
GENERALIZED OBSTACLE PROBLEM

RIE SASAI

Abstract. Fehlmann and Gardiner [3] considered the obstacle problem which asks what

embedding of a Riemann surface S of �nite topological type minus an obstacle E into

another surface R of the same type which induces the isomorphisms �1(S) ! �1(R)

of the fundamental groups does maximize the L1-norm of the holomorphic quadratic

di�erential on R corresponding to a given one on S under the heights mapping. In

this paper we consider obstacles with arbitrarily many connected components while they

considered the case where the obstacle has �nitely many components. As an application

we give a slit mapping theorem of an open Riemann surface of �nite genus.

1. Introduction.

Since early 20th century, through the works of Koebe and de Possel and others, it

has been turned out that a solution to an extremal problem often gives a conformal

mapping with distinguished properties, such as parallel slit mappings. In this regard, it

is important to �nd a good extremal problem for the investigations on complex analysis.

Fehlman and Gardiner [3] studied such an extremal problem, which is called the obstacle

problem. In this paper, we extend their results to the case where an obstacle may have

uncountably many connected component. In order to formulate the problem, we give

some explanations for necessary notions.

For a holomorphic quadratic di�erential ' = '(z)dz2 on a Riemann surface S; we de�ne

the L1-norm k'kL1(S) of it by

k'kL1(S) =
ZZ

S

j'(z)jdx dy:

If k'kL1(S) <1; the quadratic di�erential ' is called integrable. We denote by A(S) the

set of integrable holomorphic quadratic di�erentials on S:
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Suppose that S is a hyperbolic Riemann surface. Then there is a holomorphic universal

covering projection P of D = fz 2 C j jzj < 1g onto S. Then
� = f
 2 AutD j P Æ 
 = Pg

is called a Fuchsian model of S: When � is of the second kind, namely, when the limit set

�(�) of � does not coincide with @D ; the Riemann surface Sd = (�C n �(�))=� is called

the (Schottky) double of S; and @S = (@D n�(�))=� is called the border of S: When � is

of the �rst kind, we set Sd = S and @S = ;:
Let S be a Riemann surface of �nite topological type (�;m; l), that is, S is obtained

by removing mutually disjoint l topological compact disks and m points from a compact

Riemann surface of genus �: When l = 0; R is called of �nite analytic type (�;m): When

l > 0; the double Sd is of �nite analytic type (2�+ l�1; 2m):We assume that the number

6�� 6 + 3l + 2m is positive in the sequel so that dimC A(S
d) = 6�� 6 + 3l + 2m > 0:

A quadratic di�erential ' = '(z)dz2 in A(S) is called symmetric in @S if there is

a quadratic di�erential 'd 2 A(Sd) with 'djS = ' for which j�'d = 'd holds. Here

j : Sd ! Sd is the canonical anti-conformal involution of Sd induced by conjugation

z 7! 1

�z
, in other words, the lift ~' of 'd to �C n�(�) is symmetric in @D : ~'(

1

�z
) � 1

�z4
= ~'(z).

We denote by As(S) the set of quadratic di�erentials ' 2 A(S) symmetric in @S: Note

that dimRAs(S) = 6�� 6 + 3l + 2m:

For a Riemann surface S of �nite analytic type let S(S) be the set of simple closed

curves 
 on S which are homotopic neither to a point in S nor to a puncture of S, and

let S[S] be the set of the free homotopy classes [
] of 
 2 S(S).
For a given ' 2 A(S) n f0g; we set

height'(
) :=

Z



���Im �p
'(z)dz

����
and

height'[
] := inf
�
height'(�);

where the in�mum is taken over all closed curves � 2 S(S) freely homotopic to 
. Con-

versely, such a height vector h 2 R
S[S] together with a conformal structure on S determines

a quadratic di�erential ' 2 A(S) with height'[
] = h[
] (see Section 2 or [5, Chap. 12]

for details).
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We are now ready to state the obstacle problem in the sense of Fehlmann and Gardiner

[3]. They thought of a \simply connected" compact subset with �nitely many connected

components as an obstacle. We will consider a more general set as an obstacle.

De�nition 1.1. A subset E of a Riemann surface S is said to be allowable if E is compact

and contractible in S and if S n E is connected. For an element ' 2 A(S); if each

component of an allowable subset E is either a horizontal arc of ' or the union of a �nite

number of horizontal arcs and critical points of ', then E is called an allowable slit with

respect to '.

Note that an allowable set E may have uncountably many components. For detailed

properties of an allowable set, see Section 2.

Let E be an allowable subset of a Riemann surface S of �nite topological type. We

denote by F(S;E) the set of pairs (g; Sg), where Sg is a Riemann surface of the same type

as S and g is a conformal embedding of S nE into Sg such that g maps the border @S of

S to that of Sg and the same applies to the punctures. We remark that Ed = E [ j(E)
and Eg = Sg n g(S nE) are both allowable (see Lemma 2.3). For every (g; Sg) 2 F(S;E),
the mapping g naturally extends to a conformal map gd from Sd nEd into the double Sd

g

of Sg. Then gd induces an isomorphism �g of the fundamental group �1(S
d) of Sd onto

that of Sd
g (see Lemma 2.4). For each ' 2 As(S) n f0g; we assign the new height vector

[
] 7! height'd(�
�1
g [
]); [
] 2 S[Sd

g ]: Thus there is the unique holomorphic quadratic

di�erential 'd
g 2 A(Sd

g ) n f0g such that

height'dg [
] = height'd(�
�1
g [
])

for every [
] 2 S[Sd
g ]. Since '

d
g is symmetric in @Sg; 'g = 'd

g jSg belongs to As(Sg): (See

the next section for a more detailed account.)

