
A SELF-DUALITY OF STRONG STARLIKENESS

TOSHIYUKI SUGAWA

Abstract. In this note, we will show that a simply connected bounded domain D is
strongly starlike of order � < 1 with respect to the origin if and only if so is D_; where

D_ is the analytic inversion of the exterior of D; namely, D_ = fw 2 C : 1=w 2 bC n �Dg:
This fact neatly explains the relationship between some known properties of strongly
starlike domains and provides several new characterizations for those domains.

1. Characterizations of strongly starlike domains

1.1. Introduction. A subset E of C with 0 2 E is called starlike with respect to 0 if
the closed line segment [0; a] between 0 and a is contained in E for each a 2 E: Similarly,

a subset F of the Riemann sphere bC = C [ f1g satisfying 1 2 F and 0 =2 F is called
starlike with respect to 1 if the line segment [a;1] = fra : r 2 [1;+1]g between a and
1 is contained in F for each a 2 F:
The present research is based on the very simple fact that the following three properties

are equivalent:

(i) E is starlike with respect to 0;

(ii) bC n E is starlike with respect to 1; and

(iii) E� = fa 2 C : 1=a 2 bC n Eg is starlike with respect to 0:

Note that (E�)� = E:
In the following, we will see an analogous result for strongly starlike domains of order

� 2 (0; 1): This idea will enable us to give a unifying proof for some known results
scattered in several papers, and moreover, will suggest new geometric characterizations
of strong starlikeness.

1.2. Set operations. We begin by de�ning several operations on the subsets of the
Riemann sphere bC : For a subset E of bC ; we set E�1 = I(E) and a � E = Ma(E) for

a 2 bC ; where I and Ma denote the M�obius transformations de�ned by I(z) = 1=z and

Ma(z) = az for a 2 bC ; respectively. Here we de�ne M0 � 0 and M1 � 1: We denote by

ExtE the exterior of the set E in bC ; i.e., ExtE = bC n E:
We now modify the above operation E� as follows and use it in the sequel. For a domain

D; we set D_ = (ExtD)�1: If D is a bounded Jordan domain containing the origin, then
so is D_ and (D_)_ = D:

Date: November 22, 2001.
1991 Mathematics Subject Classi�cation. Primary 30C45; Secondary 30C20.
Key words and phrases. strongly starlike, logarithmic spiral.
The author was partially supported by the Ministry of Education, Grant-in-Aid for Encouragement

of Young Scientists, 11740088. A part of this work was carried out during his visit to the University of
Helsinki under the exchange programme of scientists between the Academy of Finland and the JSPS .

1



1.3. Strong starlikeness. Let � be a real constant with 0 � � � 1: A holomorphic
function f on the unit disk satisfying f(0) = 0 and f 0(0) 6= 0 is called strongly starlike of

order � if f satis�es the condition����arg zf 0(z)f(z)

���� � ��

2
(z 2 D

� = D n f0g):(1)

The study of strongly starlike functions was initiated by Stankiewicz [6] and by Brannan
and Kirwan [1], independently. Note that a strongly starlike function is starlike in the
usual sense, and, in particular, univalent in the unit disk. We remark that the image of
the unit disk under the strongly starlike function of order � is a bounded Jordan domain
if � < 1 (see [1]).
A meromorphic function g on the unit disk with the expansion

g(z) =
b�1

z
+ b0 + b1z + b2z

2 + � � � ;

where b�1 6= 0; is called meromorphic strongly starlike of order � if the condition����arg �zg0(z)g(z)

���� � ��

2
(z 2 D

�)(2)

is satis�ed. Since zg0=g is holomorphic, we know that g never takes 0 as a value. As we
can see from the de�nition, g is meromorphic strongly starlike of order � if and only if
the function 1=g is strongly starlike of order �:
A proper subdomain D of the complex plane C containing the origin is said to be

strongly starlike of order � with respect to 0 if D is simply connected and if the conformal
map f : D ! D of D with f(0) = 0 is strongly starlike of order �: Strong starlikeness
of order 1 is nothing but the usual starlikeness. If � < 1; then D is a bounded Jordan
domain starlike with respect to the origin, and hence, so is D_ as we saw in Section 1.1.
A proper subdomain D of bC n f0g containing the point at in�nity is called strongly

starlike of order � with respect to 1 if D is simply connected and if a conformal map
g : D ! D of D with f(0) = 1 is meromorphic strongly starlike of order �: Of course,
this is equivalent to the condition that D�1 is strongly starlike of order � with respect to
0:

