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Abstract

Let P (S) denote the space of projective structures on a closed sur-
face S, and let Q(S) be the subset of P (S) consisting of projective
structures with quasi-fuchsian holonomy. It is known that Q(S) has
infinitely many connected components. In this paper, we show that
the closure of any “exotic” component of Q(S) is not a topological
manifold with boundary, and that any two components of Q(S) have
intersecting closures.
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1 Introduction

Let S be an oriented closed surface of genus g > 1. A projective structure on
S is a maximal system of local coordinates modeled on the Riemann sphere
Ĉ, whose transition functions are Möbious transformations. For a given
projective structure on S, we have a pair (f, ρ) of a local homeomorphism f
from the universal cover S̃ of S to Ĉ, called a developing map, and a group
homomorphism ρ of π1(S) into PSL2(C), called a holonomy representation.
Let P (S) denote the space of all marked projective structures on S, and let
R(S) denote the space of all conjugacy classes of representations of π1(S)
into PSL2(C). Holonomy representations give a mapping hol : P (S) →
R(S), which is called the holonomy map. It is known by Hejhal [He] that
the map hol is a local homeomorphism. The quasi-fuchsian space QF (S) is
the subspace of R(S) consisting of faithful representations whose holonomy
images are quasi-fuchsian groups.

We are interested in the subset Q(S) = hol−1(QF (S)) of P (S). We say
an element of Q(S) is standard if its developing map is injective; otherwise
it is exotic. For each connected component Q of Q(S), the map hol|Q is a
biholomorphic isomorphism from Q onto QF (S). As a consequence of the
result of Goldman [Go], it is known that the set of connected components
of Q(S) are in one-to-one correspondence with the set MLZ(S) of integral
measured laminations (see 2.3 for a precise definition). We denote by Qλ

the component of Q(S) corresponding to λ ∈ MLZ(S), where Q0 is the
component consisting of all standard projective structures. In this paper,
we investigate the distribution of connected components of Q(S).

The first important improvement on the distribution of exotic projective
structures is the following theorem due to McMullen.

Theorem 1.1 (McMullen [Mc, Apendix A]). There exists a sequence of
exotic projective structures which converges to a point in the relative bound-
ary ∂Q0 = Q0 − Q0 of the standard component Q0 in P (S). As a con-
sequence, we know that the closure of QF (S) in R(S) is not a topological
manifold with boundary.
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In our previous paper [It], we investigated the phenomena in Theorem
1.1 more closely and obtained the following theorem.

Theorem 1.2 ([It]). For any finite set {λi}m
i=1 of MLZ(S)−{0} satisfying

i(λj, λk) = 0 for all j, k ∈ {1, . . . , m}, we have

Q0 ∩
(

m⋂
i=1

Qλi

)
�= ∅,

where i(·, ·) denotes the geometric intersection number. Especially, we have
Q0 ∩ Qλ �= ∅ for any λ ∈ MLZ(S)− {0}, and the closure of Q(S) in P (S)
is connected.

In this paper, we continue the above investigations and obtain the fol-
lowing theorems.

Theorem A. For any λ ∈ MLZ(S)−{0}, there exists a point Y ∈ Q0∩Qλ

such that U ∩ Qλ is disconnected for any sufficiently small neighborhood U
of Y . Especially, Qλ is not a topological manifold with boundary.

Theorem B. For any two elements λ, µ ∈ MLZ(S), we have Qλ∩Qµ �= ∅.
Theorem C. For any λ ∈ MLZ(S)−{0}, the holonomy map hol : P (S) →
R(S) is not injective on Qλ, although the map hol is invective on Q0.

The following Theorem D is one of the essential observations in this
paper. Theorem A follows immediately from this theorem. Theorem B is a
consequence of Theorem 1.2 and Theorem D. Theorems C is also a corollary
of Theorem D.

In 2.4, we define new elements (λ, µ)�, (λ, µ)� ∈ MLZ(S) for λ, µ ∈
MLZ(S). We remark that (λ, µ)� = (λ, µ)� if and only if i(λ, µ) = 0.

Theorem D. Let λ, µ ∈ MLZ(S) − {0}. Assume that λ and µ have no
parallel component in common and i(λ, µ) �= 0. Then, there exist elements
(λ, µ)�, (λ, µ)� ∈ MLZ(S), a positive integer N , and sequences {Yn}|n|>N ,
{Zn}|n|>N in Q(S) which satisfy the following (see Figure 1):

(1) {Yn}|n|>N ⊂ Qλ and Yn → Y∞ ∈ ∂Q0 ∩ ∂Qλ as |n| → ∞,

(2) {Zn}n>N ⊂ Q(λ,µ)�
, {Zn}n<−N ⊂ Q(λ,µ)�

and Zn → Z∞ ∈ ∂Qµ as
|n| → ∞,

(3) hol(Yn) = hol(Zn) for any |n| > N and hol(Y∞) = hol(Z∞).
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Q0 Qµ

Qλ

Q(λ,µ)�
Q(λ,µ)�

Y∞ Z∞

{Yn}n>N {Yn}n<−N {Zn}n>N {Zn}n<−N

Figure 1: Schematic figure explaining Theorem D for the case of i(λ, µ) �= 0.

Figure 2 is a computer graphic created by Komori, Sugawa, Wada, and
Yamashita (cf. [KS]). This shows a part of projective structures on a once-
punctured torus with constant underlying complex structure. The white
part corresponds to projective structures with quasi-fuchsian holonomy. The
inner disk is a Bers slice (a slice of the standard component Q0) and the
outer part is a slice of an exotic component. This graphic “seems to” show
the claim of Theorem A.

Figure 2: A part of a slice of Q(S) in P (S) (white part).
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In [It] and this paper, we always make use of the sequence of exotic pro-
jective structures converging to a point in ∂Q0, which is constructed by Mc-
Mullen in [Mc]. The original idea to construct such a sequence can be found
in the theory of Kleinian groups: There is a sequence of Kleinian groups such
that the algebraic limit is contained in the geometric limit “properly” and
“twisted,” where the “properly” part is due to Jørgensen [Jo] and Kerckhoff
and Thurston [KT], and the “twisted” part is developed by Anderson and
Canary [AC]. In Anderson-Canary [AC] and Anderson-Canary-McCullough
[ACM], it is obtained a necessary and sufficient condition such that com-
ponents of the set AH(Γ) of discrete faithful representations of a finitely
generated group Γ into PSL2(C) have intersecting closures. On the other
hand, Bromberg and Holt [BH] obtained a sufficient condition such that a
component of AH(Γ) is “self-bumping.” Related topics can be found in Holt
[Ho1], [Ho2]. Our results can be viewed as the projective structure analogues
of those results: Theorem 1.2 and Theorem B correspond to the works in
[AC] and [ACM]; on the other hand, Theorem A corresponds to the work in
[BH].

Here, we explain more closely the phenomena which we discuss in this
paper. We take a non-zero element λ ∈ MLZ(S) and first review the proof
of Q0∩Qλ �= ∅. Let qf : T (S)×T (S̄) → QF (S) be the canonical homeomor-
phism, where T (S) is the Teichmüller space of S, and S̄ denotes S with its
orientation reversed. We fix an element (X, X̄ ′) ∈ T (S)×T (S̄) and consider
the sequence of representations

[ρn] = qf(τnX, τ2nX̄ ′) ∈ QF (S),

where τ is the Dehn twist corresponding to λ. Then, the sequence [ρn]
converges algebraically to a boundary group [ρ∞] ∈ hol(∂Q0) (see [Mc]).
Take Y∞ ∈ ∂Q0 such that hol(Y∞) = [ρ∞], and take the sequence {Yn} ⊂
Q(S) such that Yn → Y∞ as |n| → ∞ and that hol(Yn) = [ρn] for all
sufficiently large |n|. In McMullen [Mc], it was shown that Yn are exotic if
|n| are sufficiently large. Moreover, we showed in [It] that Yn are eventually
contained in the exotic component Qλ as |n| → ∞, which implies that
Q0 ∩ Qλ �= ∅.

For any λ ∈ MLZ(S), there is a biholomorphic map Grλ : Q0 → Qλ

satisfying hol ◦ Grλ = hol, which is called the grafting map (see 2.3 for the
definition). Let µ be a non-zero element of MLZ(S) such that the supports
of µ and λ have no parallel component in common. Then, we can construct
a grafting Z∞ = Grµ(Y∞) of Y∞ ∈ ∂Q0 ∩ ∂Qλ, which satisfies hol(Z∞) =
hol(Y∞). Moreover, we can show that Z∞ ∈ ∂Qµ (see Proposition 2.12).
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Since the map hol is a local homeomorphism, there exist open neighborhoods
U of Y∞, V of Z∞ and a homeomorphism Φ : U → V which satisfies
hol ◦ Φ = hol on U . We now obtain a new convergence sequence

Zn = Φ(Yn) → Z∞ = Φ(Y∞) ∈ ∂Qµ

as |n| → ∞. Note that hol(Zn) = [ρn] and hol(Z∞) = [ρ∞] are satisfied.
Then, the following theorem is the key theorem in this paper, which is a
specific version of Theorem D.

Theorem D. There exists a positive integerN such that {Zn}n>N ⊂ Q(λ,µ)�

and {Zn}n<−N ⊂ Q(λ,µ)�
.

Let µ be an element of MLZ(S) as above. In addition, we assume
that i(λ, µ) �= 0, which implies that (λ, µ)� �= (λ, µ)�. Then, {Zn}n>N

and {Zn}n<−N are contained in distinct components of Q(S). Since the
holonomy map hol : P (S) → R(S) is a local homeomorphism, we obtain the
following theorem.

Theorem 1.3. For any sufficiently small neighborhood W of [ρ∞], there
exists a positive integerN such that {[ρn]}n>N and {[ρn]}n<−N are contained
in distinct components of W ∩QF (S).

Now we obtain a proof of Theorem A.

Proof of Theorem A. Since the holonomy map is a local homeomorphism,
for any sufficiently small neighborhood U of Y∞, there exists a positive
integer N such that {Yn}n>N and {Yn}n<−N are contained in distinct com-
ponents of U ∩ Qλ. This implies Theorem A.

2 Preliminaries

2.1 Kleinian groups

A Kleinian group Γ is a discrete subgroup of PSL2(C), which acts on the
hyperbolic space H3 as isometries, and on the sphere at infinity S2∞ = Ĉ as
conformal automorphisms. In this paper, we always assume that Kleinian
groups are finitely generated. The region of discontinuity Ω(Γ) is the largest
open subset of Ĉ on which Γ acts properly discontinuously, and the limit
set Λ(Γ) of Γ is its complement Ĉ − Ω(Γ). The quotient manifold NΓ =
H3 ∪ Ω(Γ)/Γ is called the Kleinian manifold of Γ. A Kleinian group Γ
is said to be geometrically finite if some neighborhood of CH(Λ(Γ))/Γ in
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H3/Γ is a finite volume, where CH(Λ(Γ)) is the convex hull of Λ(Γ) in
H3. A Kleinian group Γ is said to be a quasi-fuchsian group whose limit
set Λ(Γ) is a Jordan curve and which contains no element interchanging the
two components of Ω(Γ). A Kleinian group Γ is said to be a b-group if there
exists exactly one simply connected invariant component of Ω(Γ), which is
denoted by Ω0(Γ).

