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1 Introduction

For a Riemann surface S, let End(S) denote the set of all holomorphic en-
domorphisms of S. It is a semigroup with the semigroup operation being
functional composition. A rational semigroup is a subsemigroup of End(C)
without any constant elements. Similarly, an entire semigroup is a subsemi-
group of End(C) without any constant elements. A rational semigroup G
is called a polynomial semigroup if each g 2 G is a polynomial. When a
rational or entire semigroup G is generated by ff1; f2; : : : fn; : : :g; we denote
this situation by

G = hf1; f2; : : : fn; : : :i:

The rational or entire semigroup generated by a single function g is denoted
by hgi. We denote the n-th iterate of f by fn.

The study of rational semigroups is a generalization of the study of
Kleinian groups, iteration of rational functions and systems of contraction
maps related to self-similar sets in C in fractal geometry. D. Sullivan pointed
out that there are many points of similarity between Kleinian groups and
iteration of rational functions in [Sul]. In view of the study of rational semi-
groups, we can show some basic results similar between Kleinian groups and
iteration of rational functions. For example, limit sets of Kleinian groups,
Julia sets of rational functions and self-similar sets in C are Julia sets of
rational semigroups. By Lemma 1.1.5.6, which is a result by A.Hinkkanen
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and G.J.Martin, �xed points are dense in these sets. Several properties of
dynamics of rational semigroups have been shown in [ZR], [GR], [HM1],
[HM2], [S1] and [S2]. In 1992, the �rst study was investigated by W.Zhou
and F.Ren([ZR]). In 1996, the study of in�nitely generated semigroup of
meromorphic functions was investigated by Z.Gong and F.Ren([GR]). In
1996, A.Hinkkanen and G.J.Martin studied about nearly abelian rational
semigroups([HM1]). They showed that Julia sets of �nitely generated ratio-
nal semigroups are uniformly perfect([HM2]).

In this paper, we use the notations in [HM1], [HM2], [S1] and [S2]. We
will show the following results. The Julia sets of �nitely generated ratio-
nal semigroups have the backward self-similarity(Lemma 1.1.4). So if the
hyperbolic rational semigroup is �nitely generated and satis�es some condi-
tions, the limit functions of the semigroup on the Fatou set are only constant
functions that take their values on postcritical set(Theorem 2.2.8). When
the generators of a �nitely generated hyperbolic rational semigroup are per-
turbed, the hyperbolicity is kept and the Jilia set depends cotiniously on
the generators of the semigroup(Theorem 2.4.1). Furthermore, if the �nitely
generated rational semigroup is hyperbolic and if the inverse images by the
generators of the Julia set are mutually disjoint, then the Julia set moves by
holomorphic motion(Theorem 2.4.1).

Because of the backward self-similarity, if the postcritical set is included
in a Fatou component, then the Julia set has a property which is like usual
self-similarity(Theorem 2.5.1), and moreover, if the inverse images by the
generators of the Julia set are mutually disjoint, then the Julia set is a Cantor
set(Theorem 2.5.2).

In [S3], it is shown that the hyperbolicity and the expandingness are
equivalent if the semigroup is �nitely generated and contains an element
with the degree at least two. In that paper, the study of a construction
of conformal measures and Hausdor� dimension of Julia sets of hyperbolic
rational semigroups will be given. The study of generalized Brolin-Lyubich's
invariant measures and estimates of Hausdor� dimension of Julia sets will be
given in [S4].

The author will discuss about the existance and uniqueness of conformal
measures and self-similar measures in more general cases in [S5].
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1.1 preliminaries

De�nition 1.1.1 Let G be a rational semigroup.

F (G)
def
= fz 2 C j G is normal in a neighborhood of zg

J(G)
def
= C n F (G)

F (G) is called Fatou set for G and J(G) is called Julia set for G. Similarly,
Fatou set and Julia set for entire semigroup are de�ned.

