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Abstract. We give a Fekete-Szegö type inequality for a Bloch function with Bloch
seminorm ≤ 1. As an application of it, we derive a sharp coefficient inequality for a3 for
a uniformly locally univalent function f(z) = z + a2z

2 + a3z
3 + . . . on the unit disk with

pre-Schwarzian norm ≤ λ for a given λ > 0.

1. Introduction

Let S be the class of univalent (analytic) functions f on the unit disk D = {z ∈ C :
|z| < 1} normalized by f(0) = 1 and f ′(0) = 1. Thus a function f in S can be expanded
in the form

f(z) = z + a2z
2 + a3z

3 + . . . , |z| < 1.

Bieberbach proved the inequality |a2| ≤ 2 and conjectured that |an| ≤ n holds for every
n in 1916. After the proof of |a3| ≤ 3 by Löwner in 1923, Fekete and Szegö [3] surprised
mathematicians by showing that the complicated inequality

|a3 − µa2
2| ≤ 1 + 2 exp

(
−2µ

1− µ

)
holds and is best possible for each 0 ≤ µ ≤ 1. We remark that a3−a2

2 equals Sf (0)/6, where
Sf is the Schwarzian derivative of f : Sf = (f ′′/f ′)′ − (f ′′/f ′)2/2. The above inequality
suggests that the shape of the coefficient region {(a2, a3) ∈ C2 : ∃f ∈ S such that f(z) =
z+a2z

2+a3z
3+. . . } is quite complicated. Note that this coefficient region was thoroughly

investigated by Schaeffer and Spencer [6].
In general, given a class F of normalized analytic functions on the unit disk D and

a real (or, more generally, a complex) number µ, the Fekete-Szegö problem asks to find
the best possible constant C(µ) so that |a3 − µa2

2| ≤ C(µ) for every function f(z) =
z + a2z

2 + a3z
3 + . . . in F . Many papers have been devoted to this problem (see, for

instance, [2] and references therein).
A function F on D is called a Bloch function if the Bloch seminorm

‖F‖B = sup
z∈D

(1− |z|2)|F ′(z)|
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is finite. We denote by B the complex Banach space consisting of Bloch functions F on
D normalized by F (0) = 0 and set B1 = {F ∈ B : ‖F‖B ≤ 1}. Our first principal result
is stated as follows.

Theorem 1. Let µ ∈ C. Then the sharp inequality

|b2 + µb2
1| ≤


1 + 3

√
3|µ|3 + (1 + 3|µ|2)3/2

6
√

3|µ|2
(|µ| > 4

3
√

3
)

3
√

3

4
(|µ| ≤ 4

3
√

3
)

holds for every function F (z) = b1z + b2z
2 + . . . in B1.

The inequality in Theorem 1 can be regarded as a variant of the Fekete-Szegö inequality
for B1.

An analytic function f on D is called uniformly locally univalent if there is a constant
ρ = ρ(f) such that f is univalent in each hyperbolic disk of radius ρ. It is known that f
is uniformly locally univalent if and only if the norm

‖Tf‖D = sup
z∈D

(1− |z|2)|Tf (z)|

is finite, where Tf = f ′′/f ′ is the pre-Schwarzian derivative of f. It is also known that f
is (globally) univalent if ‖Tf‖D ≤ 1 and, conversely, ‖Tf‖D ≤ 6 holds if f is univalent.
We denote by U the class of uniformly locally univalent functions f on D normalized by
f(0) = 0 and f ′(0) = 1. Let U (λ) be the subclass of U consisting of those functions f
satisfying ‖Tf‖D ≤ λ.

In [4] Y. C. Kim and the first author observed various properties of uniformly locally
univalent functions. They obtained, among others, the asymptotic estimate an = O(nα)
for every function f(z) = z + a2z

2 + a3z
3 + . . . in U (λ) and every number α with

α < (
√

1 + λ2− 3)/2. However, they did not have a sharp coefficient inequality except for
the trivial one: |a2| ≤ λ/2. We apply Theorem 1 to obtain the following result.

Theorem 2. Let λ > 0. Then the sharp inequality

|a3| ≤


8 + 3

√
3λ3 + (4 + 3λ2)3/2

36
√

3λ
(λ > 8

3
√

3
)

√
3

4
λ (λ ≤ 8

3
√

3
)

holds for every function f(z) = z + a2z
2 + a3z

3 + . . . in U (λ).