2.2 Projective structures

Let S be an oriented closed surface of genus g > 1. A projective structure on
S is a (PSL2(C), Ĉ)-structure. Let P (S) denote the set of equivalence classes
of pairs (g, Y ); where Y is a closed surface with a projective structure and
g : S → Y is an orientation preserving homeomorphism. Two pairs (g1, Y1)
and (g2, Y2) are said to be equivalent if there is a projective isomorphism
h : Y1 → Y2 such that h ◦ g1 is isotopic to g2. The equivalence class of
(g, Y ) is simply denoted by Y . The set P (S) can be identified with the
holomorphic cotangent bundle over the Teichmüller space T (S) of S. By
this identification, P (S) is a complex manifold of dimension 6g − 6.

For a projective structure Y ∈ P (S), a developing map

fY : Ỹ → Ĉ

is a local homeomorphism, which is obtained by lifting the projective struc-
ture to the universal cover Ỹ of Y , and by continuing the coordinates ana-
lytically. For a developing map fY of Y , there is a group homeomorphism

ρY : π1(S) → PSL2(C)

satisfying the condition fY ◦ γ = ρY (γ) ◦ fY for any γ ∈ π1(S). The map ρY

is called a holonomy representation for Y . Note that a projective structure
Y determines the pair (fY , ρY ) uniquely up to the action of PSL2(C); where
the action of η ∈ PSL2(C) is defined by (fY , ρY ) 
→ (η ◦ fY , η ◦ ρY ◦ η−1).

Let
R(S) = Hom(π1(S),PSL2(C))/PSL2(C).

denote the space of all conjugacy classes [ρ] of representations of ρ : π1(S) →
PSL2(C) such that ρ(π1(S)) is non-abelian. It is known that R(S) is a
6g−6 dimensional complex manifold (see [Gu] and [Fa]). The quasi-fuchsian
space QF (S) is the subset of R(S) consisting of conjugacy classes of faithful
representations whose images are quasi-fuchsian groups. It is known by Bers
[Be] that the quasi-fuchsian space QF (S) ⊂ R(S) is a complex submanifold
of dimension 6g − 6.
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The holonomy map
hol : P (S) → R(S)

is defined by Y 
→ [ρY ]. The basic fact is that the holonomy map is a
holomorphic local homeomorphism (see [He], [Ea] and [Hu]).

In this paper, we are mainly concerned with the pre-image of the quasi-
fuchsian space: Q(S) = hol−1(QF (S)). We say an element of Q(S) is
standard if its developing map is injective; otherwise it is exotic. By us-
ing the technique of quasi-conformal deformations of projective structures,
developed by Shiga and Tanigawa [ST], we obtained the following:

Lemma 2.1 ([It, Proposition 2.3]). For any connected component Q of
Q(S), the map hol|Q : Q → QF (S) is biholomorphic.

2.3 Grafting

Let S denote the set of homotopy classes of non-trivial simple closed curves
on S. By abuse of the notation, we also denote a representative of C ∈ S
by C. Let MLZ(S) denote the set of integral measured laminations on
S. Namely, each element λ ∈ MLZ(S) is written as a formal summation∑
kiCi, where {ki} are positive integers and {Ci} are elements of S such

that Ci ∩Cj = ∅ for i �= j. We regard S as a subset of MLZ(S). We shall
contain the “zero” measured lamination in MLZ(S).

For C1, C2 ∈ S, the geometric intersection number i(C1, C2) is the min-
imum number of points in which the representations of C1 and C2 must
intersect. Note that i(C, C) = 0 for any C ∈ S. We can naturally extend
the definition of the geometric intersection number for elements of MLZ(S).
We can also define mλ+nµ ∈ MLZ(S) for λ, µ ∈ MLZ(S) with i(λ, µ) = 0
and positive integers m and n.

Let Y ∈ P (S) and let πY : Ỹ → Y be the universal covering map. Fix
an simple closed curve C ∈ S. Let C̃ ⊂ Ỹ be a connected component of
πY

−1(C), and let c ∈ π1(S) be a generator of the cyclic subgroup 〈c〉 of the
covering transformation group (= π1(S)) such that C̃ is 〈c〉-invariant.

Definition 2.2. A simple closed curve C ∈ S is called admissible on Y if
fY (C̃) is a simple arc in Ĉ and ρY (c) is a loxodromic element. Moreover,
λ =

∑l
i=1 kiCi ∈ MLZ(S) is admissible if Ci (1 ≤ i ≤ l) are admissible on

Y .

Let C ∈ S be admissible on Y . Then fY (C̃) is invariant under the
action of the loxodromic cyclic group 〈ρY (c)〉. Let {p, q} be the fixed points
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of ρY (c). Then, {p, q} are the end points of the arc fY (C̃) and the closure
of fY (C̃) in Ĉ is fY (C̃) = fY (C̃) ∪ {p, q}. Let

AC =
(
Ĉ − fY (C̃)

)
/〈ρY (c)〉

be the quotient annulus equipped with the projective structure induced from
that of Ĉ. Then we obtain a new projective structure GrC(Y ) by cutting
Y along C and inserting the annulus AC at the cut locus without twisting.
The new projective structure GrC(Y ) is said to be obtained from Y by
grafting along C, or simply called a grafting of Y . This definition does not
depend on the choice of a representative C in its homotopy class (see [Go]).
The basic fact is that the grafting operation does not change the holonomy
representation; that is, hol(GrC(Y )) = hol(Y ) is satisfied. Similarly, we can
define the new projective structure GrkC(Y ) for kC ∈ MLZ(S) by cutting
Y along C and inserting k-copies of the annulus AC at the cut locus. In
general, we can naturally construct Grλ(Y ) from Y by grafting along λ, if
λ is admissible on Y . Note that hol(Grλ(Y )) = hol(Y ) is satisfied again.

Now we describe the relationship between components of Q(S) and the
set MLZ(S). To this end, we recall the following:

Theorem 2.3 (Goldman [Go]). If Y ∈ Q(S) is a standard projective
structure, then

hol−1(hol(Y )) = {Grλ(Y )}λ∈MLZ(S).

Let Y ∈ Q(S) be a standard projective structure and Q be a connected
component of Q(S). Then, from Lemma 2.1, Q contains a unique projec-
tive structure whose holonomy representation coincides with hol(Y ). On the
other hand, this projective structure is contained in the set {Grλ(Y )}λ∈MLZ(S)

by Theorem 2.3. Therefore, we obtain the decomposition of Q(S) into its
connected components;

Q(S) =
∐

λ∈MLZ(S)

Qλ,

where Qλ is the component containing Grλ(Y ). Then Q0 is the component
consisting of standard projective structures and any element in Qλ (λ �= 0)
is exotic. Moreover, the grafting map Grλ : Q0 → P (S) defined on Q0

is a biholomorphic map onto Qλ and satisfies hol ◦ Grλ = hol for each
λ ∈ MLZ(S).
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2.4 New operation on MLZ(S)

Definition 2.4 (Realization, Support). Let λ =
∑l

i=1 kiCi ∈ MLZ(S).
A disjoint union of simple closed curves on S is said to be a realization of
λ if it consists of ki simple closed curves C(1)

i , . . . , C
(ki)
i each of which is

homotopic to Ci for each 1 ≤ i ≤ l. A realization of λ is denoted by λ̂, that
is, λ̂ =

⋃l
i=1

⋃
1≤q≤ki

C
(q)
i . On the other hand, the disjoint union

⋃l
i=1Ci is

called the support of λ.

Let us take λ, µ ∈ MLZ(S). We shall define new elements (λ, µ)� and
(λ, µ)� in MLZ(S). Let λ̂ and µ̂ be realizations of λ and µ such that the
geometric intersection number of λ̂ and µ̂ is minimal. we now construct
new disjoint unions of simple closed curves ̂(λ, µ)� and ̂(λ, µ)� by drawing
“zigzag” paths in λ̂ ∪ µ̂. More precisely, we construct ̂(λ, µ)� and ̂(λ, µ)� in
the following way (see Figure 3):

• Construction of ̂(λ, µ)�: Take a point in λ̂ as a starting point. Go along
λ̂ until one meets µ̂, then turn to right and go along µ̂ until one meets
λ̂, then turn to left. We continue this process until one comes back to
the starting point. Change the starting point, if necessary, and repeat
the above process until ̂(λ, µ)� covers λ̂ ∪ µ̂.

• Construction of ̂(λ, µ)�: Take a point in λ̂ as a starting point. Go
along λ̂ until one meets µ̂, then turn to left and go along µ̂ until one
meets λ̂, then turn to right. We continue this process until one comes
back to the starting point. Change the starting point, if necessary,
and repeat the above process until ̂(λ, µ)� covers λ̂ ∪ µ̂.

λ̂λ̂

µ̂µ̂

Figure 3: The rule to construct ̂(λ, µ)� (left) and ̂(λ, µ)� (right).
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Finally, we smooth the corners of ̂(λ, µ)� and ̂(λ, µ)� so that they become
unions of mutually disjoint, simple closed curves. Then we obtain new ele-
ments (λ, µ)� and (λ, µ)� in MLZ(S), whose realizations are equal to ̂(λ, µ)�

and ̂(λ, µ)�, respectively (see Figure 4). Note that this construction depends
only on the orientation of S.

11 22

2

22

3

λµ λ̂ and µ̂

(λ, µ)� (λ, µ)�

Figure 4: An example of (λ, µ)� and (λ, µ)�.

Note that, by definition, (λ, µ)� = (µ, λ)� is satisfied for any λ, µ ∈
MLZ(S). We now collect some basic properties which we use in this paper.
We leave these lemmas as exercises for the reader.

Lemma 2.5. Let λ, µ ∈ MLZ(S). Then i((λ, µ)�, µ) = i((λ, µ)�, µ) =
i(λ, µ).

Lemma 2.6. Let λ, µ ∈ MLZ(S). If i(λ, µ) = 0, then (λ, µ)� = (λ, µ)� =
λ+ µ. If i(λ, µ) �= 0, then (λ, µ)� �= (λ, µ)�.

