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Abstract. We consider a quasiconformal automorphism of a Riemann
surface, which fixes the homotopy class of a simple closed geodesic. Under
certain conditions on the injectivity radius of the surface and bounds on the
dilatation of the map, the automorphism induces a periodic element of the
Teichmüller modular group. We may also estimate the order of the period.

1. Introduction

Let R be an arbitrary Riemann surface with possibly infinitely generated
fundamental group. An element χ of the Teichmüller modular group Mod(R) is
induced by a quasiconformal automorphism f of R. We would like to determine
when the order of χ is finite. When f is a conformal automorphism of R, then
the element χ of Mod(R) induced by f fixes the base point of the Teichmüller
space T (R). In [3], we proved that, for a Riemann surface R with non-abelian
fundamental group, a conformal automorphism f of R has finite order if and
only if f fixes either a simple closed geodesic, a puncture or a point on R. In
each case, we obtained a concrete estimate for the order of f in terms of the
injectivity radius on R. One of our results is the following. For the definition
of the upper bound condition, see the next section.

Theorem 1.1 ([3], [4]). Let R be a hyperbolic Riemann surface with non-
abelian fundamental group. Suppose that R satisfies the upper bound condition
for a constant M > 0 and a connected component R∗

M of RM . Let f be a
conformal automorphism of R such that f(c) = c for a simple closed geodesic
c on R with c ⊂ R∗

M and l(c) = l > 0. Then the order n of f satisfies

n < (eM − 1) cosh(l/2).

The purpose of this paper is to extend Theorem 1.1 to a quasiconformal
automorphism f . One of the difficulties that arise is that the element χ ∈
Mod(R) induced by f need not have a fixed point on T (R). However, we will
show that if the maximal dilatation of f is smaller than some constant, then
χ is periodic.
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2. Statement of Theorem

Let H be the upper half-plane equipped with the hyperbolic metric |dz|/Im z.
Throughout this paper, we assume that a Riemann surface R is hyperbolic.
Namely, it is represented as H/Γ for some torsion-free Fuchsian group Γ acting
on H. Furthermore, we also assume that R has a non-abelian fundamental
group. The hyperbolic distance on H is denoted by d, and the hyperbolic
length of a curve c on R by l(c). For the axis L of a hyperbolic element
of the Fuchsian group Γ, we denote by πΓ(L) the projection of L to H/Γ.
When there is no fear of confusion, we denote this simply by π(L). Also, for a

quasiconformal automorphism f̃ of H, we denote by f̃(L)∗ the geodesic having

the same end points as those of f̃(L).
We recall the definition of Teichmüller spaces and Teichmüller modular

groups. Fix a Riemann surface R. We say that two quasiconformal maps
f1 and f2 on R are equivalent if f2 ◦ f−1

1 is homotopic to a conformal map of
f1(R) onto f2(R). The reduced Teichmüller space T (R) with the base Riemann
surface R is the set of all equivalence classes [f ] of quasiconformal maps f on R.
The Teichmüller distance dT on T (R) is defined by dT ([f1], [f2]) = log K(g),
where g is an extremal quasiconformal map in the sense that its maximal
dilatation K(g) is minimal in the homotopy class of f2 ◦ f−1

1 . This is a com-
plete metric on T (R). The reduced Teichmüller modular group Mod(R) of
R is a group of the homotopy classes [h] of quasiconformal automorphisms
h of R. Each element [h] of Mod(R) induces an automorphism of T (R) by
[f ] 7→ [f ◦ h−1], which is an isometry with respect to dT .

We now make a couple of definitions given in terms of the hyperbolic geom-
etry of Riemann surfaces.

Definition. For a constant M > 0, we define RM to be the set of points
p ∈ R for which there exists a non-trivial simple closed curve cp passing through
p with l(cp) < M . The set Rε is called the ε-thin part of R if ε > 0 is smaller
than the Margulis constant. Furthermore, a connected component of the ε-thin
part corresponding to a puncture is called the cusp neighborhood.

Remark. The injectivity radius at a point p ∈ R is the supremum of radii
of embedded hyperbolic discs centered at p. Note that RM coincides with the
set of those points having the injectivity radius less than M/2.

Definition. We say that R satisfies the lower bound condition if there exists
a constant ε > 0 such that ε-thin part of R consists of only cusp neighborhoods
or neighborhoods of geodesics which are homotopic to boundary components.
We also say that R satisfies the upper bound condition if there exist a constant
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M > 0 and a connected component R∗
M of RM such that the homomorphism

of π1(R
∗
M ) to π1(R) induced by the inclusion map of R∗

M into R is surjective.

Remark. The lower and upper bound conditions are quasiconformally in-
variant notions (see [5, Lemma 8]).

