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Abstract. We consider the conformal mappings f and g of the unit disk onto the inside
of an ellipse with foci at ±1 so that f(0) = 0, f ′(0) > 0, g(0) = −1 and g′(0) > 0. The
main purpose of this article is to show positivity of the Taylor coefficients of f and g
about the origin. To this end, we use a special relation between f and g and the fact
that f satisfies a second-order linear ODE. Some applications are given to the class of
k-uniformly convex functions.

1. Introduction

If a univalent function f(z) = a0+a1z+a2z
2 + · · · in the unit disk D = {z ∈ C; |z| < 1}

has non-negative Taylor coefficients about the origin, various sharp estimates can be easily
deduced. For example, one can show the sharp inequalities

|f(z) − a0 − a1z − · · · − akz
k| ≤ f(|z|) − a0 − a1|z| − · · · − ak|z|k, |z| < 1,(1.1)

and

|f (k)(z)| ≤ f (k)(|z|), |z| < 1,(1.2)

for k = 0, 1, 2, . . . .
As one immediately sees, necessary conditions for a univalent function f to have non-

negative Taylor coefficients about the origin are that f(0) ≥ 0, f ′(0) > 0 and that the
image domain Ω = f(D) is symmetric in the real axis. Note that these conditions imply
that all coefficients are real. It is also necessary that the farthest point of ∂Ω from f(0) is
the right-most point in Ω∩R. However, under these assumptions, it seems to be difficult to
give a sufficient geometric condition for that. For instance, convexity of Ω is not sufficient.
In fact, for constants 0 < c < 1 and N < α < N + 1 with cα ≤ 1 and N being a positive
integer, the function

f(z) = (1 + cz)α =

∞∑
n=0

(
α

n

)
(cz)n

is univalent in D and has convex image because

Re

(
1 +

zf ′′(z)

f ′(z)

)
= 1 + (α − 1)Re

cz

1 + cz
> 1 − (α − 1)

c

1 − c
≥ 0.

Since
f (k)(z) = ckα(α − 1) · · · (α − k + 1)(1 + cz)α−k,
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we observe that (1.2) is fulfilled by k = 0, 1, . . . , N but not by k = N + 1. Note that one
can deduce (1.1) for k from (1.2) for k + 1 by repeated integrations.

In this paper, we show non-negativity of the Taylor coefficients of specific conformal
mappings of the unit disk onto an ellipse. Let Eξ be the ellipse given by(

u

cosh ξ

)2

+

(
v

sinh ξ

)2

= 1

and let Dξ be the interior of Eξ for ξ > 0. Note that Eξ has foci at 1 and −1 and that an
arbitrary ellipse is similar to Eξ for some ξ. We prove the following two results.

Theorem 1.1. Let fξ be the conformal mapping of the unit disk onto the ellipse Eξ

determined by fξ(0) = 0 and f ′
ξ(0) > 0. Then fξ has positive odd Taylor coefficients about

the origin.

Theorem 1.2. Let gξ be the conformal mapping of the unit disk onto the ellipse Eξ

determined by gξ(0) = −1 and g′
ξ(0) > 0. Then gξ has positive Taylor coefficients about

the origin except for the first one.

Note that fξ is necessarily an odd function and thus its even Taylor coefficients vanish.
An explicit form of fξ was first given by Schwarz as early as in 1869 and is well known
nowadays. It is, however, less aware of that fξ satisfies a second-order homogeneous
linear ordinary differential equation (see Section 3). Using this ODE, we obtain linear
recurrence relations between three successive odd coefficients of fξ. It is still difficult to
show positivity of the coefficients. The final stroke will be made by a theory of continued
fractions, which will be presented in Section 4.

A key ingredient of the proof of Theorem 1.2 is an unexpected relation between fξ and
g2ξ, which will be explained in Section 2.

We apply Theorem 1.2 to the study of k-uniformly convex functions introduced by the
first-named author and Wísniowska [7]. See Section 5 for details.

2. Conformal representation of the interior of an ellipse

We begin with introduction of special functions involving elliptic integrals. Let K(z, t)
and K(t) be the normal and complete elliptic integrals of the first kind, respectively, i.e.,

K(z, t) =

∫ z

0

dx√
(1 − x2)(1 − t2x2)

and K(t) = K(1, t) for 0 < t < 1. Note that Jacobi’s elliptic function sn (·, t) is defined as
the inverse function of K(·, t) with sn ′(0, t) = 1, where our notation K(z, t) and sn (w, t)
may not agree with traditional one. It is well known that K(·, t) maps the upper half
plane conformally onto the rectangle with vertices at ±K(t) and ±K(t) + iK(t′), where
t′ =

√
1 − t2 (see, for instance, [9, Chap. VI, §3]). Since the interval [−1, 1] is mapped to

the interval [−K(t), K(t)], the function K(·, t) can be continued analytically to the slit
domain C \ ((−∞,−1] ∪ [1, +∞)) by the Schwarz reflection principle. In what follows,
the function K(·, t) will be understood in this way.

The quantity

µ(t) =
π

2
· K(t′)
K(t)

, t′ =
√

1 − t2,
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is known as the modulus of the Grötzsch ring D \ [0, t] for 0 < t < 1. Note that µ(t)
decreases from +∞ to 0 when t moves from 0 to 1. For details, see [3].

We are now in a position to present an explicit expression of the function fξ. Choose a
number s ∈ (0, 1) so that µ(s) = 2ξ. Then the formula

fξ(z) = sin

[
π

2K(s)
K(z/

√
s, s)

]
(2.1)

can be deduced. Note that the inverse function is given by z =
√

s sn ((2K(s)/π) arcsinw, s)
as is shown by [9, p. 296, (51)]1 (see also [11]).

