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Abstract. We present a computer-oriented method of producing pictures of Bers em-
beddings of the Teichmüller space of once-punctured tori. The coordinate plane is chosen
in such a way that the accessory parameter is hidden in the relative position of the origin.
Our algorithm consists of two steps. To each point in the coordinate plane, we first com-
pute the corresponding monodromy representation by numerical integration along certain
loops. Then we decide if the representation is discrete or not by applying the Jørgensen’s
theory on the quasifuchsian space of once-punctured tori.

1. Introduction

Let Γ be a Fuchsian group acting on the unit disk D uniformizing a Riemann surface,
and B2(D,Γ) the complex Banach space of holomorphic quadratic differentials for Γ on D
with finite norm. It is well known that the Teichmüller space T (Γ) of Γ can be realized
as a bounded contractible open set in B2(D,Γ) through the Bers embedding. Throughout
the paper, the space T (Γ) is understood as the image of the Bers embedding.

In 1972, Bers wrote ([Bers 1972] page 278, the notation was changed to adapt with ours):

Unfortunately, there is no known method to decide whether a given φ ∈
B2(D,Γ) belongs to T (Γ). This is so even if d = dimB2(D,Γ) < ∞. Even
the case d = 1 is untractable.

In what follows, we will assume that the quotient Riemann surface D/Γ is a once-
punctured torus T so that the Teichmüller space T (Γ) has complex dimension one. In
this case, two elements α, β ∈ Γ are called standard generators if the oriented intersection
number i(α, β) in D/Γ with respect to the orientation coming from the complex structure
of D is equal to +1.

In this paper, we provide an algorithm of producing the picture of T (Γ) or even the
“discreteness locus” concerning the holonomy representations in B2(D,Γ), and present
the pictures of T (Γ) in B2(D,Γ) for several Γ’s and explain our algorithm for producing
such pictures. Then, we describe our experiments concerning an open problem posed by
C. McMullen [McMullen 1996] on the self-similarity of Bers slices.

To describe the idea of the algorithm, let us recall some basic facts in Teichmüller theory.
For every φ in B2(D,Γ), there exists a locally univalent meromorphic function fφ on D with
{fφ, z} = φ(z), where {f, ·} is the Schwarzian derivative of f . The function fφ is called a
developing map of φ and unique up to post-composition of Möbius transformations. The
homomorphism θφ : Γ→ PSL(2,C) defined by

fφ ◦ γ = θφ(γ) ◦ fφ, γ ∈ Γ,
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is called the holonomy representation of Γ associated with φ ∈ B2(D,Γ) and unique up to
Möbius conjugacy. Note that this homomorphism θφ is type preserving in the sense that
tr[θφ(α), θφ(β)] = −2 for any standard generators α, β of Γ. We consider the set K(Γ), that
is defined as the totality of those φ ∈ B2(D,Γ) for which θφ(Γ) is discrete in PSL(2,C), i.e.,
θφ(Γ) is a Kleinian group. Then T (Γ) is equal to the component of IntK(Γ) containing
the origin [Shiga 1987]. The other components of IntK(Γ) than T (Γ) are called exotic.
As early as in 1969, Maskit [Maskit 1969] pointed out the existence of exotic components
and, in recent years, many authors have been studying the structure of the set K(Γ) (see,
for instance, [Ito 2000]). Though Goldman [Goldman 1987] succeeded in enumerating all
the components of IntK(Γ) in terms of integral measured foliations, the shape and the
configuration of those components is still unclear.

We actually draw the picture of K(Γ) in B2(D,Γ) for the given group Γ. The algorithm
involves the following two steps: For each element φ in B2(D,Γ) ∼= C, we

Step 1: compute the holonomy representation θφ and
Step 2: decide whether the image θφ(Γ) is discrete in PSL(2,C).

These steps will be described in the following sections.

