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Semigroup of analytic germs at the origin

Semigroup of analytic germs at the origin

Let O0 be the set of analytic germs f(z) of one complex
variable z with f(0) = 0 and let

O×
0 = {f ∈ O0 : f ′(0) 6= 0}.

The set O0 has a structure of semigroup concerning the
composition and O×

0 becomes a subgroup.
Our main aim is to interpret the Loewner equation in the
context of these structures.
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Grunsky coefficients

Let f(z) = a1z + a2z
2 + a3z

3 + · · · be an element of O×
0 . The

Grunsky coefficients Am,n of f are defined by

log
f(z)− f(ζ)

z − ζ
=

∞∑
m,n=0

Am,nz
mζn

for small enough z, ζ.

We also consider the expansion

log
1

1− f(z)f(ζ)
=

∞∑
m,n=0

Bm,nz
mζ̄n.
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Grunsky-Nehari inequality

Theorem (Nehari 1953)

If f : D→ D is univalent and f(0) = 0, then

Re
N∑

l,m=1

(Al,mtltm + Bl,mtlt̄m) ≤
N∑

l=1

|tl|2
l

for t1, . . . , tN ∈ C.

Schiffer and Tammi extended it by using the power matrix and
Loewner equation.
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Power matrix

For f ∈ O0, we consider the expansion

f(z)m =
∞∑

n=1

[f ]mn zn

for a natural number m.

Note that [f ]mn = 0 for n < m.
Consider the matrix [f ] with entries [f ]mn (m,n = 1, 2, . . . ).
This is called the power matrix of f.
I. Schur (1945), Jabotinsky (1953), and so on.
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Connection with Loewner equation

Let

ft(z) =
∞∑

k=1

ck(t)z
k

be a solution to the (radial) Loewner equation

ḟt = −z
1 + u(t)z

1− u(t)z
f ′t , t ≥ 0,

for a continuous u(t) with |u(t)| = 1. Then,

∞∑

k=1

ċk(t)z
k = −(1 + 2

∞∑

k=1

ukzk)
∞∑

k=1

kck(t)z
k.
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Therefore,

ċk(t) = −kck(t)− 2
k−1∑
m=1

mu(t)k−mcm(t)

for k ≥ 1. (In particular, c1(t) = e−t.)
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A simple but important observation

Note that ft(z)n satisfies the same Loewner equation as ft(z).

Therefore, we have

ċn,k(t) = −kcn,k(t)− 2
k−1∑
m=1

mu(t)k−mcn,m(t)

for k ≥ n, where cn,k(t) = [ft]
n
k . From these equations,

Schiffer and Tammi (1971) obtained an extension of
Grunsky-Nehari inequalities.
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Law of composition

The power matrix has the following remarkable property:

[f ◦ g] = [f ][g]

for f, g ∈ O0. Also, [id] = id. Therefore, this gives a matrix
representation of O0 and O×

0 .

Also note that

n[f ]k+1
n = (k + 1)

n−k∑
m=1

m[f ]1m[f ]kn−m.
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Lie group G and Lie algebra g

Let G = {[f ] : f ∈ O×
0 }. Then G can be regarded as a

complex Lie group of infinite dimension.

For h ∈ O0, we define
〈h〉 to be the matrix with entries

〈h〉mn =

{
m[h]1n−m+1 (m ≤ n)

0 (m > n).

Then g = {〈h〉 : h ∈ O0} can be identified with the Lie
algebra of G. The Lie bracket is given by

[〈h〉, 〈j〉] = 〈h〉〈j〉 − 〈j〉〈h〉.
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An observation

We set en = 〈zn+1〉 for n ≥ 0. Then

[ek, el] = (k − l)ek+l.

Thus g can be regarded as the ”positive part” of the Virasoro
algebra with zero central charge.
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Loewner equations

Loewner ODE:
d

dt
wt = −wtpt(wt).

Loewner PDE:
d

dt
ft = zf ′tpt.
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Matrix forms of Loewner equations

Matrix form (Schippers 2006)

d

dt
[wt] = −〈zpt〉[wt].

d

dt
[ft] = [ft]〈zpt〉
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