Let us give an outline of the proof of (2.1) for the reader’s convenience. Recall that
the function K(z, s) maps the upper half-plane conformally onto the rectangle {u + iv :
−K(s) < u < K(s), 0 < v < K(s′)}, where s′ =

√
1 − s2. Since

K(1/(sz̄), s) = K(z, s) + iK(s′)

holds, the upper half of the disk |z| < 1/
√

s is mapped conformally onto the rectangle {u+
iv : −K(s) < u < K(s), 0 < v < K(s′)/2}. Therefore, the function (π/(2K(s))K(z/

√
s, s)

maps the upper half of the unit disk onto the rectangle R = {u+iv : −π/2 < u < π/2, 0 <
v < ξ}. On the other hand, since

sin(x + iy) = sinx cosh y + i cos x sinh y,(2.2)

the function sin z maps R onto the upper half of Dξ. In this way, we see that the function
sin((π/(2K(s))K(z/

√
s, s)) maps the upper half of the unit disk onto the upper half of

Dξ. By the Schwarz reflection principle, we obtain the expression in (2.1).
Since fξ(−√

s) = −1, the function gξ can be expressed by

gξ(z) = fξ

(
z −√

s

1 −√
sz

)
.

This formula is, however, not convenient to compute the Taylor coefficients of gξ about
the origin. This is a motivation of deduction of the following formula.

Theorem 2.1. For ξ > 0, the relation g2ξ(z) = 2fξ(
√

z)2 − 1 holds for |z| < 1.

Note that Theorem 1.2 immediately follows from Theorem 1.1 by means of this identity.
These representations also give explicit values of the hyperbolic density of the domain Dξ.
Recall that the hyperbolic density ρD of a simply connected domain D with #(C\D) ≥ 2
is defined by ρD(w0) = 1/|f ′(0)| for a conformal mapping f of the unit disk D onto D
with f(0) = w0.

Corollary 2.2. Let ξ = µ(s)/2 for s ∈ (0, 1). Then

ρDξ
(0) =

2
√

s

π
K(s) and ρD2ξ

(−1) = ρD2ξ
(1) =

2s

π2
K(s)2.

Proof. Since f ′
ξ(0) = π/(2

√
sK(s)) and g′

2ξ(0) = 2f ′
ξ(0)2 we obtain the required relations.

1We remark that there is a confusion in p. 296 of Nehari’s book. Since c = πK ′/(2K) in his notation,
the norm q = e−K′/K should be given by e−2c/π instead of e−2c.
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In order to prove Theorem 2.1, we recall some facts about Chebyshev polynomials. We

first consider the conformal mapping J of D onto Ĉ\ [−1, 1] defined by J(z) = (z+z−1)/2.
Since

J(e−ξ+iη) = cosh ξ cos η − i sinh ξ sin η,

the circle |z| = e−ξ is mapped by J onto the ellipse Eξ for ξ > 0 and the radial segment
(0, eiη) is mapped by J into the branch Hη of a hyperbola given by(

u

cos η

)2

−
(

v

sin η

)2

= 1, u cos η > 0,(2.3)

for η ∈ R with (2/π)η /∈ Z. Note that these conic sections have the common foci at −1
and 1.

Let Tn be the Chebyshev polynomial of degree n, i.e., Tn(cos θ) = cos(nθ). Then it is
well known that the n-fold mapping z 7→ zn is conjugate to Tn under J, in other words,

J(zn) = Tn(J(z))

holds for |z| < 1. In particular, one can see that the ellipse Eξ is mapped by Tn onto Enξ

in an n-to-one fashion and that the branch Hη of a hyperbola is mapped by Tn bijectively
to Hnη.

Applying the above argument to T2(w) = 2w2 − 1, we obtain the following. We recall
that Dξ is the interior of the ellipse Eξ.

Lemma 2.3. The Chebyshev polynomial T2(w) = 2w2 − 1 maps Dξ onto D2ξ. Also, T2

maps the domain bounded by Hη and Hπ−η onto the connected component of C \ H2η

containing −1. Both are two-sheeted branched covering projections.

On the basis of the above lemma, we can prove Theorem 2.1.

Proof of Theorem 2.1. By Lemma 2.3, the composed function T2 ◦ fξ is a two-sheeted
covering projection of D onto D2ξ which sends the origin to the focus −1 of E2ξ. Since
T2 ◦ fξ is even, the function g(z) = (T2 ◦ fξ)(

√
z) is single-valued and analytic in D. By

construction, g is conformal and satisfies g′(0) > 0, and therefore, g = g2ξ. Thus the
theorem has been proved.

The same reasoning yields a relation between conformal mappings onto domains bounded
by hyperbolas. Let Fη be the conformal mapping of D onto the domain bounded by Hη

and Hπ−η which are given by (2.3) with Fη(0) = 0 and F ′
η(0) > 0 for 0 < η < π/2.

We also let Gη be the conformal mapping of D onto the left component of C \ Hη with
Gη(0) = −1, G′

η(0) > 0 for 0 < η < π, η 6= π/2. We define Gπ/2 as the limit of Gη as
η → π/2, that is, Gπ/2(z) = (z − 1)/(z + 1). Then we obtain the following.

Proposition 2.4. Let η ∈ (0, π/2). Then G2η(z) = 2Fη(
√

z)2 − 1 for |z| < 1.