De�nition 1.1.2 Let G be a rational semigroup and z be a point of C: The
backward orbit O�(z) of z and the set of exceptional points E(G) are de�ned
by:

O�(z)
def
= fw 2 C j there is some g 2 G such that g(w) = zg;

E(G)
def
= fz 2 C j ]O�(z) � 2g:

De�nition 1.1.3 A subsemigroup H of a semigroup G is said to be of �nite
index if there is a �nite collection of elements fg1; g2; : : : ; gng of G such that
G = [n

i=1giH: Similarly we say that a subsemigroup H of G has co�nite
index if there is a �nite collection of elements fg1; g2; : : : ; gng of G such that
for every g 2 G there is a j 2 f1; 2; : : : ; ng such that gjg 2 H:

Lemma 1.1.4 Let G be a rational semigroup.

1. For any f 2 G;

f(F (G)) � F (G); f�1(J(G)) � J(G);

F (G) � F (hfi); J(hfi) � J(G)

2. If G = hf1; : : : ; fni; then

F (G) = \n
i=1f

�1
i (F (G)); J(G) = [n

i=1f
�1
i (J(G))
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Proof. By de�nition, it is easy to show 1 . We show 2 . By 1 ,

F (G) � \n
j=1f

�1
j (F (G)):

Now take any point z0 2 \n
j=1f

�1
j (F (G)) and set wj = fj(z0) 2 F (G):

For any � > 0; there is some � > 0 such that if g 2 G; 1 � j �
n; and d(w;wj) < �; then

d(g(w); g(wj)) < �:

For this �; there is some � > 0 such that if d(z; z0) < � then

d(fj(z); fj(z0)) < �; j = 1; : : : ; n:

So if g 2 G; 1 � j � n; and d(z; z0) < � then

d(gfj(z); gfj(z0)) < �:

G is equal to [n
j=1 fG

S
fidgg � fj; so G is equicontinuous at z0; and

\n
j=1f

�1
j (F (G)) � F (G):

2

If a set K satis�es that K = [n
i=1f

�1
i (K); we say that K has backward

self-similarity.
Next lemma was shown in [HM1], [ZR].

Lemma 1.1.5 Let G be a rational semigroup.

1. If a subsemigroup H of G is of �nite or co�nite index, then

J(H) = J(G):

In particular, when G is a rational semigroup generated by �nite ele-
ments ff1; f2; : : : fng and m is an integer, if we set

Hm = fg = fj1 � � � fjk 2 G j m devides kg;

Im = fg 2 G j g is a product of some elements of word length mg

then
J(G) = J(Hm) = J(Im):

Here we say an element f 2 G is word length m if m is the minimum
integer such that

f = fj1 � � � fjm:
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2. If J(G) contains at least three points, then J(G) is a perfect set.

3. If there is an element g 2 G such that deg(g) � 2 or there is an element
g 2 G such that deg(g) = 1 and the order of g is in�nite, then

E(G) = fz 2 C j ]O�(z) <1g; ]E(G) � 2:

4. If a point z is not in E(G); then for every x 2 J(G); x belongs to
O�(z): In particular if a point z belongs to J(G) n E(G); then

O�(z) = J(G):

5. If there is an element g 2 G such that deg(g) � 2 or there is an element
g 2 G such that deg(g) = 1 and the order of g is in�nite and J(G)
contains at least three points, then J(G) is the smallest closed backward
invariant set containing at least three points. Here we say that a set A
is backward invariant under G if for each g 2 G; g�1(A) � A:

6. If J(G) contains at least three points, then

J(G) = fz 2 C j z is a repelling �xed point of some g 2 Gg

Proof. [HM1]. 2

Remark. A similar result of 6. for entire semigroups can also be stated.

Proposition 1.1.6 Let fQ�g be a family of polynomials that are not of de-
gree one and G be a polynomial semigroup generated by fQ�g:

If a transformation �(z) = �z+ � 2 AutC; � = exp(2�i
k
); k 2 N satis�es

for every �
�(J(hQ�i)) = J(hQ�i);

then
�(J(G)) = J(G):

Proof. For every polynomial Q that is not of degree one, J(Q) is com-
pletely invariant under a transformation z 7! (exp(2�i

k
))(z) if and only if

Q = azdP (zk); where P is a polynomial, a is a number, and d is an integer
([Be1] ). So it is easy to see the statement using Lemma 1.1.5.6. 2

Example 1.1.7 For a regular triangle p1p2p3; we set gi(z) = 2(z � pi) +
pi; i = 1; 2; 3: And let G be a rational semigroup generated by fgig; not as
a group. Then J(G) is the Sierpi�nski Gasket.
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2 Dynamics of Hyperbolic Rational Semigroups

2.1 Limit Functions

First, we will give some comments about limit functions of semigroups. The
study of limit functions plays a very important role in the study of complex
dynamical systems. The forward invariant domains of iteration of rational
functions are classi�ed into �ve types by the limit functions([Be1], [Mi]).