Remark 1.1. The first and second named authors proposed a different approach to draw pic-
tures of Bers embedding in [Komori and Sugawa 2004]. One can find a numerical method
which enables us to present

(1) the image of holonomy representation corresponding to a given cusp boundary
point,

(2) generators of a Fuchsian group uniformizing a given once-punctured torus,
(3) values of the accessory parameter (see section 2.2) and
(4) pictures of pleating loci.

On the other hand, the present approach given here has the following merits:

(1) we do not have to calculate the accessory parameter to get the picture and
(2) we can draw the pictures of exotic components besides the Bers slice.

Remark 1.2. Our definition of the (Bers embedded) Teichmüller space is different from the
standard one. In the standard definition, our space T (Γ) is the Teichmüller space of the
surface D∗/Γ, the mirror image of D/Γ, where D∗ is the exterior of the unit disk D.

2. Holonomy representation

In this section we will describe an algorithm which takes an element φ of B2(D,Γ) as
the input and returns a holonomy representation θφ as the output. To make our calcula-
tion easier, we will work with a 4-times punctured sphere. For a detailed exposition, see
[Komori and Sugawa 2004].

2.1. Commensurability relations. Fix a pair of standard generators (α, β) of Γ. Then
the once-punctured torus T admits an intermediate covering space, the complex plane C
minus lattice points Lτ = {m+nτ ;m,n ∈ Z} so that α and β correspond to the generators

z → z + 1, z → z + τ

for Lτ , where τ is a complex number with Im τ > 0.
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We observe that the mapping z + Lτ 7→ 2z + Lτ induces an unbranched covering of the

4-times punctured torus T̃ = (C − 1
2
Lτ )/Lτ onto T. We now choose a 4-times punctured

sphere S = Ĉ − {0, 1,∞, λ} so that T and S have the common covering space T̃ . Set
e1 = ℘(1/2), e2 = ℘(τ/2), e3 = ℘((1 + τ)/2) and

λ =
e3 − e2

e1 − e2

,

where ℘ is the Weierstrass ℘-function with period lattice Lτ . Then a covering projection

π of T̃ onto S is given by

π(z + Lτ ) =
℘(z)− e2

e1 − e2

.

Note that λ = λ(τ) is known to be an elliptic modular function.

The canonical projection D → D/Γ = T induces the universal cover q̃ : D → T̃ . Let ΓS
be the covering group of the universal covering projection p = π ◦ q̃ of D onto S. Note that
we have B2(D,ΓS) = B2(D,Γ) (see [Komori and Sugawa 2004]).

Let B2(S) be the Banach space of (hyperbolically) bounded holomorphic quadratic dif-
ferentials on S. By definition, the spaces B2(D,ΓS) and B2(S) are isomorphic via the
pull-back p∗ : B2(S)→ B2(D,ΓS) defined by p∗ψ = ψ ◦ p · (p′)2. The rational function

(1) ψ0(z) =
1

z(z − 1)(z − λ)

gives a non-trivial bounded quadratic differential ψ0(z)dz
2, which forms a basis of the Ba-

nach space B2(S) since dimB2(S) = 1. Therefore each element φ ∈ B2(D,Γ) = B2(D,ΓS)
can be written as φ = tφ0, where t is a complex number and φ0 = p∗(ψ0).

2.2. The monodromy of a 4-times punctured sphere. Now, for each φ = tφ0, con-

sider the developing map fφ : D → Ĉ. Our idea is to compute fφ on S instead of D.
For this purpose, we take the branch P of p−1 around p(0) so that P (p(0)) = 0 and put

g(z) := fφ(P (z)). Then we have

(2) {g, z} = {fφ, P (z)}(P ′(z))2 + {P, z} = tψ0(z) + {P, z}.
For {P, z} in (2) we use the next lemma:

Lemma 2.1 ([Forsyth 1902] Ch. X, p. 492). The Schwarzian derivative of P is of the form

(3) {P, z} = 1

2z2
+

(1− λ)2

2(z − 1)2(z − λ)2
+

c(λ)

z(z − 1)(z − λ)
.

on S, where c(λ) is a constant determined by λ and called the accessory parameter.

