THE ORDER OF PERIODIC ELEMENTS
OF TEICHMULLER MODULAR GROUPS

EGE FUJIKAWA

ABSTRACT. We consider a quasiconformal automorphism of a Riemann
surface, which fixes the homotopy class of a simple closed geodesic. Under
certain conditions on the injectivity radius of the surface and bounds on the
dilatation of the map, the automorphism induces a periodic element of the
Teichmiiller modular group. We may also estimate the order of the period.

1. INTRODUCTION

Let R be an arbitrary Riemann surface with possibly infinitely generated
fundamental group. An element y of the Teichmiiller modular group Mod(R) is
induced by a quasiconformal automorphism f of R. We would like to determine
when the order of y is finite. When f is a conformal automorphism of R, then
the element x of Mod(R) induced by f fixes the base point of the Teichmiiller
space T'(R). In [3], we proved that, for a Riemann surface R with non-abelian
fundamental group, a conformal automorphism f of R has finite order if and
only if f fixes either a simple closed geodesic, a puncture or a point on R. In
each case, we obtained a concrete estimate for the order of f in terms of the
injectivity radius on R. One of our results is the following. For the definition
of the upper bound condition, see the next section.

Theorem 1.1 ([3], [4]). Let R be a hyperbolic Riemann surface with non-
abelian fundamental group. Suppose that R satisfies the upper bound condition
for a constant M > 0 and a connected component R}, of Ry . Let f be a
conformal automorphism of R such that f(c) = ¢ for a simple closed geodesic
c on R with ¢ C R}, and l(c) =1 > 0. Then the order n of f satisfies

n < (e™ —1)cosh(1/2).

The purpose of this paper is to extend Theorem 1.1 to a quasiconformal
automorphism f. One of the difficulties that arise is that the element y €
Mod(R) induced by f need not have a fixed point on T'(R). However, we will
show that if the maximal dilatation of f is smaller than some constant, then
X is periodic.
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2. STATEMENT OF THEOREM

Let H be the upper half-plane equipped with the hyperbolic metric |dz|/Im z.
Throughout this paper, we assume that a Riemann surface R is hyperbolic.
Namely, it is represented as H/T" for some torsion-free Fuchsian group I' acting
on H. Furthermore, we also assume that R has a non-abelian fundamental
group. The hyperbolic distance on H is denoted by d, and the hyperbolic
length of a curve ¢ on R by [(¢). For the axis L of a hyperbolic element
of the Fuchsian group I', we denote by 7r(L) the projection of L to H/I.
When there is no fear of confusion, we denote this simply by 7(L). Also, for a
quasiconformal automorphism f of H, we denote by f (L). the geodesic having
the same end points as those of f(L).

We recall the definition of Teichmiiller spaces and Teichmiiller modular
groups. Fix a Riemann surface R. We say that two quasiconformal maps
fi and fy on R are equivalent if f o f{' is homotopic to a conformal map of
fi(R) onto fo(R). The reduced Teichmiiller space T'(R) with the base Riemann
surface R is the set of all equivalence classes [ f] of quasiconformal maps f on R.
The Teichmiiller distance dy on T'(R) is defined by dr([fi1], [f2]) = log K(g),
where ¢ is an extremal quasiconformal map in the sense that its maximal
dilatation K(g) is minimal in the homotopy class of f o f;'!. This is a com-
plete metric on T'(R). The reduced Teichmiiller modular group Mod(R) of
R is a group of the homotopy classes [h] of quasiconformal automorphisms
h of R. Each element [h] of Mod(R) induces an automorphism of T'(R) by
[f] +— [f o h™!], which is an isometry with respect to dr.

We now make a couple of definitions given in terms of the hyperbolic geom-
etry of Riemann surfaces.

DEFINITION. For a constant M > 0, we define R); to be the set of points
p € R for which there exists a non-trivial simple closed curve ¢, passing through
p with [(¢,) < M. The set R, is called the e-thin part of R if € > 0 is smaller
than the Margulis constant. Furthermore, a connected component of the e-thin
part corresponding to a puncture is called the cusp neighborhood.

REMARK. The injectivity radius at a point p € R is the supremum of radii
of embedded hyperbolic discs centered at p. Note that R,; coincides with the
set of those points having the injectivity radius less than M/2.