The obstacle problem for (S;E; ') is to �nd an element (g; Sg) in F(S;E) which maxi-

mizes the quantity

Mg = k'gkL1(Sg) =
ZZ

Sg

j'gj:

We show existence and uniqueness of a solution to the problem and, as an application,

we deduce a slit mapping theorem (see Section 5). Our �rst main theorem is stated as in

the following, which is a generalization of a result of Fehlmann and Gardiner [3].
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Theorem 1.2 (existence). Suppose that S is a Riemann surface of �nite topological type

and that ' 2 As(S) n f0g. Let E be an allowable subset of S. Then there is an element

(g; Sg) 2 F(S;E) with
Mg = sup

(h;Sh)2F(S;E)

Mh

such that Eg = Sg n g(S nE) is an allowable slit with respect to 'g, and Eg is of zero area.

We call such an element (g; Sg) 2 F(S;E) as in Theorem 1.2 extremal for (S;E; ') and

'g 2 A(Sg) n f0g the extremal di�erential associated with (g; Sg) 2 F(S;E).
In [3], Fehlmann and Gardiner showed the above result under the additional assumption

that E consists of �nitely many components. They also asserted in the paper that the

extremal pair (g; Sg) is unique in the sense that, if (u; Su) 2 F(S;E) is also extremal for

(S;E; '); then g Æ u�1 extends to a conformal map from Su onto Sg. The uniqueness,

however, does not necessarily hold in this sense (see [9]).

In this paper we show a uniqueness result for the obstacle problem in the following

form.

Theorem 1.3 (uniqueness). Under the same hypotheses as in Theorem 1.2, the extremal

di�erential 'g 2 A(Sg) n f0g is uniquely determined. Namely, if an element (u; Su) 2
F(S;E) is also extremal for (S;E; '); then the extremal di�erential 'u associated with

(u; Su) satis�es

'u = ('g Æ w)(w0)2 on u(S n E);
where w = g Æ u�1.
We remark that, if we consider the extremal problem of �nding an element minimizing

k'gkL1(Sg) instead of maximizing, then the similar result can be obtained just by replacing

the term \horizontal" by \vertical".

Acknowledgement. The author wishes to express her deepest gratitude to Professors

Takehiko Morita, Masakazu Shiba, Mitsuhiro Shishikura, Toshiyuki Sugawa and Masahiko

Taniguchi for many valuable suggestions and ceaseless encouragement.

2. Preliminaries.

Let S be a Riemann surface of �nite analytic type. The following variant of the second

minimal norm property will play an important role in this note. The assertion can be

seen by analyzing the proof of Theorem 9 in [4, p. 54].
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Proposition 2.1. Let S be a Riemann surface of �nite analytic type. Suppose that ' 2
A(S) and  is an integrable quadratic di�erential on S such that

height'[
] � height (
)

for almost every '-polygonal curve 
 2 S(S). Then

k'kL1(S) �
ZZ

S

jp'
p
 j

and, in particular, k'kL1(S) � k kL1(S). Moreover k'kL1(S) = k kL1(S) only if ' =  a.e.

We now recall a de�nition of the Teichm�uller space T (S) of a Riemann surface S of

�nite analytic type (see [6] for the compact case). Let (R; �) be a marked Riemann surface

of the same type as S; that is, a pair of a Riemann surface R of the same type as S and an

orientation-preserving isomorphism � of the fundamental group �1(S) onto �1(R). (More

rigorously, we should consider the fundamental group with base point. Though we do

not refer to the base point to avoid complexity, the reader can formulate it in an obvious

way.) Two pairs (R1; �1) and (R2; �2) are called (Teichm�uller) equivalent if there exists a

conformal mapping u of R1 onto R2 such that (u)� Æ �1 = �2. The set of such equivalent

classes [R; �] is called the Teichm�uller space of S and denoted by T (S): Every point in

T (S) is represented as [R; f�] by a (smooth) quasiconformal map f : S ! R: For the

existence of such a quasiconformal map, see [7].

We next recall heights mappings (cf. [4, x11.7], [5, x12.6]). Let jdvj be a measured

foliation on a Riemann surface S of �nite analytic type, namely, there are �nitely many

singuralities p1; : : : ; pt in Ŝ, where Ŝ is the completion of S and an open cover fUjg of

S n fp1; : : : ; ptg and real-valued continuous funtions vj on Uj with locally L2 derivatives

in such a way that vj = �vk + const: on Uj \ Uk and jdvj behaves around each ps like

the pull-back of jIm (zn=2dz)j under a quasiconformal map with certain restriction on the

integer n:

Let ' be a non-zero integrable holomorphic quadratic di�erential on a Riemann surface

S of �nite analytic type. We say that a curve 
 2 S(S) is '-polygonal if 
 is an union

of �nitely many horizontal and vertical arcs of '. For a measured foliation jdvj on S; by
abuse of language, we de�ne the height of 
 relative to jdvj by

heightv(
) =

Z



jdvj:
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Note that the height is de�ned for almost every '-polygonal curves in S(S): We denote

by heightv[
] the essential in�mum of heightv(

0) over 
0 2 [
]: Measured foliations jdv1j

and jdv2j on S are called measure equivalent if heightv1 [
] = heightv2 [
] holds for all

[
] 2 S[S]: Let MF(S) be the set of measure equivalence classes of measured foliations

on S. Every measure equivalence class [jdvj] 2MF(S) induces a real-valued function

heightv : S[S]! R ([
] 7! heightv[
]):

In this way, we obtain an embedding

MF(S)! R
S[S] ([jdvj] 7! heightv):

Then the product topology of RS[S] induces a topology of MF(S). It is known that the

mapping

	 : A(S) n f0g !MF(S) (' 7! jIm (
p
'(z)dz)j)

is a homeomorphism (see, for example, [5, p. 227]).

For a given ' 2 A(S)nf0g and a quasiconformal map f : S ! R; the measured foliation

jdvj = jIm (
p
'(z)dz)j on S induces a measured foliation f�(jdvj) = jd(v Æ f�1)j on R:

The relation

height'[
] = heightf�(jdvj)[f�(
)]; [
] 2 S[S];
implies that the measure equivalent class [f�(jdvj)] 2 MF(R) depends only on the Te-

ichm�uller equivalence class � = [R; f�]: Then we obtain the unique holomorphic quadratic

di�erential ��' 2 A(R) n f0g as 	�1[f�(jdvj)], namely,

height��'[
] = height(f)�(jdvj)[
]

= height'[f
�1(
)]

for every [
] 2 S[R]. The mapping �� : A(S) n f0g ! A(R) n f0g is called the heights

mapping.

