Dirichlet Solutions on Bordered Riemann Surfaces and Quasiconformal Mappings

東工大大学院・理工学研究科 志賀 啓成

1 問題設定

open Riemann 面 S_0, S_n $(n=1,2,\dots)$ および擬等角写像 $\varphi_n: S_0 \to S_n$ が与えられ,さらに φ_n の maximal dilatation $K_n=K(\varphi_n)(\geq 1)$ が $\lim_{n\to\infty}K_n=1$ を満たしているとする.このとき次のような問題を考える.

 $Question: S_n$ 上の等角不変量はどのような挙動をするか?

本講演では調和函数 , とくに Dirichlet 問題の解の動きについて考える. 一般に擬等角写像 $\varphi:S\to S'$ は S,S' 上の Dirichlet 函数の空間 (あるいは Sobolev 空間) D(S),D(S') の間のノルムが $K(\varphi)$ 以下の同型写像 $\varphi_\#$ を導く.ただし , $v\in D(S)$ に対して

$$\varphi_{\#}(v) = v \circ \varphi^{-1} \in D(S')$$

と定める.S 上の Dirichlet 積分有限な調和函数の空間 $HD(S)\subset D(S)$ に属する函数 u を考え, $\varphi_{\#}(u)$ に対して Royden 分解

$$\varphi_{\#}(u) = u_{\varphi} + v_{0,\varphi}$$

を行う.ここに $u_{\varphi} \in HD(S')$ で $v_{0,\varphi}$ は S' の Dirichlet potential である.このように $u \in HD(S)$ に $u_{\varphi} \in HD(S')$ を対応させる写像を P_{φ} と書くことにする. $P_{\varphi}: HD(S) \to HD(S')$ は連続線型同型である. $P_{\varphi}(u)$ は S' の Royden コンパクト化において φ より induce された境界値写像による Dirichlet 問題の解の変形と見なせる.我々は最初に挙げた状況において $P_n(u):=P_{\varphi_n}(u)$ の挙動を問題にする.また同様の観点から, S_0,S_n が境界付き Riemann 面であるとき, ∂S_0 上の連続函数 f に対して,f を境界値にもつ S_0 上の Dirichlet 問題の解 $H_f^{S_0}$ と $f \circ \varphi_n^{-1}$ を境界値にもつ S_n 上の Dirichlet 問題の解 $H_f^{S_0}$ の比較を問題にする.

2 一樣収束性

定理 2.1 $\S 1$ の仮定のもとで,任意の $u\in HD(S_0)$ に対して $\{P_n(u)\circ\varphi_n\}_{n=1}^\infty$ は u に S_0 上広義一様収束する.

定理 2.2 S_0, S_n を $compact\ bordered\ Riemann$ 面とする.このとき, $\S 1$ の仮定のもとで ∂S_0 上の任意の連続函数 f に対して, $\{H_{f\circ\varphi_n^{-1}}^{S_n}\circ\varphi_n\}_{n=1}^\infty$ は $H_f^{S_0}$ に S_0 上一様収束する.

 S_0 が(したがって S_n も)parabolic end(s) であるとき,双対境界 ∂S_0 上の任意の連続函数 f に対して,一般化された Dirichlet 問題の解 $H_f^{S_0}$ が f により一意的に定義される.擬等角写像 $\varphi_n:S_0\to S_n$ は ∂S_0 から ∂S_n の上への同相写像を与えるとみなせるから, $H_{f\circ\varphi_n^{-1}}^{S_n}$ も同様に定義される.このとき次のことが成り立つ.

定理 2.3 上の仮定のもとで ∂S_0 上の任意の連続函数 f に対して, $\{H_{f\circ\varphi_n^{-1}}^{S_n}\circ\varphi_n\}_{n=1}^\infty$ は $H_f^{S_0}$ に S_0 上理想境界の任意の近傍を除き一様収束する.また, S_0 が $Heins\ end\$ でその調和次元が 1 であるとき,この収束は S_0 全体で一様である.

また, S_0 が nodes をもった境界付き有限型 Riemann 面で, $\{S_n\}$ が S_0 への「退化族」である場合も同様の問題を考える. S_0 を(有限個の) nodes を持った有限型 Riemann 面とする. S_0 の nodes 全体の集合を $N(S_0)$ と書く.Triple $\{S_n,\varphi_n,S_0\}$ が以下の条件を満たすとき,これを退化族という.

- 1. S_n は通常の compact bordered Riemann 面で , φ_n は S_n から S_0 への全 射連続写像である .
- 2. $N(S_0)$ の任意の点 p に対して $\varphi_n^{-1}(p)$ は S_n 上の非自明な単純閉曲線 $\alpha_n(p)$ である .
- 3. 任意の $\epsilon>0$ に対して $N(S_0)$ の近傍 U_ϵ と自然数 n_0 が存在して, $n\geq n_0$ ならば, $\varphi_n^{-1}|_{S_0\setminus U_\epsilon}$ は $(1+\epsilon)$ -qc になる.

 $S_0\setminus N(S_0)$ の連結成分を S_0 の part という. S_0 の part でその境界に S_0 の境界 成分曲線を含むものを bordered part といい,そうでないものを non-bordered part という. S_0^b を S_0 の bordered part としたとき, ∂S_0 上の任意の連続函数 f を ∂S_0^b に制限することによって S_0^b 上境界値 f を持つ Dirichlet 問題の解 $u_{S_0^b}$ を得る.ただし, $u_{S_0^b}$ は nodes の近傍では有界になるようにとっておく. S_0

の各 bordered part でこのような函数を作り, non-bordered part では0と定義した S_0 上の調和函数を $H_f^{S_0}$ とする.

さて,退化族 $\{S_n,\varphi_n,S_0\}$ が与えられているとき, $\varphi_n:S_n\to S_0$ は ∂S_n から ∂S_0 への同相写像を与える.したがって, ∂S_0 上の連続函数 f に対して $f\circ\varphi$ は ∂S_n 上の連続函数になり,その Dirichlet 解 $H^{S_n}_{f\circ\varphi_n}$ を考えることが出来る.このとき,以下のことが成り立つ.

定理 2.4 U を S_0 における $N(S_0)$ の近傍としたとき , 各 $bordered\ part\ S_0^b$ に対して $\{H_{f\circ\varphi_n}^{S_n}\circ\varphi_n^{-1}\}$ は $S_0^b\setminus U$ 上 $H_f^{S_0}$ に一様収束する .

注意 2.1 non-bordered part では(収束も含め)一般に何も結論できない.また,上の主張で S_0^b 上一様収束させることは,一般に出来ない

3 可微分性

 S_0 を compact bordered Riemann 面または parabolic end とし, μ を S_0 上の Beltrami 微分とする. $t\in[-1,1]$ に対して $t\mu$ が定める擬等角写像を $\varphi_t:S_0\to S_t$ とする.このとき次のことが成立する.

定理 $3.1~\mu$ の台が ∂S_0 の点を含まないとき , 任意の $p\in S_0$ および ∂S_0 上の任意の連続函数 f に対して , t の函数と見て , $H^{S_t}_{f\circ\varphi_t^{-1}}\circ\varphi_t(p)$ は t の関数として C^1 級である .

References

- [1] H. Shiga, On the quasiconformal deformation of open Riemann surfaces and variations of some conformal invariants, J. Math. Kyoto Univ. **22** (1982), 463–480.
- [2] H. Shiga, preprint.