1.4. Standard domains. We now introduce four standard domains to be considered.
Let � be a constant with 0 < � < 1: We de�ne U� by

U� = fz : j2z cos(��=2)� ei��=2j < 1 and j2z cos(��=2)� e�i��=2j < 1g

=

�
z :

����z � 1

2

�
1� i tan

��

2

����� < 1

2 cos ��
2

�
:

In other words, U� is the convex Jordan domain bounded by two congruent circular arcs
forming the angle �(1� �) at the intersection points 0 and 1:
The next one, V�; will be de�ned as the bounded Jordan domain surrounded by the

logarithmic spirals 
� = fexp((� tan(��=2) + i)�) : 0 � � � �g and �
� = fw : �w 2 
�g:
Therefore,

V� = frei� : log r < �j�j tan(��=2); � 2 [��; �]g:
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We also use U�1
� and V �1

� : One can easily see that

U�1
� = fw 2 C n f1g : j arg(w � 1)j < ��=2g

and that V �1
� is the exterior of the Jordan domain bounded by the logarithmic spirals


�1
� = fexp((tan(��=2)� i)�) : 0 � � � �g and �
�1

� = fw : �w 2 
�1
� g and satis�es

ExtV �1
� = �e� tan(��=2) � V�(3)

(see Figure 1).
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Figure 1. U� � V� � Ext V �1
� � ExtU�1

�

1.5. Radius function RD(�). Let D be a proper subdomain of C containing the origin.
We de�ne the periodic function R = RD : R ! (0;+1] by

R(�) = supfr > 0 : [0; rei�] � Dg:

Notice that R is lower semi-continuous and reproduces the original domain by the relation
D = frei� : r < R(�)g if D is starlike with respect to the origin. For example, RV�(�) =
exp(�j�j tan(��=2)) for � 2 [��; �]: The following properties are easy to see but constitute
a crucial part of the present research.

Lemma 1. If RD is continuous, then D is starlike with respect to the origin. If RD is

continuous and �nite, i.e., RD(R) � (0;+1); then D is a bounded starlike Jordan domain

and the following self-duality relation holds:

RD_(�) = 1=RD(��) (� 2 R):(4)

1.6. Main result. Our main result is the following, which will be shown in Section 2.

Theorem 1. Let D be a proper subdomain of C with 0 2 D and � be a constant with

0 < � < 1: Then the following seven conditions are equivalent.

(i) D is strongly starlike of order � with respect to the origin.

(ii) ExtD is strongly starlike of order � with respect to 1:
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(iii) w � U� � D for each w 2 D:
(iv) w � U�1

� � ExtD for each w 2 C nD:
(v) w � V� � D for each w 2 D:
(vi) w � V �1

� � ExtD for each w 2 C nD:
(vii) The function R = RD is absolutely continuous and satis�es jR0=Rj � tan(��=2)

a.e. in R:

The equivalence of conditions (i), (iv) and (vi) was proved by Stankiewicz [6]. The
equivalence of conditions (i) and (iii) is due to Ma and Minda [5]. The implication
(i))(vii) was essentially used by Fait, Krzy_z and Zygmunt [3] to show the quasiconformal
extendability of strongly starlike functions. The condition (v) is used in [7] to give a lower
estimate of the inner radius of univalence for a strongly starlike domain.

2. Proof of the main theorem

As we noted, some parts are known. We, however, give the whole proof in order to
emphasize the self-duality of strong starlikeness as well as in order to be self-contained.