By the above lemma and (2), {g, z} is globally defined on Ĉ− {0, 1,∞, λ}. Combining
(1), (2) and (3), the equation to solve is

(4) 2y′′ +

(
1

2z2
+

(1− λ)2

2(z − 1)2(z − λ)2
+

t′

z(z − 1)(z − λ)

)
y = 0,

where we have set t′ = t + c(λ). As is well known, {y1/y0, z} = {g, z} holds. Hence,
fϕ =M ◦ (y1/y0) ◦ p around the origin for some Möbius transformation M.
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We now describe how to compute the monodromy. Let γS be an element of ΓS. We start
with the pair (y0, y1) of fundamental solutions of (4) determined by the initial conditions

{
y0(z0) = 1

y′0(z0) = 0
and

{
y1(z0) = 0

y′1(z0) = 1

at a fixed point z0 in S. Then we continue them analytically along a closed path in S
corresponding to γS. Returning to the starting point, we will arrive with a new pair of
solutions (Y0, Y1). However, these new solutions must be linear combinations of the original
solutions. Thus we have

Y0 = Dy0 + Cy1, Y1 = By0 + Ay1,

for some complex numbers A,B,C and D. We define

θ̃ψ(γS) =

(
A B
C D

)
∈ SL(2,C)

for each γS ∈ ΓS. We note that, by the monodromy theorem, the matrix is independent of
the particular choice of the path corresponding to γS.

Since fφ ◦ γS corresponds to

Y1

Y0

=
A(y1/y0) +B

C(y1/y0) +D
,

we obtain the following lemma.

Lemma 2.2. The monodromies θφ and θ̃ψ are essentially the same. More precisely, on

Γ ∩ ΓS, θφ is equal to the PSL(2,C) representation induced by θ̃ψ up to Möbius conjugacy.

So we can calculate θφ on S by means of (4). The reader can find a reason why the
holonomy representation of ΓS takes the values in SL(2,C) in [Komori and Sugawa 2004,
Remark 4.1].

2.3. Markov triples. Though α and β are in Γ, they are not in ΓS on which θ̃ψ is defined.
In other words, α and β do not correspond to the closed paths in S. So we need a little
more calculation to end this section.

Let A and B be the matrices in SL(2,C) such that ±A = θφ(α) and ±B = θφ(β) in
PSL(2,C). Set x = trA, y = trB and z = trAB. The triple (x, y, z) is well defined up to
changing the signs of any two entries. It determines θφ up to conjugacy in PSL(2,C). In the
next section, this holonomy is represented by using Jørgensen’s normalization and denoted
by θx,y,z. Since our homomorphism is type preserving, the well-known trace identity 2 +
tr[X,Y ] = (trX)2 + (trY )2 + (trXY )2 − trX trY trXY implies the relation

(5) x2 + y2 + z2 = xyz.

Conversely, given any triple (x, y, z) satisfying (5), we can reconstruct the image of the
group Γ up to conjugacy. We call such a triple of complex numbers a Markov triple.

Thus it suffices to compute x and y. Again by the trace identity trX trY = trXY +
trXY −1, we have

x =

√
tr θ̃ψ(α2) + 2, y =

√
tr θ̃ψ(β2) + 2.
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Now we can calculate θ̃ψ(α
2) and θ̃ψ(β

2) by solving equation (4) because α2 and β2 are in
ΓS.

2.4. Technical remarks. A simple closed loop in S separating {0, 1} from {∞, λ} and
that separating {0, λ} from {1,∞} with two intersection points correspond to α2 and β2, re-
spectively, with suitably chosen orientations. Practically, we choose polygonal curves with
a common end point as such loops. For each oriented line segment of such curves, we solve
the differential equation (4) in a numerical way and find the transition matrix of it along the
segment. Then the ordered products of the transition matrices corresponding to the polyg-
onal curves are representatives of α2 and β2 in SL(2,C) (see [Komori and Sugawa 2004]
for details). Here, we may think that a value of the parameter t′ is given in (4) instead of
t so that we are free from the value of the accessory parameter c(λ).