We collect here basic properties of allowable subsets of a Riemann surface. First we

give another characterization of allowable sets.

Lemma 2.2. Let E be a compact subset of a Riemann surface S. Then E is contractible

in S if and only if E is contained in a compact topological disk.

Proof. The \if " part is trivial. We show the \only if " part when S is hyperbolic. The

other cases can be treated similarly. Suppose that E is contractible in S; namely, there
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is a continuous map H : E � [0; 1] ! S such that H(p; 1) = p for all p 2 E and that

H(p; 0) = p0 is independent of p 2 E: Let P be the universal covering projection of D onto

S such that P (0) = p0 and � be the covering transformation group of P: Let ~H be a lift of

the homotopy H via P such that ~H(p; 0) = 0 for all p 2 E: The set ~E = f ~H(p; 1) : p 2 Eg
is compact. For every ~p 2 ~E we can take a positive number r~p with the property that a

closed disk V~p centered at ~p with radius r~p satis�es

dist(A(V~p); ~E) � 2r~p for every A 2 �; A 6= id:

By compactness of ~E we may assume that there exist �nitely many of points ~p1; : : : ; ~pk 2
~E so that ~E is contained in the interior of the closed set ~V = [ki=1V~pi. We may assume

that by replacing radii for every i 6= j, V~pi is not tangent to V~pj . We can see that

A( ~V ) \ ~V = ; for every A 2 �; A 6= id. Indeed, if A( ~V ) \ ~V 6= ; for some A 2 �; A 6= id,

there exist i; j 2 f1; : : : ; kg and ~qi 2 V~pi and ~qj 2 V~pj such that A(~qi) = ~qj. Because of

dist(A(V~pi); ~E) � 2r~pi, we have r~pj � dist(~qj; ~pj) � dist(~qj; ~E) � dist(A(V~pi); ~E) � 2r~pi

holds. On the other hand by considering A�1 we have r~pi � 2r~pj . This cannot occur.

Hence A( ~V ) \ ~V = ; for every A 2 �; A 6= id. Let ~W be a convex hall of ~V , that is

~W � D is the closure of the set of point ~p such that there exist a Jordan curve 
 in ~V

whoes interior contains ~p. Then ~W is a disjoint union of �nitely many closed topological

disks whose boundaries are contained in ~V . Then we can see that for every components

~W1; ~W2 of ~W and for every A 2 �; A 6= id intersection A( ~W1)\ ~W2 is empty or contained in

either A( ~W1) or ~W2, because by the above argument A(@ ~W1)\@ ~W2 = � holds. Therefore

the projection P ( ~W ) also consists of mutually disjoint closed topological disks in S whose

union contains E in its interior. Consequently, by joining these disks with suitable canals

we obtain a topological closed disk in S containing E.

By using the above lemma, we can also show the following.

Lemma 2.3. Let E be an allowable subset of a Riemann surface S of �nite topological

type. Then Ed is an allowable subset of the double Sd: Also, for any (g; Sg) 2 F(S;E);
the set Eg = Sg n g(S n E) is allowable in Sg:

Proof. By joining a compact topological disk � containing E and its re
ection in @S

with a suitable canal, we obtain a compact topological disk �d containing Ed: Thus Ed
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is allowable by Lemma 2.2. We may take the compact topological disk � so that E is

contained in the interior of �: If S is of �nite topological type (�;m; l), then S n� and

g(S n�) are of type (�;m; l+ 1). The set �g = Sg n g(S n�) � Sg is of �nite topological

type, say, (�0; m0; l0). Since Sg is reconstructed from g(S n�) and �g by glewing along a

single Joldan curve, (�;m; l) = (�;m; l+1)+(�0; m0; l0)�(0; 0; 2), i.e., (�0; m0; l0) = (0; 0; 1).

Then the set �g which contain Eg in the interior is a compact topological disk in Sg. Thus

the latter assertion has been proved.

The following lemma now easily follows.

Lemma 2.4. Let E be an allowable subset of a Riemann surface S of �nite topological

type and (g; Sg) 2 F(S;E): Then the natural isomorphism gd� : �1(S
d nEd)! �1(S

d
g nEd

g )

induces the isomorphism �g : �1(S
d)! �1(S

d
g ):

Proof. It is suÆcient to show that if analytic closed curves 
1; 
2 � Sd nEd are homotopic

in Sd, then gd(
1) and g
d(
2) are also homotopic in Sd

g . Let �
d be a compact topological

closed disk which contains Ed in the interior. Since the number of components of 
i \
@�d(i = 1; 2) is �nite, we can decompose �d to �nitely many components each of which

does not intersect to 
1[
2. Then by suitable composition of components of the boundary

@�d of the decomposed topological disk �d we can modify 
1 to 

0
1 so that 


0
1 is homotopic

to 
2 in S
d nEd. Then gd(
01) is homotopic to gd(
2) in S

d
g nEd

g . We know by Lemma 2.3

gd(
01) is homotopic to gd(
1) in S
d
g . Hence g

d(
2) is homotopic to gd(
1) in S
d
g .