Lemma 2.7. Let λ, µ ∈ MLZ(S) − {0}. Suppose that any component of
the support of µ intersects λ. Then

((λ, µ)�, µ)� = λ = ((λ, µ)�, µ)�,

((λ, µ)�, µ)� = (λ, 2µ)�,

((λ, µ)�, µ)� = (λ, 2µ)�.
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2.5 Algebraic and geometric limits of Kleinian groups

In this subsection, we describe the relationship between sequences of exotic
projective structures and algebraic and geometric limits of their holonomy
representations. We begin with the definition of geometric convergence of
Kleinian groups.

Definition 2.8 (Hausdorff topology, Geometric convergence). Let
X be a locally compact Hausdorff space. We denote by C(X) the set of all
closed subsets of X . A sequence {An} of closed subsets of X converges to
a closed subset A ⊂ X in the Hausdorff topology on C(X) if every element
x ∈ A is the limit of a sequence {xn ∈ An} and if every accumulation point
of every sequence {xn ∈ An} lies in A. A sequence of Kleinian groups {Γn}
is said to converge geometrically to a group Γ̂ if {Γn} converges to Γ̂ in the
Hausdorff topology on C(PSL2(C)).

We recall some basic facts on the convergence of representations. Let
{ρn : π1(S) → Γn} be a sequence of discrete faithful representations of π1(S)
into PSL2(C) converging algebraically to ρ∞ : π1(S) → Γ∞. Then ρ∞ is also
a discrete faithful representation (see [Jo, Theorem 1]). Moreover, there is a
subsequence of {Γn} converging geometrically to a Kleinian group Γ̂ which
contains the algebraic limit Γ∞ (see [JM, proposition 3.8]). It is said that a
sequence {ρn : π1(S) → Γn} converges strongly to ρ∞ : π1(S) → Γ∞ if {ρn}
converges algebraically to ρ∞ and {Γn} converges geometrically to Γ∞. The
following theorem is due to Kerckhoff and Thurston [KT, Corollary 2.2].

Theorem 2.9 (Kerckhoff-Thurston). Let {ρn : π1(S) → Γn} be an alge-
braically convergent sequence of faithful representations onto quasi-fuchsian
groups Γn. Assume that {Γn} converges geometrically to Γ̂. Then {Λ(Γn)}
converges to Λ(Γ̂) in the Hausdorff topology on C(Ĉ).

2.6 Pullback of limit sets of Kleinian groups

Let Y be an element of P (S) whose holonomy representation ρY : π1(S) → Γ
is faithful and discrete. Let πY : Ỹ → Y be the universal covering map and
fY : Ỹ → Ĉ be the developing map. Then, one can easily see that the pre-
image f−1

Y (Λ(Γ)) of the limit set Λ(Γ) in Ỹ is invariant under the action of
the covering transformation group π1(Y ). Then, the subset f−1

Y (Λ(Γ)) ⊂ Ỹ
descends to the subset

ΛY = πY ◦ f−1
Y (Λ(Γ))
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in Y , which is called the pullback of the limit set Λ(Γ) in Y . We note that
we can also consider the pullback πY ◦ f−1

Y (Λ(Γ̂)) ⊂ Y of the limit set Λ(Γ̂)
of a Kleinian group Γ̂ containing Γ.

Theorem 2.10 (Goldman [Go]). Let Y be an element of Q(S). Then
Y ∈ Qλ if and only if ΛY ⊂ Y is a realization of 2λ.

Let {Yn} be a sequence in P (S) converging to an element Y∞ ∈ P (S)
as n → ∞. A projective structure on S induces a complex structure on S
and hence a hyperbolic structure. Therefore, with these canonical hyperbolic
structures on Yn and Y∞, there existKn-quasi-isometric maps ωn : Y∞ → Yn

with Kn → 1 as n→ ∞.

Lemma 2.11 ([It, Lemma 3.3]). Let {Yn} be a sequence in Q(S) con-
verging to an element Y∞ in Q(S) as n → ∞. Then the sequence of
holonomy representations {ρYn : π1(S) → Γn} converges algebraically to
ρY∞ : π1(S) → Γ∞. Moreover, we assume that {Γn} converges geometrically
to a Kleinian group Γ̂. Let ωn : Y∞ → Yn be a Kn-quasi-isometric map with
Kn → 1 as n → ∞. In this situation, the sequence {ω−1

n (ΛYn)} converges
to Λ̂Y∞ in the Hausdorff topology on C(Y∞), where Λ̂Y∞ = πY∞ ◦ f−1

Y∞(Λ(Γ̂))
is the pullback in Y∞ of the limit set of the geometric limit Γ̂.

If there is no confusion, we simply say that {ΛYn} converges to Λ̂Y∞ and
denote by ΛYn → Λ̂Y∞.

2.7 Grafting operation on ∂Q0

Let λ, µ ∈ MLZ(S) − {0}. Suppose that the supports of λ and µ have
no parallel component in common. Let Y be a projective structure in ∂Q0

such that its holonomy image Γ = ρY (π1(S)) is a geometrically finite b-group
whose parabolic locus is equal to the support of λ. Since fY is injective and
since supports of λ and µ have no parallel component in common, µ is
admissible on Y . Therefore, we obtain the grafting Z = Grµ(Y ) as in 2.3.
On the other hand, since hol(Z) = hol(Y ) and since the holonomy map is a
holomorphic local homeomorphism, there are neighborhoods U of Y and V
of Z such that the map Φ = (hol|V )−1 ◦ (hol|U) : U → V is biholomorphic.
Note that Z = Grµ(Y ) = Φ(Y ). In the following proposition, we will show
that Z = Grµ(Y ) is contained in ∂Qµ by using the map Φ : U → V . (We
do not know whether Φ ≡ Grµ on U ∩Q0 or not.)

Proposition 2.12. Let λ and µ be non-zero elements in MLZ(S) whose
supports have no parallel component in common. Let Y be a projective struc-
ture in ∂Q0 such that its holonomy image Γ = ρY (π1(S)) is a geometrically
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finite b-group whose parabolic locus is equal to the support of λ. Then the
grafted projective structure Z = Grµ(Y ) is contained in ∂Qµ.

Proof. Since Γ = ρY (π1(S)) is a geometrically finite b-group, [ρY ] is con-
tained in the boundary of some Bers slice BX = qf({X}×T (S̄)), and there
exists a sequence {[ρn] = qf(X, X̄n)} in BX which converges strongly to
[ρY ] (see [Ab]). Let us take a sequence {Yn} ⊂ Q0 such that hol(Yn) = [ρn].
Then Yn → Y and Zn = Φ(Yn) → Z = Grµ(Y ) = Φ(Y ) as n→ ∞.

We will show that Zn ∈ Qµ, which implies that Z ∈ ∂Qµ. Since Γn =
ρn(π1(S)) converge geometrically to Γ, ΛZn ⊂ Zn converge to ΛZ ⊂ Z in
the sense of Hausdorff by Lemma 2.11. For simplicity, we assume that µ
is a simple closed curve C′ of weight 1. Then, one can see that ΛZ ⊂ Z

is contained in an annulus A whose core curve is homotopic to C′. Since
ΛZn → ΛZ , we can see that ΛZn is also contained in A for n � 0, which
implies that Zn ∈ ⋃k>0 QkC′ (see [It, Lemma 4.2]).

We first consider the case of i(λ, C′) = 0. Then ΛZ consists of exactly
two components. Since [ρn] = qf(X, X̄n) converge strongly to [ρ], we can
take annuli A ⊂ X and An ⊂ X̄n whose core curves are homotopic to C′

and whose moduli are uniformly bounded below. Then we can see that the
hyperbolic distance of any two component of ΛZn in Zn is bounded below
by the same argument in the proof of [It, Theorem A]. Therefore, we obtain
Zn ∈ QC′ = Qµ for n� 0.

Secondly, we consider the case of i(λ, C′) �= 0. Then ΛZ consists of
exactly one component. Then, by the same argument as above, we can
see that the components of ΛZn contained in one grafted cylinder (which
consists of two simple closed curves homotopic to C′) are in a uniformly
bounded distance from components contained in another grafted cylinder.
Therefore, we also obtain Zn ∈ QC′ = Qµ for n� 0.

2.8 Hyperbolic Dehn filling theorem

We will make use of a variation of Thurston’s hyperbolic Dehn filling the-
orem, which is stated in the thesis of Comar [Co]. Let M̂ be a compact
3-manifold with l torus boundary components T1, . . . , Tl. Choose a meridian
mi and longitude li for the torus Ti and regardmi and li as a basis for π1(Ti).
Let (pi, qi) be relatively prime integers and let (p, q) = (p1, q1; . . . ; pl, ql).
Then M(p, q) is a manifold obtained by attaching a solid torus Vi to M̂ by
an orientation reversing homeomorphism which identifies the meridian of Vi

with a simple closed curve in the homotopy class of mpi
i l

qi
i for each i.

Theorem 2.13 (Hyperbolic Dehn filling theorem [Co]). Let M̂ be a

14



compact 3-manifold with l torus boundary components. Assume that M̂ is
uniformized by a geometrically finite Kleinian group Γ̂ without a rank-one
parabolic subgroup. There is a neighborhood U of (∞, . . . ,∞) in (R2∪{∞})l

such that, if a collection of relative prime pairs (p, q) = (p1, q1; . . . ; pl, ql)
is contained in U , then there exists a group homomorphism χp,q : Γ̂ →
PSL2(C) which satisfies the following:

(1) The image Γ(p, q) = χp,q(Γ̂) is a convex co-compact Kleinian group
which uniformizing M(p, q).

(2) The kernel of χp,q is normally generated by {mpi
i l

qi
i }l

i=1.

(3) χp,q converges algebraically to the identity representation of Γ̂ as (p, q) →
(∞, . . . ,∞).

(4) Γ(p, q) converges geometrically to Γ̂ as (p, q) → (∞, . . . ,∞).

3 Proofs of main theorems

3.1 Outline of proofs

Most of this section (3.2–3.7) is devoted to the proof of Theorem D. Figure
5 should be helpful to understand the outline of the proof. Let us fix λ =∑
kiCi ∈ MLZ(S) − {0}. In 3.2, we take and fix a geometrically finite

Kleinian group Γ̂ whose Kleinian manifold NΓ̂ is homeomorphic to (S ×
[0, 1])−⋃l

i=1 Ci×{1/2}. In 3.3, we investigate the shape of the limit set Λ(Γ̂)
and prepare some notations. In 3.4, we define an immersion wλ : S → NΓ̂,
which is called a wrapping map associated to λ. The wrapping map wλ is
constructed so that it is not homotopic into a boundary component of NΓ̂,
and that the subgroup Γ∞ ⊂ Γ̂ corresponding to wλ(S) is a geometrically
finite b-group. Let χn : Γ̂ → Γn be representations from Γ̂ onto quasi-
fuchsian groups Γn which are obtained by performing (−1, n) Dehn filling on
each cusp of NΓ̂. Put ρn = χn ◦ (wλ)∗ : π1(S) → PSL2(C) and ρ∞ = (wλ)∗ :
π1(S) → PSL2(C), where (wλ)∗ : π1(S) → Γ̂ is the group isomorphism
induced by wλ. Then, the sequence {ρn} converges algebraically to ρ∞, and
the sequence {ρn(π1(S)) = Γn} converges geometrically to Γ̂ as |n| → ∞.