2. Proof of Theorems 1 and 2

For a positive integer n, we consider the set

Bn = {(b1, . . . , bn) ∈ Cn : ∃F ∈ B1 such that F (z) = b1z + · · ·+ bnz
n + . . . },

which is sometimes called the coefficient region of B1 with order n. Bonk studied in his
dissertation [1] the coefficient regions Bn and observed that they are closed convex sets
with non-empty interior. It is an easy exercise to show that B1 = {|b1| ≤ 1}. One of
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Bonk’s main contributions was to give a description of B2. To state his result, we need to
introduce auxiliary functions. Let

P (x) =
3
√

3

2
x(1− x2).

Then the function P (x) increases from 0 to 1 when x moves from 0 to 1/
√

3. Therefore,
we can take a branch Q of P−1 on the interval [0, 1] so that Q : [0, 1] → [0, 1/

√
3] is

homeomorphic. Note that the relation

(2.1) P (Q(t)) =
3
√

3

2
Q(t)

(
1−Q(t)2

)
= t

holds for t ∈ [0, 1]. We are now ready to state Bonk’s theorem.

Theorem A (Bonk [1, Satz 3.2.1]).

B2 =
{

(b1, b2) ∈ C2 : |b1| ≤ 1 and |b2| ≤ 3
√

3
4

(
1− 3Q(|b1|)2

)(
1−Q(|b1|)2

)}
.

In particular, we have the sharp bound |b2| ≤ 3
√

3/4 for functions F (z) = b1z+b2z
2+. . .

in B1. With this information about B2, we prove Theorem 1.

Proof of Theorem 1. Let C(µ) be the best possible constant C such that |b2 + µb2
1| ≤ C

holds for every function F (z) = b1z+b2z
2 + . . . in B1, where µ is a fixed complex number.

Then, by definition of the coefficient region, we have

C(µ) = sup
(b1,b2)∈B2

|b2 + µb1|.

For (b1, b2) ∈ B2, by Theorem A,

|b2 + µb2
1| ≤ |b2|+ |µ||b1|2(2.2)

≤ 3
√

3

4

(
1− 3Q(|b1|)2

)(
1−Q(|b1|)2

)
+ |µ||b1|2 = M(|b1|),(2.3)

where

M(t) =
3
√

3

4

(
1− 3Q(t)2

)(
1−Q(t)2

)
+ |µ|t2.

We note here that we can choose (b1, b2) ∈ B2 so that equality holds at both (2.2) and
(2.3). Since |b1| can take any value in [0, 1], we obtain

(2.4) C(µ) = max
0≤t≤1

M(t).

We have thus to compute the value of the maximum of M(t) over 0 ≤ t ≤ 1. Since
P ′(Q(t))Q′(t) = 1, we obtain the relation

Q′(t) =
2

3
√

3
(
1− 3Q(t)2

) .
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Therefore, by substituting the last relation and (2.1), we get

M ′(t) = −3
√

3
(
2− 3Q(t)2

)
Q(t)Q′(t) + 2|µ|t

= −
2Q(t)

(
2− 3Q(t)2

)
1− 3Q(t)2

+ 3
√

3|µ|Q(t)
(
1−Q(t)2

)
=

Q(t)

1− 3Q(t)2

{
2
(
3Q(t)2 − 2

)
+ 3

√
3|µ|

(
Q(t)2 − 1

)(
3Q(t)2 − 1

)}
.

Solving the quadratic equation 2(3x−2)+3
√

3|µ|(x−1)(3x−1) = 0, we have the solutions

x = (2
√

3|µ| − 1±
√

1 + 3|µ|2)/(3
√

3|µ|). Because (2
√

3|µ| − 1 +
√

1 + 3|µ|2)/(3
√

3|µ|) ≥
2/3 > 1/3, if the derivative M ′(t) has a zero t0 in the interval (0, 1) it must satisfy the
relation

Q(t0)
2 =

2
√

3|µ| − 1−
√

1 + 3|µ|2

3
√

3|µ|
.