Let S be a hyperbolic Riemann surface, S1 the one point compacti�ca-
tion of S; and H a subsemigroup of End(S):

De�nition 2.1.1

LH(S)
def
= f' : S ! S1 j there is a sequence (gj) of mutually distinct

elements of H such that gj ! ' locally uniformly on S as j !1g:

Remark. Every family A of elements of End(S) contains a sequence that
converges to an element of End(S) or 1: ([Mi]).

Lemma 2.1.2 Let S be a hyperbolic Riemann surface and H a subsemigroup
of End(S). If g 2 H is non-constant and ' belongs to LH(S); then 'g 2
LH(S): Moreover if ' also belongs to End(S), then g' 2 LH(S):

Proof. Let ' be an element of LH(S): There is some sequence (fj) of
mutually distinct elements of H such that fj ! ': Then the sequence
(fjg)converges to 'g and ffjgg are mutually distinct because g is non-
constant. By de�nition 'g belongs to LH(S):

Next assume ' also belongs to End(S): The sequence (gfj)converges to
g': We will show fgfjg contains in�nitely many elements that are mutually
distinct. For each number i; j; we set

Cij = fz 2 S j fi(z) = fj(z)g; C = [i6=jCij:

C is a countable set and we can take a point x of S which does not belong
to C: Then ffj(x)g are mutually distinct and the sequence (fj(x)) converges
to '(x) 2 S: Now assume that there exists a subsequence(jk) of (j) such
that jk ! 1 as k ! 1 and all elements of fgfjkg are equal to an element
h 2 End(S): Then for each k; gfjk(x) = g'(x) and this is a contradiction
because g is non-constant. So fgfjg contains in�nitely many elements that
are mutually distinct. By de�nition, it follows that g' belongs to LH(S): 2

6



Lemma 2.1.3 Let S be a hyperbolic Riemann surface and H a �nitely gener-
ated subsemigroup of End(S). If there is a non-constant element ' 2 LH(S);
then at least one of these assersions is true:

1. IdS 2 LH(S) and there is a generator g0 2 H such that g0 is injective
on S:

2. There is a sequence (bj) of elements of H such that for every j there
is an element hj 2 H such that bj+1 = hjbj and (bj) converges to 1
locally uniformely on S:

Proof. We �x a generator system fg1; : : : ; gkg of H: There is a sequence
(fj) of mutually distinct elements of H such that fj ! ' and word length of
fj strictly increases as j ! 1: We represent each fj by its reduced word.
We take a subsequence (f1j) of (fj) as follows. There is a generator gi1 of H
such that for each j

f1j = � � � � gi1 :

Inductively when we get a sequence (fnj)j; we take a subsequence (fn+1;j)j
of it as follows. There is a generator gin+1 of H such that for each j

fn+1;j = � � � � gin+1 � � � � � gi1 :

Now we get a sequence (fnn)n and

fnn = �n � an; where �n 2 H; an = gin � � � � � gi1 :

There are subsequences (�nj) of (�n) and (anj) of (an) and maps �; g :
S ! S1 such that (�nj); (anj ) converge to �; g locally uniformly on S,
respectively. Because fanjg are mutually distinct,

g 2 LH(S):

If g is not a constant, g(S) � S: If g is a constant , then g = 1; for ' is
not constant. In the former case, we can assume that for each j, there is an
element hj 2 H such that fhjg are mutually distinct, anj+1 = hj � anj ; and
hj converges to a map h locally uniformly on S as j !1: Then g = h � g
and

h = IdS:
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We can also assume that there is a generator gi such that for each j ,

hj = � � � � gi:

Then for z; w 2 S; if we have gi(z) = gi(w); then for each j, hj(z) = hj(w)
and so z = w: This implies that gi is injective on S. 2

Next we de�ne stable domains( [HM1]).