Following [3], we now introduce a few lemmas. For a simple closed curve � on a Riemann

surface S, we denote by �([�]; S) the extremal length of the family [�] of all closed curves

on S freely homotopic to �. For a point � = [R; �] in T (S); let K0(�) be the dilatation of

the unique extremal quasiconformal map from S onto R which induces the isomorphism

� : �1(S) ! �1(R). In other words, logK0(�) is the Teichm�uller distance between � and

the base point [S; id]:

Lemma 2.5 ([5, p. 247]). Let S be a Riemann surface of �nite analytic type. Then there

exists a positive constant c and �nitely many simple closed curves �1; : : : ; �N on S such

that the inequality

K0(�) � c max
1�l�N

�(�[�l]; R)

holds for every point � = [R; �] in T (S):
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Lemma 2.6 ([4, p. 218]). Let S be a Riemann surface of �nite analytic type and ' 2
A(S) n f0g. Then for every � 2 T (S)

K0(�)
�1k'kL1(S) � k��'kL1(S� ) � K0(�)k'kL1(S):

Let E be an allowable subset of a Riemann surface S of �nite topological type. By

Lemma 2.4, every pair (g; Sg) 2 F(S;E) corresponds to a point � = [Sd
g ; �g] 2 T (Sd): Note

that the point � is represented as [Sd
g ; f�] by a quasiconformal map f of Sd onto Sd

g which

is symmetric in the sense that f Æ j = jg Æ f holds, where j : Sd ! Sd and jg : S
d
g ! Sd

g

are the canonical anti-conformal involutions of Sd and Sd
g , respectively. Recall that the

holomorphic quadratic di�erential ��' 2 A(Sd
g ) n f0g is determined by

height��'[
] = height'd[f
�1(
)]

for every [
] 2 S[Sd
g ]:We now see that the quadratic di�erential 'g = ��'jSg is symmetric

in @Sg: Indeed,

heightj�g��'[
] = height��'[jg(
)]

= height'd[f
�1 Æ jg(
)]

= height'd[j Æ f�1(
)]
= height'd[f

�1(
)]

= height��'[
]

for every [
] 2 S[Sd
g ] and Proposition 2.1 implies

j�g��' = ��';

that is, 'g is symmetric in @Sg.

Let S be a Riemann surface of �nite topological type, ' 2 As(S) n f0g and E be an

allowable subset of S: We now show that

fMh : (h; Sh) 2 F(S;E)g
is bounded above and away from zero. Moreover we see that the set

T(S;E) = f[Sd
g ; �g] : (g; Sg) 2 F(S;E)g

is relatively compact in T (Sd).
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For the double Sd we take a family of curves �1; : : : ; �N and a positive constant c as

in Lemma 2.5. We may assume that each �k is contained in Sd nEd. For every (h; Sh) 2
F(S;E) set � = [Sd

h; �h] 2 T (Sd): Lemma 2.6, together with k'dkL1(Sd) = 2k'kL1(S) and
k'd

hkL1(Sdh) = 2k'hkL1(Sh), implies

k'kL1(S)
K0(�)

� k'hkL1(Sh) � K0(�)k'kL1(S):

Moreover from Lemma 2.5, we obtain

K0(�) � c max
1�l�N

�(�h[�l]); S
d
h)

= c max
1�l�N

�([hd(�l)]; S
d
h)

� c max
1�l�N

�([hd(�l)]; h
d(Sd n Ed))

= c max
1�l�N

�([�l]; S
d nEd) <1:

The last constant is independent of (h; Sh) 2 F(S;E). This means that T(S;E) is rela-

tively compact in T (Sd). Moreover, letting

c0 = c max
1�l�N

�([�l]; S
d n Ed);

we have

c�10 k'kL1(S) �Mh = k'hkL1(Sh) � c0k'kL1(S)
for every (h; Sh) 2 F(S;E). We have shown

Lemma 2.7. Let E be an allowable subset of a Riemann surface S of �nite topological

type and ' 2 As(S) n f0g. Then, the set T(S;E) is relatively compact in T (Sd) and there

is a positive constant c0 such that

c�10 k'kL1(S) � Mh � c0k'kL1(S)
for every (h; Sh) 2 F(S;E).

3. Proof of Theorem 1.2

Take a sequence f(gn; Sgn)gn � F(S;E) such that

Mgn % sup
(h;Sh)2F(S;E)

Mh:
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Set �n = [Sd
gn; �gn ] 2 T (Sd): Let � and �n (n 2 N) be the normalized Fuchsian models

([6, p. 59]) of S and Sgn, respectively. Since f[Sd
gn; �gn ]gn is relatively compact in T (Sd)

by Lemma 2.7, we may assume that [Sd
gn ; �gn] converge in T (S

d). Then the isomorphisms

�n : � ! �n induced by �gn algebraically converge to an isomorphism �1 : � ! �1.

We denote by S1 the quotient space D =�1 . Let G be a Fuchsian model of S n E and

� : G ! � be the surjective homomorphism induced by the natural homomorphism

�1(S n E)! �1(S): For each n 2 N , set

�n = �n Æ � : G! �n:

Since �n converge to �1, the homomorphisms �n converge to the surjective homomor-

phism

�1 = �1 Æ � : G! �1:

Let ~gn : D ! D (n 2 N) be the lift of gn associated with �n: Then

~gn Æ A = �n(A) Æ ~gn

for every A 2 G. Since f~gngn is normal, there is a subsequence which converges to a

holomorphic map ~g on D uniformly on any compact subset of D . Then we obtain

~g Æ A = �1(A) Æ ~g

for every A 2 G. If ~g is a constant c, then �1 has the common �xed point c, and thus

�1 is a cyclic group, which is not the case. So ~g is not constant and thus a holomorphic

map into D : Therefore ~g descends to an injective holomorphic map g of S n E into S1

such that the homomorphism (g)� corresponds to �1. We denote S1 by Sg. Then it is

easy to see that (g; Sg) 2 F(S;E):
Let �̂; �̂n (n 2 N) and �̂1 be the normalized Fuchsian models of the compact Riemann

surface Ŝ; Ŝgn and Ŝg, which are the completion of the doubles Sd; Sd
gn and Sd

g , respec-

tively. (In the case when Ŝ is not hyperbolic, the proof will be simpler.) Let fn be a

quasiconformal map of Sd onto Sd
gn which represents [Sd

gn ; �gn] 2 T (Sd) and f be a quasi-

conformal map of Sd onto Sd
g representing the element [Sd

g ; �g] 2 T (Sd). We denote by f̂n

and f̂ the lifts of fn and f �xing �1;�i to the covering space D over Ŝgn and Ŝg, respec-

tively. Let 
̂ be a relatively compact fundamental domain of �̂. Set 
̂n = f̂n(
̂) (n 2 N)
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and 
̂1 = f̂(
̂). Then 
̂n and 
̂1 are the fundamental domains of �̂n and �̂1, respec-

tively. Let '̂gn be a lift of '
d
gn to the universal covering space D over Ŝgn. For each n 2 N ,

'̂gn is a meromorphic quadratic di�erential on D with at most simple poles. Let D be a

subdomain of D , which is obtained from D by removing the points corresponding to the

punctures of Sd
g .