2.1. Structure of the proof. First we will show the implication (i))(vii). Then we
give a proof for the implications (vii))(v))(iii))(i). In view of the self-duality relation
(4), by applying D_ instead of D above, we simultaneously have (vii))(vi))(iv))(ii).
The condition (ii) for D is equivalent to (i) for D_: Hence, we immediately obtain the
implication (ii))(i) by the implication (i))(ii) for the domain D_:

2.2. (i) implies (vii). We follow the arguments in [1] and [3]. Let f : D ! C be a
strongly starlike function of order � (0 < � < 1): Note that jzf 0(z)j � M jq(z)j; where
M = sup jf(z)j <1 and q(z) = zf 0(z)=f(z): Since q1=� is subordinate to (1+ z)=(1� z);
Littlewood's Subordination Theorem (see [2, Theorem 1.7]) yields that q1=� is a member
of the Hardy space Hp for p < 1: Hence, q 2 Hp for p < 1=�; in particular, q 2 H1: Note
the standard fact that a function g(z) in the Hardy space has the �nite limit g(eit); called
the non-tangential limit, when z approaches eit in any Stolz region for almost all t: Since
jzf 0j � M jqj; also f 0 2 H1 follows. The last assertion implies that f has a continuous
extension to D and the extended f is absolutely continuous on the circle @D and the
angular limit of f 0 vanishes almost nowhere on @D by the Riesz-Privalov theorem (see [2,
x3.5]). If we write f(eit) = �(t)ei�(t); we then observe that �(t) and �(t) are absolutely
continuous in t and obtain the relation

q0(eit) =
eitf 0(eit)

f(eit)
= �0(t)� i

�0(t)

�(t)

for almost all t: By (1), we note that q0(eit) lies in the closure of the sector jargwj < ��=2
for almost all t: Noting that f 0(eit) 6= 0 for almost all t; one can see that �0 6= 0
a.e. and jarg(1 � i�0=�0�)j � ��=2 a.e., equivalently, j�0=�0�j � tan(��=2) a.e. Since
� is non-decreasing by the starlikeness of f; actually �0 > 0 holds a.e., and thus,
� : R ! R is homeomorphic and ��1 preserves sets of linear measure zero. Set
�(�) = �0(��1(�))=�0(��1(�)): Note that �(�) can be de�ned for almost all � 2 R

and k�k1 � M tan(��=2) < +1: We now consider the absolutely continuous func-

tion F (�) =
R �

0
�(x)dx +R(0) on R: Since (F Æ�)0 = � Æ� ��0 = �0; we have F Æ� = �;
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in other words, F (�) = �(��1(�)) = R(�): The last relation implies that R is absolutely
continuous and satis�es jR0=Rj = j�0=�0�j Æ��1 � tan(��=2) a.e.

2.3. (vii) implies (v). Let w = rei�0 be an arbitrary point in D other than the ori-
gin. Set w0 = R(�0)e

i�0 : Integrating the inequality R0=R � � tan(��=2); we obtain
log(R(�)=R(�0)) � �(�� �0) tan(��=2); i.e., R(�) � R(�0)e

�(���0) tan(��=2) = Rw0�V�(�) for
� 2 [�0; �0 + �]: Similarly we can also show that R(�) � R(�0)e

�(�0��) tan(��=2) = Rw0�V�(�)
for � 2 [�0 � �; �0]: Hence, w � V� � w0 � V� � D:

2.4. (v) implies (iii). It is enough to show U� � V�: For � with j�j < ��=2; we set r(�) =
supfr > 0 : (0; rei�) � U�g: We will show r(�) < RV�(�) = e�� tan(��=2) if 0 < � < ��=2:
An elementary calculation shows that r(�) = cos(� + ��=2)= cos(��=2): The function
h(�) = e� tan(��=2) cos(� + ��=2)= cos(��=2) satis�es h0(�)=h(�) = tan(��=2) � tan(� +
��=2) < 0 for � 2 (0; ��=2): Therefore h is decreasing, in particular, h(�) < h(0) = 1;
which yields the desired inequality.

2.5. (iii) implies (i). Let f : D ! D be a conformal mapping with f(0) = 0: We denote
by D r the disk fjwj < rg: First we prepare a lemma which appeared in [4].

Lemma 2. Condition (iii) implies that f(z) � U� � f(D r ) for jzj = r < 1:

Proof. Fix a point w 2 U�: Then the function g(z) = f�1(f(z)w) is holomorphic in D

and satis�es jg(z)j < 1; g(0) = 0 and jg0(0)j = jwj < 1: The Schwarz lemma now implies
that jg(z)j < jzj for z 2 D

� ; which means f(z)w 2 f(D jzj):

We now use the method developed by Ma and Minda [5]. Fix a z0 2 D � and set
w0 = f(z0): Since the smooth curve 
(t) = f(z0e

it) passes through w0 and encloses the
domain w0 � U� by Lemma 2, we have jarg(
0(0)=w0) � �=2j � ��=2: Since 
0(0)=w0 =
iz0f

0(z0)=f(z0); the last inequality gives us jarg(z0f
0(z0)=f(z0))j � ��=2:

The program for the proof has now �nished.

