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Abstract

We investigate the random dynamics of rational maps and the dynamics of semigroups of
rational maps on the Riemann sphere Ĉ. We show that regarding random complex dynamics
of polynomials, generically, the chaos of the averaged system disappears, due to the automatic
cooperation of the generators. We investigate the iteration and spectral properties of transition
operators acting on the space of (Hölder) continuous functions on Ĉ. We also investigate
the stability and bifurcation of random complex dynamics. We show that the set of stable
systems is open and dense in the space of random dynamics of polynomials. Moreover, we
prove that for a stable system, there exist only finitely many minimal sets, each minimal set is
attracting, and the orbit of a Hölder continuous function on Ĉ under the transition operator
tends exponentially fast to the finite-dimensional space U of finite linear combinations of
unitary eigenvectors of the transition operator. Thus the spectrum of the transition operator
acting on the space of Hölder continuous functions has a gap between the set of unitary
eigenvalues and the rest. Combining this with the perturbation theory for linear operators, we
obtain that for a stable system constructed by a finite family of rational maps, the projection
to the space U depends real-analytically on the probability parameters. By taking a partial
derivative of the function of probability of tending to a minimal set with respect to a probability
parameter, we obtain a complex analogue of the Takagi function. Many new phenomena which
can hold in random complex dynamics but cannot hold in the iteration of a single rational
map are found and systematically investigated.

1 Introduction

The details of this talk are included in the author’s papers [48, 50].
One motivation for research in complex dynamical systems (for the introductory texts, see

[23, 3]) is to describe some mathematical models on ethology. For example, the behavior of the
population of a certain species can be described by the dynamical system associated with iteration
of a polynomial f(z) = az(1 − z) (cf. [9]). However, when there is a change in the natural
environment, some species have several strategies to survive in nature. From this point of view,
it is very natural and important not only to consider the dynamics of iteration, where the same
survival strategy (i.e., function) is repeatedly applied, but also to consider random dynamics, where
a new strategy might be applied at each time step. Another motivation for research in complex
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dynamics is Newton’s method to find a root of a complex polynomial, which often is expressed as
the dynamics of a rational map g on Ĉ with deg(g) ≥ 2, where deg(g) denotes the degree of g.
We sometimes use computers to analyze such dynamics, and since we have some errors at each
step of the calculation in the computers, it is quite natural to investigate the random dynamics of
rational maps. In various fields, we have many mathematical models which are described by the
dynamical systems associated with polynomial or rational maps. For each model, it is natural and
important to consider a randomized model, since we always have some kind of noise or random
terms in nature. The first study of random complex dynamics was given by J. E. Fornaess and
N. Sibony ([10]). They mainly investigated random dynamics generated by small perturbations of
a single rational map. For research on random complex dynamics of quadratic polynomials, see
[4, 5, 6, 7, 8, 11]. For research on random dynamics of polynomials (of general degrees), see the
author’s works [45, 46, 47, 49, 48, 50]. For the texts of general theory of random dynamical systems
(on real manifolds), see [1, 20], though these texts do not deal with random complex dynamics.
There have been no textbooks of random complex dynamics yet.

In order to investigate random complex dynamics, it is very natural to study the dynamics of
associated rational semigroups. In fact, it is a very powerful tool to investigate random complex
dynamics, since random complex dynamics and the dynamics of rational semigroups are related
to each other very deeply. The first study of dynamics of rational semigroups was conducted
by A. Hinkkanen and G. J. Martin ([14]), who were interested in the role of the dynamics of
polynomial semigroups (i.e., semigroups of non-constant polynomial maps) while studying various
one-complex-dimensional moduli spaces for discrete groups, and by F. Ren’s group ([12]), who stud-
ied such semigroups from the perspective of random dynamical systems. Since the Julia set J(G)
of a finitely generated rational semigroup G = 〈h1, . . . , hm〉 has “backward self-similarity,” i.e.,
J(G) =

∪m
j=1 h−1

j (J(G)) (see [34, Lemma 1.1.4]), the study of the dynamics of rational semigroups
can be regarded as the study of “backward iterated function systems,” and also as a generalization
of the study of self-similar sets in fractal geometry. For recent work on the dynamics of rational
semigroups, see the author’s papers [34]–[50], and [27, 28, 29, 30, 31, 32, 33, 51, 52, 53, 54]. ([31] is
a very nice introductory paper which gives a short and elementary proof of the density of repelling
fixed points in the Julia set of a rational semigroup.)

In this talk, by combining several results from [48] and many new ideas, we investigate the
random complex dynamics and the dynamics of rational semigroups. In the usual iteration dy-
namics of a single rational map g with deg(g) ≥ 2, we always have a non-empty chaotic part, i.e.,
in the Julia set J(g) of g, which is a perfect set, we have sensitive initial values and dense orbits.
Moreover, for any ball B with B∩J(g) 6= ∅, gn(B) expands as n → ∞ (gn denotes the n-th iterate
of g). Regarding random complex dynamics, it is natural to ask the following question. Do we
have a kind of “chaos” in the averaged system? Or do we have no chaos? How do many kinds of
maps in the system interact? What can we say about stability and bifurcation? Since the chaotic
phenomena hold even for a single rational map, one may expect that in random dynamics of ratio-
nal maps, most systems would exhibit a great amount of chaos. However, it turns out that this is
not true. One of the main purposes of this talk is to present that for a generic system of random
complex dynamics of polynomials, many kinds of maps in the system “automatically” cooperate
so that they make the chaos of the averaged system disappear, even though the dynamics of each
map in the system have a chaotic part. We call this phenomenon the “cooperation principle”.
Moreover, we prove that for a generic system, we have a kind of stability (see Theorem C). We re-
mark that the chaos disappears in the C0 “sense”, but under certain conditions, the chaos remains
in the Cβ “sense”, where Cβ denotes the space of β-Hölder continuous functions with exponent
β ∈ (0, 1) (see Appendix).