In view of (2.2), we see that the function sin z maps the parallel strip |Re z| < a
conformally onto the domain {u + iv : (u/ sin a)2 − (v/ cos a)2 < 1} for 0 < a < π/2.
Noting that the function arctan z maps the unit disk onto the strip |Re w| < π/2, we have
the expression

Fη(z) = sin

((
2 − 4η

π

)
arctan z

)
(2.4)

for 0 < η < π/2.
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3. A linear ODE satisfied by the conformal representation fξ

It is a noteworthy fact that the conformal representations fξ and Fη, which are given
in (2.1) and (2.4) respectively, satisfy simple second-order linear ordinary differential
equations (ODE).

Indeed, if we write b = 2 − 4η/π, we have F ′
η(z) = b(1 + z2)−1 cos(b arctan z). Differen-

tiating the both sides of (1+ z2)F ′
η(z) = b cos(b arctan z), we see that w = Fη satisfies the

differential equation
(1 + z2)2w′′ + 2z(1 + z2)w′ + b2w = 0.

Similarly, one can check that the function w = fξ(z) satisfies the differential equation

(1 − 2Mz2 + z4)w′′ − 2z(M − z2)w′ + cw = 0(3.1)

in D, where M = (s+s−1)/2, c = π2/(4sK(s)2) and s ∈ (0, 1) is chosen so that µ(s) = 2ξ.
Let w = f(z) be the solution to the differential equation (3.1) with the initial conditions

f(0) = 0 and f ′(0) = 1. Note that fξ can be written in the form fξ = f ′
ξ(0)f, and hence,

positivity of the Taylor coefficients of fξ is equivalent to that of f.
By the form of the equation, it is clear that f(z) is odd, namely, f(z) = −f(−z).

Therefore, f(z) has the Taylor expansion of the form

f(z) =
∞∑

n=0

Anz
2n+1,

with A0 = 1. Substituting the above expansion to the equation (3.1), we obtain the
following recurrence relations for the coefficients An:

(2n + 2)(2n + 3)An+1 −
{
2M(2n + 1)2 − c

}
An + 2n(2n − 1)An−1 = 0(3.2)

for n ≥ 0, here we have set A−1 = 0.
Since the image f(D) is an ellipse and, in particular, convex, |An| ≤ 1 holds for every

n ≥ 1 (see [4]). The symmetric property f(z̄) = f(z) implies that all the coefficients An

are real. However, we have no a priori information about the sign of An.
We take a closer look at the recurrence formula (3.2). We now transform the sequence

by
Bn = (2n + 1)An.

Then B−1 = 0, B0 = 1 and the relation (3.2) turns to

(n + 1)Bn+1 −
{

M(2n + 1) − c

2(2n + 1)

}
Bn + nBn−1 = 0(3.3)

for n ≥ 0. We further set

En =
Bn

Bn−1

for n ≥ 0. Here, we adopt the convention En = ∞ when Bn−1 happens to be zero. Thus,
for instance, E0 = ∞. By dividing both sides of (3.3) by (n + 1)Bn, we obtain

En+1 =
M(2n + 1)

n + 1
− c

(2n + 1)(2n + 2)
− n

n + 1
· 1

En
.

By letting

pn =
n

n + 1
, qn =

M(2n − 1)

n
− c

2n(2n − 1)
,(3.4)
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the last relation can be rewritten in the form

En+1 = qn+1 − pn

En
, n = 0, 1, 2, . . . .(3.5)

We recall that the constants M and c are given by

M =
1

2

(
s +

1

s

)
and c =

π2

4sK(s)2
.

For a later use, we give estimates of c. We remark that c = f ′
ξ(0)2 = 1/ρDξ

(0)2 (cf. Corol-
lary 2.2).

Lemma 3.1. The quantity c = π2/(4sK(s)2) satisfies the double inequality

1

s
− s ≤ c ≤ 1

s
− s

2
.

Proof. It is easily checked that the required inequality is equivalent to
π

2
√

1 − s2/2
≤ K(s) ≤ π

2
√

1 − s2
(3.6)

for 0 < s < 1. First, using the inequality
√

1 − s2x2 ≥ √
1 − s2 for 0 < x < 1, we obtain

K(s) =

∫ 1

0

dx√
(1 − x2)(1 − s2x2)

≤ 1√
1 − s2

∫ 1

0

dx√
1 − x2

=
π

2
√

1 − s2
.

To show the other part, we need some technique. We first express K(s) in the form

K(s) =

∫ π/2

0

dθ√
1 − s2 sin2 θ

=

∫ π/4

0

(
1√

1 − s2 sin2 θ
+

1√
1 − s2 cos2 θ

)
dθ.

Note here the inequality

(1 − s2 sin2 θ)(1 − s2 cos2 θ) = 1 − s2 +
s4

4
sin2(2θ) ≤

(
1 − s2

2

)2

.

We now use the inequality 1/X + 1/Y ≥ 2/
√

XY for X,Y > 0 to deduce

K(s) ≥
∫ π/4

0

2
4
√

(1 − s2 sin2 θ)(1 − s2 cos2 θ)
dθ ≥ π

2
√

1 − s2/2
.

Remark. Matti Vuorinen told us that the inequalities

2

1 +
√

1 − s2
≤ 2

π
K(s) ≤ 1

4
√

1 − s2
,

which are better than (3.6), are known (see [3, 4.6 (3)]). See also [2, §7.4] for a dif-
ferent kind of inequalities and related references. The authors thank him for the above
information.

Let us explain difficulty of the recurrence relations (3.5). First note that pn → 1
and qn → s + s−1 as n → ∞. Thus, one can think that the dynamical system En+1 =
qn+1 − pn+1/En converges to the autonomous system E◦

n+1 = s + s−1 − 1/E◦
n as n → ∞.

As is easily observed, the linear fractional transformation f(x) = s + s−1 − x−1 has the
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attracting fixed point x = s−1 and the repelling fixed point x = s. On the other hand,
in reality, a numerical computation suggests that En → s as n → ∞. Therefore, usual
methods of approximation and even induction arguments seem to fail to show positivity
of En. Therefore, we have to take a different approach.