We will show in 3.5 that there is a projective structure Y∞ ∈ ∂Q0 which
satisfies hol(Y∞) = [ρ∞]. Since the holonomy map hol : P (S) → R(S) is a
local homeomorphism, there exist N > 0 and sequences {Yn}|n|>N in Q(S)
such that Yn → Y∞ as |n| → ∞ and hol(Yn) = [ρn] for all |n| > N . As
observed in [It], we can see that Λ̂Y∞ is a decoration of a realization of 2λ,
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which implies ΛYn is a realization of 2λ for all |n| > N , if N is sufficiently
large. Therefore, we obtain Yn ∈ Qλ for all |n| > N .

Now let us take an element µ ∈ MLZ(S)− {0} such that the supports
of λ and µ have no parallel component in common. In 3.6, we take the
grafting Z∞ = Grµ(Y∞) of Y∞ and sequences {Zn}|n|>N such that Zn → Z∞
as |n| → ∞ and hol(Zn) = hol(Yn) for all |n| > N . The statement of
Theorem D is that there exists N > 0 such that {Zn}n>N ⊂ Q(λ,µ)�

and
{Zn}n<−N ⊂ Q(λ,µ)�

. Since ΛZn → Λ̂Z∞ as |n| → ∞, we first observe the
shape of Λ̂Z∞ in 3.7. In 3.8, we show that ΛZn is a realization of 2(λ, µ)�

if n � 0, and 2(λ, µ)� if n � 0, which implies Theorem D. An important
observation here is that, both limit sets Λ(Γn) (n � 0) and Λ(Γn) (n � 0)
are close to Λ(Γ̂), but spiral in opposite directions at each rank-two parabolic
fixed point in Λ(Γ̂).

In 3.9, we prove Theorem B as a consequence of Theorem D and Theorem
1.2. In 3.10, we prove Theorem C as a corollary of Theorem D.

λ (weight 1)

µ (weight 1)

Grµ

Y∞ Z∞ = Grµ(Y∞)

Yn Zn

Λ̂Y∞
Λ̂Z∞

ΛYn ∼ 2̂λ ΛZn ∼ ̂2(λ, µ)�

|n| → ∞ n→ +∞

Figure 5: Schematic figure explaining the proof of Theorem D.
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3.2 A Kleinian group Γ̂

Take and fix an element λ =
∑l

i=1 kiCi ∈ MLZ(S)− {0}, whose support is⋃l
i=1 Ci ⊂ S. Let

Mλ = (S × [0, 1])−
l⋃

i=1

Ci × {1/2}

be a 3-manifold S × [0, 1] from which simple closed curves Ci × {1/2} (1 ≤
i ≤ l) are removed. Let Γ̂ be a geometrically finite Kleinian group whose
Kleinian manifold NΓ̂ = (H3 ∪ Ω(Γ̂))/Γ̂ is homeomorphic to Mλ. The exis-
tence of such a Kleinian group Γ̂ is guaranteed by Thurston’s geometrization
theorem (see [Mo]). From now on, we identify NΓ̂ with Mλ and Γ̂ = π1(NΓ̂)
with π1(Mλ). Then each tubular neighborhood of Ci × {1/2} in Mλ corre-
sponds to a rank-two cusp end in NΓ̂. We fix a basis of the corresponding
rank-two parabolic subgroup 〈γi, δi〉 ⊂ Γ̂ so that γi ∈ π1(Mλ) is freely ho-
motopic to Ci × {0} in Mλ, and that δi ∈ π1(Mλ) is trivial in S × [0, 1].
Moreover, we fix the orientations of γi and δi so that the group 〈γi, δi〉 is
conjugate by some element of PSL2(C) to 〈γ ′i(z) = z + 1, δ′i(z) = z + τi〉,
and that the imaginary part �τi of τi is positive.

Note that Λ(Γ̂) is connected, since each component of ∂NΓ̂ is incompress-
ible. Therefore, each connected component of Ω(Γ̂) is simply connected. The
region of discontinuity Ω(Γ̂) decomposes into two parts Ω0(Γ̂) = π−1

Γ̂
(S×{0})

and Ω1(Γ̂) = π−1

Γ̂
(S×{1}), where πΓ̂ : H3∪Ω(Γ̂) → NΓ̂ is the covering map.

A subgroup Γ ⊂ Γ̂ corresponding to π1(S×{0}) or π1(S×{1}) is a geomet-
rically finite b-group whose invariant component Ω0(Γ) is a component of
Ω(Γ̂). Moreover, for a connected component Σ of S −⋃l

i=1 Ci, a subgroup
Γ′ ⊂ Γ̂ corresponding to π1(Σ× {1/2}) is a quasi-fuchsian subgroup.

3.3 Structure of the limit set Λ(Γ̂)

To treat limit sets of Kleinian groups, we now prepare some terminology.

Definition 3.1 (Crescent-like domain). A domain A ⊂ Ĉ is called a
crescent-like domain if A is the interior of B2 − B1, where B1 and B2 are
topological closed disks in Ĉ such that B1 ⊂ B2 and ∂B1 ∩ ∂B2 = {p}. We
say that A is touching at {p}.
Definition 3.2 (Graph, Thickened graph, Skeleton, Decoration).
Let Σ be a closed surface. A closed subset G of Σ is called a graph if there is
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a finite set of points V = V (G) in G such that G−V consists of finite number
of arcs or simple closed curves. We denote the set G−V by E = E(G). Each
element v ∈ V (G) is called a vertex of G, and each element e ∈ E(G) is called
an edge of G.

A subset N of Σ is called a thickened graph of a graph G if N contains
G and there exists a continuous map r : Σ → Σ homotopic to the identity
map such that the restriction r|N is a deformation retraction of N onto G.

Let X be a subset of Σ. A graph G contained in X is said to be a skeleton
of X if there is a thickened graph N of G such that X ⊂ N and that any
connected component of N contains exactly one connected component of X .
We also say that X is a decoration of G. A thickened graph N of G which
satisfies the above condition is denoted by N (X , G).

Let Ri ⊂ S be mutually disjoint tubular neighborhoods of Ci. We
parameterize Ri by a homeomorphism ϕi : S1 × [−1, 1] → Ri such that
ϕi(S1×{0}) = Ci. We denote C+

i = ϕi(S1×{−1}) and C−
i = ϕi(S1×{1}).

Now we take the following cylinders in Mλ ⊂ S × [0, 1] (see Figure 6):

W−
i = C−

i × [0, 1], W+
i = C+

i × [0, 1], R0
i = Ri × {0}, R1

i = Ri × {1}.

The union of cylinders

R0
i

R1
i

W−
i W+

i

Ci × {1/2}

S × {0}

S × {1}

S × [0, 1]

Figure 6: Cylinders in Mλ.

Ti = R0
i ∪W+

i ∪R1
i ∪W−

i

is a torus bounding a tubular neighborhood of Ci × {1/2} in Mλ = NΓ̂.
Now we are going to consider a connected component of the pre-image of

Ti in H3 ∪ Ω(Γ̂) via the covering map πΓ̂ : H3 ∪Ω(Γ̂) → NΓ̂ = Mλ. Let {p}

18



be a fixed point of a parabolic element in Γ̂. Then, the stabilizer subgroup
of {p} in Γ̂ is a rank-two parabolic subgroup 〈γ, δ〉, which is conjugate to
〈γi, δi〉 for some i ∈ {1, . . . , l}. More precisely, there exists η ∈ PSL2(C)
such that η−1γη = γi and η−1δη = δi. Now we fix such i and abbreviate the
suffix i for simplicity, that is, we denote Ci by C, Ri by R, and so on.

Let A be an annulus with boundary ∂A obtained by cutting the torus
T (= Ti) along C−(= C−

i ). We choose a connected component Ã(p) of the
pre-image π−1

Γ̂
(A) ⊂ H3 ∪ Ω(Γ̂) of A ⊂ NΓ̂ which is invariant under the

action of the parabolic cyclic subgroup 〈γ〉. From now on, we simply say
that Ã(p) is a 〈γ〉-invariant “lift” of A. Let R̃0(p), W̃+(p), R̃1(p) and W̃−(p)
be lifts of R0, W+, R1 and W− contained in Ã(p), which satisfy

Ã(p) = R̃0(p) ∪ W̃+(p) ∪ R̃1(p) ∪ W̃−(p).

We also take the lifts C̃0(p) and C̃1(p) of C × {0}, C × {1} in R̃0(p) and
R̃1(p), respectively. The parabolic element δ maps one connected component
of ∂Ã(p) to the other, where ∂Ã(p) is a pre-image of ∂A in Ã(p). (Note that
∂Ã(p) does not contain {p}.) We may assume that δ maps the component
of ∂Ã(p) neighboring R̃0 to the the component neighboring W̃−.

Let T̃ (p) be the lift of T in H3 ∪ Ω(Γ̂) which is invariant under the ac-
tion of 〈γ, δ〉. Then, T̃ (p) ∩ Ω0(Γ̂) =

⋃
m∈Z δ

m(R̃0(p)) and T̃ (p) ∩ Ω1(Γ̂) =⋃
m∈Z δ

m(R̃1(p)) are satisfied. For each m ∈ Z, we use the following nota-
tions

C̃2m(p) = δm(C̃0(p)), C̃2m+1(p) = δm(C̃1(p)),
R̃2m(p) = δm(R̃0(p)), R̃2m+1(p) = δm(R̃1(p)).

Moreover, let Am(p) be the crescent-like domain touching at {p}, which is
the one of the connected components of Ĉ − R̃m(p) ∪ R̃m+1(p). Now we
have obtained arrays of components

{C̃m(p)}m∈Z, {R̃m(p)}m∈Z, {Am(p)}m∈Z.

With the above preparations, we are now in the position to consider
connected components of Λ(Γ̂) − {p}. Since

⋃
m∈Z R̃

m(p) is contained in
Ω(Γ̂), any connected component Ξ of Λ(Γ̂)−{p} is contained in some Am(p).
Moreover, we have the following lemma (see Figure 7).

Lemma 3.3. For each m ∈ Z, there exists exactly one connected component
Ξm(p) of Λ(Γ̂) − {p} in Am(p). In addition, there exists a quasi-fuchsian
subgroup Θm(p) ⊂ Γ̂ such that the set X = Ξm(p) ∪ {p} is a decoration of a
Jordan curve G = Λ(Θm(p)) with N (X , G) = Am(p) ∪ {p}.
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From the above lemma, we obtain the following decomposition:

Λ(Γ̂) − {p} =
⋃

m∈Z

Ξm(p).