Before going into the details of random complex dynamics, We consider the random dynamical
systems on R. In order to do that, let us recall the definition of the devil’s staircase (the Cantor
function), Lebesgue’ singular functions, and the Takagi function. Generally, the devil’s staircase,
Lebesgue’s singular functions, and the Takagi function are defined as bounded functions on [0, 1]
which satisfy some kinds of functional equations and boundary conditions ([55, 2]). More precisely
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(the following definitions look a little bit different from those in [55, 2], but it turns out that they
are equivalent to those in [55, 2]), the devil’s staircase is defined as the restriction ϕ|[0,1], where
ϕ : R → R is the unique bounded function which satisfies

1
2
ϕ(3x) +

1
2
ϕ(3x − 2) = ϕ(x) (∀x ∈ R), ϕ|(−∞,0] ≡ 0, ϕ|[1,+∞) ≡ 1, (1)

and for each 0 < a < 1 with a 6= 1/2, Lebesgue’s singular function La is defined as the restriction
ψa|[0,1], where ψa : R → R is the unique bounded function which satisfies

aψa(2x) + (1 − a)ψa(2x − 1) = ψa(x) (∀x ∈ R), ψa|(−∞,0] ≡ 0, ψa|[1,+∞) ≡ 1, (2)

and the Takagi function is defined as the restriction φ/2|[0,1], where φ : R → R is the unique
bounded function which satisfies

1
2
φ(2x) +

1
2
φ(2x − 1) + ψ1/2(2x) − ψ1/2(2x − 1) = φ(x) (∀x ∈ R), φ|(−∞,0]∪[1,+∞) ≡ 0. (3)

We now give a (relatively new, uncommon) interpretation for these functions in terms of random
dynamical systems on R. Let f1(x) := 3x, f2(x) := 3(x− 1) + 1 (x ∈ R). We consider the random
dynamics on R such that at every step we choose f1 with probability 1/2 and f2 with probability
1/2. Let R̃ := R ∪ {±∞} be the two-point compactification of R. For each x ∈ R, let T+∞(x) be
the probability of tending to +∞ starting with the initial value x ∈ R. As the author pointed out
in [49, 48], we see that the restriction T+∞|[0,1] : [0, 1] → [0, 1] is equal to the devil’s staircase (or
the Cantor function) (Figure 1). The devil’s staircase satisfies the following properties:

(a) It is continuous on [0, 1].

(b) It varies precisely on the Cantor middle third set C (a kind of thin fractal set), i.e., T ′
+∞(x) =

0 for x ∈ R \ C and T+∞|U is not constant for each open subset U of R with R ∩ C 6= ∅.

(c) It is monotone.

Similarly, let g1(x) := 2x, g2(x) := 2(x − 1) + 1 (x ∈ R). For each 0 < a < 1, we consider
the random dynamics on R such that at every step we choose g1 with probability a and g2 with
probability 1−a. Let T+∞,a(x) be the probability of tending to +∞ starting with the initial value
x ∈ R. As the author pointed out in [49, 48], we see that the function T+∞,a|[0,1] : [0, 1] → [0, 1] is
equal to Lebesgue’s singular function La : [0, 1] → [0, 1] with parameter a (Figure 1). The function
La is continuous and monotone on [0, 1], and if a 6= 1/2, La has the following singular property:
for almost every point x ∈ [0, 1] with respect to the one-dimensional Lebesgue measure, La is
differentiable at x and the derivative is zero. Moreover, Sekiguchi and Shiota showed that for each
fixed x ∈ [0, 1], the function a 7→ La(x) is real-analytic in (0, 1) ([26]), and Hata and Yamaguti
showed that the function x 7→ (1/2) · (∂La(x)/∂a)|a=1/2 on [0, 1] is equal to the Takagi function
([13], Figure 1).

Thus, the devil’s staircase and Lebesgue’s singular functions can be defined in terms of ran-
dom dynamics on R, that is, they can be defined as the functions of probability of tending to
+∞. Moreover, the Takagi function can be defined as the partial derivative with respect to the
probability parameter.

We remark that in most of the literature, the theory of random dynamical systems has not been
used directly to investigate these singular functions on the interval, although some researchers have
used it implicitly. However, as the author points out, it is very natural and straightforward to use
the theory of random dynamical systems in the study of these singular functions.

In this talk, we consider a complex analogue of the above story. Moreover, we consider the
disappearance of chaos, stability and bifurcation in random complex dynamics.
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Figure 1: (From left to right) the devil’s staircase, Lebesgue’s singular function, the Takagi function
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2 Preliminaries

Definition 2.1.

• We denote by Ĉ(:= C∪{∞} ∼= CP1 ∼= S2) the Riemann sphere and denote by d the spherical
distance on Ĉ.