We shall obtain a range of maximal dilatations of quasiconformal automor-
phisms f inducing periodic elements χ ∈ Mod(R). Moreover, we get a concrete
estimate for the order of χ.

Theorem 2.1. Let R be a Riemann surface satisfying the lower bound con-
dition for a constant ε > 0 as well as the upper bound condition for a constant
M > 0 and a connected component R∗

M of RM . For a given constant l > 0,
there exists a constant K0 = K0(ε, M, l) > 1 depending only on ε, M and l
that satisfies the following: Let f be a quasiconformal automorphism of R such
that f(c) is homotopic to c for a simple closed geodesic c on R with c ⊂ R∗

M

and l(c) = l . Suppose K(f) < K0. Then there exists a positive integer n ≤ N0

such that fn is homotopic to the identity. Here

N0 = N0(M, l) = − l

log(tanh(D + 13.5))
,

D = D(M, l) =




2 arccosh

(
sinh(M/2)

sinh(l/2)

)
+ M if l ≤ M,

M if l ≥ M.

In particular, when K(f) = 1, we have the following:

Theorem 2.2. Let R be a Riemann surface satisfying the upper bound con-
dition for a constant M > 0 and a connected component R∗

M of RM as well as
the lower bound condition. Let f be a conformal automorphism of R such that
f(c) = c for a simple closed geodesic c on R with c ⊂ R∗

M and l(c) = l > 0.
Then the order n of f satisfies

n ≤ − l

log(tanh(D/2))
,

where D = D(M, l) is the same constant as in Theorem 2.1.

Note that for M ≥ arcsinh(2/
√

3) = 0.98 · · · and every l > 0, we have

− l

log(tanh(M/2))
< (eM − 1) cosh(l/2).

Here the constant arcsinh(2/
√

3) is the smallest possible value of M for which
R satisfies the upper bound condition (see [6]). Hence when l ≥ M , the
upper bound of the order of f obtained in Theorem 2.2 is smaller than that in
Theorem 1.1. However, when l < M , the estimate in Theorem 1.1 is still better



4 EGE FUJIKAWA

than that in Theorem 2.2 for all sufficiently small l . In fact, (eM −1) cosh(l/2)
converges to eM − 1 as l → 0, while −l/(log(tanh(D/2))) diverges to +∞.

In connection with Theorems 2.1 and 2.2, we would like to mention the result
about the discreteness of the orbit of a certain subgroup of the Teichmüller
modular group.

Proposition 2.3 ([5]). Let R be a Riemann surface satisfying the lower
and upper bound conditions. For a simple closed geodesic c on R, let G be a
subgroup of Mod(R) such that g(c) is homotopic to c for every [g] ∈ G. Then
for every point p ∈ T (R), the orbit G(p) of p is a discrete subset in T (R).
Furthermore, for any point p ∈ T (R), there exist only finitely many elements
[g] in G that fix p.

3. Proof of Theorems

For a proof of these theorems, we first prove some properties on the hyper-
bolic geometry of Riemann surfaces.

Proposition 3.1. Let R = H/Γ be a Riemann surface satisfying the upper
bound condition for a constant M > 0 and a connected component R∗

M of RM .
Suppose that L is the axis of a hyperbolic element of Γ such that the projection
π(L) is a simple closed geodesic c on R with c ⊂ R∗

M and l(c) = l > 0. Then
there exists an axis L′ of a hyperbolic element of Γ such that L ∩ L′ = ∅,
d(L,L′) ≤ D and π(L′) = π(L). Here D = D(M, l) is the same constant as in
Theorem 2.1.

Proof. First we assume that l > M . Since c ⊂ R∗
M , there exists a non-trivial

simple closed curve α passing through p ∈ c with l(α) < M . It follows from
the assumption l > M that α is not homotopic to c, which implies that there
exists an axis L′ (6= L) such that π(L′) = c and d(L,L′) < M .

Next we assume that l ≤ M . We further assume that there exists an annular
neighborhood A(c) of c with width ω(c), where

ω(c) = arccosh

(
sinh(M/2)

sinh(l/2)

)
.

Then, for any q ∈ ∂A(c), the boundary of A(c), the shortest simple closed
curve γ passing through q and homotopic to c has length M .