We now set

R(s) =
2
√

3s− 1−
√

1 + 3s2

3
√

3s
, s > 0.

Since

R′(s) =
1 +

√
1 + 3s2

3s
√

3(1 + 3s2)
> 0,

the function R(s) is increasing in s > 0. Note that R( 4
3
√

3
) = 0 and lims→+∞R(s) = 1

3
.

Therefore, the equation Q(t)2 = R(|µ|) has a solution t = t0 in the interval (0, 1) precisely
when 4

3
√

3
< |µ|.

First we consider the case when |µ| ≤ 4
3
√

3
. In this case, M ′(t) < 0 in 0 < t < 1 and

hence M(|b1|) takes its maximum as |b1| = 0. Therefore, we obtain C(µ) = M(0) = 3
√

3/4
by (2.4).

Secondly, we assume that |µ| > 4
3
√

3
. Then, as was seen above, there is a unique point

t0 ∈ (0, 1) such that Q(t0)
2 = R(|µ|). Since M ′(t) > 0 for 0 < t < t0 and M ′(t) < 0

for t0 < t < 1, the function M(t) takes its maximum at t = t0. Thus, C(µ) = M(t0) by
(2.4). Let us now compute the value of M(t0). In view of the relation t0 = P (Q(t0)) =

P (
√

R(|µ|)), we have the expression

M(t0) =
3
√

3

4

(
1− 3Q(t0)

2
)(

1−Q(t0)
2
)

+ |µ|t20

=
3
√

3

4

(
1− 3R(|µ|)

)(
1−R(|µ|)

)
+ |µ|P (

√
R(|µ|))2

=
1 + 3

√
3|µ|3 + (1 + 3|µ|2)3/2

6
√

3|µ|2
.

Thus, the assertion of Theorem 1 has been confirmed. �

Proof of Theorem 2. For a function f(z) = z + a2z
2 + a3z

3 + . . . in U (λ), we set
F = λ−1 log f ′. Then, ‖F‖B = λ−1‖Tf‖D ≤ 1 and thus F ∈ B1. We expand F in a power
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series: F (z) = b1z + b2z
2 + . . . . A comparison of the Taylor coefficients of the both sides

of f ′ = eλF yields the relations

2a2 = λb1 and 3a3 = λ

(
b2 +

λ

2
b2
1

)
.

Thus, the maximum of |a3| for f ∈ U (λ) is given as λC(λ/2)/3. Theorem 1 now yields
the required assertion. �

Under the same circumstances as in the above proof, we further obtain the expression

a3 − µa2
2 =

λ

3

[
b2 +

λ

4
(2− 3µ)b2

1

]
.

Hence, as an immediate consequence of Theorem 1, we also have the Fekete-Szegö in-
equality for the class U (λ).

Theorem 3. Let a fimctopm f(z) = z + a2z
2 + a3z

3 + . . . belong to U (λ) for a λ > 0.
Then the sharp inequality

|a3 − µa2
2| ≤

λ

3
C
(

(2−3µ)λ
4

)

=


64 + 3

√
3λ3|2− 3µ|3 +

(
16 + 3λ2|2− 3µ|2

)3/2

72
√

3λ|2− 3µ|2
(λ|2− 3µ| > 16

3
√

3
)

√
3

4
λ (λ|2− 3µ| ≤ 16

3
√

3
)

holds for each µ ∈ C.

Since Sf (0) = 6(a3 − a2
2), we obtain the following corollary.

Corollary 4. For f ∈ U (λ), λ > 0, the sharp inequality

|Sf (0)| ≤ 2λC(−λ/4) =


64 + 3

√
3λ3 +

(
16 + 3λ2

)3/2

12
√

3λ
(λ > 16

3
√

3
)

3
√

3

2
λ (λ ≤ 16

3
√

3
)

holds.