• We set Rat:={h : Ĉ → Ĉ | h is a non-const. rational map} endowed with the distance η
defined by η(f, g) := supz∈Ĉ d(f(z), g(z)).We set Rat+ := {g ∈ Rat | deg(g) ≥ 2}.

• We set P := {g : Ĉ → Ĉ | g is a polynomial map, deg(g) ≥ 2} endowed with the relative
topology from Rat.

• Note that Rat and P are semigroups where the semigroup operation is functional composition.

• A subsemigroup G of Rat is called a rational semigroup.

• A subsemigroup G of P is called a polynomial semigroup.

Definition 2.2. Let G be a rational semigroup.

• We set F (G) := {z ∈ Ĉ | ∃ nbd U of z s.t. G is equicontinuous on U}.
This is called the Fatou set of G. (For the definition of equicontinuity, see [3].)

• We set J(G) := Ĉ \ F (G). This is called the Julia set of G.

• If G is generated by a subset Λ of Rat, then we write G = 〈Λ〉.

Definition 2.3. For a topological space X, we denote by M1(X) the space of all Borel probability
measures on X endowed with the topology such that
“µn → µ” ⇔ “for each bounded continuous function ϕ : X → R,

∫
X

ϕdµn →
∫

X
ϕdµ.”

Remark 2.4. If X is a compact metric space, then M1(X) is a compact metrizable space.

From now on, we take a τ ∈ M1(Rat) and we consider the (i.i.d.) random dynamics on Ĉ
such that at every step we choose a map h ∈ Rat according to τ. This determines a time-discrete
Markov process with time-homogeneous transition probabilities on the phase space Ĉ such that
for each x ∈ Ĉ and for each Borel measurable subset A of Ĉ, the transition probability p(x, A) of
the Markov process from x to A is defined as p(x,A) = τ({g ∈ Rat | g(x) ∈ A}).

Definition 2.5. Let τ ∈ M1(Rat).

(1) We set C(Ĉ) := {ϕ : Ĉ → C | ϕ is conti.} endowed with the sup. norm ‖ · ‖∞.

(2) Let Mτ : C(Ĉ) → C(Ĉ) be the operator defined by

Mτ (ϕ)(z) :=
∫
Rat

ϕ(g(z)) dτ(g), ∀ϕ ∈ C(Ĉ),∀z ∈ Ĉ.
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(3) Let M∗
τ : M1(Ĉ) → M1(Ĉ) be the dual of Mτ . That is, for each ρ ∈ M1(Ĉ) and for each

ϕ ∈ C(Ĉ), ∫
ϕ d(M∗

τ (ρ)) :=
∫

Mτ (ϕ) dρ.

(Remark: M∗
τ can be regarded as the “averaged map” of supp τ , where supp τ denotes the

topological support of τ. More precisely, let Φ : Ĉ → M1(Ĉ) be the topological embedding
defined by: Φ(z) := δz, where δz denotes the Dirac measure at z. Using this topological
embedding Φ : Ĉ → M1(Ĉ), we regard Ĉ as a compact subset of M1(Ĉ). If h ∈ Rat, then we
have M∗

δh
◦ Φ = Φ ◦ h on Ĉ (i.e., M∗

δh
(δz) = δh(z) for each z ∈ Ĉ). Moreover, for a general

τ ∈ M1(Rat), for each µ ∈ M1(Ĉ), we have M∗
τ (µ) =

∫
M∗

δh
(µ)dτ(h) =

∫
h∗(µ)dτ(h), where

h∗(µ) denotes the Borel probability measure on Ĉ such that h∗(A) := µ(h−1(A)) for each
Borel subset A of Ĉ. Therefore, for a general τ ∈ M1(Rat), the map M∗

τ : M1(Ĉ) → M1(Ĉ)
can be regarded as the “averaged map” on the extension M1(Ĉ) of Ĉ.)

(4) We set
Fmeas(τ) := {µ ∈ M1(Ĉ) | ∃ nbd B of µ in M1(Ĉ) s.t.

{(M∗
τ )n|B : B → M1(Ĉ)}n∈N is equiconti. on B}.

(5) Let Uτ be the space of all finite linear combinations of unitary eigenvectors of Mτ : C(Ĉ) →
C(Ĉ), where an eigenvector is said to be unitary if the absolute value of the corresponding
eigenvalue is 1.

(6) Let B0,τ := {ϕ ∈ C(Ĉ) | Mn
τ (ϕ) → 0 as n → ∞}.

(7) Let τ̃ := ⊗∞
j=1τ ∈ M1((Rat)N).

(8) Let Gτ be the rational semigroup generated by supp τ.

(9) Let G be a rational semigroup. We say that a non-empty compact subset K of Ĉ is a minimal
set of G in Ĉ if K is minimal in {L ⊂ Ĉ | ∅ 6= L is compact,∀g ∈ G, g(L) ⊂ L} w.r.t. ⊂ .

Moreover, we set Min(G, Ĉ) := {L | L is a minimal set of G in Ĉ}.

(10) For a minimal set L of Gτ in Ĉ and a point z ∈ Ĉ, we set TL,τ (z) := τ̃({γ = (γ1, γ2, . . .) ∈
(Rat)N | d(γn · · · γ1(z), L) → 0 as n → ∞}). This is the probability of tending to L

starting with the initial value z ∈ Ĉ.

