A COEFFICIENT INEQUALITY FOR BLOCH FUNCTIONS WITH
APPLICATIONS TO UNIFORMLY LOCALLY UNIVALENT
FUNCTIONS

TOSHIYUKI SUGAWA AND TAKAO TERADA

ABSTRACT. We give a Fekete-Szegd type inequality for a Bloch function with Bloch
seminorm < 1. As an application of it, we derive a sharp coefficient inequality for a3 for
a uniformly locally univalent function f(z) = z+a222 + a3z +... on the unit disk with
pre-Schwarzian norm < A for a given A > 0.

1. INTRODUCTION

Let . be the class of univalent (analytic) functions f on the unit disk D = {z € C :
|z] < 1} normalized by f(0) =1 and f’(0) = 1. Thus a function f in .¥ can be expanded
in the form

f()=z2+a2* +azz® +..., |z| <1

Bieberbach proved the inequality |as| < 2 and conjectured that |a,| < n holds for every
n in 1916. After the proof of |as| < 3 by Lowner in 1923, Fekete and Szegd [3] surprised
mathematicians by showing that the complicated inequality

|as — paj| <1+ 2exp (_—2“)
L —p

holds and is best possible for each 0 < p < 1. We remark that a3 —a3 equals S;(0)/6, where
Sy is the Schwarzian derivative of f: Sy = (f"/f") = (f"/f)?/2. The above inequality
suggests that the shape of the coefficient region {(ag,a3) € C? : If € . such that f(z) =
2+a9z®+azz®+. .. } is quite complicated. Note that this coefficient region was thoroughly
investigated by Schaeffer and Spencer [6].

In general, given a class .# of normalized analytic functions on the unit disk D and
a real (or, more generally, a complex) number p, the Fekete-Szegd problem asks to find
the best possible constant C'(u) so that |az — pa3| < C(u) for every function f(z) =
Z 4 agz? + azz® + ... in F. Many papers have been devoted to this problem (see, for
instance, [2] and references therein).

A function F on D is called a Bloch function if the Bloch seminorm

1F]| = sup(1 — |2*)| F"(2)|
zeD
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is finite. We denote by # the complex Banach space consisting of Bloch functions F' on
D normalized by F(0) = 0 and set #; = {F € & : ||F||% < 1}. Our first principal result
is stated as follows.

Theorem 1. Let p € C. Then the sharp inequality

3 2\3/2
1+3\/§|M| +(1+3|:u| ) / (l | > 4 )
Gv/3] 14/ S

|by + pbi| <

e (Iul < 55)

holds for every function F(z) = b1z + be2® + ... in By.

The inequality in Theorem 1 can be regarded as a variant of the Fekete-Szego inequality
for 4.

An analytic function f on D is called uniformly locally univalent if there is a constant
p = p(f) such that f is univalent in each hyperbolic disk of radius p. It is known that f
is uniformly locally univalent if and only if the norm

17511 = sup(1 = =75 (:)

is finite, where Ty = f”/f’ is the pre-Schwarzian derivative of f. It is also known that f
is (globally) univalent if || Tf|lp < 1 and, conversely, || 1f||p < 6 holds if f is univalent.
We denote by % the class of uniformly locally univalent functions f on D normalized by
f(0) =0 and f'(0) = 1. Let Z () be the subclass of % consisting of those functions f
satisfying ||T%||p < A.

In [4] Y. C. Kim and the first author observed various properties of uniformly locally
univalent functions. They obtained, among others, the asymptotic estimate a, = O(n®)
for every function f(z) = z + a2% + azz® + ... in Z(\) and every number a with
a < (V14 A2 —3)/2. However, they did not have a sharp coefficient inequality except for
the trivial one: |as| < A/2. We apply Theorem 1 to obtain the following result.

Theorem 2. Let A > 0. Then the sharp inequality
8 + 3V/3A3 4 (4 + 3)2)3/2

)\ > _8

|as| < V3 36/3A ( 3\/3)
<{ 8

7 (A< 353)

holds for every function f(z) =z + a2® + azz® + ... in % (N).

2. PROOF OF THEOREMS 1 AND 2
For a positive integer n, we consider the set
B, ={(b1,...,b,) € C": IF € P, such that F(z) =bjz+---+b,2" + ...},

which is sometimes called the coefficient region of %; with order n. Bonk studied in his
dissertation [1] the coefficient regions B,, and observed that they are closed convex sets
with non-empty interior. It is an easy exercise to show that B; = {|b;] < 1}. One of
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Bonk’s main contributions was to give a description of By. To state his result, we need to
introduce auxiliary functions. Let

P(z) = 37\/5513(1 — ).

