h,, o7 | B=
Tm © We,, |- By definition, h,, is homotopic to a homeomorphism from P; to
Sm (cf.[14]). Hence, by Lemma 7, there exist Ko = Ko(K1,Q,p,n) > 0, and the
Koy-q.c.mapping g,, from R; to S,, so that g,, o is homotopic to hn, o (ho |p,) " .

Fix the lift kg of i 0 ho |p, from Py into . hg defines the isomorphism ¢ from H;
to, 1 by £(h) o ho = hg o h for h € H;. By definition, h,, induces the isomorphism
X |- Since for m > 1, g, 030 hg |p, is homotopic to hy,, there exists the lift
Jm Of gm from ¥ onto Ag,, so that the isomorphism 7, from , 1 to G,, defined by
Tim () = gm'yg;zl satisfies that 7, 0 § = Xy, |, -

Let wy, = gm © Wz/;i Then w,, is a Ko-q.c.mapping from A,  onto Ag,, and
defines the isomorphism 7, from Gy, to Gu by Nm(g) = wmgw,t. Then, ny,
satisfies that nm = Xo.. | ©(Xu.. © €)', Since g, o i is homotopic t0 A, Nm
is type preserving. Since Gy, and G,, are terminal regular, by the rigidity of
triangle groups, w,, can be extended to the Ky-q.c.mapping on o conpatible with
Gy,,. This extension is denoted by the same symbol w,, for short.

To prove (c) in Theorem 3, it suffices to show that the family {w,,}5°_; con-
tains a subsequece which converges to a Ky-q.c.mapping wy on C. Indeed, since
Wi Gy Wit = N (G, ) = G for m > 1, woGyowy * = Go.

Take primitive hyperbolic ¢1,9> € H; so that g; is not conjugate to g» in H;
and that a; 0 := X, (gi) and Bi o := Xy, ©&(gi) are loxodromic. Let & m = X, (i)
and Bim = Xy, ©&(g:).- Then there exists N; > 0 such that for m > Ny, a;m
and f; n are loxodromic. For m > Ny, let {az;i—1,m, @2i,m} and {bai—1,m,b2im}
be the set of the fixed points of «;,,, and f;,, respectively. By discreteness, the
cardinality of {a;m}?_; and {b; . }i_, are equal to 4 for m > Ny or m = 0. Since
Qim = ;0 and B; m — Bio, We may suppose that there exist No > Ny and d > 0
such that k(aj7m,aj70), k(bj7m,bj70) <dforj=1,...,4and m > Ny and that
k(aio,a50), k(bio,bjo) > 4d for i # j, where k(—, —) is the spherical distance
on C. Let B; = {z € C | k(2,a:0) < d}. Since wp({aim}i_y) = {bim}it,, by
applying an argument similar to that of Theorem 4.2 in [13, p.70] for domains
{C\ B; U B,}izj, there exists a subsequence {wm;}32, and a Ko-q.c.mapping wo
so that w,,; converges uniformly to wo.

It is easy to observe that if each F; is a totally degenerate group without A.P.T.s,
then {@m }5°_, satisfies (d). O
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