The following is the key to investigating the random complex dynamics.

Definition 2.6. Let G be a rational semigroup. We set

Jker(G) :=
∩

h∈G

h−1(J(G)).

This is called the kernel Julia set of G.

By the forward invariance of Jker(G) under each map of G, Montel’s theorem, and the fact that
∞ ∈ F (〈Γ〉) for a compact subset Γ of P, we obtain the following.

Lemma 2.7. Let τ ∈ M1(P) be such that supp τ is compact. Suppose that for each z ∈ C, there
exists a holomorphic family {gλ}λ∈Λ of polynomial maps such that

∪
λ∈Λ{gλ} ⊂ supp τ and such

that λ 7→ gλ(z) is not constant on Λ. Then, Jker(Gτ ) = ∅. Here, a family {gλ}λ∈Λ of rational
(resp. polynomial) maps is said to be a holomorphic family of rational (resp. polynomial) maps
if Λ is a finite-dimensional complex manifold and (z, λ) ∈ Ĉ × Λ 7→ gλ(z) ∈ Ĉ is holomorphic on
Ĉ × Λ.

5



For example, let τ ∈ M1(P) be such that supp τ is compact. If there exists an f0 ∈ P and a
non-empty open subset U of C such that {f0 + c | c ∈ U} ⊂ supp τ , then Jker(Gτ ) = ∅.

Thus, we can say that mostly Jker(Gτ ) = ∅. (Note: if G is a group or commutative group,
then Jker(G) = J(G). Thus if G is a non-elementary Kleinian group or G is generated by a single
rational map g with g ≥ 2, then Jker(G) = J(G) 6= ∅.)

3 Results

Theorem 3.1 (Theorem A, Cooperation Principle and Disappearance of Chaos).
Let τ ∈ M1(Rat) be such that supp τ is compact. Suppose Jker(Gτ ) = ∅ and J(Gτ ) 6= ∅.
(note: if ∃g ∈ suppτ with deg(g) ≥ 2, then J(Gτ ) 6= ∅.)
Then, we have all of the following (1)–(9).

(1) Fmeas(τ) = M1(Ĉ). For τ̃ -a.e. γ = (γ1, γ2, . . .) ∈ (Rat)N, the 2-dim. Leb. meas. of
Jγ := {z ∈ Ĉ | ∀nbd U of z, {γn · · · γ1|U : U → Ĉ}n∈N is not equiconti. on U}. is zero.

(2) B0,τ is a closed subspace of C(Ĉ) and C(Ĉ) = Uτ ⊕ B0,τ .

(3) 1 ≤ dimC Uτ < ∞.

(4) For each ϕ ∈ Uτ and for each connected component U of F (Gτ ), ϕ|U is constant.

(5) ∃α ∈ (0, 1) s.t. ∀ϕ ∈ Uτ , ϕ is α-Hölder continuous on Ĉ.

(6) For ∀z ∈ Ĉ, ∃Az ⊂ (Rat)N with τ̃(Az) = 1 with the following property.

– ∀γ = (γ1, γ2, . . .) ∈ Az, ∃δ = δ(z, γ) > 0 s.t. diamγn · · · γ1(B(z, δ)) → 0 as n → ∞,
where diam denotes the diameter w.r.t. the spherical distance.

(7) There exist at least one and at most finitely many minimal sets of Gτ in Ĉ.

(8) Let Sτ be the union of minimal sets of Gτ in Ĉ. Then ∀z ∈ Ĉ ∃Cz ⊂ (Rat)N with τ̃(Cz) = 1
s.t. ∀γ = (γ1, γ2, . . .) ∈ Cz, d(γn · · · γ1(z), Sτ ) → 0 as n → ∞.

(9) Let L ∈ Min(Gτ , Ĉ). Then Mτ (TL,τ ) = TL,τ and TL,τ ∈ Uτ . Moreover, for each z ∈ Ĉ,∑
L∈Min(Gτ ,Ĉ) TL,τ (z) = 1.

Remark 3.2. Theorem A describes new phenomena which cannot hold in the usual iteration
dynamics of a single g ∈ Rat with deg(g) ≥ 2. For example, Fmeas(δg) 6= M1(Ĉ).

We remark that in 1983, by numerical experiments, K. Matsumoto and I. Tsuda ([21]) observed
that if we add some uniform noise to the dynamical system associated with iteration of a chaotic
map on the unit interval [0, 1], then under certain conditions, the quantities which represent chaos
(e.g., entropy, Lyapunov exponent, etc.) decrease. More precisely, they observed that the entropy
decreases and the Lyapunov exponent turns negative. They called this phenomenon “noise-induced
order”, and many physicists have investigated it by numerical experiments, although there has been
only a few mathematical supports for it.

We now consider a sufficient condition for τ to be Jker(Gτ ) = ∅.

Definition 3.3. Let τ ∈ M1(Rat) be such that supp τ is compact. We say that τ is mean stable
if there exist non-empty open subsets U, V of F (Gτ ) and a number n ∈ N such that all of the
following hold.

(1) V ⊂ U ⊂ U ⊂ F (Gτ ).