3. Extremal functions

We end the paper with a remark on functions extremal in U (λ). First we observe
extremal functions for the coefficient functional |b2 + µb2

1| in B1. It is clear that such an
extremal function F (z) = b1z + b2z

2 + . . . has to satisfy the condition (b1, b2) ∈ ∂B2, in
other words, either

(i) |b1| = 1 and b2 = 0, or

(ii) |b1| < 1 and |b2| = 3
√

3
4

(1− 3Q(|b1|)2)(1−Q(|b1|)2).
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In case (i), an extremal function is given by F (z) = b1z. In case (ii), setting t0 = P (|b1|),
we define F by

F (z) =
3
√

3ε

4

{(
z + z0

1 + z0z

)2

− z2
0

}
,

where ε ∈ ∂D and z0 ∈ D are chosen so that arg ε = arg b2, |z0| = Q(|b1|), and arg z0 =
arg b1 − arg b2. Then, it is checked that ‖F‖B = 1, F ′(0) = ε(z0/|z0|)P (|z0|) = b1 and

F ′′(0)/2 = ε3
√

3
4

(1− 3|z0|2)(1− |z0|2) = b2. Therefore, F (z) = b1z + b2z
2 + . . . .

As for uniqueness of extremal functions, at least, we have the following.

Lemma 5. Let (b1, b2) ∈ ∂B2. If |b1| = 1, then there are infinitely many functions F ∈ B1

such that F (z) = b1z+O(z3). If b1 = 0 then a function F ∈ B1 with F (z) = b1z+b2z
2+. . .

necessarily has the form F (z) = b2z
2.

Proof. We may first assume that b1 = 1. Let ω be an analytic map of D into itself with
ω(0) = ω′(0) = 0. Then, consider the function

F (z) =

∫ z

0

dζ

1− ω(ζ)
=

∫ 1

0

zdt

1− ω(tz)
.

Then F is analytic on D and satisfies F (0) = 0 and F ′(0) = 1. On the other hand, since
|ω(z)| ≤ |z|2, we have

(1− |z|2)|F ′(z)| = 1− |z|2

|1− ω(z)|
≤ 1− |z|2

1− |ω(z)|
≤ 1

for |z| < 1 with equality for z = 0. Thus, we see that ‖F‖B = 1. In this way, we can
construct a plenty of such functions.

Next we assume that b1 = 0 and |b2| = 3
√

3/4. Let F be a function in B1 such that
F (z) = b2z

2 + c3z
3 + c4z

4 + . . . . Then,

F ′(z) = 2b2z + 3c3z
2 + · · · = F ′

0(z)
(
1 + h(z)

)
,

where F0(z) = b2z
2 and h is analytic on D with h(0) = 0. In particular, we have

(1− |z|2)|F ′(z)| = 3
√

3

2
|z|(1− |z|2)|1 + h(z)| = |1 + h(z)| ≤ 1

for |z| = 1/
√

3, by the assumption ‖F‖B ≤ 1. By the maximum modulus principle, this
forces h to be identically 0. Thus, the proof is complete. �

As conseqences of the last lemma together with the proof of Theorem 1, we can deduce
some information about extremal functions in B1 and U (λ).

Theorem 6. Let µ ∈ C satisfy |µ| ≤ 4
3
√

3
. Then an extremal function F0 for the coefficient

functional |b2 + µb2
1| for functions F (z) = b1z + b2z

2 + . . . in B1 must have the form

F0(z) = ε3
√

3
4

z2 for a complex constant ε with |ε| = 1.

We recall the definition of the error function:

Erf(z) =

∫ z

0

e−ζ2

dζ.
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Then extremal functions in U (λ) can be expressed in terms of the error function for a
small λ.

Theorem 7. Let 0 < λ ≤ 8
3
√

3
. Suppose that a function f ∈ U (λ) maximizes the func-

tional |a3| within U (λ). Then f has to be represented by

f(z) =
Erf(αz)

α

for a complex constant α with |α|2 = 3
√

3λ/4.

Kreyszig and Todd [5] obtained the radius ρ of univalence of the error function up to 7
decimal places by using large-scale computers. According to their observations, the radius
ρ is given by ρ =

√
(θ + π/2)/ sin 2θ, where θ ∈ (0, π/2) is determined by the equation

Im Erf

(√
θ + π/2

sin 2θ
eiθ

)
= 0.

Using Mathematica 5.2, we obtained numerically

ρ = 1.57483758917543224805 . . . .

Especially, we admit that their computation was correct. Since α in Theorem 7 satisfies
|α| ≤

√
2 = 1.414 . . . , the extremal function f(z) = Erf(αz)/α is univalent in the unit

disk for such an α.
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