Indeed, we may assume that L = {iy | y > 0}, and q̃ = eiθ and q̃′ = el+iθ

are lifts of q to H. Then, by the equality (7.20.3) in [2], we have

1

sin θ
=

1

cos(π/2− θ)
= coshd(q̃, L) = coshω(c) =

sinh(M/2)

sinh(l/2)
.
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Thus, by Theorem 7.2.1 in [2], we see that

sinh
1

2
d(q̃, q̃′) =

|q̃ − q̃′|
2 (Imq̃ Imq̃′)1/2

=
el − 1

2 el/2 sin θ
=

sinh(l/2)

sin θ
= sinh

M

2
,

which implies that l(γ) = d(q̃, q̃′) = M .
We can take a point q0 ∈ ∂A(c) such that q0 ∈ R∗

M . Indeed, otherwise,
∂A(c) ∩ R∗

M = ∅. Since c ⊂ R∗
M , this means that R∗

M is an annular neighbor-
hood of c, contradicting the upper bound condition.

By the definition of RM , there exists a non-trivial simple closed curve β
passing through q0 with l(β) < M . By the consideration above, we see that
the curve β is not homotopic to c. Hence there exists an axis L′ (6= L) such
that π(L′) = c and d(L,L′) < 2ω(c) + M .

Finally, we assume that l ≤ M and that the width of the maximal annular
neighborhood A(c) of c is less than ω(c). Then there exists an axis L′ (6= L)
such that π(L′) = c and d(L,L′) < 2ω(c).

We now estimate the number of axes satisfying Proposition 3.1.

Definition. For an element γ of a Fuchsian group, we say that two axes
L1 and L2 are γ-equivalent if γn(L1) = L2 for some n ∈ Z.

Proposition 3.2. Let R = H/Γ be a Riemann surface and D0 > 0 a con-
stant. Furthermore, let L be the axis of a hyperbolic element γ ∈ Γ such that
the projection π(L) is a simple closed geodesic c on R with l(c) = l > 0. Let
S be the set of axes L′ of hyperbolic elements of Γ satisfying the following: (i)
L ∩ L′ = ∅, (ii) d(L,L′) ≤ D0, (iii) π(L′) = c and (iv) there exists an arc α
connecting L and L′ whose projection to R has no intersection with c except
at the end points. Then the number of γ-equivalence classes of axes in S is
dominated by

− l

log(tanh(D0/2))
.

Proof. We may assume that L = {iy | y > 0}. We take θ0 (0 < θ0 < π/2)
so that coshD0 = (cos θ0)

−1 and set θ = π/2 − θ0. Furthermore, we set

T+ = {reiθ | 1 ≤ r < el} and T− = {rei(π−θ) | 1 ≤ r < el}.
Then d(L, T+) = D0 and d(L, T−) = D0. To estimate the number of γ-
equivalence classes of elements in S, we have only to consider the maximal
number n of disjoint axes L′ that are tangent to T+ or T−.

Let C be the Euclidean circle on C that is tangent to the segment T+ and
has center a > 0 with radius r. Then r = a sin θ, and the circle C passes
through two points,

x1 = (1 − sin θ)a and x2 = (1 + sin θ)a.
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The ratio of these points is given by

s =
x2

x1
=

1 + sin θ

1 − sin θ
=

1 + cos θ0

1 − cos θ0
=

cosh D0 + 1

cosh D0 − 1
=

1

(tanh(D0/2))2 .

Hence it is easy to see that

n ≤ 2 · l

log s
= − l

log(tanh(D0/2))
.

The following proposition gives a relationship between the hyperbolic dis-
tance of two axes and that of their images under a quasiconformal map.

Proposition 3.3 ([1]). Let f be a K-quasiconformal automorphism of H.
Then there exists a constant C = C(K) > 0 depending only on K such that,
for any two geodesics L1 and L2 in H, the inequality

K−1 · d(L1, L2) −C ≤ d(f(L1)∗, f(L2)∗) ≤ K · d(L1, L2) + C

holds. The constant C(K) satisfies C(K) → 0 as K → 1, and may be taken
to be

(1/2)arccosh
(
2−(K−1)2e6(K+1)2

√
K−1

)
.

The following proposition gives a sufficient condition for the maximal di-
latations of quasiconformal maps to be bounded away from one.

Proposition 3.4 ([4]). Let R = H/Γ be a Riemann surface. Suppose that
R satisfies the lower bound condition for a constant ε > 0 as well as the
upper bound condition for a constant M > 0 and a connected component R∗

M

of RM . Let B > 0 and l > 0 be constants. Then there exists a constant
A0 = A0(ε, M,B, l) > 1 depending only on ε, M , B, l and satisfying the
following conditions: Given a quasiconformal automorphism f of R, suppose
that there exist three disjoint axes Li (i = 1, 2, 3) of hyperbolic elements of Γ
such that

1. their projections π(Li) on R are simple closed geodesics ci (i = 1, 2, 3)
with ci ⊂ R∗

M and l(ci) ≤ l ,
2. d(L1, L2) ≤ B,

3. f̃(L1)∗ = L1, f̃ (L2)∗ = L2, f̃ (L3)∗ 6= L3 for a lift f̃ of f to H.