(2) ∀γ = (γ1, γ2, . . .) ∈ (supp τ)N, (γn ◦ · · · ◦ γ1)(U) ⊂ V.
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(3) ∀z ∈ Ĉ, ∃g ∈ Gτ s.t. g(z) ∈ U.

Remark 3.4. If τ is mean stable, then Jker(Gτ ) = ∅.

We can see that τ is mean stable if and only if the cardinality of the set of all minimal sets of Gτ

in Ĉ is finite and each minimal set L is “attracting”, i.e., there exists an open subset WL of F (Gτ )
with L ⊂ WL and an ε > 0 such that for each z ∈ WL and for each γ = (γ1, γ2, . . .) ∈ (supp τ)N,
d(γn · · · γ1(z), L) → 0 and diam(γn · · · γ1(B(z, ε))) → 0 as n → ∞. Thus, the notion “mean
stability” of random complex dynamics can be regarded as a kind of analogy of “hyperbolicity” of
the usual iteration dynamics of a single rational map.

Definition 3.5. Let Y be a closed subset of Rat. Let

M1,c(Y) := {τ ∈ M1(Y) | supp τ is compact}.

Let O be the topology in M1,c(Y) such that τn → τ in (M1,c(Y),O) if and only if

•
∫

ϕdτn →
∫

ϕdτ for each bounded continuous function ϕ : Y → R, and

• supp τn → supp τ with respect to the Hausdorff metric in the space of all non-empty compact
subsets of Y.

Definition 3.6. let Y be a subset of Rat. We say that Y satisfies condition (∗) if Y is closed in
Rat and at least one of the following (1) and (2) holds:

(1) for each (z0, h0) ∈ Ĉ × Y, there exists a holomorphic family {gλ}λ∈Λ of rational maps with∪
λ∈Λ{gλ} ⊂ Y and an element λ0 ∈ Λ, such that, gλ0 = h0 and λ 7→ gλ(z0) is non-constant

in any neighborhood of λ0.

(2) Y ⊂ P and for each (z0, h0) ∈ C×Y, there exists a holomorphic family {gλ}λ∈Λ of polynomial
maps with

∪
λ∈Λ{gλ} ⊂ Y and an element λ0 ∈ Λ such that gλ0 = h0 and λ 7→ gλ(z0) is

non-constant in any neighborhood of λ0.

Example 3.7. Rat, Rat+, P, and {zd + c | c ∈ C} (d ∈ N, d ≥ 2) satisfy condition (∗).

Theorem 3.8 (Theorem B, Density of Mean Stable Systems). Let Y be a subset of P
satisfying (∗). Then we have the following.

(1) {τ ∈ M1,c(Y) | τ is mean stable} is open and dense in (M1,c(Y),O).

(2) {τ ∈ M1,c(Y) | τ is mean stable and ]supp τ < ∞} is dense in (M1,c(Y),O).

We remark that in the study of iteration of a single rational map, we have a very famous
conjecture (HD conjecture, see [22, Conjecture 1.1]) which states that hyperbolic rational maps
are dense in the space of rational maps. Theorem B solves this kind of problem in the study of
random dynamics of complex polynomials (see the comments after Remark 3.4).

Theorem 3.9. Let Y be a subset of Rat+ satisfying condition (∗). Then, the set

{τ ∈ M1,c(Y) | τ is mean stable } ∪ {ρ ∈ M1,c(Y) | Min(Gρ, Ĉ) = {Ĉ}, J(Gρ) = Ĉ}

is dense in (M1,c(Y),O).

For the proofs of Theorems B and 3.9, we need to investigate and classify the minimal sets of
〈Γ〉 in Ĉ, where Γ is a compact subset of Rat. In particular, it is important to analyze the reason
of instability for a non-attracting minimal set.

Definition 3.10. For a τ ∈ M1,c(Rat) with Jker(Gτ ) = ∅ and J(Gτ ) 6= ∅, let πτ : C(Ĉ) → Uτ be
the canonical projection coming from Theorem A.
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Theorem 3.11 (Theorem C, Stability). Suppose τ ∈ M1,c(Rat) is mean stable and J(Gτ ) 6= ∅.
Then there exists a neighborhood Ω of τ in (M1,c(Rat),O) such that all of the following (a)(b)(c)
hold.

(a) For each ν ∈ Ω, ν is mean stable (thus Theorem A for ν holds).

(b) The maps ν 7→ πν and ν 7→ Uν are continuous on Ω. More precisely, for each ν ∈ Ω, there
exists a family {ϕj,ν}q

j=1 of unitary eigenvectors of Mν : C(Ĉ) → C(Ĉ), where q = dimC(Uτ ),
and a finite family {ρj,ν}q

j=1 in C(Ĉ)∗ := {ρ : C(Ĉ) → C | ρ is linear and continuous}
(endowed with the weak∗-topology) such that all of the following (i)–(v) hold.

(i) {ϕj,ν}q
j=1 is a basis of Uν .

(ii) For each j, ν 7→ ϕj,ν ∈ C(Ĉ) is continuous on Ω.

(iii) For each j, ν 7→ ρj,ν ∈ C(Ĉ)∗ is continuous on Ω.

(iv) For each (i, j) and each ν ∈ Ω, ρi,ν(ϕj,ν) = δij .

(v) For each ν ∈ Ω and each ϕ ∈ C(Ĉ), πν(ϕ) =
∑q

j=1 ρj,ν(ϕ) · ϕj,ν .