Proof of Lemma 3.3. We put Ξm(p) = Λ(Γ̂)∩Am(p) and are going to show
that Ξm(p) is connected. For simplicity, we only consider the case of m = 0.
Let Ω0 and Ω1 be the connected component of Ω(Γ̂) containing R̃0 and R̃1,
respectively. Moreover, we let Γ0 = StabΓ̂(Ω0) and Γ1 = StabΓ̂(Ω1) be the
stabilizer subgroup of Γ̂ associated to Ω0 and Ω1, respectively. Then, Γ0

(resp. Γ1) is a b-group corresponding to π1(S × {0}) (resp. π1(S × {1})),
whose unique invariant component is exactly Ω0 (resp. Ω1). Note that
Ω0 ∩ Ω1 = ∅. Let Σ be the component of S − ⋃i Ci which contains C+ ⊂
∂R. This implies that W+ = C+ × [0, 1] is contained in Σ × [0, 1]. Let
Θ0(p) ⊂ Γ̂ be a quasi-fuchsian subgroup corresponding to π1(Σ×[0, 1]) which
is contained in both Γ0 and Γ1 as a component subgroup. Since R̃0(p) ⊂ Ω0

and R̃1(p) ⊂ Ω1, and since Λ(Θ0(p)) is contained in both ∂Ω0 = Λ(Γ0)
and ∂Ω1 = Λ(Γ1), the Jordan curve Λ(Θ0(p)) − {p} is contained in A0(p).
Therefore, we have Λ(Θ0(p))− {p} ⊂ Ξ0(p).

Suppose that Ξ0(p) is not connected. Then there is a connected compo-
nent K of Ξ0(p) such thatK∩Λ(Θ0(p)) = ∅. If the closureK ofK in Ĉ does
not contain {p}, this contradicts the fact that Λ(Γ̂) is connected. If {p} is
contained in K, one can easily see that K separates Λ(Θ0(p))−{p} from C̃0

or C̃1, which contradicts the fact that both ∂Ω0 = Λ(Γ0) and ∂Ω1 = Λ(Γ1)
contain Λ(Θ0(p)). Therefore, we have proved that Ξ0(p) is connected and
that X = Ξ0(p) ∪ {p} is a decoration of a Jordan curve G = Λ(Θ0(p)) with
N (X , G) = A0(p) ∪ {p}.

3.4 Wrapping map and associated representations

We now construct an immersion wλ : S → Mλ
∼= NΓ̂, which is called a

wrapping map associated with λ =
∑l

i=1 kiCi ∈ MLZ(S).
Recall that Ri ⊂ S are mutually disjoint tubular neighborhoods of Ci.

We make use of the cylinders R0
i , W

+
i , R

1
i and W−

i in Mλ
∼= NΓ̂, which are

defined in 3.3, again. Let Ψ0
i : Ri → R0

i ⊂Mλ be the inclusion map. We now
define a continuous map Ψki

i : Ri →Mλ which is wrapping a neighborhood
of Ci × {1/2} for ki times, that is, let Ψki

i : Ri → Mλ be a continuous map
which satisfies

(1) Ψki
i = Ψ0

i on ∂Ri,
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p

R̃0(p)

R̃1(p)

Λ(Θ0(p))

Ξ0(p)

A0(p)

Figure 7: The component Ξ0(p) of Λ(Γ̂) − {p} in the crescent-like domain
A0(p).

(2) Ψki
i is homotopic to Ψ0

i relative boundary in S × [0, 1],

(3) The image of Ri by Ψki
i can be considered as the self-overlapping

cylinder in Mλ obtained by joining the cylinders R0
i , W

+
i , R

1
i , W

−
i in

this order for ki times and by finally joining the cylinder R0
i .

Let w0 : S → S × {0} ⊂ Mλ be the inclusion map. The wrapping map
wλ : S → Mλ is defined by wλ ≡ w0 on S − ⋃l

i=1 Ri, and wλ ≡ Ψki
i on Ri

for each 1 ≤ i ≤ l.
By performing (−1, n) Dehn filling (n ∈ Z) on each cusp end of NΓ̂,

we obtain from Theorem 2.13 a sequence of representations {χn : Γ̂ →
PSL2(C)} which satisfies the following:

• Γn = χn(Γ̂) is a quasi-fuchsian group.

• The kernel of χn is normally generated by γn
1 δ

−1
1 , . . . , γn

l δ
−1
l .

• {χn} converges algebraically to the identity representation of Γ̂.

• {Γn} converges geometrically to Γ̂.

Then, for each i ∈ {1, . . . , l}, χn(γi) → γi and χn(γi)n = χn(γn
i ) =

χn(δi) → δi as |n| → ∞.
We put

ρn = χn ◦ (wλ)∗ : π1(S) → PSL2(C)
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and
ρ∞ = (wλ)∗ : π1(S) → PSL2(C),

where (wλ)∗ : π1(S) → π1(NΓ̂) = Γ̂ is the group isomorphism induced by
wλ. Then, ρn are faithful representations onto the quasi-fuchsian groups
Γn = χn(Γ̂) and the sequence {ρn} converges algebraically to ρ∞. We
denote the algebraic limit ρ∞(π1(S)) by Γ∞, which is a proper subgroup of
the geometric limit Γ̂. Note that Γ∞ is a geometrically finite b-group.

3.5 Sequences {Yn}|n|>N and their limit Y∞

In this subsection, we obtain a projective structure Y∞ ∈ ∂Q0 and sequences
of projective structures {Yn}|n|>N ⊂ Qλ which satisfy Yn → Y∞ (|n| →
∞), hol(Yn) = [ρn] (|n| > N ) and hol(Y∞) = [ρ∞]. Here, we denote two
sequences {Yn}n>N and {Yn}n<−N simply by {Yn}|n|>N .

Let π : S̃ → S be the universal covering map whose covering transfor-
mation group is identified with π1(S). Let us denote by w̃λ : S̃ → H3∪Ω(Γ̂)
the lift of wλ : S → NΓ̂ which satisfies

w̃λ ◦ γ = ρ∞(γ) ◦ w̃λ

for all γ ∈ π1(S).

Proposition 3.4. There exists a projective structure Y∞ ∈ ∂Q0 such that
hol(Y∞) = [ρ∞].

Proof. We claim that there exists an equivariant isotopy between w̃λ and an
embedding F1 : S̃ → Ĉ. More precisely, there is a continuous map

Ft(x) = F (x, t) : S̃ × [0, 1] → H3 ∪ Ĉ

such that Ft : S̃ → H3 ∪ Ĉ (t ∈ [0, 1]) are embedding satisfying

Ft ◦ γ = ρ∞(γ) ◦ Ft

for all γ ∈ π1(S), F0 = w̃λ and the image of F1 is contained in Ĉ. Then, the
embedding F1 induces a projective structure Y∞ on S such that fY∞ = F1

and ρY∞ = ρ∞. Since fY∞ : S̃ → Ĉ is injective and the holonomy image
Γ∞ = ρY∞(π1(S)) is a b-group, we know that Y∞ is contained in ∂Q0.

We now show the above claim. We use the same notations in 3.3 and
3.4. Recall that

⋃l
i=1 Ri is a regular neighborhood of

⋃l
i=1 Ci in S. Note

that each connected component of S̃ −⋃l
i=1 π

−1(Ri) is mapped by w̃λ into
distinct components of Ω0(Γ̂) = π−1

Γ̂
(S × {0}) ⊂ Ω(Γ̂). We now take and
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fix i ∈ {1, . . . , l}. Let R̃ be a component of π−1(Ri) ⊂ S̃, and let c be an
element of π1(S) such that R̃ is 〈c〉-invariant. Then γ = (wλ)∗(c) ∈ Γ∞ is a
parabolic element with fixed point {p}. We can see that w̃λ(R̃)∩Ĉ is a 2k+1
succeeding sequence of {R̃m(p)}m∈Z, say R̃1(p), . . . , R̃2k+1(p), where k = ki

is the weight of Ci in λ. Moreover, w̃λ(R̃) cuts off 2k component D1, . . . , D2k

from H3 such that Dj ∩ Ĉ = Aj(p) for j ∈ {1, . . . , 2k} (see Figure 8). This
observation shows that the map w̃λ|R̃ is injective. Then, it easily follows that
the map w̃λ is injective on the whole S̃. Now, we can construct an isotopy
from w̃λ|R̃ : R̃ → H3 ∪ Ĉ to an embedding into Ĉ which is constant on
w̃λ

−1(
⋃2k+1

m=1 R̃
m(p)) and equivariant under the action of 〈γ〉. By applying

the isotopy constructed as above at each component of
⋃l

i=1 π
−1(Ri), we

obtain a desired isotopy Ft(x) = F (x, t) : S̃ × [0, 1] → H3 ∪ Ĉ on the whole
S̃.

w̃λ(R̃)

D1 D2

H3

Ĉ
A1(p) A2(p)R̃1(p) R̃2(p) R̃3(p)

Figure 8: The image of R̃ by the wrapping map wλ, where k = 1.

Here, we summarize our knowledge and make some observations. In
the above proposition, we obtain Y∞ ∈ ∂Q0 such that hol(Y∞) = [ρ∞].
Moreover, the holonomy image Γ∞ = ρ∞(π1(S)) is a geometrically finite b-
group, whose invariant component Ω0(Γ∞) is equal to the image fY∞ (Ỹ∞) of
the injective developing map fY∞ : Ỹ∞ → Ĉ. Recall that

⋃l
i=1 Ri is a regular

neighborhood of
⋃l

i=1 Ci in Y∞. Let R̃ be a component of π−1
Y∞(Ri) ⊂ Ỹ∞

for some i ∈ {1, . . . , l}, and let c be an element of π1(Y∞) such that R̃ is
〈c〉-invariant. Then γ = ρ∞(c) ∈ Γ∞ is a parabolic element with fixed point
{p}. From Lemma 3.3 and Proposition 3.4, we have

fY∞ (R̃) ∩ Λ(Γ̂) =
2ki⋃

m=1

Ξm(p).
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Moreover, since fY∞ (Ỹ∞ −⋃l
i=1 π

−1(Ri)) is contained in Ω0(Γ̂) ⊂ Ω(Γ̂), we
have

Ω0(Γ∞) ∩ Λ(Γ̂) = fY∞(Ỹ∞) ∩ Λ(Γ̂) =
⋃
R̃

fY∞(R̃) ∩ Λ(Γ̂),

where R̃ varies over all components of
⋃l

i=1 π
−1
Y∞(Ri) ⊂ Ỹ∞.