3. Jørgensen’s theory to decide discreteness

The input of the algorithm of this section is a Markov triple and the output is the answer
“discrete”, “indiscrete” or “undecided”.

The general idea is to try to construct a Ford fundamental region of the given Markov
triple. If the image of the corresponding holonomy representation is indiscrete, the term
“Ford fundamental region” does not make sense and our process of constructing it will fail.
Then we will search for evidence of its indiscreteness.

This algorithm is based on Jørgensen’s theory on once-punctured tori [Jørgensen 2003].
An exposition of this theory with proofs is in preparation [Akiyoshi et al.]. This algorithm
may not halt in a finite time for some inputs. For example, if H3/θx,y,z(Γ) is geometrically
infinite or a Z-covering space of a punctured torus bundle over the circle, our algorithm
will not stop in a finite time. In practice, we will stop our calculation at a certain time
and give the answer “undecided”.

3.1. Notation. Let T be a once-punctured torus. We fix standard generators α, β of the
fundamental group of T . Let θ be a type preserving PSL(2,C) homomorphism of π1(T ).
Then θ can be specified by the Markov triple x = tr θ(α), y = tr θ(αβ) and z = tr θ(β) up
to conjugation in PSL(2,C). We denote this representation by θx,y,z.

Recall that a slope in T is the isotopy class of an essential simple closed curve on T . By
choosing a basis of H1(T ;Z), a slope is represented by a number in Q∪{1/0 =∞}. To fix
our notation, we choose α and β as the basis so that the slope of α and β are 1/0 and 0/1
respectively. For a slope q ∈ Q ∪ {1/0}, set Sq = {g ∈ π1(T ) | slope of g = q}. Note that
α ∈ S1/0, β ∈ S0/1 and αβ ∈ S1/1. We identify the set of slopes as a subset of ∂H2. Two
rational numbers p/q and r/s are Farey neighbors if |ps − qr| = 1. By joining all pairs of
Farey neighbors by geodesics, we get the Farey tessellation of H2 by ideal triangles. Note
that the slopes of α, β and αβ form an ideal triangle of the above tessellation. By taking
the dual graph of this triangulation, we have a trivalent graph Σ properly embedded in
H2. For each vertex v in Σ we can associate a subset Sv of π1(T ) by

Sv = Sq1 ∪ Sq2 ∪ Sq3 ,
where slopes q1, q2, q3 ∈ Q∪ {∞} are the ideal vertices of the triangle in Farey tessellation
which is dual to v. Set Iv = {isometric hemisphere of g | g ∈ Sv}.
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Jørgensen’s theory on punctured tori claims that if the image of the holonomy represen-
tation θx,y,z is discrete, then there is a path P in Σ which depends on (x, y, z) such that
the boundary of the Ford region is given by

⋃
v∈P Iv. After the Jørgensen’s normalization,

which will be introduced in subsection 3.2, we can define a direction of “upward” / “down-
ward” in P . We will say that some vertex v′ ∈ P is upper/lower neighbor of v ∈ P if v′ is
adjacent to v and the direction from v to v′ is upward/downward. We will also use terms
like “upper end point” / “lower end point” of P for end points of P .

In the next subsection, we recall Jørgensen’s description. It describes the Ford region for
a given discrete representation θx,y,z(Γ) with v0 ∈ P where v0 ∈ Σ be the dual of 1/0, 0/1
and 1/1. After this subsection, we will describe our algorithm.

3.2. Jørgensen’s description of the Ford region. The Ford region of θx,y,z is defined (if
the image of θx,y,z is discrete) to be the set of points lying above the isometric hemispheres
of all elements in θx,y,z(Γ) not fixing ∞. Recall that the isometric hemisphere I(A) for

A =

(
a b
c d

)
∈ SL(2,C) with A(∞) 6= ∞ is the hemisphere in H3 with radius 1/|c|

centered at −d/c ∈ C = ∂H3−{∞}. In order to obtain a fundamental region for θx,y,z(Γ),
we have to take the intersection of this Ford region with some fundamental region for the
stabilizer of ∞.