By (3.5), we can express En in terms of a continued fraction:

En = qn − pn−1

qn−1 −
pn−2

. . . − p1

q1

= qn − pn−1

qn−1 −
pn−2

qn−2 − · · · −
p1

q1
.

We define the double sequence qm,n for 1 ≤ m ≤ n by induction of n−m. Fix a positive
integer n. First we set

qn,n = qn.

Suppose that qn,n, qn−1,n, · · · , qm+1,n have already been defined for 1 ≤ m < n. Then, we
set

qm,n = qm − pm

qm+1,n
.(3.7)

In this way, we can define qn,n, · · · , q1,n. Then we can restate positivity of En in terms of
qm,n.

Lemma 3.2. Let n be a positive integer. Then Em > 0 holds for each m with 1 ≤ m ≤ n
if and only if qm,n > 0 for each m with 1 ≤ m ≤ n.

Proof. We first assume that qm,n > 0 for all 1 ≤ m ≤ n. Then q1,n > 0 implies

E1 = q1 >
p1

q2,n
.

In particular, E1 > 0 (though this is implied by Lemma 3.1). Since q2,n > 0 by assumption,
we obtain

q2,n = q2 − p2

q3,n

>
p1

E1

,

which is equivalent to

E2 = q2 − p1

E1
>

p2

q3,n
.

In particular, we observe E2 > 0. We now use q3,n > 0 to see

q3,n = q3 − p3

q4,n
>

p2

E2
.

We repeat this procedure to get finally

qn,n = qn >
pn−1

En−1

,

which yields

En = qn − pn−1

En−1
> 0.

The converse can be seen by tracing back the above.

At this stage, we collect some elementary properties of qm,n. When we regard qm,n as
a function of s in (0, 1), we sometimes write qm,n(s) to indicate the argument s. We also
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write qm,n(1) = lims→1 qm,n(s) if the limit exists. In particular, we have qm(1) = qm,m(1) =
2 − 1/m because c = c(s) → 0 when s → 1. We first prepare the following lemma.

Lemma 3.3. Let m be a positive integer. The function qm(s) is positive in 0 < s < 1
and the inequality qm(s) ≥ qm(1) holds for 0 < s ≤ (2m − 2)/(2m− 1).

Remark. If the inequality qm(s) ≥ qm(1) held for all 0 < s < 1, the proof of positivity
of En would be simpler. Unfortunately, this is not the case.

Proof. By Lemma 3.1, we have c < s−1 − s/2. Thus, we obtain

qm ≥ q1 =
s + s−1

2
− c

2
>

3s

4
> 0.

It is easily verified that the condition qm(s) ≥ qm(1) = 2 − 1/m is equivalent to
(2/π)(1 − s)K(s) ≥ 1/(2m − 1). Since K(s) ≥ π/2, the condition s ≤ 1 − 1/(2m − 1) is
enough to ensure the inequality qm(s) ≥ qm(1).

The following result is readily shown by (reverse) induction on m.

Lemma 3.4. Let a1, . . . , an; x1, . . . , xn and x′
1, . . . , x

′
n be positive numbers with xm ≤ x′

m

for m = 1, . . . , n. Define ym by reverse induction: yn = xn and ym = xm − am+1/ym+1 for
m < n. Similarly, set y′

n = x′
n and y′

m = x′
m − am+1/y

′
m+1 for m < n. Further suppose

that ym > 0 for all 1 ≤ m ≤ n. Then ym ≤ y′
m and, in particular, y′

m > 0 for all m.

With the aid of the above lemma, we can now show the following.

Lemma 3.5. Let m and n be integers with 2 ≤ m ≤ n. Then the quantity qm,n = qm,n(s)
is positive for 0 < s ≤ (2m − 2)/(2m − 1).

Proof. We first show that qm,n(1) > 0 for 1 ≤ m ≤ n. In view of Lemma 3.2, it is
enough to see that En(1) is positive for each n ≥ 1. The solution w = f(z) with f(0) =
0, f ′(0) = 1 to the equation (3.1) corresponding to the case when s = 1 is nothing but the
function arctanh z. Clearly, this has positive odd Taylor coefficients about the origin, and
therefore, the inequality En(1) > 0 follows. Lemmas 3.3 and 3.4 now yield the inequality
qm,n(s) ≥ qm,n(1) > 0 for 0 < s ≤ (2m − 2)/(2m − 1) and for 2 ≤ m ≤ n.

The next simple fact will be a key to the proof of Theorem 1.1.

Lemma 3.6. Let n and n0 be integers with 2 ≤ n0 ≤ n. Suppose that qm,n > 0 holds for
every m with n0 ≤ m ≤ n. Then qm,n−1 > qm,n holds for every m with n0−1 ≤ m ≤ n−1.

Proof. We shall show qm,n−1 > qm,n by reverse induction on m. For m = n − 1, the
inequality holds because qn−1,n = qn−1,n−1 − pn−1/qn. We now assume that qm,n−1 > qm,n

holds for some m with n0 ≤ m ≤ n − 1. Note now that qm,n > 0 by assumption. Since

qm−1,n−1 − qm−1,n = − pm−1

qm,n−1
+

pm−1

qm,n
=

pm−1(qm,n−1 − qm,n)

qm,n−1qm,n
,

we obtain qm−1,n−1 > qm−1,n. This procedure can be continued up to m− 1 = n0 − 1.

At this stage, we can show that limn→∞ qm,n always exists.