(c) The map ν 7→ ]Min(Gν , Ĉ) is constant on Ω.

By applying these results, we can give a characterization of mean stability (see [50]).
We now consider the speed of convergence of Mn

τ (ϕ − πτ (ϕ)), where ϕ is a Hölder continuous
function.

Definition 3.12. For each α ∈ (0, 1), we set

Cα(Ĉ) := {ϕ ∈ C(Ĉ) | ‖ϕ‖α < ∞},

where ‖ϕ‖α := supz∈Ĉ |ϕ(z)| + supx,y∈Ĉ,x6=y |ϕ(x) − ϕ(y)|/d(x, y)α. (α-Hölder norm.)

Theorem 3.13 (Theorem D, Exponential Rate of Convergence). Let τ ∈ M1,c(Rat).
Suppose

(1) Jker(Gτ ) = ∅, J(Gτ ) 6= ∅, and

(2) for each minimal set L of Gτ in Ĉ, L ⊂ F (Gτ ).

(Note: if τ ∈ M1,c(Rat) is mean stable and J(Gτ ) 6= ∅, then the above (1) and (2) hold.)
Then ∃α ∈ (0, 1) ∃C > 0 ∃λ ∈ (0, 1) s.t.
for each α-Hölder continuous function ϕ on Ĉ and for each n ∈ N,

‖Mn
τ (ϕ − πτ (ϕ))‖α ≤ Cλn‖ϕ‖α.

Let τ ∈ M1,c(Rat) be mean stable and suppose J(Gτ ) 6= ∅. Then by Theorem A, the chaos of
the averaged system of τ disappears (cooperation principle), and by Theorem D, there exists an
α0 ∈ (0, 1) such that for each α ∈ (0, 1) the action of {Mn

τ }n∈N on Cα(Ĉ) is well-behaved. However,
Appendix (for more details, see [48, Theorem 3.82]) tells us that under certain conditions on a mean
stable τ , there exists a β ∈ (0, 1) such that any non-constant element ϕ ∈ Uτ does not belong to
Cβ(Ĉ) (note: for the proof of this result, we use the Birkhoff ergodic theorem and potential theory).
Hence, there exists an element ψ ∈ Cβ(Ĉ) such that ‖Mn

τ (ψ)‖β → ∞ as n → ∞. Therefore, the
action of {Mn

τ }n∈N on Cβ(Ĉ) is not well behaved. In other words, regarding the dynamics of the
averaged system of τ , there still exists a kind of chaos (or complexity) in the space (Cβ(Ĉ), ‖ · ‖β)
even though there exists no chaos in the space (C(Ĉ), ‖ · ‖∞). From this point of view, in the field
of random dynamics, we have a kind of gradation or stratification between chaos and non-chaos.
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It may be nice to investigate and reconsider the chaos theory and mathematical modeling from
this point of view.

Under the assumptions of Theorem D, We now consider the spectrum Specα(Mτ ) of Mτ :
Cα(Ĉ) → Cα(Ĉ). From Theorem D, denoting by Uv,τ (Ĉ) the set of unitary eigenvalues of Mτ :
C(Ĉ) → C(Ĉ) (note: by Theorem A, Uv,τ (Ĉ) ⊂ Specα(Mτ ) for some α ∈ (0, 1)), we can show that
the distance between Uv,τ (Ĉ) and Specα(Mτ ) \ Uv,τ (Ĉ) is positive.

Theorem 3.14. Under the assumptions of Theorem D, Specα(Mτ ) ⊂ {z ∈ C | |z| ≤ λ}∪Uv,τ (Ĉ),
where λ ∈ (0, 1) denotes the constant in Theorem D.

Combining Theorem 3.14 and perturbation theory for linear operators ([19]), we obtain the
following theorem. We remark that even if gn → g in Rat, for a ϕ ∈ Cα(Ĉ), ‖ϕ ◦ gn − ϕ ◦ g‖α

does not tend to zero in general. Thus when we perturb generators {hj} of Γτ , we cannot apply
perturbation theory for Mτ on Cα(Ĉ). However, for a fixed generator system (h1, . . . hm) ∈ Ratm,
the map (p1, . . . , pm) ∈ Wm := {(a1, . . . , am) ∈ (0, 1)m |

∑m
j=1 aj = 1} 7→ MPm

j=1 pjδhj
∈ L(Cα(Ĉ))

is real-analytic, where L(Cα(Ĉ)) denotes the Banach space of bounded linear operators on Cα(Ĉ)
endowed with the operator norm. Thus we can apply perturbation theory for the above real-
analytic family of operators.

Theorem 3.15 (Theorem E: Complex Analogue of the Takagi Function). Let m ∈ N
with m ≥ 2. Let h1, . . . , hm ∈ Rat. Let G = 〈h1, . . . , hm〉. Suppose that Jker(G) = ∅, J(G) 6= ∅
and each minimal set L of G in Ĉ is included in F (G). Let Wm := {(a1, . . . , am) ∈ (0, 1)m |∑m

j=1 aj = 1} ∼= {(a1, . . . , am−1) ∈ (0, 1)m−1 |
∑m−1

j=1 aj < 1}. For each a = (a1, . . . , am) ∈ Wm,
let τa :=

∑m
j=1 ajδhj ∈ M1,c(Rat). Then we have all of the following.