Then K(f) ≥ A0.

We now prove our theorems.

Proof of Theorem 2.1. We set B := D = D(M, l) in Proposition 3.4 and let
A0 = A0(ε, M, l) > 1 be a constant depending only on ε, M and l obtained
in Proposition 3.4. Setting A = min{A0, 2}, we prove the statement for K0 =
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A1/(N0+1). Namely, we show that, if K(f) < K0, then there exists an integer
n ≤ N0 such that fn is homotopic to the identity.

Let Γ be a Fuchsian model of R. Furthermore let L1 be an axis such that
π(L1) = c and γ1 the primitive hyperbolic element of Γ with axis L1. By ap-
plying Proposition 3.1 to L1, we see that there exists an axis L2 of a hyperbolic
element γ2 of Γ such that L1 ∩ L2 = ∅, d(L1, L2) ≤ D and π(L1) = π(L2).

Let f̃ be a lift of f to H satisfying f̃(L1)∗ = L1. Since K(f) < K0 =
A1/(N0+1), we have K(fk) < A for k ≤ N0 + 1. Then, by Proposition 3.3,

d(L1, f̃
k(L2)∗) = d(f̃k(L1)∗, f̃k(L2)∗) ≤ A · d(L1, L2) + C(A)(1)

≤ 2D + C(2) = 2D + (1/2)arccosh(e54/2)

≤ 2D + 27

for all k ≤ N0 + 1.
We consider the set S0 of all axes L′ of hyperbolic elements of Γ satisfying

the following conditions: (i) L1∩L′ = ∅, (ii) d(L1, L
′) ≤ 2D+27, (iii) π(L′) = c

and (iv) there exists an arc α connecting L1 and L′ such that the projection
of α to R has no intersection with c except at the end points. We see that the
set S ′ = {f̃k(L2)∗}N0+1

k=1 is contained in S0. Indeed, by the proof of Proposition

3.1, the axis L2 satisfies the property (iv), and since f̃k is a homeomorphism,

the axes f̃k(L2)∗ satisfy the same property. The other properties (i), (ii), (iii)
are also satisfied.

By Proposition 3.2, the number of γ1-equivalence classes of elements in S0 is
dominated by N0. Hence there exist at least two elements in S ′, say f̃m1(L2)∗
and f̃m2(L2)∗ (1 ≤ m1 < m2 ≤ N0 + 1), that are γ1-equivalent to each other.

Thus there exists j ∈ Z such that γj
1 ◦ f̃n(L2)∗ = L2, where n = m2 − m1

(≤ N0). With this n, we will prove that fn is homotopic to the identity. We

set F = γj
1 ◦ f̃n, which is a lift of fn to H.

Suppose to the contrary that fn is not homotopic to the identity. We set
χ(γ) = F ◦ γ ◦ F−1 for γ ∈ Γ. Then there exists γ3 ∈ Γ such that χ(γ3) 6= γ3.
Setting γ′

i = γ3 ◦ γi ◦ γ−1
3 for i = 1, 2, we claim that either χ(γ ′

1) 6= γ′
1 or

χ(γ ′
2) 6= γ′

2 is satisfied. Suppose that both χ(γ ′
1) = γ′

1 and χ(γ ′
2) = γ′

2 are
satisfied. Since χ(γi) = γi, we have β ◦ γi ◦ β−1 = γi (i = 1, 2), where β =
γ−1

3 ◦ χ(γ3). Thus, β fixes all fixed points of γ1 and γ2. Since γ1 and γ2 are
non-commutative, the Möbius transformation β fixes four points and must be
the identity. This contradicts that χ(γ3) 6= γ3.

Hence either F (γ3(L1))∗ 6= γ3(L1) or F (γ3(L2))∗ 6= γ3(L2) is satisfied, and
we may assume without loss of generality that F (γ3(L1))∗ 6= γ3(L1). Since
π(γ3(L1)) = π(L1) = c, we can apply Proposition 3.4 to the lift F of fn and to
the three axes L1, L2 and γ3(L1). Then we have K(fn) ≥ A0, a contradiction,
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since we assumed K(fn) < A ≤ A0. Hence if K(f) < A1/(N0+1), then fn is
homotopic to the identity.

Proof of Theorem 2.2. In the proof of Theorem 2.1, we can replace the
inequality (1) with

d(L1, f̃
k(L2)∗) = d(f̃k(L1)∗, f̃k(L2)∗) = d(L1, L2) = D.

Hence we have only to replace the constant 2D+27 with D in Theorem 2.1.
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