De�nition 2.1.4 Let G be a rational semigroup and U a connected com-
ponent of F (G): We say that U is a stable domain if there is an element
g 2 G n AutC such that g(U) � U: And we set

GU
def
= fg 2 G j g(U) � Ug:

Similar de�nitions for entire semigroup can also be given.

De�nition 2.1.5 Let U be a domain of C and H a subsemigroup of End(U):
Then we set

LH(U)
def
= f' : U ! U j there is a sequence (gj) of mutually distinct

elements of H such that gj ! ' locally uniformly on U as j !1g:

Remark. If g 2 H is non-constant and ' belongs to LH(U); then ' � g 2
LH(U): Moreover if ' also belongs to End(U), then g � ' 2 LH(U):

Now we consider a case such that there are only �nitely many constant
limit functions taking its value in a domain U: In this case LH(U) has only
�nitely many elements.

Proposition 2.1.6 Let G be a rational semigroup and U a subdomain of
F (G) and we set

H = fg 2 G j g(U) � Ug; A = f� 2 U j 9' 2 LH(U); ' � �g:

If H is �nitely generated and if 1 < ]A < 1; then any ' 2 LH(U) is
a constant map being its value2 U: And M = H \ Aut(C) has only �nitely
many elements.
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Remarks. A similar result for entire semigroup also holds. And if we set

G = hz2; ei�zi;
�

2�
62 Q; U = fj z j< 1g;

then
]f' 2 LH(U) j 9� 2 U; ' � �g = 1; IdU 2 LH(U):

Next we consider a case such that there are in�nitely many constant
limit functions taking its value in a stable domain.

Proposition 2.1.7 Let G be a rational(entire) semigroup, U a stable domain
of G: We set

H = GU ;

A
def
= f� 2 U j 9' 2 LH(U); ' � �g; B

def
= f� 2 U j 9' 2 LH(U); ' � �g:

If A has an accumulation point in U , then B is a perfect set, in particular
an uncountable set.

Proof. First, it is easy to see that B is a closed subset of U: Assume that
A has an accumulation point in U and � 2 B is an isolated point. There is a
sequence (gj) of H converging � locally uniformly on U: By our assumpsion
A is not empty and take a point x 2 A: Then gj(x) ! � as j ! 1 and
gj(x) 2 A by the remark after De�nition 2.1.5. So � belongs to U; for it
is an isolated point. Now gj(�) ! � as j ! 1 and gj(�) = � for large
enough j because � is isolated. Also for each compact set K; gj maps K
into a small disc about � for large enough j: It follows that for large enough
j; the point � is an attracting �xed point of gj: Take a large enough number
j and set g = gj: For each y 2 A the sequence (!gn(y)) converges to � as
n!1: Because � is an isolated point, gn(y) = � for each large enough n: So
A � [ng

�nf�g; and each point of A is isolated in U because fgng is normal
in U: This is a contradiction. 2

If A has in�nitely many points and there is no accumulation point of A
in U; then by the proof of Proposition 2.1.7, for any � 2 A there is an element
g of H such that A � [ng

�nf�g: It is a problem whether this situation can
occur or not.
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Conjecture 2.1.8 If A has in�nitely many points, then A has an accumu-
lation point in U .

If this conjecture is true, by Proposition 2.1.7, it implies the following con-
jecture.

Conjecture 2.1.9 If A has in�nitely many points, then B is a perfect set.

Next we consider the nearly abelian semigroup in [HM1] and the limit
functions as an example.

De�nition 2.1.10 Let G be a rational semigroup containing an element g
with deg(g) � 2: We say that G is nearly abelian if there is a compact family
of M�obius (or linear fractional) transformations � = f'g with the following
properties.

� '(F (G)) = F (G) for all ' 2 �

� for all f; g 2 G there is a ' 2 � such that fg = 'gf

Then by [HM1], if g 2 G is of degree at least two, then J(G) = J(g): And
it is also shown in [HM1] that in each stable domain U , the type of each
element g 2 GU such that deg(g) is at least two coincides. Here we de�ne by
the type of g 2 GU the type of the connected component of F (g) containing
U .

Let X be a subset of C that is not a round circle. We set

G = fg j g is a polynomial, J(g) = Xg:

If G contains an element g such that deg(g) is at least two, then G is nearly
abelian and we can take a family � of De�nition 2.1.10 so that it contains
only �nitely many elements.