Then the function P(z) increases from 0 to 1 when x moves from 0 to 1/v/3. Therefore,
we can take a branch Q of P! on the interval [0,1] so that @ : [0,1] — [0,1/4/3] is
homeomorphic. Note that the relation

(2.1) PQ(1) = 3—?@@)(1 —Qu?) =t

holds for ¢ € [0, 1]. We are now ready to state Bonk’s theorem.

Theorem A (Bonk [1, Satz 3.2.1]).

By = {(b1,b2) € C2: [on] < 1 and [ba] < 22 (1= 3Q(I0i])?) (1 = QUi }

In particular, we have the sharp bound |by| < 3+/3/4 for functions F(2) = byz4byz?+. ..
in #;. With this information about By, we prove Theorem 1.

Proof of Theorem 1. Let C(u) be the best possible constant C' such that |by + ub?| < C
holds for every function F(z) = bjz+by2%+... in %, where p is a fixed complex number.
Then, by definition of the coefficient region, we have

C(p) = sup |by+ puby].

(b1,b2)€B2
For (b1, bs) € By, by Theorem A,
02) oot ] < Il + P
2.3 < 33 (10 3Q0?) (1 - Qb)) + P = Mo,
where
M) = 22 (1= 300%) (1 - Q) + e

We note here that we can choose (b, by) € By so that equality holds at both (2.2) and
(2.3). Since |b;| can take any value in [0, 1], we obtain

(2.4) C(p) = max M(t).

0<t<1

We have thus to compute the value of the maximum of M (¢) over 0 < ¢ < 1. Since
P(Q(t))Q'(t) = 1, we obtain the relation

rn 2
Y= AL sy
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Therefore, by substituting the last relation and (2.1), we get
M'(t) = =3V3(2 = 3Q(1)*) Q(H)Q'(t) + 2|ult

290951, st
- % {2(30(0)* - 2) + 33l QU 1) (30 ~ 1)}
Solving the quadratic equation 2(3z —2)+3v/3|u|(x —1)(3x—1) = 0, we have the solutions

2 = (2v/3]u] — 1+ /T + 3[uP)/(3v/3u]). Because 23/ — 1+ /T+ 3[uP)/ (3V3lul) >

2/3 > 1/3, if the derivative M’(t) has a zero t, in the interval (0,1) it must satisfy the

relation
Q(t0)2 _ 2\/§|:u| —1- V 1+ 3|:u|2.
3v/3ul
We now set
2v/3s — 1 — /14 352
R(s) = : > 0.
3\/35

Since

1+ +v1+ 3s?

R = AT

the function R(s) is increasing in s > 0. Note that R(ﬁg) = 0 and lim,_ ;o R(s) = 3.
Therefore, the equation Q(t)*> = R(|u|) has a solution ¢ = ¢, in the interval (0, 1) precisely
when 3:4[ < |pl.

First we consider the case when |u| < f In this case, M'(t) < 0in 0 <t < 1 and
hence M (|b;|) takes its maximum as |b;| = 0. Therefore, we obtain C(u) = M (0) = 3v/3/4
by (2.4).

Secondly, we assume that || > f Then, as was seen above, there is a unique point
to € (0,1) such that Q(ty)* = R(|p|). Since M'(t) > 0 for 0 < ¢t < to and M'(t) < 0
for tg < t < 1, the function M (t) takes its maximum at ¢ = t,. Thus, C(u) = M () by
(2.4). Let us now compute the value of M(ty). In view of the relation to = P(Q(to)) =
P(\/R(|p])), we have the expression

3v/3
M(ts) = 22 (1= 3Q(0)?) (1 - Qto)?) + |1l
3\/_
—— (1 =3R(|ul)) (1 = R(|u)) + [l P(VR(|ul))*
_ 1 +3V3ul® + (1 4 3|p*)*?
6v/3]uf? '
Thus, the assertion of Theorem 1 has been confirmed. O

Proof of Theorem 2.  For a function f(2) = z + a92® + azz® + ... in Z()\), we set
F = X"1logf. Then, ||F|lz = A"||Tt|lp <1 and thus F € %;. We expand F in a power
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series: F'(2) = b1z + by2? +.... A comparison of the Taylor coefficients of the both sides
of f' = e yields the relations

2

Thus, the maximum of |as| for f € Z()) is given as AC(\/2)/3. Theorem 1 now yields
the required assertion. O

A
2a0 = \by and 3az = A <b2 + —bf) )

Under the same circumstances as in the above proof, we further obtain the expression

A A
az — pay = 3 [bg + 1(2 — 3”)[)?} :

Hence, as an immediate consequence of Theorem 1, we also have the Fekete-Szego in-
equality for the class Z ().