Proposition 3.7. For each m ≥ 1, the sequence qm,n has a limit in Ĉ when n → ∞.
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Proof. Since qm,n and qm+1,n are related by a Möbius transformation described in (3.7), if
qm,n has a limit for some m then qm,n does for all m. By Lemma 3.5, for a fixed s, there
exists an integer N such that qm,n > 0 whenever N ≤ m ≤ n. Lemma 3.6 now implies
that qm−1,n is monotone decreasing with respect to n. In particular, qm−1,n has a limit as
n → ∞ for m ≥ N − 1.

We denote by qm,∞ the limit of qm,n as n → ∞. In order to find a value of qm,∞, we
employ the general theory of continued fractions, which will be explained in the next
section.

4. A continued fraction approach

In order to apply the general theory of continued fractions to our problem, we recall
some notions and results in the theory based on the work of L. Jacobsen (Lorentzen) and
W. J. Thron [5].

Let {Tn} be a sequence of Möbius maps. The sequence is said to be restrained if there

exist sequences {un} and {vn} of points in the Riemann sphere Ĉ = C ∪ {∞} such that

lim inf
n→∞

d(un, vn) > 0

and that

lim
n→∞

d(Tn(un), Tn(vn)) = 0,

where d(z, w) denotes the chordal distance between z and w, namely, d(z, w) = |z −
w|/√(1 + |z|2)(1 + |w|2). Note that the asymptotic behaviour of {Tn(un)} is unique in the
sense that d(Tn(un), Tn(u

′
n)) → 0 for any other pair of sequences {u′

n} and {v′
n} satisfying

lim inf d(u′
n, v′

n) > 0 and lim d(Tn(u
′
n), Tn(v

′
n)) = 0 (see [5, Theorem 2.1]). Sometimes we

say that {Tn} is restrained with {un} when we want to indicate the associated sequence.
A sequence {wn} is said to be exceptional with respect to the restrained sequence {Tn}
with {un} if

lim sup
n→∞

d(Tn(wn), Tn(un)) > 0.

Among several interesting results in [5], the following will be made of use in the present
paper.

Lemma 4.1 (Proposition 2.4 in [5]). Let {Tn} be a sequence of Möbius maps which is
restrained with {un}. Suppose that lim infn→∞ d(Tn(un),∞) > 0. Then for an exceptional
sequence {wn}

lim inf
n→∞

d(wn, T−1
n (∞)) = 0.

We now return to our problem. Let

Rm(z) = qm − pm

z
, Sm = R1 ◦ · · · ◦ Rm, and Tm = S−1

m

for m ≥ 1, where pm and qm are given by (3.4). Then, by definition,

qm,n = (Rm ◦ · · · ◦ Rn)(∞).

In particular,

q1,n = Sn(∞) = Sn+1(0).(4.1)
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Also, by noting the relation R−1
m (w) = pm/(qm − w), we observe

Tn(0) =
pn

En

.(4.2)

We now claim that our {Tn} is restrained. More concretely, we show the following.

Lemma 4.2. For a fixed s ∈ (0, 1), there exists a non-empty open interval I = I(s) in R

such that Tn(x) → s for every x ∈ I.

Proof. Since qn → s + s−1(> 2) as n → ∞, one can take an integer N so that qn > 2 for
all n ≥ N. In the following, we consider only integers n with n ≥ N. Let αn = 1/

√
pn =√

(n + 1)/n and choose tn ∈ (0, 1) so that αnqn = tn + 1/tn, namely,

tn =
αnqn −√(αnqn)2 − 4

2
.(4.3)

We now investigate the behaviour of tn as n → ∞. First we see that αn+1qn+1 > αnqn

and hence tn+1 < tn. Indeed,

αn+1qn+1 − αnqn

=

(
αn+1 · 2n + 1

2n + 2
− αn · 2n − 1

2n

)(
s +

1

s

)
−
{

αn+1

(2n + 2)(2n + 1)
− αn

2n(2n − 1)

}
c

=
s + s−1

2n(n + 1)

(
αn − 2

αn + αn+1

)
+

c((2n2 − n)(αn − αn+1) + (4n + 1)αn)

2n(n + 1)(4n2 − 1)

is positive because αn is decreasing. In particular, we have tn ≤ τ for n ≥ N, where
we set τ = tN . It is obvious that tn → s as n → ∞. Furthermore, in view of the above
computation, since αn = 1+1/(2n)+O(n−2), it also follows that αn+1qn+1−αnqn = O(n−3)
as n → ∞. By (4.3), we also obtain tn+1 − tn = O(n−3).

It is easy to check that sn = tn/αn is a fixed point of the map Un = R−1
n . Furthermore,

Un(x) − Un(sn) =
pn(x − sn)

(qn − x)(qn − sn)
=

sn

qn − x
(x − sn).

When sn < x < 1/αn, one has sn/(qn − x) = tn/(αnqn − αnx) ≤ τ/(2 − 1) = τ, and
therefore

0 < Un(x) − Un(sn) ≤ τ (x− sn).(4.4)

For xN ∈ R, we set xn = (Un ◦ · · · ◦ UN+1)(xN) for n > N. We also write xn = sn + δn.
Then, by (4.4), if sn < xn−1 < 1/αn we have

0 < δn = xn − sn = Un(xn−1) − Un(sn) ≤ τ (xn−1 − sn) = τ (δn−1 + sn−1 − sn).