(1) For each b ∈ Wm, there exists an α ∈ (0, 1) such that a 7→ (πτa : Cα(Ĉ) → Cα(Ĉ)) ∈
L(Cα(Ĉ)), where L(Cα(Ĉ)) denotes the Banach space of bounded linear operators on Cα(Ĉ)
endowed with the operator norm, is real-analytic in an open neighborhood of b in Wm.

(2) Let L be a minimal set of G in Ĉ. Then, for each b ∈ Wm, there exists an α ∈ (0, 1)
such that the map a 7→ TL,τa ∈ (Cα(Ĉ), ‖ · ‖α) is real-analytic in an open neighborhood
of b in Wm. Moreover, the map a 7→ TL,τa

∈ (C(Ĉ), ‖ · ‖∞) is real-analytic in Wm. In
particular, for each z ∈ Ĉ, the map a 7→ TL,τa(z) is real-analytic in Wm. Furthermore,
for any multi-index n = (n1, . . . , nm−1) ∈ (N ∪ {0})m−1 and for any b ∈ Wm, the function
z 7→ [( ∂

∂a1
)n1 · · · ( ∂

∂am−1
)nm−1(TL,τa(z))]|a=b is Hölder continuous on Ĉ and is locally constant

on F (G).

(3) Let L be a minimal set of G in Ĉ and let b ∈ Wm. For each i = 1, . . . ,m − 1 and for each
z ∈ Ĉ, let ψi,b,L(z) := [ ∂

∂ai
(TL,τa(z))]|a=b and let ζi,b,L(z) := TL,τb

(hi(z)) − TL,τb
(hm(z)).

Then, ψi,b,L is the unique solution of the functional equation (I − Mτb
)(ψ) = ζi,b,L, ψ|Sτb

=
0, ψ ∈ C(Ĉ), where I denotes the identity map. Moreover, there exists a number α ∈ (0, 1)
such that ψi,b,L =

∑∞
n=0 Mn

τb
(ζi,b,L) in (Cα(Ĉ), ‖ · ‖α).

The function TL,τ is a complex analogue of the devil’s staircase or Lebesgue’s singular functions,
and the function ψi,b,L is a complex analogue of the Takagi function. We can investigate the
pointwise Hölder exponents and non-differentiability of TL,τ and ψi,b,L at points in Jker(Gτ ), by
using ergodic theory, potential theory, and function theory. See Appendix and [48, 50].

We now present a result on bifurcation.

Theorem 3.16 (Bifurcation). Let Y be a subset of Rat+ satisfying condition (∗). For each
t ∈ [0, 1], let µt be an element of M1,c(Y). Suppose that all of the following (1)–(4) hold.
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(1) t 7→ µt ∈ (M1,c(Y),O) is continuous on [0, 1].

(2) If t1, t2 ∈ [0, 1] and t1 < t2, then suppµt1 ⊂ int(suppµt2) with respect to the topology of Y.

(3) int(suppµ0) 6= ∅ and F (Gµ1) 6= ∅.

(4) ](Min(Gµ0 , Ĉ)) 6= ](Min(Gµ1 , Ĉ)).

Let B := {t ∈ [0, 1) | µt is not mean stable}. Then, we have the following.

(a) For each t ∈ [0, 1], Jker(Gµt) = ∅ and ]J(Gµt) ≥ 3, and all statements in Theorem A (with
τ = µt) hold.

(b) We have 1 ≤ ]B ≤ ]Min(Gµ0 , Ĉ) − ]Min(Gµ1 , Ĉ) < ∞. Moreover, for each t ∈ B, either (i)
there exists an element L ∈ Min(Gµt , Ĉ), a point z ∈ L, and an element g ∈ ∂Γµt(⊂ Y) such
that z ∈ L ∩ J(Gµt) and g(z) ∈ L ∩ J(Gµt), or (ii) there exist an element L ∈ Min(Gµt , Ĉ),
a point z ∈ L, and finitely many elements g1, . . . , gr ∈ ∂Γµt such that L ⊂ F (Gµt) and z
belongs to a Siegel disk or a Hermann ring of gr ◦ · · · ◦ g1.

To give an example which describes the above theorem, let c0 be a point in the interior of the
Mandelbrot set M := {c ∈ C | {hn

c (c)}n∈N is bounded in C}, where hc(z) := z2 + c. Suppose hc0

is hyperbolic (i.e.,
∪

n∈N{hn
c (c)} ⊂ F (hc)). Let r0 > 0 be a small number. Let r1 > 0 be a large

number such that D(c0, r1)∩(C\M) 6= ∅. For each t ∈ [0, 1], let µt ∈ M1(D(c0, (1 − t)r0 + tr1)) be
the normalized 2-dimensional Lebesgue measure on D(c0, (1 − t)r0 + tr1). Then {µt}t∈[0,1] satisfies
the conditions (1)–(4) in Theorem 3.16 (for example, 2 = ]Min(Gµ0 , Ĉ) > ]Min(Gµ1 , Ĉ) = 1). Thus

]{t ∈ [0, 1] | µt is not mean stable} = 1.