DEFINITION. We say that R satisfies the lower bound condition if there exists
a constant € > 0 such that e-thin part of R consists of only cusp neighborhoods
or neighborhoods of geodesics which are homotopic to boundary components.
We also say that R satisfies the upper bound condition if there exist a constant
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M > 0 and a connected component R}, of Rj; such that the homomorphism
of m(Rj,) to m(R) induced by the inclusion map of R}, into R is surjective.

REMARK. The lower and upper bound conditions are quasiconformally in-
variant notions (see [5, Lemma 8§]).

We shall obtain a range of maximal dilatations of quasiconformal automor-
phisms f inducing periodic elements x € Mod(R). Moreover, we get a concrete
estimate for the order of y.

Theorem 2.1. Let R be a Riemann surface satisfying the lower bound con-
dition for a constant € > 0 as well as the upper bound condition for a constant
M > 0 and a connected component R}, of Ry. For a given constant | > 0,
there exists a constant Ky = Ko(e, M,1) > 1 depending only on ¢, M and |
that satisfies the following: Let f be a quasiconformal automorphism of R such
that f(c) is homotopic to ¢ for a simple closed geodesic ¢ on R with ¢ C R},
and l(c) = 1. Suppose K(f) < Ky. Then there ezists a positive integer n < Ny
such that f™ is homotopic to the identity. Here

l

No = No(M, ) = —
0 o(M, 1) log(tanh(D + 13.5))’
sinh(M/2) ,
2 h|{ —F—= M <M
D= D(M, 1) = arccos ( Snh(1/2) ) + if 1 <M,

if 1> M.

In particular, when K(f) = 1, we have the following:

Theorem 2.2. Let R be a Riemann surface satisfying the upper bound con-
dition for a constant M > 0 and a connected component R}, of Ry as well as
the lower bound condition. Let f be a conformal automorphism of R such that
f(c) = ¢ for a simple closed geodesic ¢ on R with ¢ C R}, and l(c) =1 > 0.
Then the order n of f satisfies

z
"= Tlog(tanh(D/2))

where D = D(M, 1) is the same constant as in Theorem 2.1.

Note that for M > arcsinh(2/v/3) = 0.98--- and every [ > 0, we have
[
log(tanh(M/2))
Here the constant arcsinh(2/+/3) is the smallest possible value of M for which
R satisfies the upper bound condition (see [6]). Hence when [ > M, the

upper bound of the order of f obtained in Theorem 2.2 is smaller than that in
Theorem 1.1. However, when [ < M, the estimate in Theorem 1.1 is still better

< (e™ —1)cosh(1/2).
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than that in Theorem 2.2 for all sufficiently small . In fact, (™ — 1) cosh(l/2)
converges to e — 1 as [ — 0, while —/(log(tanh(D/2))) diverges to +ooc.

In connection with Theorems 2.1 and 2.2, we would like to mention the result
about the discreteness of the orbit of a certain subgroup of the Teichmiiller
modular group.

Proposition 2.3 ([5]). Let R be a Riemann surface satisfying the lower
and upper bound conditions. For a simple closed geodesic ¢ on R, let G be a
subgroup of Mod(R) such that g(c) is homotopic to c for every [g] € G. Then
for every point p € T(R), the orbit G(p) of p is a discrete subset in T(R).
Furthermore, for any point p € T'(R), there exist only finitely many elements
lg] in G that fiz p.

3. PROOF OF THEOREMS

For a proof of these theorems, we first prove some properties on the hyper-
bolic geometry of Riemann surfaces.

Proposition 3.1. Let R = H/T" be a Riemann surface satisfying the upper
bound condition for a constant M > 0 and a connected component R}, of Ry.
Suppose that L is the axis of a hyperbolic element of I' such that the projection
(L) is a simple closed geodesic ¢ on R with ¢ C R}, and l(c) = 1> 0. Then
there exists an axis L' of a hyperbolic element of I’ such that L N L = 0,
d(L,L") < D and (L") = w(L). Here D = D(M, 1) is the same constant as in
Theorem 2.1.

Proof. First we assume that [ > M. Since ¢ C R}, there exists a non-trivial
simple closed curve « passing through p € ¢ with I(a) < M. It follows from
the assumption [ > M that « is not homotopic to ¢, which implies that there
exists an axis L' (# L) such that 7(L') = c and d(L, L") < M.

Next we assume that [ < M. We further assume that there exists an annular
neighborhood A(c) of ¢ with width w(c), where

Then, for any ¢ € JA(c), the boundary of A(c), the shortest simple closed
curve v passing through ¢ and homotopic to ¢ has length M.