Since tn − tn−1 = O(n−3) and αn = 1 + 1/(2n) + O(n−2) as we saw above,

sn−1 − sn =

(
1

αn−1

− 1

αn

)
tn−1 +

tn−1 − tn

αn

=
s

2n2
+ o(n−2)(4.5)

as n → ∞. In particular, there exists a positive constant K such that sn−1 − sn < K/n2

for all n ≥ N. Therefore, we have got the estimate

0 < δn ≤ τ (δn−1 + Kn−2)(4.6)

whenever sn < xn−1 < 1/αn.
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Recall the asymptotic expansion (4.5) and the fact that tn decreases to s as n → ∞.
Therefore, by replacing N by a larger one if necessary, we can assume that

sn < sn−1 for n ≥ N, tN

(
N

N − 1
+

K

N

)
≤ 1 and

1

N
<

1

αN
− sN .

We now claim that

0 < δn ≤ 1/n(4.7)

for n ≥ N if we choose xN so that sN < xN < sN +1/N. Indeed, (4.7) is trivially true for
n = N. If we assume that (4.7) is true for n−1(≥ N), then sn−1 < xn−1 < sn−1+1/(n−1).
Since sn < sn−1 and sn−1 + 1/(n− 1) ≤ sN + 1/N < 1/αN < 1/αn, the double inequality
sn < xn−1 < 1/αn is satisfied. Now (4.6) yields

0 < δn ≤ τ

(
1

n − 1
+

K

n2

)
=

1

n

(
n

n − 1
τ +

τK

n

)
≤ τ

n

(
N

N − 1
+

K

N

)
.

Here we recall that τ = tN . By the choice of N, we see that 0 < δn ≤ 1/n. Thus the claim
has been proved by induction.

From (4.7), it follows that xn → s as n → ∞. Therefore, the interval I = SN ((sN , sN +
1/N)) works for the assertion.

If we choose a pair of distinct points x0 and x′
0 from the interval I in the last lemma,

then d(Tn(x0), Tn(x
′
0)) → d(s, s) = 0 as n → ∞. In particular, {Tn} is a restrained

sequence with constant sequence {x0}. With the aid of this fact, we can now show the
following.

Lemma 4.3. q1,∞ = 0.

Proof. Fix a number x0 ∈ I. Then Tn(x0) → s as n → ∞. In particular, d(Tn(x0),∞) →
d(s,∞) > 0. Next we observe the relation T−1

n (∞) = Sn(∞) = q1,n by (4.1). Suppose
now that the constant sequence {0} was not exceptional with respect to {Tn}. That would
mean Tn(0) → s when n → ∞. Now we recall the relation (4.2). Since En = Bn/Bn−1

and Bn = (2n + 1)An, we would have

lim
n→∞

An

An−1
= lim

n→∞
Bn

pnBn−1
= lim

n→∞
1

Tn(0)
=

1

s
> 1,

which would violate the boundedness of the sequence {An}. Thus we have concluded that
the constant sequence {0} is exceptional with respect to {Tn}. Lemma 4.1 now yields

lim inf
n→∞

d(0, q1,n) = lim inf
n→∞

d(0, T−1
n (∞)) = 0,

which implies that 0 is a limit point of the convergent sequence {q1,n} (see Proposition
3.7). Thus q1,∞ = limn→∞ q1,n must be 0.

Proof of Theorem 1.1. We now show the inequality qm,n > 0 for all m ≤ n. This implies
En > 0 for all n ≥ 1 by Lemma 3.2, and thus Theorem 1.1 follows.

For each s ∈ (0, 1), by Lemma 3.5, we see that there exists an integer N ≥ 0 such
that qm,n > 0 for any pair of integers m, n with N ≤ m ≤ n. We denote by N(s) the
minimum of such numbers N for s ∈ (0, 1). Lemma 3.5 implies also that N(s) ≤ m for
s ∈ (0, (2m − 2)/(2m − 1)]. In particular, N(s) ≤ 2 for s ∈ (0, 2/3]. If N(s) ≤ 2, then
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Lemma 3.6 gives us the information q1,n > q1,n+1 for n ≥ 1. Since q1,n → 0 by Lemma 4.3,
we now conclude that q1,n > 0 for n ≥ 1. Thus N(s) must be 1 in this case. In particular,
N(s) = 1 for s ∈ (0, 2/3].

Suppose that N(s) > 2 for some s. Let s0 be the infimum of the set {s ∈ (0, 1) : N(s) >
2}. As we observed above, N(s) = 1 for s < s0, namely, qm,n(s) > 0 for all 1 ≤ m ≤ n,
and thus 0 < En(s) < +∞, n ≥ 1, for s < s0.

Since N(s) is locally bounded in 0 < s < 1, there exist an integer N > 2 and a
decreasing sequence {sk} such that N(sk) = N and sk → s0 as k → ∞. Since qN,n(sk) >
0 for n ≥ N, Lemma 3.6 yields qN−1,n−1(sk) > qN−1,n(sk) for n ≥ N. In particular,
we obtain qN−1,n−1(sk) > qN−1,∞(sk) for n ≥ N. By minimality of N(sk), we see that
−∞ ≤ qN−1,∞(sk) < 0. On the other hand, qN−1,∞(s) ≥ 0 for s < s0. By continuity, we
obtain qN−1,∞(s0) = ∞ or 0. Since

SN−2(qN−1,∞) = SN−2( lim
n→∞

qN−1,n) = lim
n→∞

SN−2(qN−1,n) = lim
n→∞

q1,n = 0,

we see that qN−1,∞ = TN−2(0) = pN−2/EN−2. Thus, EN−2(s0) = 0 or EN−2(s0) = ∞.
Suppose first that EN−2(s0) = 0. Now EN−2(s) approaches 0 from the right as s → s−0 .

On the other hand, EN−1(s) > 0 implies

qN−1(s) >
pN−1

EN−2(s)

for s < s0. Therefore, as s → s−0 the right-hand side goes to ∞, which forces qN−1(s0) to
be infinity. Thus we have reached a contradiction.