Lemma 3.1. The family f'̂gngn is normal on D.

Proof. It is suÆcient to show that fk'̂gnkL1(K)gn is bounded for any compact subset K

of D . Let

fA 2 �̂1 : A(
̂1 [ @
̂1) \K 6= ;g = fA1; : : : ; Am0
g:

Then, the euclidean distance d1 between K and ([m0

i=1Ai(
̂1))
c is positive. Since f̂n

converge to f̂ uniformly on any compact subset of D , for each Ai (1 � i � m0) an element

Ai;n = (f̂n Æ f̂�1) Æ Ai Æ (f̂n Æ f̂�1)�1 2 �̂n

converge to Ai as n!1. Then the distance dn between K and ([m0

i=1Ai;n(
̂n))
c converge

to d1. Hence dn > 0 for suÆciently large n. This implies

K �
m0[
i=1

Ai;n(
̂n):

Then

#fA 2 �̂n : A(
̂n) \K 6= ;g � m0

for suÆciently large n. This result together with boundness of fMgngn (Lemma 2.7)

implies that fk'̂gnkL1(K)gn is bounded.

Lemma 3.2. Mg = supfMh : (h; Sh) 2 F(S;E)g.

Proof. By Lemma 3.1, there is a subsequence of f'̂gngn which uniformly converges on any

compact subset of D to a holomorphic function '̂1 . For each n 2 N , '̂gn is �̂n-invariant,

that is,

('̂gn Æ An)(A0n)2 = '̂gn

12



for every An 2 �̂n. Then we see that '̂1 is �̂1-invariant, so we can project '̂1 to a

holomorphic quadratic di�erential '�1 on Sd
g . Moreover for any compact subset K of D,

k'̂1kL1(K) = lim
n!1

k'̂gnkL1(K) � 2c0k'kL1(S)

holds, where c0 is the positive number obtained in Lemma 2.7. Hence we can see that '̂1

is integrable on 
̂1.

Next we show that the integrable holomorphic quadratic di�erential '�1 on Sd
g is sym-

metric in @Sg. Let �n(n 2 N) and �1 be the limit sets of �n and �1 respectively. Let

~'gn(n 2 N) be the lift of 'd
gn to the covering space �C n �n over Sd

gn and let ~'1 be the

representation of '�1 on the double �C n�1. By assumption, for each n 2 N , ~'gn satis�es

~'gn(
1

�z4
) � 1
z4

= ~'gn on �C n �n:

Since ~'gn converge to ~'1 uniformly on any compact subset of �C n �1, we have

~'1(
1

�z4
) � 1
z4

= ~'1 on �C n �1:

Hence ~'1 is symmetric for @D , that is, the projection '�1 of ~'1 to Sd
g is symmetric in

@Sg. We denote by '1 the restriction of '�1 to Sg:

Now we show

lim
n!1

k'gnkL1(Sgn ) = k'1kL1(Sg):

Let p1; : : : ; pk 2 
̂1 be the points which correspond to the punctures of Sd
g . We may

assume that all p1; : : : ; pk are interior points of 
̂1 [ @
̂1. Set

pi;n = f̂n Æ f̂�1(pi) (n 2 N ; 1 � i � k):

Then pi;n ! pi as n!1.

For suÆciently small " > 0, let Vi � 
̂1 (1 � i � k) be the open disk of radius " centered

at pi such that Vi \ Vj = � if i 6= j. Since holomorphic functions (z � pi;n)'̂gn (n 2 N) on

Vi converge to (z � pi)'̂1 uniformly on Vi, the residues ci;n = Res('̂gn; pi;n) converge to

ci = Res('̂1; pi) as n!1. Moreover we can also see that holomorphic functions

'̂gn �
ci;n

z � pi;n

13



converge to

'̂1 � ci
z � pi

uniformly on Vi. We take the union
S
n�n0


̂n [ @
̂n for suÆciently large n0 2 N . Then

'̂gn converge to '̂1 uniformly on the compact set [
n�n0

(
̂n [ @
̂n)
![

(
̂1 [ @
̂1) n
k[
i=1

Vi:

Set

C = max
1�i�k

jcij:

Then we have

lim sup
n!1

���k'̂gnkL1(
̂n)
� k'̂1kL1(
̂1)

���
� lim sup

kX
i=1

 



 ci
z � pi






L1(Vi)

+





 ci;n
z � pi;n






L1(Vi)

!

+ lim sup
kX
i=1






�
'̂gn �

ci;n
z � pi;n

�
�
�
'̂1 � ci

z � pi

�




L1(Vi)

+ lim sup
���k'̂gnkL1(
̂nn[ki=1Vi)

� k'̂1kL1(
̂1n[ki=1Vi)
���

� Ck6�":

Thus

lim
n!1

k'gnkL1(Sgn ) = k'1kL1(Sg);

and we obtain k'1kL1(Sg) = sup
(h;Sh)2F(S;E)

Mh. Moreover, by Lemma 2.7, we have

k'1kL1(Sg) = lim
n!1

k'gnkL1(Sgn ) � c�10 k'kL1(S):

Therefore '1 2 As(Sg) n f0g.
Next we show '1 = 'g on Sg. Take any curve 
 2 S(Sd

g ) and suÆciently small " > 0.