Proposition 2.1.11 Let G be a nearly abelian rational semigroup, � the
family in De�nition 2.1.10 and U a stable domain. We set H = GU and
B = f� 2 U j 9' 2 LH(U); ' � �g: If � has only �nitely many elements,
then for any element g of H;

B �
[

n; m;�1; n+m�]�+1

g�mf�xed point of gng;
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in particular, B has at most �nitely many elements. Moreover if B is not
empty, either all points of B belong to U or all points of B belong to @U:

Proof. Let � be an element of LH(U): Then there is a sequence (gj) of
mutually distinct elements of H converging to � locally uniformly on U . Let
g be any element of H. For every j there is an element 'j 2 � such that

ggj = 'jgjg:

We can assume that ('j) converges to an element ' of �: Then

g� = g lim
j!1

gj = lim
j!1

'jgjg = '�g:

If � is identically equal to a constant value � 2 U; then

g(�) = '(�):

There are some positive integers n; m with n+m � ]�+ 1 such that gm(�)
is a �xed point of gn: Now assume that B \U 6= ; and B \ @U 6= ;: Let x; y
be points of B \ U; B \ @U respectively. Then there is a sequence (hj) of
mutually distinct elements of H converging to y locally uniformly on U . The
sequence (hj(x)) converges to y as j ! 1 and hj(x) belongs to B for each
j; this implies that B has in�nitely many elements. 2

Example 2.1.12 Let n be an integer such that n � 2 and we set f(z) =
zn + c; �(z) = exp(2�i

n
)z; and G = hf; �f; � � � ; �n�1fi: Then G is nearly

abelian. If jcj is small enough, then 0 belongs to F (G): Let U be the stable
domain containing 0. Then

LH(U) = f�j(z0); j = 0; : : : ; n� 1g;

where z0 is an attracting �xed point of f in U and ]LH(U) = n: Also there
is a number c such that each element of LH(U) is constant value of @U and
]LH(U) = n:

Example 2.1.13 Let m; n be integers greater than 1. We set f(z) = zm(z�
c); g(z) = zn(z � c) + c; G = hf; gi: If jcj is small enough, then 0 and c
belong to the same connected component U of F (G): Now f(0); f(c) = 0 and
g(0); g(c) = c and it implies that

LG(U) = f'0; 'cg; where '0 � 0; 'c � c:

Also G is not nearly abelian, for, the type of f is super attracting and di�erent
from that of g:
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2.2 No Wandering Domains

Now we consider hyperbolic rational semigroups.

De�nition 2.2.1 Let G be a rational semigroup. We set

P (G) =
[

g2G

f critical values of gg

and we say that G is hyperbolic if P (G) � F (G):

Remark. In [S3], it will be shown that the hyperbolicity and the expand-
ingness are equivalent if the semigroup is �nitely generated and satis�es that
it contains an element with the degree at least two and each M�obius trans-
formation in it is not elliptic.

De�nition 2.2.2 Let G be a rational semigroup and U be a component of
F (G): For every element g of G; we denote by Ug the connected component
of F (G) containing g(U): We say that U is a wandering domain if fUgg is
in�nite.

Theorem 2.2.3 Let G be a rational semigroup and U be a wandering do-
main. Then there is a constant limit function ' of G on U taking its value
� in J(G):

Proof. We have a sequence (gj) in G such that it converges to a map '
locally uniformly on U and each Ugj is mutually disjoint. Now we assume '
is nonconstant. Then '(U) is an open subset of F (G) and this is a contra-
diction because (gj) converges to ' and each Ugj is mutually disjoint. So '
is constant. Now we assume the value � is in F (G): But this is also a contra-
diction because for each large j component Ugj is included in the component
of F (G) containing �: 2

Now we show a su�cient condition so that there is no wandering domain.