We next suppose that EN−2(s0) = ∞. In this case, EN−3(s1) = 0 by (3.5). Then the
same argument as above leads to a contradiction.

At any event, we get a contradiction. Thus the possiblity that N(s) > 2 for some
0 < s < 1 has been ruled out. Therefore N(s) = 1, namely, qm,n(s) > 0 for 1 ≤ m ≤ n.

Numerical experiments suggest the following conjectures, which seem to be difficult
to prove by simple induction arguments. Recall that En = En(s) is defined as (2n +
1)An/(2n − 1)An−1 in Section 3.

Conjecture 1. (i) En(s) is increasing in 0 < s < 1 for each n ≥ 1.
(ii) En(s) monotonically increases to s as n → ∞.
(iii) En(s)/s increases from (2n + 1)/(2n + 2) to 1 when s moves from 0 to 1.

Repeated use of (iii) would yield the inequality

(2n − 1)!!

(2n)!!
· sn

n + 1
≤ An(s) ≤ sn

2n + 1

for each n ≥ 1 and for each s ∈ (0, 1). Note that Stirling’s formula implies

(2n − 1)!!

(2n)!!
=

(2n)!

22n(n!)2
∼ 1√

πn

as n → ∞.
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5. Applications to k-uniformly convex functions

We consider the domain

Ωk = {u + iv ∈ C; u2 > k2(u − 1)2 + k2v2, u > 0}.(5.1)

for k ∈ [0,∞). Note that 1 ∈ Ωk for all k. Ω0 is nothing but the right half-plane. When
0 < k < 1, the domain Ωk is the unbounded domain enclosed by the right half of the
hyperbola (

(1 − k2)u + k2

k

)2

−
(

(1 − k2)v√
1 − k2

)2

= 1

with foci at 1 and −(1+k2)/(1−k2). When k = 1, the domain Ω1 becomes the unbounded
domain enclosed by the parabola

v2 = 2u − 1

with focus at 1. When k > 1, the domain Ωk is the interior of the ellipse(
(k2 − 1)u − k2

k

)2

+

(
(k2 − 1)v√

k2 − 1

)2

= 1

with foci at 1 and (k2 +1)/(k2 − 1). For every k, the domain Ωk is convex and symmetric
in the real axis. Note also that Ωk1 ⊃ Ωk2 if 0 ≤ k1 ≤ k2 and that Ωk converges to Ωk0 in
the sense of Carathéodory when k → k0.

An analytic function f in the unit disk D normalized by f(0) = 0 and f ′(0) = 1 is called
k-uniformly convex if 1 + zf ′′(z)/f ′(z) ∈ Ωk for z ∈ D. This concept was introduced and
studied by the first author and Wísniowska [7], [6]. Clearly, 0-uniformly convex functions
are exactly same as convex functions. Moreover, uniformly convex functions introduced
by Goodman are characterized as 1-uniformly convex functions (see [8] and [10]).

Let Pk be the conformal mapping of D onto Ωk determined by the conditions Pk(0) = 1
and P ′

k(0) > 0. They gave a concrete expression for Pk.

Theorem A (Kanas-Wísniowska [7]). The conformal map Pk : D → Ωk with Pk(0) = 1
and P ′

k(0) > 0 is given by

Pk(z) =


(1 + z)/(1− z) if k = 0,

(1 − k2)−1 cosh[Ck log(1 +
√

z)/(1 −√
z)] − k2/(1 − k2) if 0 < k < 1,

1 + (2/π2)[log(1 +
√

z)/(1 −√
z)]2 if k = 1,

(k2 − 1)−1 sin[CkK((z/
√

t − 1)/(1 −√
tz), t)] + k2/(k2 − 1) if 1 < k,

where Ck = (2/π) arccos k for 0 < k < 1 and Ck = π/(2K(t)) and t ∈ (0, 1) is chosen so
that k = cosh(µ(t)/2) for k > 1.

We could use Theorem 2.1 to obtain another expression which is more convenient to
compute the Taylor expansion about the origin.

Theorem 5.1. For k > 0, the conformal map Pk of the unit disk onto the domain Ωk

with Pk(0) = 1 and P ′
k(0) > 0 is expressed as

Pk(z) = 1 + Qk(
√

z)2,(5.2)
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where

Qk(z) =


√

2
1−k2 sinh(Ck arctanh z) if 0 < k < 1,√
1

2π2 arctanh z if k = 1,√
2

k2−1
sin
(
C ′

kK(z/
√

s, s)
)

if 1 < k.

Here, Ck = (2/π) arccos k when 0 < k < 1, and C ′
k = π/(2K(s)) when k > 1, where

s ∈ (0, 1) is chosen so that k = cosh µ(s).
Furthermore, the function Qk is odd and maps the unit disk conformally onto the domain

Wk = {u + iv : (k − 1)u2 + (k + 1)v2 < 1}.
It is easily checked that Wk is the inside of a hyperbola when k < 1 and Wk is the

interior of an ellipse when k > 1. When k = 1, the domain Wk becomes the parallel strip
−1/

√
2 < Im w < 1/

√
2. Note that Wk is invariant under the involution w 7→ −w. The

relation between t and s in Theorems A and 5.1 is given by s = 2
√

t/(1+t) (see [9, p. 293,
(43)]).

The reader might expect that the functions Pk could be expressed in a unified way for all
0 < k < ∞ by introducing another kind of special functions. It is, however, hopeless to do
that because we discarded the left-half of the “interior” of the hyperbola when k became
less than 1 (see also that forms of the corresponding differential equations are different).
Though we can prove Theorem 5.1 by using Theorem A, we give an independent proof
for completeness.