With the above preparations, we can now obtain the sufficient informa-
tion on the shape of Λ̂Y∞ = πY∞ ◦ f−1

Y∞(Λ(Γ̂)) in Y∞.

Proposition 3.5 ([It, Lemma 4.1]). The set Λ̂Y∞ ⊂ Y∞ is a decoration
of a realization 2̂λ of 2λ ∈ MLZ(S).

Proof. From the above observations, to investigate the shape of

Λ̂Y∞ = πY∞ ◦ f−1
Y∞ (Λ(Γ̂)) ⊂ Y∞,

we only have to consider the shape of

πY∞ ◦ f−1
Y∞ (fY∞(R̃) ∩ Λ(Γ̂)) = πY∞ ◦ f−1

Y∞

(
2ki⋃

m=1

Ξm(p)

)
⊂ Y∞,

where R̃ is a component of π−1
Y∞(Ri) ⊂ Ỹ∞ for some i. From Lemma 3.3,

we know that, for each m, Ξm(p) ∪ {p} is a decoration of Λ(Θm(p)) with
thickened graph Am(p) ∪ {p}. Therefore, the set

Xi = Ri ∩ Λ̂Y∞ =
2ki⋃

m=1

πY∞ ◦ f−1
Y∞(Ξm(p))

is a decoration of the graph

Gi =
2ki⋃

m=1

πY∞ ◦ f−1
Y∞(Λ(Θm(p))− {p})

with a thickened graph

N (Xi, Gi) =
2ki⋃

m=1

πY∞ ◦ f−1
Y∞(Am(p)),

where πY∞◦f−1
Y∞(Am(p)) is an annulus whose core curve πY∞◦f−1

Y∞(Λ(Θm(p))−
{p}) is a simple closed curve homotopic to Ci for each m. Therefore, we can
see that the set Λ̂Y∞ =

⋃
i Xi ⊂ Y∞ is a decoration of a realization 2̂λ =

⋃
i Gi

of 2λ with the thickened graph
⋃

i N (Xi, Gi).
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For the later use, we prepare the following notations: XY∞ =
⋃

i Xi(=
Λ̂Y∞), GY∞ =

⋃
i Gi(= 2̂λ) and NY∞ =

⋃
i N (Xi, Gi).

Recall that the sequence {[ρn]} converges algebraically to [ρ∞] and that
hol(Y∞) = [ρ∞]. Since the holonomy map is a local homeomorphism, we
can take a neighborhood U of Y∞ such that hol|U is a homeomorphism.
There exists a positive integer N such that [ρn] ∈ hol(U) for all |n| > N .
Now let

Yn = (hol|U)−1([ρn])

for |n| > N . Then the set {Yn}|n|>N decomposes into two sequences,
{Yn}n>N and {Yn}n<−N , both of which converge to Y∞ as |n| → ∞.

Since Λ̂Y∞ ⊂ Y∞ is a decoration of a realization of 2λ from Proposition
3.5, and since ΛYn → Λ̂Y∞ (|n| → ∞) from Lemma 2.11, we have ΛYn �= ∅
for all |n| � 0, which implies that {Yn}|n|>N are exotic projective structures
for sufficiently large N (see [Mc]). Moreover, one can see that ΛYn ⊂ Yn are
realizations of 2λ for all |n| � 0. Then, from Theorem 2.10, we can see that
{Yn}|n|>N ⊂ Qλ for sufficiently large N . Therefore, we obtain the following
theorem, which is the one of the main theorems in [It].

Theorem 3.6 ([It, Theorem A]). For any λ ∈ MLZ(S) − {0}, we have
Q0 ∩ Qλ �= ∅.

3.6 Sequences {Zn}|n|>N and their limit Z∞ = Grµ(Y∞)

Let µ be an element of MLZ(S) − {0} such that the supports of µ and λ
have no parallel component in common. Then, since µ is admissible on Y∞,
we can obtain the grafting Z∞ = Grµ(Y∞) of Y∞ along µ.
Remark. On the other hand, µ is not admissible on Yn for any |n| > N , if
i(λ, µ) �= 0.

As explained in 2.7, we have a homeomorphism Φ = (hol|V )−1◦(hol|U) :
U → V from a neighborhood U of Y∞ onto a neighborhood V of Z∞. Now let
Zn = Φ(Yn) for |n| > N . Then, both sequences, {Zn}n>N and {Zn}n<−N ,
converge to Z∞ = Grµ(Y∞) as |n| → ∞. Note that hol(Zn) = hol(Yn) = [ρn]
is satisfied for any |n| > N .

In the following two subsection, we shall prove Theorem D, which state
that {Zn}n>N ⊂ Q(λ,µ)�

and {Zn}n<−N ⊂ Q(λ,µ)�
for sufficiently large N .

This statement is equivalent to the following statement: ΛZn ⊂ Zn are
realizations of 2(λ, µ)� for all n > N , and of 2(λ, µ)� for all n < −N . To show
the latter statement, we first examine the shape of Λ̂Z∞ = πZ∞ ◦ f−1

Z∞(Λ(Γ̂))
in Z∞, since both sequences, {ΛZn}n>N and {ΛZn}n<−N , converge to Λ̂Z∞
as |n| → ∞ by Lemma 2.11.
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3.7 The shape of Λ̂Z∞

We first define a graph G = G(2̂λ, 2̂µ) in S for λ, µ ∈ MLZ(S), which
will turn out to be a skeleton of Λ̂Z∞ in Z∞. Take realizations λ̂ and µ̂
so that the number of intersection points �(λ̂ ∩ µ̂) is minimal. Let N (λ̂)
and N (µ̂) be regular neighborhoods of λ̂ and µ̂, respectively. Then, the
boundaries ∂N (λ̂) and ∂N (µ̂) can be seen as realizations 2̂λ, 2̂µ of 2λ and
2µ, respectively. By taking N (λ̂) and N (µ̂) properly, we may assume that
the number of intersection points �(2̂λ∩ 2̂µ) is also minimal. Then, for each
intersecting point x ∈ λ̂∩µ̂, there is a square component B(x) of S−(2̂λ∪2̂µ)
containing x. Let ψ : S → S be a continuous map homotopic to the identity,
such that ψ(B(x)) = {x} for any x ∈ λ̂ ∩ µ̂, and that the restriction of ψ to
S −⋃

x∈�λ∩�µB(x) is a homeomorphism. We now define a graph G(2̂λ, 2̂µ) in
S by

G(2̂λ, 2̂µ) = ψ(2̂λ∪ 2̂µ)

(see Figure 9).

2̂λ

2̂µ

ψ

B(x)

G(2̂λ, 2̂µ)

Figure 9: Construction of a graph G(2̂λ, 2̂µ).

Throughout this subsection, we prove the following proposition.

Proposition 3.7. The graph G = G(2̂λ, 2̂µ) is a skeleton of Λ̂Z∞ in Z∞.

Recall that λ =
∑l

i=1 kiCi ∈ MLZ(S). For simplicity, we only consider
the case that µ ∈ MLZ(S) is a simple closed curve C′ ∈ S of weight 1.
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(The general case can be proved by parallel argument.) Let c′ ∈ π1(S) be
a representative of the homotopy class C′. Recall that Z∞ is obtained from
Y∞ by cutting Y∞ along C′ and inserting a cylinder

A′ =
(
Ĉ − fY∞ (C̃′)

)
/〈ρY∞(c′)〉,

where C̃′ is the 〈c′〉-invariant lift of C′ in Ỹ∞. We also consider the quotient
torus

T ′ = (Ĉ − {p, q})/〈ρY∞(c′)〉,
where {p, q} are fixed points of loxodromic element ρY∞(c′). We denote the
covering map by

π′ : Ĉ − {p, q} → T ′.

By abuse of the notation, we also denote the simple closed curve π′(fY∞(C̃′))
in T ′ by C′. Then, A′ = T ′ − C′. Let

ι : Y∞ −C′ ↪→ Z∞

and
ι′ : A′ ↪→ Z∞

be natural inclusion maps. We denote this situation simply by

Z∞ = ι(Y∞ − C′) � ι′(A′).

We now decompose Λ̂Z∞ ⊂ Z∞ into two parts: Λ̂Z∞ ∩ ι(Y∞ − C′) and
Λ̂Z∞ ∩ ι′(A′). Here, one can see that the set Λ̂Z∞ ∩ ι(Y∞ − C′) is equal to
the image ι(Λ̂Y∞ \C′) of Λ̂Y∞ \C′, where the shape of Λ̂Y∞ is already known
in Proposition 3.5. Therefore, we only have to consider the set

Λ̂Z∞ ∩ ι′(A′) = ι′
(
π′(Λ(Γ̂) − {p, q}) \ C′

)
in ι′(A′), which is equivalent to consider how the sets π′(Λ(Γ̂)−{p, q}) and
C′ are sitting in T ′. From now on, we denote π′(Λ(Γ̂) − {p, q}) simply by
π′(Λ(Γ̂)), if there is no confusion.

We first consider the case of i(λ, C′) = 0. Then, ρY∞(c′) ∈ Γ∞ is con-
tained in some component subgroup of Γ∞. In this case, one can eas-
ily see that π′(Λ(Γ̂)) ⊂ T ′ is a decoration of a realization of 2C′ and
π′(Λ(Γ̂))∩C′ = ∅. This implies that Λ̂Z∞ is a realization of 2(λ+µ), which
is equal to G(2̂λ, 2̂µ). Moreover, since ΛZn converge to Λ̂Z∞ as |n| → ∞ in
the sense of Hausdorff, we can see that ΛZn is a realization of 2(λ+ µ) for

27



any |n| > N , if N is sufficiently large. Then, we have {Zn}|n|>N ⊂ Qλ+µ

from Theorem 2.10. Therefore, we obtain a proof of Theorem D in the case
of i(λ, µ) = 0.

In the following, we only consider the case of i(λ, C′) �= 0. Recall that we
denote by πY∞ : Ỹ∞ → Y∞ the universal covering map, and identify π1(Y∞)
with the covering transformation group. Let C̃ be the set of connected
components of π−1

Y∞(
⋃l

i=1 Ci) ⊂ Ỹ∞ which intersect C̃′, where
⋃l

i=1Ci is
the support of λ =

∑l
i=1 kiCi. Then the cyclic group 〈c′〉, which fixes C̃′,

naturally acts on the set C̃. We number the set C̃ = {C̃i(n)}n∈Z so that C̃i(n)

separates C̃i(n−1) from C̃i(n+1) in Ỹ∞ for all n ∈ Z. Moreover, we assume
that πY∞(C̃i(n)) = Ci(n) for all n ∈ Z. Let {C̃i(1), . . . , C̃i(s)} be the set of
succeeding representatives of the quotient set C̃/〈c′〉, where s = i(

⋃
i Ci, C

′).
(Note that the map i : {1, . . . , s} → {1, . . . , l} defined by j 
→ i(j) is not
necessarily onto nor injective.) Let R̃i(j) ⊂ Ỹ∞ be the lift of Ri(j) ⊂ Y∞
which contains C̃i(j) for each 0 ≤ j ≤ s. Recall that Ri(j) is a regular
neighborhood Ci(j) in Y∞.