Set 
n = fn Æ f�1(
) (n 2 N). Assume that A1 2 �̂1 corresponds to the homotopy class

[
] on Ŝg. Then

An =
�
f̂n Æ f̂�1

�
Æ A1 Æ

�
f̂n Æ f�1

��1

14



corresponds to the homotopy class [
n] on Ŝgn.

Let �n 2 S(Sd
gn) be a 'd

gn-geodesic curve freely homotopic on Sd
gn to 
n, that is, �n

satis�es [�n] = [
n] on S
d
gn and `'dgn [
n] = `'dgn (�n), where `'dgn (�n) is the length

Z
�n

j
q
'd
gn(z)dzj

of �n associated with 'd
gn and `'dgn [
n] is that of homotopy class [
n] de�ned by

inf
�
`'dgn (�);

where the in�mum is taken over all closed curves � freely homotopic to 
n on Sd
gn. It

is known [11, Theorem 24.1] that each �n satis�es height'dgn [
n] = height'dgn (�n). Let

�̂n (n 2 N) be a lift of �n to the universal covering space D over Ŝgn such that �̂n is a

closed arc starting from a point on @
̂n. We parametrize each �̂n by the '̂gn-length s

and we set l(n) = `'̂gn (�̂n). Then fl(n)gn is bounded because the set of f[Sd
gn; �gn ]gn is

relatively compact in T (Sd) by Lemma 2.7, so we may assume that l(n) converge to a

positive constant l1. For each n 2 N by re-parametrizing �̂n by �̂n(l(n)s), we may assume

that for every n 2 N ; �̂n is de�ned on [0; 1]. The curve �n (n 2 N) is analytic except

for �nitely many points where 'd
gn vanishes. Since the number of zeros of 'd

gn on Sd
gn is

uniformly bounded for n 2 N and fl(n)gn is also bounded, the orders of singularities of

�̂n are uniformly bounded. Then we can assume that there exists a natural number N0

and real numbers t1; t2; : : : ; tN0
2 [0; 1] (t1 � t2 � : : : � tN0

) such that the number of

critical points of �̂n is N0 for all n 2 N and for each i = 1; : : : ; N0 critical point tn;i of �̂n

converge to ti as n!1. We can see by reduction to absurdity that the family f�̂ngn2N
is equicontinuous. Then, together with uniform boundedness of f�̂ngn2N, we may assume

that �̂n uniformly converge to a continuous function �̂1 on [0; 1]. The image �̂1[0; 1] is

a lift of a closed curve on Ŝg.

Now we can show that height'̂gn (�̂n) converge to height'̂1(�̂1). Let s0 be any point

on (0; 1) n ft1; : : : ; tN0
g such that '̂1(�̂1(s0)) 6= 0 and �̂1(s0) 2 D. We can take a

neighborhood U of s0 in (0; 1) such that for every n 2 N '̂gn(�̂n(s)) 6= 0 on U [ @U and

�̂n(U[@U) does not contain any points corresponding to punctures of Sd
gn. Let �̂n (n 2 N)

15



and �̂1 be the natural parameter near �̂n(s0) and �̂1(s0), which are represented by

�̂n =

Z z

�̂n(s0)

q
'̂gn(z)dz

and

�̂1 =

Z z

�̂1(s0)

p
'̂1(z)dz;

respectively. For every n 2 N ; �n is geodesic relative to 'd
gn-length, so we see that

d�̂n

jd�̂nj
= ei�n on U

for a constant �n 2 [0; 2�). For any subsequence f�nkgk which is converging to some

�1 2 [0; 2�]

d�̂nk
ds

=
l(nk)d�̂nk

jd�̂nkj

=
l(nk)d�̂nk
d�̂nk

� d�̂nkjd�̂nkj

=
l(nk)q
'̂gnk (�̂nk)

� ei�nk

k!1�! l1p
'̂1(�̂1)

� ei�1 :

The convergence is uniform on U , so we can see that �̂1 is of C1-class on U and

d�̂1
ds

= lim
k!1

d�̂nk
ds

=
l1p

'̂1(�̂1)
� ei�1:

Since the argument �1 is independent of the choice of subsequence, the sequence f�ngn
is converging itself and we obtain

d�̂1
ds

= lim
n!1

d�̂n
ds

on U:

Consequently the curve �̂1 satis�es

d�̂1
ds

= lim
n!1

d�̂n
ds

on (0; 1)
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except for �nitely many of points. Then we obtain

lim
n!1

height'̂gn (�̂n) = height'̂1(�̂1)

because of ����Im
�q

'̂gn(�̂n)
d�̂n
ds

����� �
����
q
'̂gn(�̂n)

d�̂n
ds

���� = l(n) � sup
n2N

l(n) <1

for every n 2 N and

lim
n!1

����Im
�q

'̂gn(�̂n(s))
d�̂n
ds

����� =
����Im

�p
'̂1(�̂1(s))

d�̂1
ds

����� a.e. on [0; 1]:

If there exists s1 2 [0; 1] such that �̂1(s1) corresponds to a puncture of Sd
g , we modify

the curve �̂1 locally in a neighborhood of s1 to a curve �̂
0
1 so that the projection on Sd

g is

homotopic to 
 on Sd
g . It is possible to choose �̂

0
1 so that `'̂1(�̂

0
1) is as close to `'̂1(�̂1)

as we want. Therefore, for any " > 0; there is a curve �̂01 so that

height'd
1

[
] � height'̂1(�̂
0
1)

< height'̂1(�̂1) + "

= lim
n!1

height'̂gn (�̂n) + "

= lim
n!1

height'dgn [
n] + "

= height'dg [
] + ":

Then we have the inequality height'd
1

[
] � height'dg [
]. Particularly, by Proposition 2.1,

k'd
1kL1(Sdg ) � k'd

gkL1(Sdg ):

On the other hand, from maximality of k'1kL1(Sg) in fMh; (h; Sh) 2 F(S;E)g we have

k'd
gkL1(Sdg ) � k'd

1kL1(Sdg ):

Therefore k'd
1kL1(Sdg ) = k'd

gkL1(Sdg ) holds, and by Proposition 2.1, we have

'd
1 = 'd

g on S
d
g :

Lemma 3.3. Eg = Sg n g(S n E) has measure zero.
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Proof. If Eg has positive measure, we can de�ne a Beltrami coeÆcient � on Sd
g so that

� = 0 on Sd
g n Ed

g and

ZZ
Sdg

�'d
g > 0.