Now let (x, y, z) be a Markov triple. We can reconstruct θx,y,z by using Jørgensen’s
normalization [Jørgensen 2003]:

(6) θx,y,z(α) =
1

x

(
xy − z y/x
xy z

)
, θx,y,z(β) =

1

x

(
xz − y −z/x
−xz y

)
.

Then we can check that

(7) θx,y,z(αβ) =

(
x −1/x
x 0

)
, θx,y,z(K) =

(
−1 −2
0 −1

)
where K = [α, β].

The isometric hemispheres of α, αβ and β are centered at−z/xy, 0 and y/zx with radii 1/y,
1/x and 1/z respectively. It is easy to see that the isometric hemispheres of α−1, (αβ)−1

and β−1K−1 are the translated images of the above three hemispheres by z 7→ z + 1.
Since θx,y,z(Γ) contains the action θx,y,z(K) of translation z 7→ z + 2, we have a bi-infinite
sequence of translated images of the above three isometric hemispheres with symmetry of
translation by one. Thus, we have a sequence of isometric hemispheres

(8) . . . , I−4 = I(α−1K), I−3 = I((αβ)−1K), I−2 = I(β−1), I−1 = I(α), I0 = I(αβ),

I1 = I(β), I2 = I(α−1), I3 = I((αβ)−1), I4 = I(β−1K−1), I5 = I(αK−1), . . .

See Figure 1. Note that In+3 =
√
θx,y,z(K)(In) for any n ∈ Z where

√
θx,y,z(K) is the

translation z 7→ z+1. The group elements which correspond to I3n, I3n+1 and I3n+2 belong
to Sαβ, Sβ and Sα respectively. Set I1/1 := {I3n}n∈Z, I0/1 := {I3n+1}n∈Z, I1/0 := {I3n+2}n∈Z.
{In}n∈Z is equal to Iv0 as a set. We denote by Lv0 the polyline of infinite length given by
connecting the centers of In and In+1 for each n ∈ Z.

Since we made an assumption that v0 ∈ P at the end of 3.1, it follows from Jørgensen’s
theory that we have:

(C1) Consecutive isometric hemispheres intersect with each other.
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I−6I−5
I−4

I−3 I−2
I(α)

I(αβ)

I(β)
I2

I3 I4
I5

I6 I7
I8

Lv0

Im

Re

LBS

UBS

Figure 1. Isometric hemispheres

I(β)
I(αβ)

I(α)

Figure 2. (S1)

(C2) Polyline Lv0 has no self-intersection.

So we have two sequences of sub-arcs of ∂In ⊂ C — upper boundary sequence UBS and
lower boundary sequence LBS. See Figure 1.

For UBS and LBS, the set of subarcs can be divided into three groups — for those
which come from I1/0, I0/1 and I1/1. Let us consider UBS. We have three cases:

(S1) All the groups of subarcs I1/0, I0/1 and I1/1 appear in the sequence. (Figure 2)
(S2) Only two groups of subarcs appear in the sequence and one group, say I1/0, does

not. (Figure 3)
(S3) Only one group, say I0/1, appears in the sequence. (Figure 4)

The method to find upper neighbor and decide whether it is upper end point or not is
as follows.

In case (S1), v0 is the upper end point and there is no upper neighbor vertex for v0.
Next, suppose that UBS is of case (S2) and, for Faray triangle 4q1q2q3 which is dual to
v0, only slope q1 does not appear in UBS. There is a unique Faray triangle 4q2q3q4 which
is adjacent to 4q1q2q3 along the geodesic connecting q2 and q3 and let v′ be the dual vertex
of it. Then v′ is the upper neighbor of v0. In case (S3), one of three vertices adjacent to
v0 is the upper neighbor. The role of choice is written in [Wada].