Indeed, we may assume that L = {iy | y > 0}, and ¢ = € and ¢ = ¢
are lifts of ¢ to H. Then, by the equality (7.20.3) in [2], we have

I 1 B —— _ sinh(M/2)
sinfd  cos(m/2—6) coshd(q, L) = coshw(c) = sinh(1/2)

1+i0




PERIODIC ELEMENTS OF TEICHMULLER MODULAR GROUPS 5
Thus, by Theorem 7.2.1 in [2], we see that

o1 G —q| el —1 sinh(1/2) . M
81nh2d(q,q) ~ 2(ImGImg)'/2 ~ 2el/28inf  sing sinh 27
which implies that I(y) = d(q,q') = M.

We can take a point ¢y € 0A(c) such that ¢y € Rj,;. Indeed, otherwise,
JA(c) N Ry, = 0. Since ¢ C Rj;, this means that R}, is an annular neighbor-
hood of ¢, contradicting the upper bound condition.

By the definition of Ry, there exists a non-trivial simple closed curve (3
passing through ¢o with [(3) < M. By the consideration above, we see that
the curve [ is not homotopic to ¢. Hence there exists an axis L’ (# L) such
that 7(L') = c and d(L, L") < 2w(c) + M.

Finally, we assume that [ < M and that the width of the maximal annular
neighborhood A(c) of ¢ is less than w(c). Then there exists an axis L' (# L)
such that 7(L') = c and d(L, L") < 2w(c). O

We now estimate the number of axes satisfying Proposition 3.1.

DEFINITION. For an element v of a Fuchsian group, we say that two axes
Ly and Ly are y-equivalent if 4" (L) = Lo for some n € Z.

Proposition 3.2. Let R = H/T" be a Riemann surface and Dy > 0 a con-
stant. Furthermore, let L be the axis of a hyperbolic element v € I' such that
the projection w(L) is a simple closed geodesic ¢ on R with I(c¢) =1 > 0. Let
S be the set of axes L' of hyperbolic elements of I satisfying the following: (i)
LNL =0, (i) d(L,L") < Dy, (iii) 7(L") = ¢ and (iv) there exists an arc «
connecting L and L' whose projection to R has no intersection with ¢ except
at the end points. Then the number of v-equivalence classes of axes in S is
dominated by

l

~ log(tanh(Dy/2))”

Proof. We may assume that L = {iy | y > 0}. We take 6 (0 < 6y < 7/2)
so that cosh Dy = (cos 6y) ™! and set § = 7/2 — 6y. Furthermore, we set

T, = {reié’ [1<r< el} and T — {rei(Tr—G) 11<r< el}.

Then d(L,T}) = Dy and d(L,T7-) = Dy. To estimate the number of -
equivalence classes of elements in S, we have only to consider the maximal
number n of disjoint axes L’ that are tangent to T or T_.

Let C' be the Euclidean circle on C that is tangent to the segment 7, and
has center a > 0 with radius . Then r = a sinf, and the circle C' passes
through two points,

r1=(1—-sinf)a and  z2 = (1+sinb)a.
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The ratio of these points is given by
o 1+sinf 1+cosfy coshDy+1 1
s=—= = =

17 1l—sinf® 1—cosfy coshDy—1 (tanh(DO/Q))T

Hence it is easy to see that

n < 2- : = — : .
log s log(tanh(Dy/2))

O

The following proposition gives a relationship between the hyperbolic dis-
tance of two axes and that of their images under a quasiconformal map.

Proposition 3.3 ([1]). Let f be a K-quasiconformal automorphism of H.
Then there exists a constant C' = C(K) > 0 depending only on K such that,
for any two geodesics Ly and Lo in H, the inequality

K_l ' d(L17L2> -C < d(f(L1>*7 f(L2>*> < K- d(L17L2> +C

holds. The constant C(K) satisfies C(K) — 0 as K — 1, and may be taken
to be
(1/2)arccosh <2_(K_1)2€6(K+1)2VK_1) :

The following proposition gives a sufficient condition for the maximal di-
latations of quasiconformal maps to be bounded away from one.