For each t 2 (0; 1), let f t� be a quasiconformal map of Sd
g onto the double Sd

t� of a

Riemann surface St� with Beltrami coeÆcient t�. Let �(t) = [Sd
t�; (f

t�)�] 2 T (Sd
g ): For

'g 2 As(Sg) n f0g we set 't� = �(t)�'gjSt� 2 As(St�) n f0g whose height on Sd
t� is equal to

that of 'd
g on S

d
g . By the variational formura [4, p. 217], we have

log k'd
t�kL1(Sdt�) = log k'd

gkL1(Sdg ) +
2

k'd
gkL1(Sdg )

Re

ZZ
Sdg

t�'d
g dxdy + o(kt�k1):

Then we can see

k't�kL1(St�) > k'gkL1(Sg)

for suÆciently small t > 0. On the other hand, (f t� Æg; St�) 2 F(S;E) for every t 2 (0; 1),

and the maximality of k'gkL1(Sg) yields the inequality

k't�kL1(St�) � k'gkL1(Sg);

which is a contradiction.

Lemma 3.4. A component of Eg is either

(i) a horizontal arc of 'g or,

(ii) a connected union of �nitely many horizontal arcs and critical points of 'g.

In particular, Eg is an allowable slit with respect to 'g.

Proof. Fix any component J of Eg. We consider the obstacle problem for (Sg; J; 'g).

Then there is a solution (h; Sh) 2 F(Sg; J) and 'h 2 As(Sh) n f0g satisfying

k'hkL1(Sh) = supfk'fkL1(Sf ) : (f; Sf) 2 F(Sg; J)g:

Since (hÆg; Sh) 2 F(S;E), we have k'hkL1(Sh) � k'gkL1(Sg). On the other hand, (id; Sg) 2
F(Sg; J) yields the equality k'gkL1(Sg) � k'hkL1(Sh). Thus (id; Sg) 2 F(Sg; J) attains the
extremum. By the same argument as in [3], we conclude that the component J satis�es

either (i) or (ii) in the lemma.

We have proved Theorem 1.2 completely.
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4. Proof of Theorem 1.3

Let En � S (n 2 N) be an allowable subset of S such that each En is a disjoint union of

�nitely many of closed analytic disks and satisfying En � En+1 � � � � and \1n=1En = E.

Set Un = S nEn (n 2 N). (Consider a regular exhaustion fRngn2N of the Riemann surface

Ŝ nEd and set Un = S\Rn and En = S nUn for suÆciently large n's; cf. [1, p. 144].) First

we show that we can obtain a solution (h1; Sh1) 2 F(S;E) of the obstacle problem for

(S;E; ') from the family of solutions (hn; Shn) 2 F(S;En) for (S;En; ') (n 2 N). Next

we show that any other extremal element (u; Su) 2 F(S;E) for (S;E; ') satis�es

'u = ('h1 Æ w1)(w01)2 on u(S n E);

where w1 = h1 Æ u�1. The solution (g; Sg) 2 F(S;E) in the Theorem 1.2 also satis�es

'g = ('h1 Æ w0)(w
0
0)

2 on g(S n E);

where w0 = h1 Æ g�1, so we have

'u = ('g Æ w)(w0)2 on u(S n E);

where w = g Æ u�1.
We now proceed to the proof. For each n 2 N ; by considering the obstacle problem

for (S;En; '), we obtain a solution (hn; Shn) 2 F(S;En). Let �n = [Sd
hn
; �hn] 2 T (Sd):

We can see in a similar manner to Section 2 that the set f�ngn � T (Sd) is relatively

compact in T (Sd). In fact, we may assume that the curve family �1; : : : ; �N in Lemma

2.5 is contained in Sd n Ud
1 . Then the dilatation K0(�n) of the extremal quasiconformal

map of the Teichm�uller class �n satis�es

K0(�n) � c max
1�l�N

�([�l]; U
d
1 ) =: c1

for every n 2 N . Since the constant c1 is independent of n 2 N , f�ngn is relatively compact

in T (Sd). We can also see

c�11 k'kL1(S) � k'hnkL1(Shn ) � c1k'kL1(S)
for every n 2 N . By the same argument as in the proof of Theorem 1.2, we obtain a

subsequence f�nkgk and a point �1 = [Sh1; �h1] 2 T (Sd) associated with an element

(h1; Sh1) 2 F(S;E) such that �nk converge to �1 in T (Sd), and the lift of hdnk to the

covering space D over Sd n Ed converge to that of hd1 uniformly on any compact subset

19



of D . For brevity, we renumber nk by k: For every (h; Sh) 2 F(S;E) and every n 2 N ; by

considering the restriction of h to Un; we have

k'hkL1(Sh) � k'hnkL1(Shn ):

Since k'hnkL1(Shn ) converge to k'h1kL1(Sh1 ), we have

k'hkL1(Sh) � k'h1kL1(Sh1 )

for every (h; Sh) 2 F(S;E). Hence, (h1; Sh1) 2 F(S;E) is extremal for (S;E; ') ;

Mh1 = sup
(h;Sh)2F(S;E)

Mh:

Next we assume that an element (u; Su) 2 F(S;E) also attains the supremum. Set

wn = hn Æ u�1 ;  n = ('hn Æ wn)(w0n)2 (n 2 N)

w1 = h1 Æ u�1 ;  1 = ('h1 Æ w1)(w01)2:

We show that 'u =  1 on u(S n E). For the sake of convenience, we extend  n to Su so

that  n = 0 on Su n u(Un), similarly  1 = 0 on Su n u(S n E). Then  n (n 2 N) and  1

are integrable quadratic di�erentials on Su.