Theorem 2.2.4 Let G be a rational semigroup and U be a wandering do-
main. Also let ' be a constant limit function of G on U taking its value �
in J(G): If there is an element of G such that the degree is at least two, then
the value � is in P (G):
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Corollary 2.2.5 If G is a hyperbolic rational semigroup containing an ele-
ment of degree at least two, then there is no wandering domain of F (G):

Proof of Theorem 2.2.4. We assume that there is an element of G such that
the degree is at least two. We will show that the value � is in P (G): We can
assume that P (G) contains at least three points. Assuming that � is not in
P (G); there is a simply connected neighborhood V of � disjoint from P (G):
Then for every g 2 G; we can take all branches of g�1 that are well de�ned
on V: We denote by A the family of meromorphic functions on V such that
each element of A is a branch of the inverse of an element of G: Then A is a
normal family on V: Let (gj) be a sequence with gjjU ! � compact uniformly
and gj(U) � V for large j: Now we take a curve 
 in Ucontaining at least
two points. For large j; we take a branch hj of g

�1
j on V such that it maps

gj(
) to 
. Now (gj(
)) converges to � and so for any neighborhood W of �
there is a number j such that hj(W ) contains 
: But this is a contradiction
because (hj) is equicontinuous. 2

Similarly we can show the following result.

Theorem 2.2.6 In the same situation as Theorem 2.2.3, assume that every
element of G is of degree one. For every point x 2 C; we denote the closure
of G orbit of x by A(x): Then for all x 2 C but at most two points of G -�xed
points, � belongs to A(x):

Corollary 2.2.7 If every element of G is of degree one and there is a point
x 2 C such that A(x) contains at least two points and is included in F (G);
then there is no wandering domain of F (G):

Next we consider limit functions of a hyperbolic rational semigroup on the
Fatou set.

Theorem 2.2.8 Let G be a �nitely generated hyperbolic rational semigroup
which contains an element of degree at least two and assume that each M�obius
transformation in G is neither the identity nor an elliptic element. Then for
every compact subset K of F (G); the G orbit of K can accumulate only to
P (G) and every limit function of G on F (G) is a locally constant function
that takes its value in P (G):
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Proof. We denote by A the union of all components each of which has
a non-empty intersection with P (G): Let U be a component of F (G): By
Corollary 2.2.5 , there are only �nitely many elements in fUggg2G: Let h be
an element of G such that the degree is at least two. Let V be a component
of F (G) and suppose h(V ) � V: Then the component of F (hhi) that contains
V is an attracting basin of hhi and contains a critical point of h because G is
hyperbolic. So V has a non-empty intersection with P (G): We �x a system
of generators of G: It follows that for large positive integer m; if g 2 G is a
product of m generators of G; then Ug � A: And so we have only to consider
the dynamics of G on A: We take the hyperbolic metric in each component
of A: For large positive integer m; every element of G which is a product of
m generators of G is a contraction map from A to A and the contraction rate
is bounded by a constant strictly less than one in each �xed compact subset
of A: Now the statement of the theorem follows immediately. 2

Proposition 2.2.9 Let G be a hyperbolic rational semigroup, U a stable
domain of G: We set

H = GU ; A
def
= f� 2 U j 9' 2 LH(U); ' � �g:

If A has in�nitely many points, then A is a perfect set.

Proof. Because U is a stable domain, by de�nition, there is an element g of
H with degree at least two. If we denote by V the connected component of
F (g) containing U; there is a critical point x 2 V of g and for large enough
n; the point gn(x) belongs to U: So P (G)\U 6= ;: Assume that A\ @U 6= ;:
Then P (G)\ @U 6= ; and this is a contradiction because G is hyperbolic. So
A \ @U = ; and A has an accumulation point in U: By Proposition 2.1.7,
the statement follows. 2

2.3 Continuity of Julia sets

De�nition 2.3.1 Let E be a metric space. We denote by Comp�(E) the set
of non-empty compact subsets of E. For every A;B 2 Comp�(E) we set

@(A;B) = supfd(x;B) j x 2 Ag

and
dH(A;B) = maxf@(A;B); @(B;A)g:
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It is well known that dH is a distance on Comp�(E): We call it the Hausdor�
metric.

Next we consider if a Julia set depends continuously on the generators. For
the case of iterations of rational functions, see [D], [MSS] and [Mc].

De�nition 2.3.2 Let M be a complex manifold. Suppose the map

(z; a) 2 C�M 7! fj;a(z) 2 C

is holomorphic for each j = 1; : : : ; n . We set Ga = hf1;a; � � � ; fn;ai: Then we
say that fGaga2M is a holomorphic family of rational semigroups.