Proposition 3.4 ([4]). Let R = H/T' be a Riemann surface. Suppose that
R satisfies the lower bound condition for a constant ¢ > 0 as well as the
upper bound condition for a constant M > 0 and a connected component R},
of Ry, Let B > 0 and | > 0 be constants. Then there exists a constant
Ay = Ao(e, M, B,1) > 1 depending only on ¢, M, B, | and satisfying the
following conditions: Given a quasiconformal automorphism f of R, suppose
that there exist three disjoint azes L; (i = 1,2,3) of hyperbolic elements of T’
such that

1. their projections w(L;) on R are simple closed geodesics ¢; (i = 1,2,3)

with ¢; C Ry, and I(¢;) <1,

2. d(Ly, Ly) < B,

3. f(L1). = Lo, f(L2) = Lo, f(Ls).#Ls foralift f of f toHL.

Then K(f) > Ay.

We now prove our theorems.

Proof of Theorem 2.1. We set B := D = D(M, [) in Proposition 3.4 and let
Ay = Ao(e, M, 1) > 1 be a constant depending only on €, M and [ obtained
in Proposition 3.4. Setting A = min{ Ay, 2}, we prove the statement for K, =
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AYNot1) - Namely, we show that, if K(f) < Ko, then there exists an integer
n < Ny such that f™ is homotopic to the identity.

Let I be a Fuchsian model of R. Furthermore let L; be an axis such that
m(L1) = ¢ and 7, the primitive hyperbolic element of I" with axis L;. By ap-
plying Proposition 3.1 to L;, we see that there exists an axis L of a hyperbolic
element v, of " such that Ly N Ly =0, d(Ly, Le) < D and m(Ly) = w(La).

Let f be a lift of f to H satisfying f(Li). = Li. Since K(f) < Ky =
AV WNot) " we have K(f*) < A for k < Ny + 1. Then, by Proposition 3.3,

(1) d(Ly, fY(La)) = d(f*(La)s, fH(L2)e) < A-d(Ly, L) + C(A)
2D + C(2) = 2D + (1/2)arccosh(e**/2)

<
< 2D 427

for all K < Ng + 1.

We consider the set Sy of all axes L’ of hyperbolic elements of ' satisfying
the following conditions: (i) LiNL =0, (ii) d(Ly, L") < 2D+27, (iii) (L") = ¢
and (iv) there exists an arc o connecting Ly and L' such that the projection
of a to R has no intersection with ¢ except at the end points. We see that the
set S = { f* (L2). fﬁvﬁfl is contained in Sy. Indeed, by the proof of Proposition
3.1, the axis Lo satisfies the property (iv), and since f’“ is a homeomorphism,
the axes f¥(Ls), satisfy the same property. The other properties (i), (ii), (ii)
are also satisfied.

By Proposition 3.2, the number of v;1-equivalence classes of elements in Sy is
dominated by Ny. Hence there exist at least two elements in S’ say f™(Ls).
and ]?T"Q(L2)>k (1 <my <mg < Ny+ 1), that are y1-equivalent to each other.
Thus there exists j € Z such that ~ o f’l(Lg))k = Lo, where n = my — my
(< Np). With this n, we will prove that f™ is homotopic to the identity. We
set F' =~ o f, which is a lift of f to H.

Suppose to the contrary that f™ is not homotopic to the identity. We set
x(y) = Fovyo F~! for v € . Then there exists 3 € I" such that x(y3) # 7s.
Setting 7/ = y3 07 075" for i = 1,2, we claim that either x(7}) # 7} or
X(7v%) # 4 is satisfied. Suppose that both x(v;) = 74 and x(v4) = 74 are
satisfied. Since x(7;) = i, we have Sov; 0 71 = ~; (i = 1,2), where =
751 o x(73). Thus, 3 fixes all fixed points of 7, and 7,. Since v; and 7, are
non-commutative, the Mobius transformation (3 fixes four points and must be
the identity. This contradicts that x(7y3) # 7s.

Hence either F(v3(L1))« # v3(L1) or F(v3(La))« # v3(La) is satisfied, and
we may assume without loss of generality that F'(y3(L1))« # v3(L1). Since
m(v3(L1)) = m(L1) = ¢, we can apply Proposition 3.4 to the lift /" of f" and to
the three axes Ly, Ly and 73(L1). Then we have K(f") > Ag, a contradiction,
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since we assumed K (f") < A < Ag. Hence if K(f) < AY®Mo+t1) then f is
homotopic to the identity. O

Proof of Theorem 2.2. In the proof of Theorem 2.1, we can replace the
inequality (1) with

(L1, f*(Ls).) = d(f*(L1)s, [¥(La).) = d(Ln, Ls) = D.
Hence we have only to replace the constant 20427 with D in Theorem 2.1. [
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