For each j ∈ {1, . . . , s}, let ci(j) ∈ π1(Y∞) be a generator of a cyclic
subgroup 〈ci(j)〉 ⊂ π1(Y∞) which fixes C̃i(j) ⊂ Ỹ∞. Then ρY∞(ci(j)) is a
parabolic element, whose fixed point is denoted by pi(j). Then αi(j) :=
fY∞(C̃i(j)) ∪ {pi(j)} is a simple closed curve which is 〈ρY∞(ci(j))〉-invariant.
Note that {π′(αi(j))}s

j=1 is the set of mutually homotopic, mutually disjoint
simple closed curves in T ′, which satisfies i(π′(αi(j)), C′) = 1 for all j. More-
over, π′(fY∞(R̃i(j))∪{pi(j)}) ⊂ T ′ (0 ≤ j ≤ s) are mutually disjoint and each
of which contains π′(αi(j)).

To understand π′(Λ(Γ̂)) ⊂ T ′, we first consider the set π′(Λ(Γ̂)∩Ω0(Γ∞))
in T ′. As observed in 3.5, for each 1 ≤ j ≤ s, the components of Λ(Γ̂)−{pi(j)}
which is contained in Ω0(Γ∞) = fY∞(Ỹ∞) are contained in fY∞(R̃i(j)).
Hence, π′(Λ(Γ̂) ∩ Ω0(Γ∞)) in T ′ is contained in

⋃s
j=1 π

′(fY∞(R̃i(j))). Re-

call that fY∞(R̃i(j)) ∩ Λ(Γ̂) can be written as
⋃2ki(j)

m=1 Ξm(pi(j)). Hence, for
each 1 ≤ j ≤ s and 1 ≤ m ≤ 2ki(j), we can see that π′(Ξm(pi(j))∪{pi(j)}) is
a decoration of a simple closed curve π′(Θm(pi(j))) with thickened graph
π′(Ai(j) ∪ {pi(j)}), where π′(Θm(pi(j))) is homotopic to π′(αi(j)) relative
π′({pi(j)}).

Secondly, we consider the set π′(Λ(Γ̂) \ Ω0(Γ∞)) in T ′. A point in
π′(Λ(Γ̂) \ Ω0(Γ∞)) is contained in π′(Λ(Γ∞)) = π′(∂Ω0(Γ∞)) or separated
by π′(Λ(Γ∞)) from π′(Ω0(Γ∞)). The proof of the following lemma is left for
the reader.
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Lemma 3.8. There exists a quasi-fuchsian component subgroup Θj ⊂ Γ∞
such that pi(j), pi(j+1) ∈ Λ(Θj) for each j ∈ {1, . . . , s}, where s+1 is regarded
as 1.

Moreover, since Λ(Θj) ⊂ Λ(Γ∞) = ∂Ω0(Γ∞), one can easily see that

Θj = Θ2ki(j)+1(pi(j)) = Θ0(pi(j+1))

for each j ∈ {1, . . . , s}. We now obtain a string of beads B =
⋃s

j=1 π
′(Λ(Θj))

in T ′, whose complement T ′ − B consists s quasi-disks and one annular
domain which contains C′ as a core curve.

We now claim that the string of beads B =
⋃s

j=1 π
′(Λ(Θj)) is a skeleton

of the set π′(Λ(Γ̂) \ Ω0(Γ∞)) in T ′. To show this claim, we prepare some
notations (see Figure 10). For a while, we simply denote p = pi(j) and
k = ki(j). Let U(p) be a topological open disk containing p such that Am(p)∩
U(p) consists of exactly two components for −1 ≤ m ≤ 2k + 2. Moreover,
we assume that both B−

−2(p) \ U(p) and B+
2k+3(p) \ U(p) are non-empty

and connected, where B−
m−(p) and B+

m(p) are the connected components of

Ĉ−R̃m(p) such that Am−1(p) ⊂ B−
m−1(p) and Am(p) ⊂ B+

m(p), respectively.
In addition, we also take a topological open disk V (p) which satisfies the
same property with U(p) and V (p) ⊂ U(p). We fix the following notations
for the later use:

V̂ (p) = B−
−1(p) ∪ V (p) ∪ B+

2k+2(p),̂̂
V (p) = B−

−2(p) ∪A−1(p) ∪ V (p) ∪ A2k+2(p) ∪ B+
2k+3(p).

Note that V̂ (p) is topological disk containing p and that ̂̂V (p) ⊂ V̂ (p). Now
let us return to the above claim. Let us take a regular neighborhood Aj of
the set Λ(Θj) − {pi(j), pi(j+1)} which satisfies

Aj ∩ V (pi(j)) = A2ki(j)+1
(pi(j)) ∩ V (pi(j)),

and
Aj ∩ V (pi(j+1)) = A0(pi(j+1)) ∩ V (pi(j+1)).

Moreover, we assume that each of two connected components of Λ(Γ̂) −
{pi(j), pi(j+1)} which contains a component of Λ(Θj)−{pi(j), pi(j+1)} is con-
tained in Aj. Then, we can see that the set π′(Λ(Γ̂) \ Ω0(Γ∞)) is a decora-
tion of the graph B =

⋃s
j=1 π

′(Λ(Θj)) with a thickened graph
⋃s

j=1 π
′(Aj)∪⋃s

j=1 π
′(V̂ (pi(j))).
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From the above observations, we can see that the set XT ′ = π′(Λ(Γ̂)) is
a decoration of the graph

GT ′ =
s⋃

j=1

2ki(j)⋃
m=1

π′
(
Λ(Θm(pi(j)))

) ∪ s⋃
j=1

π′(Λ(Θj))

in T ′, whose associated thickened graph NT ′ = N (XT ′ , GT ′) can be taken as

NT ′ =
s⋃

j=1

2ki(j)⋃
m=1

π′
(
Am(pi(j)))

) ∪ s⋃
j=1

π′(Aj) ∪
s⋃

j=1

π′
(
V̂ (pi(j))

)
.

From GY∞ ,XY∞ and NY∞ in 3.5, and GT ′ ,XT ′ and NT ′ above, we obtain
the graph

GZ∞ = (GY∞ \ C′) � (GT ′ \ C′)

and the thickened graph

NZ∞ = (NY∞ \C′) � (NT ′ \ C′)

such that GZ∞ is a skeleton of XZ∞ = Λ̂Z∞ with a thickened graph NZ∞ .
Now we can easily see that the graph GZ∞ is equivalent to the graph

G = G(2̂λ, 2̂µ), where the string of beads B =
⋃s

j=1 π
′(Λ(Θj)) ⊂ GT ′ \ C′

corresponds to the subgraph ψ(2̂µ) of the graph G(2̂λ, 2̂µ) = ψ(2̂λ ∪ 2̂µ).
Now we have completed the proof of Proposition 3.7.

3.8 The shape of ΛZn

We complete the proof of the following Theorem D in this subsection. Figure
10 should be helpful to understand the arguments throughout this subsec-
tion.

Theorem D. There exists a positive integerN such that {Zn}n>N ⊂ Q(λ,µ)�

and {Zn}n<−N ⊂ Q(λ,µ)�
.

Since Zn → Z∞ (|n| → ∞), we have ΛZn → Λ̂Z∞ (|n| → ∞) in the sense
of Hausdorff by Lemma 2.11. We will show that there exist N > 0 and
subsets N�, N� of NZ∞ which satisfy the following:

• ΛZn ⊂ N� for all n > N and ΛZn ⊂ N� for all n < −N ,

• N� and N� are some regular neighborhoods of realizations of 2(λ, µ)�

and 2(λ, µ)�, respectively.
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Now let N ′
Z∞ be a subset of NZ∞ , which is obtained from NZ∞ by replacing

π′
(
V̂ (pi(j)

)
in the definition of NT ′ ⊂ NZ∞ with π′

(̂̂
V (pi(j)

)
for each

1 ≤ j ≤ s. Let p stand for some pi(j) and put k = ki(j). we letD+
m, D

−
m be the

two components of (U(p) − V (p))∩ R̃m(p) for each −1 ≤ m ≤ 2k+3, where
the sign ± of D±

m is determined so that γ(D+
m) ⊂ U(p) and γ(D−

m) �⊂ U(p).
Then, we have

π′
(

2k+3⋃
m=−1

(D+
m ∪D−

m)

)
= π′(U(p)) \ N ′

Z∞ .

Lemma 3.9. There exist N > 0 and two families of mutually disjoint arcs,
{α+

j }2k+2
j=0 and {α−

j }2k+2
j=0 in U(p), which satisfy the following conditions for

each j ∈ {0, . . . , 2k+ 2}:
• α+

j ⊂ V (p)∪D+
j−1 ∪D−

j+1, and one of the end points of α+
j is in D+

j−1

and the other is in D−
j+1. Moreover, α+

j ⊂ Ω(Γn) for any n > N ,

• α−
j ⊂ V (p)∪D−

j−1 ∪D+
j+1, and one of the end points of α−

j is in D−
j−1

and the other is in D+
j+1. Moreover, α−

j ⊂ Ω(Γn) for any n < −N .

Proof. We only consider the case that n is positive and sufficiently large.
Recall that {Γn} converges geometrically to Γ̂ and hence {Λ(Γn)} converges
to Λ(Γ̂) in the Hausdorff topology on C(Ĉ) by Theorem 2.9. Hence, {Ω(Γn)}
converges to Ω(Γ̂) in the sense of Carathéodory (see [KT]). Since {p} is a
parabolic fixed point in Λ(Γ̂), there is a rank-two parabolic subgroup 〈γ, δ〉
in Γ̂ which fixes {p}. Moreover, 〈γ, δ〉 is conjugate to some 〈γi, δi〉 in Γ̂.
Let χn : Γ̂ → Γn be group homomorphisms as in 3.4 and let γn = χn(γ) ∈
Γn. Then, the cyclic groups 〈γn〉 converge geometrically to the rank-two
parabolic subgroup 〈γ, δ〉 as n→ +∞. More precisely, γn converge to γ and
γn

n converge to δ as n→ +∞.
Choose m ∈ {−1, . . . , 2k + 1}. For this m, we take and fix a point

x0 ∈ C̃m(p) \ U(p). Note that γk(x0) ∈ C̃m(p) and γkδ(x0) ∈ C̃m+2(p) for
any k ∈ Z. Let a− and a+ be the connected components of C̃m(p) − {x0}
such that a+ containing {γk(x0)}∞k=1. Then δ(a−) is contained in C̃m+2(p)
and contains {γ−kδ(x0)}∞k=1.