3. Concluding remarks

3.1. The domain V�. As is easily seen from the characterization theorem, the domain
V� itself is strongly starlike of order �: Moreover, the conformal map g� : D ! V� of V�
determined by g�(0) = 0 and g0�(0) > 0 can be given in the form k�=k�(1); where

k�(z) = z exp

�Z z

0

��
1 + �

1� �

��

� 1

�
d�

�

�
:

The function k� plays a role of the Koebe function in the class of normalized strongly
starlike functions of order � (see, for example, [5] and its references).
In order to see g�(D ) = V�; we have only to check

g�(�1) = � exp(�� tan(��=2)):(5)

Indeed, by property (v) in Theorem 1, we obtain V� � g�(D ) because 1 2 @g�(D ): On the
other hand, by property (vi), we have g�(D ) � Ext (g�(�1) � V

�1
� ): By (3) and (5), this

means g�(D ) � � exp(�� tan(��=2)) � Ext V �1
� = V�: Thus we conclude g�(D ) = V�:
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To prove (5), we can use the formula
R �

0
cot�(�=2)d� = �= cos(��=2) (see [1, (2.4)]). In

fact, since we know g�(�1) < 0; we compute

g�(�1) = �

����exp
�Z �1

1

�
1 + �

1� �

��
d�

�

����� = � expRe

�
i

Z �

0

�
1 + ei�

1� ei�

��

d�

�

= � expRe

�
ie��=2

Z �

0

cot�(�=2)d�

�
= � exp [�� tan(��=2)] :

3.2. Example. In order to check the strong starlikeness of a given domain, condition
(vii) in Theorem 1 is probably most convenient. As a simple example, we consider the
rectangle D = fz = x+ iy : jxj < a; jyj < bg; where 0 < b � a: If 0 < tan � < b=a; we have
R(�) = a= cos � and R0(�)=R(�) = tan �: If b=a < tan � <1; we have R(�) = b= sin � and
R0(�)=R(�) = 1= tan �: Hence, we have ess: sup�2R jR

0(�)=R(�)j = a=b: This means that D
is strongly starlike of order (2=�) arctan(a=b) with respect to the origin, and the order is
best possible. In particular, the square is strongly starlike of order 1=2 with respect to its
center.
Another example is the standard domain U�: It is intuitively obvious that U� is strongly

starlike of order � with respect to the point 1=2: We rigorously check it by using The-
orem 1 (vii). As is easily seen, U� is the image of the unit disk under the map (1 +
f)=2; where f(z) = ((1 + z)� � (1 � z)�)=((1 + z)� + (1 � z)�): We show that f is
strongly starlike of order �: Let R = Rf(D ) : A simple geometric observation gives us

the formula R(�) = R(��) =
p
tan2(��=2) sin2 � + 1 � tan(��=2) sin � for � 2 (0; �):

Since R0(�)=R(�) = � tan(��=2) cos �=
p
1 + tan2(��=2) sin2 � for � 2 (0; �); we get

jR0(�)=R(�)j � tan(��=2)jcos �j � tan(��=2):

3.3. Generalization. As a re�nement of the notion of strongly starlike functions of order
�; we may consider the condition

�
��

2
� arg

zf 0(z)

f(z)
�

��

2
(z 2 D

�);

where � and � are constants in [0; 1]: In this case, by the same argument in Section
2.3, we can see � tan(��=2) � R0=R � tan(��=2) a.e. in R: Thus, we obtain a similar
statement to Theorem 1 just by replacing U� and V� by U�;� and V�;�; respectively, where
U�;� is the intersection of the two disks j2z cos(��=2) � ei��=2j < 1 and j2z cos(��=2)�
e�i��=2j < 1 and V�;� is the bounded Jordan domain enclosed by the two logarithmic spirals
exp((� tan(��=2) + i)�) (0 � � � �0) and exp((� tan(��=2) � i)�) (0 � � � 2� � �0);
where �0 = 2� tan(��=2)=(tan(��=2)+tan(��=2)): Note that the corresponding condition
to (v) in Theorem 1 was obtained by [4] in this case.
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