For LBS and lower neighbor, the rule is the same.
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I(β)
I(αβ)

I(α)

Figure 3. (S2)

I(β)
I(αβ)

I(α)

Figure 4. (S3)

For example, Figure 5-(a) depicts the case where both UBS and LBS of v0 are of case
(S2). The left hand side figure is the Faray diagram and its dual graph Σ. The right hand
side is the picture of isometric hemispheres Iv0 . I(α) does not belong to UBS and the slope
of α is 1/0. In this case, v1, which is the dual to the Faray triangle 0/1, 1/1 and 1/2 is the
upper neighbor of v0. See Figure 5-(b).

Since UBS of v1 is of case (S1), it is the upper end point.
If we carry out the same process for downward direction, we reach the vertex v2 in

Figure 5-(c) which turns out to be the lower end point. In this case, we conclude that the
Jørgensen’s path P is v1v0v2.

3.3. The algorithm. In this subsection, we discuss the algorithm. Thus we do not assume
that v0 ∈ P . We also consider the condition for indiscreteness which we have not mentioned
in the previous subsection.

Starting from v0, we search Σ for Jørgensen’s path. If we arrive at a new vertex in Σ,
we get a new slope q ∈ Q ∪ {1/0}. Then we check the following Shimizu-Leutbecher’s
lemma for the elements of Sq and say “indiscrete” and stop the calculation if the condition
is satisfied.

Lemma 3.1. Suppose that a subgroup Γ of SL(2,C) contains

(
1 1
0 1

)
. If there exists an

element

(
a b
c d

)
∈ Γ with 0 < |c| < 1, then Γ is indiscrete.
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(a)

(b)

(c)

v0

v0

v0

α

αβ

α

αβ
αβ2

α

αβ
αβ2

β

αβ−1

β

I(αβ−1)

β

I(αβ2)

I(β)I(αβ)

I(α)

v1

v1

v2

Figure 5. Markov triple (x, y, z) = (2.536− 1.115i, 2.616− 0.645i, 2.203 +
0.660i). Left: Faray diagram and its dual graph Σ, Right: isometric hemi-
spheres in upper half space model. (a) v0: starting point (dual of 401∞)
(b) v1: upper neighbor of v0, top end point since it is of (S1) for UBS. (c)
v2: lower neighbor of v0, lower end point since it is of (S1) for LBS. v2v0v1:
Jorgensen’s Path. We conclude that θ(x,y,z) is discrete.

Since the radius of the isometric hemisphere for

(
a b
c d

)
is 1/|c|, it follows that, in our

setting, if there exists an isometric hemisphere of radius > 1, then the group is indiscrete.
After starting from v0, our first task is to search for a vertex which satisfies the condition

(C1). For v ∈ Σ, where v = dual of 4q1q2q3, a simple calculation shows that (C1) is
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(U1-2)(U1-1)

va

vb

vc
va

vb

vc

Figure 6. (U1) Suppose that, during the process, we have moved upward
in Σ from va to vb which turns out to be an upper most vertex. (U1-1) For
vb, va is the lower neighbor. (U1-2) For vb, vc is the lower neighbor (The
direction of the arrows is from lower vertex to upper vertex)

equivalent to the triangle inequality for |τ(q1)|, |τ(q2)| and |τ(q3)|, where τ(q) := tr g with
g ∈ Sq. So if v fails to satisfy (C1), one real number, say |τ(q1)|, is too large. Then we
move to the adjacent vertex v′ which is the dual to the Faray triangle of q2, q3 and the new
slope — i.e., we discard the slope q1. We repeat this process until we find a vertex which
satisfies (C1).