For any ε > 0, there exists N0 > 0 such that d(γn(x0), γ(x0)) < ε for
any n > N0, where d(·, ·) denotes the spherical metric on Ĉ. Let bn be an
arc connecting x0 and γn(x0) such that bn ⊂ Nε(a+)∩Ω(Γn), where Nε(a+)
denotes the ε-neighborhood of a+. Let an =

⋃n
k=1 γ

k
n(bn). Then, an be an

arc in Ω(Γn) connecting x0 and γn
n(x0).
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We will show that, for any ε > 0, there exists N > 0 such that an ⊂
Nε(a+ ∪ δ(a−)) for any n > N . Let Bε(p) be the ε-neighborhood of {p}.
Note that Bε(p) ⊂ Nε(a+ ∪ δ(a−)). Let N1(> N0) be the smallest integer
such that both γN1(x0) and γ−N1δ(x0) are contained in Bε/2(p). Then there
exists N2(> N1) such that γN1

n (x0), γ−N1
n δ(x0) ∈ Bε(p) for all n > N2.

We first show that there exists N > 0 such that the set {γk
n(x0)}n

k=1

is contained in Nε(a+ ∪ δ(a−)) for any n > N . To this end, we consider
the set of accumulation points of the set

⋃
n>N {γk

n(x0)}n
k=1 in Ĉ− Bε/2(p).

Assume that a (sub)sequence {γkn
n (x0)} (0 ≤ kn ≤ n) converges to a point

x �∈ Bε/2(p) as n → +∞. Since there exists N3(> N2) such that the fixed
points of γn are contained in Bε/2(p) for all n > N3, {γkn

n } is not a divergence
sequence in PSL2(C). Therefore, by taking a subsequence (which is denoted
by the same symbol), if necessary, {γkn

n } converges to γrδs ∈ 〈γ, δ〉. Here,
we have x = γrδs(x0) and hence γkn−r+sn

n (x0) → x0. Here, we remark that,
since {Ω(Γn)} converges to Γ̂ in the sense of Carathéodory, there existsN4(>
N3) and a neighborhood U(x0) of x0 such that U(x0) ⊂ Ω(Γn) for all n > N4.
Then, there exists N5(> N4) such that γkn−r+sn

n ≡ id for all n > N5. Since
0 ≤ kn ≤ n and x �∈ Bε/2(p), we have x ∈ {γk(x0)}N1

k=1 ∪ {γ−kδ(x0)}N1
k=1.

Hence, there existsN6(> N5) such that for any n > N6, the set {γ−k
n (x0)}n

k=1

is contained in the set

Bε(p) ∪
N1⋃
k=1

Bε/2(γ
k(x0)) ∪

N1⋃
k=1

Bε/2(γ
−kδ(x0)),

which is contained in Nε(a+ ∪ δ(a−)).
From the above observations, we can see that there exists N (> N6) such

that the arc an =
⋃n

k=1 γ
k
n(bn) is contained in Nε(a+ ∪ δ(a−)) for all n > N .

We now obtain a desired arc α+
m+1 as a sub-arc of an with n > N . Moreover,

by taking m = −1 and considering curves a(2k+2)n =
⋃(2k+2)n

k=1 bn in Ω(Γn), a
similar argument reveals that one can cut off mutually disjoint desired arcs
{α+

j }2k+2
j=0 from a(2k+2)n if n is sufficiently large.

We now define the subsets N�, N� ⊂ N ′
Z∞ so that N� and N� are equal

to N ′
Z∞ in the complement Z∞ − ⋃s

j=1 U(pi(j)) of
⋃s

j=1 U(pi(j)), and that
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Figure 10: N ′∞ in a neighborhood of p and family of arcs {α+
j }2k+2

j=0 ⊂ U(p).
(The case of k = 1.)
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the following conditions are satisfied for each p = pi(j) (1 ≤ j ≤ s):

N� ∩ π′(U(p)) = N ′
Z∞ ∩ π′

U(p)−
⋃

0≤j≤2k+2

α+
j

 ,

N� ∩ π′(U(p)) = N ′
Z∞ ∩ π′

U(p)−
⋃

0≤j≤2k+2

α−
j

 .

Observe that N� and N� can be regarded as a regular neighborhood of a
realization of 2(λ, µ)� and 2(λ, µ)�, respectively. Moreover, we have ΛZn ⊂
N� for any n > N and ΛZn ⊂ N� for any n < −N by definition. Therefore,
we now obtain the following lemma, and complete the proof of Theorem D.

Lemma 3.10. There exists N > 0 such that

• ΛZn is a decoration of a realization of 2(λ, µ)� whose thickened graph
is N� for any n > N ,

• ΛZn is a decoration of a realization of 2(λ, µ)� whose thickened graph
is N� for any n < −N .

3.9 Proof of Theorem B

We will show that any two connected components ofQ(S) =
∐

λ∈MLZ(S) Qλ =
hol−1(QF (S)) have intersecting closures.

Theorem B. For any two elements λ, µ ∈ MLZ(S), we have Qλ∩Qµ �= ∅.
Proof. We combine Theorem 1.2 and Theorem D to prove Theorem B.

Take two elements λ and µ in MLZ(S), arbitrarily. If i(λ, µ) = 0, than
we have the conclusion from Theorem 1.2. Hence, we may assume that
i(λ, µ) �= 0. Let us decompose µ into µ = µ′ +µ′′ so that µ′, µ′′ ∈ MLZ(S),
and that i(λ, µ) = i(λ, µ′). We now divide the proof into two parts: the case
of µ′′ = 0, and the case of µ′′ �= 0.

We first consider the case of µ′′ = 0. As in 3.5, we can construct a
sequence {Yn} in Q(λ,µ)�

conversing to Y∞ ∈ Q0 ∩ Q(λ,µ)�
as |n| → ∞.

Since the supports of (λ, µ)� and µ have no parallel component in common,
we obtain a grafting Grµ(Y∞) and a homeomorphism Φ : U → V from a
neighborhood U of Y∞ onto a neighborhood V of Grµ(Y∞). Now we have a
sequence {Zn = Φ(Yn)} conversing to Grµ(Y∞) ∈ ∂Qµ as |n| → ∞. Since
((λ, µ)�, µ)� = λ by Lemma 2.7, we have Zn ∈ Q((λ,µ)�,µ)�

= Qλ for any
n� 0 by Theorem D. Therefore, we have Qλ ∩Qµ �= ∅.
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Secondly, we consider the case of µ′′ �= 0. Since i(λ, µ′′) = 0 and
i(µ′, µ′′) = 0, we have i((λ, µ′)�, µ

′′) = 0. Then, by Theorem 1.2, we
have Q0 ∩ Q(λ,µ′)�

∩ Qµ′′ �= ∅. More precisely, we can construct sequences
{Yn} ⊂ Q(λ,µ′)�

and {Y ′
n} ⊂ Qµ′′ both of which converge to an element

Y∞ ∈ ∂Q0. Since both the supports of (λ, µ′)� and µ′′ have no paral-
lel component in common with that of µ′, we obtain a grafting Grµ′(Y∞)
and a homeomorphism Φ : U → V from a neighborhood U of Y∞ onto
a neighborhood V of Grµ′(Y∞). Now we have sequences, {Zn = Φ(Yn)}
and {Z ′

n = Φ(Y ′
n)}, both of which converge to Z∞ = Grµ′(Y∞) ∈ ∂Qµ′ as

|n| → ∞. From Theorem D, we can see that Zn ∈ Q((λ,µ′)�,µ
′)�

= Qλ and
Z ′

n ∈ Qµ′+µ′′ = Qµ for any n� 0. Hence, we have Qλ ∩ Qµ �= ∅.

3.10 Proof of Theorem C

Theorem C. For any λ ∈ MLZ(S)−{0}, the holonomy map hol : P (S) →
R(S) is not injective on Qλ, although hol is invective on Q0.

Proof. It is well-known that the map hol is invective on Q0. Let us take
µ ∈ MLZ(S)− {0} such that any component of the support of µ intersects
with λ. Let us take a sequence {Yn}n∈Z ⊂ Qµ which converges to Y∞ ∈
∂Q0 ∩ ∂Qµ as |n| → ∞ as before.

Since both the supports (µ, λ)� and (µ, λ)� have no parallel components
in common with that of µ, we can take Z ′∞ = Gr(µ,λ)�

(Y∞) and Z ′′∞ =
Gr(µ,λ)�

(Y∞). Now we have the following equations from Lemma 2.7:

(µ, (µ, λ)�)� = ((µ, λ)�, µ)� = ((λ, µ)�, µ)� = λ,

(µ, (µ, λ)�)� = ((µ, λ)�, µ)� = ((λ, µ)�, µ)� = (λ, 2µ)�,

(µ, (µ, λ)�)� = ((µ, λ)�, µ)� = ((λ, µ)�, µ)� = λ,

(µ, (µ, λ)�)� = ((µ, λ)�, µ)� = ((λ, µ)�, µ)� = (λ, 2µ)�.

Let Φ′ : U → V ′ be a homeomorphism from a neighborhood U of Y∞ onto
a neighborhood V ′ of Z ′∞ such that hol ◦ Φ′ ≡ hol. Then, Z ′

n = Φ′(Yn) →
Z ′∞ as |n| → ∞. Moreover, there exists N > 0 such that {Z ′

n}n>N ⊂
Q(µ,(µ,λ)�)�

= Qλ and {Z ′
n}n<−N ⊂ Q(µ,(µ,λ)�)�

= Q(λ,2µ)�
from Theorem D.

Similarly, we have a homeomorphism Φ′′ : U → V ′′ onto a neighborhood
V ′′ of Z ′′∞ such that hol ◦ Φ′′ ≡ hol, and a sequence Z ′′

n = Φ′′(Yn) → Z ′′∞ as
|n| → ∞ such that {Z ′′

n}n>N ⊂ Q(λ,2µ)�
and {Z ′′

n}n<−N ⊂ Qλ.
Suppose that Z ′∞ = Z ′′∞. Then Φ′ = Φ′′ on U and Z ′

n = Z ′′
n for any

|n| � 0. This implies λ = (λ, 2µ)�, which is a contradiction. Therefore,
we have Z ′∞ �= Z ′′∞. Now we have two sequences {Z ′

n}n>N , {Z ′′
n}n<−N in
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Qλ such that limn→+∞ Z ′
n = Z ′∞ �= Z ′′∞ = limn→−∞ Z ′′

n. On the other
hand, since hol(Z ′

n) = hol(Z ′′
n) = hol(Yn) are satisfied for all n ∈ Z, we

have limn→+∞ hol(Z ′
n) = limn→−∞ hol(Z ′′

n) = hol(Y∞). Therefore, we have
shown that hol is not injective on Qλ.
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