Theorem 3. Let a fimctopm f(2) = 2z + as2® + azz® + ... belong to % (\) for a A > 0.
Then the sharp inequality

A _
o — ] < Do)

64 + 3v/3N3|2 — 3uf> + (16 + 3722 — 3p[2)

— 72v/3\|2 — 3p?

V3
'R (A2 = 3] < 3%)
holds for each p € C.

16
(2 - 3u] > %)

Since S;(0) = 6(az — a3), we obtain the following corollary.

Corollary 4. For f € % (\), A > 0, the sharp inequality

64+ 3v/3X% + (16 4 3)2) " (> o)
S5(0)] < 2AC(~A/4) = 12/3) W

3\/§>\ A< 8

el *<55)

holds.

3. EXTREMAL FUNCTIONS

We end the paper with a remark on functions extremal in % (X). First we observe
extremal functions for the coefficient functional |by + pb?| in 4. It is clear that such an
extremal function F(z) = b1z + by2% + ... has to satisfy the condition (b1, by) € OBs, in
other words, either

(i) |b1] =1 and by =0, or
(ii) [bi] < 1 and [bo] = 22(1 - 3Q(1b1])%)(1 — Q(|ba])?).
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In case (i), an extremal function is given by F'(z) = by z. In case (ii), setting to = P(|b1]),

we define F' by
3v/3¢e 242\ 9
F(z) = —
()= { (1 + z_oz) o

where £ € 0D and z, € D are chosen so that arge = argby, |z9| = Q(|b1]), and argzy =
argb; — argbe. Then, it is checked that ||F||z = 1, F'(0) = (20/]20|)P(|20]) = b1 and
F"(0)/2 = e23(1 — 3|29[2)(1 — |2|?) = ba. Therefore, F(2) = byz + bz + ...

As for uniqueness of extremal functions, at least, we have the following.

Lemma 5. Let (by,by) € OBa. If |bi| = 1, then there are infinitely many functions F' € %,
such that F(z) = biz+O(23). If by = 0 then a function F € %, with F(z) = b1z+byz?+. ..
necessarily has the form F(z) = by2.

Proof. We may first assume that by = 1. Let w be an analytic map of D into itself with
w(0) = &'(0) = 0. Then, consider the function

z 1
F(z) = / _de / _ &t
o 1—w(() o 1—w(tz)
Then F' is analytic on D and satisfies F'(0) = 0 and F’(0) = 1. On the other hand, since

lw(2)] < |z], we have
.2 1.2

IR T

1-w(z)] — 1wz
for |z| < 1 with equality for z = 0. Thus, we see that ||F||z = 1. In this way, we can
construct a plenty of such functions.

Next we assume that b = 0 and |by| = 3v/3/4. Let F be a function in %, such that
F(2) = byz? + c32% + 42 + . ... Then,

F'(2) = 2byz + 3c32” + -+ = Fy(2) (1 + h(z)),

where Fyy(z) = by2? and h is analytic on D with 2(0) = 0. In particular, we have

33

(1= [z)IF'(2)]

(L= 2P)F () = == [2l(1 = [zP) 1+ h(z)| = L+ h(z)| < 1
for |z| = 1/4/3, by the assumption || F|| < 1. By the maximum modulus principle, this
forces h to be identically 0. Thus, the proof is complete. 0

As conseqgences of the last lemma together with the proof of Theorem 1, we can deduce
some information about extremal functions in %, and % ().

Theorem 6. Let p € C satisfy |u| < ﬁg' Then an extremal function Fy for the coefficient
functional |by + ub?| for functions F(z) = byz + bez® + ... in % must have the form
Fy(z) = 5%3,22 for a complex constant € with |e| = 1.

We recall the definition of the error function:

Erf(z) = /z e’ dc.
0
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Then extremal functions in %/ (\) can be expressed in terms of the error function for a
small \.

Theorem 7. Let 0 < A < %5. Suppose that a function f € % (N\) mazimizes the func-
tional |as| within % (X). Then f has to be represented by

_ Erf(az)

«

f(2)

for a complex constant o with |a|> = 3v/3\/4.

Kreyszig and Todd [5] obtained the radius p of univalence of the error function up to 7

decimal places by using large-scale computers. According to their observations, the radius
p is given by p = /(6 + 7/2)/sin 20, where 0 € (0,7/2) is determined by the equation

Im Erf | 4/ weia =0.
sin 260

Using Mathematica 5.2, we obtained numerically

p = 1.57483758917543224805 . . ..

Especially, we admit that their computation was correct. Since v in Theorem 7 satisfies
la| < V2 = 1.414..., the extremal function f(z) = Erf(az)/a is univalent in the unit
disk for such an «a.

DN —
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