Proof of Theorem 5.1. First let k > 1. Choose ξ > 0 so that cosh(2ξ) = k, namely,
k = cosh(µ(s)). Since the similarity L(z) = (z + k2)/(k2 − 1) = 1 + (z + 1)/(k2 − 1)
maps −1 to 1 and 1 to (k2 + 1)/(k2 − 1), respectively, the image L(D2ξ) coincides with
Ωk. Thus Pk = L ◦ g2ξ = 1 + (g2ξ + 1)/(k2 − 1). By Theorem 1.2, we obtain the relation
Pk(z) = 1 + 2fξ(

√
z)2/(k2 − 1). Hence, we conclude that Pk(z) = 1 + Qk(

√
z)2.

The case when 0 < k < 1 can be treated in the same line as above. Indeed, take
a number η ∈ (0, π/4) so that k = cos 2η and let L(z) = (z + k2)/(k2 − 1). Then the
similarity L maps the left component of C\Hπ−2η onto Ωk. Noting L′(−1) < 0, we obtain
the relation Pk(z) = L(Gπ−2η(−z)) for z ∈ D. Proposition 2.4 and formula (2.4) now yield

Pk(z) = L(2Fπ/2−η(i
√

z)2 − 1)

= L(2 sin((4η/π) arctan(i
√

z))2 − 1)

= L(−2 sinh((4η/π)arctanh (
√

z))2 − 1)

= 1 + Qk(
√

z)2.

When k = 1, the expression is obtained as the limiting case when k → 1.

Theorem 5.2. The conformal representation Pk of Ωk with Pk(0) = 1, P ′
k(0) > 0 has

positive Taylor coefficients about the origin for each k ≥ 0.

Proof. The assertion for 0 ≤ k ≤ 1 can be deduced by Theorem 5.1 because sinh z and
arctanh z both have positive odd Taylor coefficients about the origin. The assertion for
k > 1 follows from Theorem 1.2 since Pk = 1 + (g2ξ + 1)/(k2 − 1) as is observed in the
proof of Theorem 5.1.
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We remark that for 0 < k < 1, the function w = Qk(z) satisfies the linear ODE

(1 − z2)2w′′ − 2z(1 − z2)w′ −C2
kw = 0(5.3)

in D. By using this, one can also show positivity of the Taylor coefficients of Pk about
the origin. Note that this differential equation is a special case of the Legendre equation
(see, for example, [1, Chap. 8]).

An analytic function p in the unit disk is called a Carathéodory function if p(0) = 1
and if p has positive real part, in other words, Re p(z) > 0 holds in |z| < 1. The class of
Carathéodory functions will be denoted by P .

For two analytic functions f and g in the unit disk D, we say that f is subordinate to
g and denote it by f ≺ g if there exists an analytic map ω : D → D such that f = g ◦ ω
and ω(0) = 0. For each Carathéodory function q, we define the subclass

P(q) = {p ∈ P : p ≺ q}
of P . For instance, a normalized analytic function f in the unit disk is k-uniformly convex
if and only if the function 1 + zf ′′(z)/f ′(z) belongs to P(Pk).

If q has some nice properties, then elements of P(q) are dominated by q in various ways.

Proposition 5.3. Suppose that a Carathéodory function q is convex univalent and has
non-negative Taylor coefficients about the origin. Then each element p of P(q) satisfies

q(−|z|) ≤ Re p(z) ≤ |p(z)| ≤ q(|z|)
in |z| < 1.

Proof. We write pr(z) = p(rz) for 0 < r < 1. The Lindelöf principle says that p ≺ q
implies pr ≺ qr for all 0 < r < 1. Therefore, for a fixed r ∈ [0, 1), we obtain

min
|z|=r

Re q(z) ≤ Re p(z0) ≤ |p(z0)| ≤ max
|z|=r

|q(z)|

for any z0 with |z0| = r. Notice now that q is symmetric, i.e., q(z) = q(z̄), because q has
non-negative (thus real) coefficients. Since qr is convex (see the proof of Theorem 2.1 in
[4]) and symmetric and Re qr > 0, the relation

min
|z|=r

Re q(z) = q(−r)

can be deduced. On the other hand, the non-negativity of the coefficients means that q
can be expressed in the form

q(z) = 1 +

∞∑
n=1

anz
n, |z| < 1,

for some an ≥ 0. Therefore,

|q(z)| ≤ 1 +
∞∑

n=1

an|z|n = q(|z|),

and thus,
max
|z|=r

|q(z)| = q(r)

follows.

This, together with Theorem 5.2, implies the following.
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Corollary 5.4. Let 0 ≤ k < ∞ and p ∈ P(Pk). Then the inequalities

Re p(z) ≤ |p(z)| ≤


1 + 2

1−k2 sinh2
(

2arctanh
√

r
π arccos k

)
for k ∈ [0, 1),

1 + 8
π2 arctanh 2√r for k = 1,

1 + 2
k2−1

sin2
(

π
2K(t)

K(
√

r/t, t)
)

for k > 1,

and

|p(z)| ≥ Re p(z) ≥


1 − 2

1−k2 sin2
(

2 arctan
√

r
π arccos k

)
for k ∈ [0, 1),

1 − 8
π2 arctan2

√
r for k = 1,

1 − 2
k2−1

sinh2
(

π
2K(t)

K̃(
√

r/t, t)
)

for k > 1,

hold for z ∈ D with |z| = r. In particular, the inequalities

k

k + 1
< Re p(z) ≤ |p(z)|

hold for all |z| < 1 and all k > 0 and |p(z)| < k/(k − 1) holds for all |z| < 1 and k > 1.

In the above, we set

K̃(r, t) = −iK(ir, t) =

∫ r

0

dx√
(1 + x2)(1 + t2x2)

.
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