Fix any point p0 2 Sd
u with 'd

u(p0) 6= 0. Let �u = �u + i�u be the natural parameter of

'd
u, which is de�ned about p0 by

�u =

Z z

z0

p
'd
u(z)dz;

where z is a local chart near p0 and z(p0) = z0. Let Np0 be a suÆciently small closed

neighborhood of p0 such that Np0 corresponds to, by the parameter �u, a square centered

at p0 and each side of which is parallel to the axis. Since for each n 2 N  d
n is integrable

on Sd
u, the height relative to  

d
n of almost every vertical segment of 'd

u on S
d
u, particularly

on Np0, is well de�ned and the same holds also to that relative to  d
1. Then we can

see that for almost every vertical segment of 'd
u on Sd

u, particularly on Np0, the heights

relative to  d
n (n 2 N) and  d

1 are all well de�ned. We denote by Vp0 the set of such

vertical segments of 'd
u in Np0.

For each � 2 Vp0 we set �n = � \ ud(Ud
n) (n 2 N). Fix any " > 0 and any 1-

dimensional measurable set A � Np0 on a horizontal trajectory of 'd
u. Since 'd and 'd

u
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are integrable on Sd and Sd
u, respectively, by Fubini's theorem and Schwarz's inequality,

for every n;m 2 N (n � m) we have

Z
A

jheight dn(�)� height dn(�m)jd�u �
Z
A

Z
�nn�m

j
p
 d
n(�u)jd�u d�u

=

ZZ
V (n;m;A)

j
p
 d
n(�u)jd�u d�u

� k d
nk

1

2

L1(V (n;m;A)) � k'd
uk

1

2

L1(V (n;m;A))

� �
c1k'dkL1(Sd)

�1
2 � k'd

uk
1

2

L1(V (n;m;A))

m!1�! 0;

where V (n;m;A) = fp 2 Np0 \ ud(Ud
n n Ud

m) j Re �u(p) 2 Ag. Then there exists a natural

number N1 such that for every n � N1

Z
A

jheight dn(�)� height dn(�N1
)jd�u < ":

Furthermore we can see that

Z
A

jheight dn(�N1
)� height d

1

(�N1
)jd�u ! 0 (n!1);
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because  d
n uniformly converge to  d

1 on Np0 \ ud(Ud
N1
). Then, by Fatou's lemma, we

have Z
A

lim inf
n!1

height dn(�)d�u

� lim inf
n!1

Z
A

height dn(�)d�u

� lim inf
n!1

�Z
A

�
height dn(�)� height dn(�N1

)
�
d�u

+

Z
A

�
height dn(�N1

)� height d
1

(�N1
)
�
d�u +

Z
A

height d
1

(�N1
)d�u

�

= lim inf
n!1

Z
A

�
height dn(�)� height dn(�N1

)
�
d�u

+ lim
n!1

Z
A

�
height dn(�N1

)� height d
1

(�N1
)
�
d�u +

Z
A

height d
1

(�N1
)d�u

� "+

Z
A

height d
1

(�)d�u:

Therefore almost every � 2 Vp0 satis�es

lim inf
n!1

height dn(�) � height d
1

(�):

The same holds for almost every vertical segments on Sd
u. Then we can see that almost

every 'd
u-polygonal curve 
, which is a union of �nitely many horizontal and vertical

segments, satis�es

lim inf
n!1

height dn(
) � height d
1

(
):

Let ~wn(
) be a simple closed curve on Sd
hn

which is obtained from wn(
) by supplying

�nitely many horizontal segments of 'd
hn
. We have

height'du[
] = height'd
hn
[ ~wn(
)]

� height'd
hn
( ~wn(
))

= height'd
hn
(wn(
))

= height dn(
)
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for every n 2 N . Therefore height'du[
] � lim inf
n!1

height dn(
) holds, and we obtain

height'du[
] � height d
1

(
) and, in particular, k'd
ukL1(Sdu) � k d

1kL1(Sdu). Then the maxi-

mality of Mu = k'd
ukL1(Sdu) implies, together with Proposition 2.1,

'd
u =  d

1 on ud(Sd n Ed):

Consequently we have

'u = ('h1 Æ w1)(w01)2 on u(S n E):
We have proved Theorem 1.3.

5. Slit mapping theorem of open Riemann surface of finite genus.

Let R be an open Riemann surface of �nite genus. As was observed by Bochner, R

can be embedded into a compact Riemann surface S of the same genus. Let w be a

conformal embedding of R into S such that (w)� : �1(R) ! �1(S) is surjective. We �x

such a compact Riemann surface S, an embedding w and an element ' 2 A(S) n f0g.
We remark that E = S n w(R) is allowable in S. Let M be the family of pairs (g; Sg),

where g is a conformal map from R into a compact Riemann surface Sg such that (g)�

is surjective. For every (g; Sg) 2M, g Æ w�1 : S n E ,! Sg induces an isomorphism from

�1(S) onto �1(Sg). We denote by � = [Sg; (g Æw�1)�] the Teichm�uller class in T (S): Then

for this � 2 T (S) and for ' 2 A(S) n f0g we obtain a unique element 'g 2 A(Sg) n f0g
whose height on Sg is equal to that of ' on S. Consider the extremal problem to �nd

an element (g; Sg) 2 M maximizing k'gkL1(Sg): By Theorem 1.2, we obtain an extremal

element (g; Sg) 2 M. The set Sg n g(R) is of zero area on Sg and each component of

Sg n g(R) is either
(i) a horizontal arc of 'g or,

(ii) a connected union of �nitely many horizontal arcs and critical points of 'g.

We have shown

Corollary 5.1. Let R be an open Riemann surface of �nite genus. Then there are a

compact Riemann surface S and a conformal embedding g : R ! S and a holomorphic

quadratic di�erential 'g on S such that S n g(R) has measure zero and each component

of S n g(R) is a possibly branched arc on horizontal trajectories of 'g.
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