Remark. If a map F : C�M ! C is holomorphic, then for each a 2M the
map F ( ; a) is a rational map and deg(F ( ; a)) is a constant function on M
whenM is connected. For, if two maps f; g from S2 to S2 are continuous and
homotopic, then deg(f) = deg(g): Holomorphic families of usual iteration of
rational functions have been studied in [MSS]. It is well known that the set of
J-stable parameters is open and dense in the parameter space([MSS], [Mc]).

De�nition 2.3.3 Let G be a rational semigroup. We say that a compact
subset K of F (G) is a con�nement set of G if for every z 2 F (G); for all
but �nitely many elements g of G the point g(z) is included in K:

Theorem 2.3.4 Let fGaga2M be a holomorphic family of rational semi-
groups where Ga = hf1;a; � � � ; fn;ai: We assume that for a point b 2 M there
is a con�nement set K of Gb: Then the map

a 7! J(Ga) 2 Comp�(C)

is continuous at the point a = b with respect to the Hausdor� metric.

Proof. By Section 1, Lemma 1.1.5.6, for any � > 0 there is a �nite set

Xb = fx1;b; � � � ; xl;bg � J(Gb)

of repelling �xed points of Gb such that

@(J(Gb); Xb)) � �=2:
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By the implicit function theorem, there is a neighborhood W of b in M such
that for every a 2 W and for every j=1,. . . ,l there is a repelling �xed point
xj;a of Ga such that

d(xj;b; xj;a) � �=2:

For each a 2 W we set Xa = fx1;a; � � � ; xl;ag: Then

@(Xb; J(Ga)) � @(Xb; Xa) � �=2:

So
@(J(Gb); J(Ga)) � @(J(Gb); Xb) + @(Xb; J(Ga)) � �:

Next, for every a 2M we �x the generator system ffj;ag of Ga:We denote by
A the union of all components of F (Gb) that have a non empty intersection
with K and we take the hyperbolic metric in each component of A: Let � be
a positive number and K2 be the compact 2� neighborhood of K in A and K1

be the compact � neighborhood of K in A: Then if we take the neighborhood
W of b smaller, there is an integer m such that for every a 2 W and for every
integer t satisfying m � t � 2m every element g 2 Ga of a product of t
generators of Ga satis�es

g(K2) � K1:

So for every a 2 W and for every integer t satisfying m � t every element
g 2 Ga of a product of t generators of Ga satis�es the above. Now we take the
� neighborhood O of J(Gb) with respect to the chordal metric and we denote
by L the set CnO: And if we take W smaller again there is an integer u such
that for every a 2 W every element g 2 Ga of a product of u generators of
Ga satis�es that g(L) � K2 and so L is included in F (Ga): So

@(J(Ga); J(Gb)) � �:

Hence a 7! J(Ga) is continuous at the point b with respect to the Hausdor�
metric. 2

2.4 Structural Stability of Hyperbolic Rational Semi-

groups

Theorem 2.4.1 Let fGaga2M be a holomorphic family of rational semi-
groups where Ga = hf1;a; � � � ; fn;ai: Then
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1. Let b be a point of M: Assume that Gb is hyperbolic. And also assume
that deg(f1;b) is at least two and each M�obius transformation in Gb

is neither the identity nor an elliptic element. Then there is an open
neighborhood W of b such that for every a 2 W the rational semigroup
Ga is hyperbolic and the map a 7! J(Ga) is continuous with respect to
the Hausdor� metric.

2. Under the same assumption as 1, if the sets (f�1j;b (J(G)))j are mutually
disjoint, then there is an open neighborhood V of b and a continuous
map i : C � V ! C such that for every z 2 C the map a 7! i(z; a) is
holomorphic, and for every a 2 V the map z 7! i(z; a) is a quasicon-
formal homeomorphism of C mapping J(Gb) onto J(Ga):

Proof of 1. For every a 2M we �x the generator system ffj;ag of Ga: We
denote by A the union of all components of F (Gb) that have a non empty
intersection with K = P (Gb) and we take the hyperbolic metric in each
component of A: Let � be a positive number and K2 be the compact 2�
neighborhood of K in A and K1 be the compact � neighborhood of K in A:
Then if we take a small neighborhood W of b there is an integer m such that
for every a 2 W and for every integer t satisfying m � t � 2m every element
g 2 Ga of a product of t generators of Ga satis�es

g(K2) � K1:

So for every a 2 W and for every integer t satisfying m � t every element
g 2 Ga of a product of t generators of Ga satis�es the above. Now let Qa

denote the union of all critical points of all generators of Ga: Let L be a
relatively compact neighborhood of Qb in F (Gb): If we take W smaller, for
every a 2 W the set Qa is in L: And we can assume that there is a positive
integer u such that for every a 2 W every element g 2 Ga of word length u
satis�es g(L) � K2: So for every a 2 W the set P (Ga) is included in F (Ga)
and so Ga is hyperbolic. And from this fact combined with theorems 2.2.8,
2.3.4, it follows that the map a 7! J(Ga) is continuous in W:

Proof of 2. We take a neighborhood W of b as above. We can
assume that W is a polydisc and for each a 2 W the sets (f�1j;a (J(G)))j are
mutually disjoint. Let c be a point of W and x be a repelling �xed point of
gc = fj1;c�� � ��fjm;c where the number m is the word length of gc: Then there
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is an analytic function x(a) in a small neighborhood U of c in W such that
x(a) is a repelling �xed point of ga and x(c) = x: If a0 is a point of @U \W;
then x(a0) is a repelling �xed point of ga0 because Ga0 is hyperbolic. So we
can take an analytic continuation of x(a) throughout W such that x(a) is
a repelling �xed point of ga: Next if ha is an element of Ga such that the
word length is at most m and x(a) is a �xet point of it then ha is equal to ga
because Ga is hyperbolic and the sets (f�1j;a (J(G)))j are mutually disjoint. So
by the � lemma([MSS], [BR], [ST]) and Lemma 1.1.5.6 the statement follows
immediately. 2

2.5 Self-similarity of Julia Sets

When G is generated by a single rational function f; we know that if all the
critical points are in the immediate attractive basin of a �xed point, then the
Julia set is a Cantor set. Now we consider the following situation similar to
that.

Theorem 2.5.1 Let G = hf1; : : : ; fni be a �nitely generated rational semi-
group. Assume that G contains an element with the degree at least two and
each M�obius transformation in G is neither the identity nor an elliptic ele-
ment. If P (G) is included in a connected component U of F (G); then there are
simply connected domains V1; : : : ; Vk and mappings h1; : : : ; hs fromW = [jVj
to W such that for each j; i the map hj is a contraction map from Vi to a
domain Vi0 with respect to the hyperbolic metric with the rate of contraction
bounded by a constant strictly less than one throughout Vi and

J(G) � W;
[

j

hj(J(G)) = J(G):

Proof. There is a relatively compact subdomain V of U including P (G):
For each positive integer m we denote by Gm the subsemigroup of G gen-
erated by all elements g1; : : : ; gl of word length m: If we take a number m
large enough, then for each g 2 Gm; g maps the closure of V into V: So the
closure of g�1(CnV ) is included in CnV: Each connected component of CnV
is simply connected because V is connected. For each component of C n V
we take all branches of g�1 on it. Then each branch is a contraction map
on each component of C n V with respect to the hyperbolic metric with the
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rate of contraction bounded by a constant strictly less than one. Now from
Lemma 1.1.4.2 and Lemma 1.1.5.1,

J(G) = J(Gm) =
l[

j=1

g�1j (J(Gm));

so the statement follows. 2

Remark. In the above proof, if we can take V as a simply connected
domain, then the Julia set is a self-similar set in C n V with respect to the
hyperbolic metric.

By Theorem 2.5.1 and the proof, we can show the following result.

Theorem 2.5.2 Let G = hf1; : : : ; fni be a �nitely generated rational semi-
group. Assume that deg(f1) is at least two. If P (G) is included in a connected
component U of F (G) and the sets ff�1j (J(G))gj=1;:::;n are mutually disjoint,
then the Julia set J(G) is a Cantor set.

Example 2.5.3 Let Gc = hz2 + c; z2 + cii: Then J(Gc) is a Cantor set for
su�ciently large positive number c.
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