Now suppose that we have found a vertex with (C1) satisfied. Next, we keep moving to
the upper neighbor defined by the rule in the previous subsection until we must stop at
some vertex v. We call this vertex v a upper most vertex, and we have two cases for v:

(U1) We stop because of case (S1).
(U2) We stop because v fails to satisfy (C2). (In this case, UBS and LBS are not well

defined because we have used the condition (C2) to define UBS and LBS)

For later purpose, we define two subcases in case (U1). See figure 6

(U1-1) The lower neighbor vertex of v is where we come from.
(U1-2) The lower neighbor vertex of v is not where we come from.

We define the notions (D1), (D2), (D1-1) and (D1-2) for LBS in the same way. In case
(U1), we change our direction and start moving to lower neighbor. In case (U2), we move
to a neighbor by the rule we made by heuristics and consider this direction as “lower” and
start moving to lower neighbor. In both two cases we keep moving in the direction of lower
neighbor vertex in Σ.

For lower most vertex, we have the same cases (D1-1), (D1-2) and (D2) as above and
again change our direction upward to move.

We continue this process for upper and lower directions alternately.
If we can find a path P in Σ such that the latest upper most vertex vU is of case (U1-1)

and the latest lower most vertex vL (D1-1) and we can go from vU to vL by going downward
and from vL to vU by upward, then this is the Jørgensen’s path P . In this case, conditions
for the Poincaré fundamental polygon theorem is satisfied and the output of our algorithm
is “discrete”. For detailed discussions of this Jørgensen’s theory, see [Akiyoshi et al.].

4. Pictures

We present several pictures produced by our method in the following pages.
In Figure 8, λ = 1/2 and the corresponding once-punctured torus T is the square torus

with one point removed. It is known that the accessory parameter c(1/2) is equal to 1/2,
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Figure 7. An example of the whole process. In Σ, starting from v0, we
search for a vertex with (C1) satisfied. Then we go upward until we reach
at (U1) or (U2) vertex, say (U1-2). Then we go downward until (D1) or
(D2), say (D1-1). We continue this alternating process of visiting vertices
until we can find the Jørgensen’s path as illustrated in thick arrows or some
isometric hemisphere corresponding to the vertex at which we visit violates
the Shimizu-Leutbecher condition.

Figure 8. λ = 1/2, center= 1/2, range= ±1/4

and we take the center and the range to be 1/2 and ±1/4 respectively. In the discreteness
locus, a color is given according to the length of Jørgensen’s path P mentioned in the
previous section.

Figure 9 is a blowup of Figure 8. Many exotic components appear in this picture.
For Figure 10, λ = 1/2 +

√
3/2i and T is a once-punctured torus with hexagonal sym-

metry. For the range of the parameter t+ c(λ), the center is 1/2+1/(2
√
3)i and the range

is ±1/4. Note that, to get the picture, we do not have to compute the exact value of the
accessory parameter c(λ) because it is hidden in the relative position of the origin.

Figure 11 is a blowup of Figure 10.
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Figure 9. λ = 1/2, center= 1/2, range= ±8

Figure 10. λ = 1/2 +
√
3/2i, center= 1/2 + 1/(2

√
3) i, range= ±1/4
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Figure 11. λ = 1/2 +
√
3/2i, center= 1/2 + 1/(2

√
3) i, range= ±8

5. An experiment: Self-similarity of Bers slice

In [McMullen 1996, p. 178], McMullen asked “Is the boundary of a Bers slice self-
similar?” and carried out a computer experiment for Maskit slice instead of Bers slice.
His pictures of a part of Maskit boundary and its blowups suggest the affirmative answer
for Maskit slice.

Motivated by his work, we have produced the following pictures.
Figure 12 depicts a part of the Bers slice of square torus (λ = 1/2). Figure 13 and Figure

14 are the blowups around the limit point 0.569645 · · · + 0.136675 · · · i. Our conclusion
is that this part of the boundary appears to have self-similarity around that point with
scale factor about 4.8. That point also appears in [Sugawa 2002] as the farthest boundary
point of the Teichmüller space of the once-punctured square torus from the origin and an
observation was made there about the scale factor.
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Figure 12. center = 0.569645 + 0.136675 i, range=±0.0192
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