4 Examples

Example 4.1 (Devil’s coliseum ([48]) and complex analogue of the Takagi function). Let g1(z) :=
z2 − 1, g2(z) := z2/4, h1 := g2

1 , and h2 := g2
2 . Let G = 〈h1, h2〉 and for each a = (a1, a2) ∈

W2 := {(a1, a2) ∈ (0, 1)2 |
∑2

j=1 aj = 1} ∼= (0, 1), let τa :=
∑2

i=1 aiδhi . Then by [48, Example 6.2],
h−1

1 (J(G))∩h−1
2 (J(G)) = ∅. Moreover, G is hyperbolic (see Definition 6.1). Moreover, we can show

that for each a ∈ W2, τa is mean stable, T∞,τa is continuous on Ĉ, and the set of varying points
of T∞,τa is equal to J(G). Moreover, by [48] dimH(J(G)) < 2 and for each non-empty open subset
U of J(G) there exists an uncountable dense subset AU of U such that for each z ∈ AU , T∞,τa

is not differentiable at z. See Figures 2 and 3. T∞,τa is called a devil’s coliseum. It is a complex
analogue of the devil’s staircase (see Introduction). By Theorem E, for each z ∈ Ĉ, a1 7→ T∞,τa(z)
is real-analytic in (0, 1), and for each b ∈ W2, [∂T∞,τa (z)

∂a1
]|a=b =

∑∞
n=0 Mn

τb
(ζ1,b), where ζ1,b(z) :=

T∞,τb
(h1(z))−T∞,τb

(h2(z)). Moreover, by Theorem E, the function ψ(z) := [∂T∞,τa (z)
∂a1

]|a=b defined
on Ĉ is Hölder continuous on Ĉ and is locally constant on F (G). The function ψ(z) defined on Ĉ
can be regarded as a complex analogue of the Takagi function (see Introduction). We can show
that there exists an uncountable dense subset A of J(G) such that for each z ∈ A, either ψ is not
differentiable at z or ψ is not differentiable at each point w ∈ h−1

1 ({z})∪h−1
2 ({z}) (see Appendix).

For the graph of [∂T∞,τa (z)
∂a1

]|a1=1/2, see Figure 5.
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Figure 2: The Julia set of G = 〈h1, h2〉, where g1(z) := z2 − 1, g2(z) := z2/4, h1 := g2
1 , h2 := g2

2 .
P ∗(G) (see Definition 6.1) is bounded in C and J(G) has uncountably many connected components.
G is hyperbolic ([47]).

∩2
i=1 h−1

i (J(G)) = ∅ and (h1, h2) satisfies the open set condition ([52]).
Moreover, for each connected component J of J(G), there exists a unique γ ∈ {h1, h2}N such that
J = Jγ . For almost every γ ∈ {h1, h2}N with respect to a Bernoulli measure, Jγ is a simple closed
curve but not a quasicircle, and the basin Aγ of infinity for the sequence γ is a John domain ([47]).

Figure 3: The graph of z 7→ T∞,τ1/2(z), where, letting (h1, h2) be the element in Figure 2, we set
τa :=

∑2
j=1 ajδhj . A devil’s coliseum (a complex analogue of the devil’s staircase). τa is mean

stable. The set of varying points is equal to Figure 2.

Figure 4: Figure 3 upside down.

Figure 5: The graph of z 7→ [(∂T∞,τa
(z)/∂a1)]|a1=1/2, where, τa is the element in Figure 3. A

complex analogue of the Takagi function.
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5 Summary

In the random complex dynamics of polynomials, for a generic probability measure τ on the space
of (polynomial) maps,

• the chaos of the averaged system disappears, due to the automatic cooperation of the
generator maps (even though each map of the system has a chaotic part),

• there exists a stability of the limit state w.r.t. the perturbation, and

• the orbit of a Hölder continuous function under the transition operator Mτ converges ex-
ponentially fast to the finite-dimensional space Uτ of finite linear combinations of unitary
eigenvectors of Mτ .

6 Appendix: pointwise Hölder exponent and
(non-)differentiability of TL,τ and ψi,b,L at points in J(Gτ)

In this appendix, we consider the pointwise Hölder exponent and (non-)differentiability of TL,τ

(a complex analogue of the devil’s staircase and Lebesgue’s singular functions) and ψi,b,L (partial
derivative of TL,τ with respect to a probability parameter: a complex analogue of the Takagi
function) at points in J(Gτ ). We use ergodic theory, potential theory, and function theory.

Definition 6.1. For a rational semigroup G, we set P (G) :=
∪

g∈G{ all critical values of g : Ĉ → Ĉ}
where the closure is taken in Ĉ. This is called the postcritical set of G. We say that a rational semi-
group G is hyperbolic if P (G) ⊂ F (G). For a polynomial semigroup G, we set P ∗(G) := P (G)\{∞}.
For a polynomial semigroup G, we set K̂(G) := {z ∈ C |

∪
g∈G{g(z)} is bounded in C}. Moreover,

for each polynomial h, we set K(h) := K̂(〈h〉). For a topological space X, we denote by Cpt(X)
the space of all non-empty compact subsets of X. If X is a metric space, we endow Cpt(X) with
the Hausdorff metric.

Remark 6.2. Let Γ ∈ Cpt(Rat+) and suppose that 〈Γ〉 is hyperbolic and Jker(〈Γ〉) = ∅. Then by
[48, Propositions 3.63, 3.65], there exists an neighborhood U of Γ in Cpt(Rat) such that for each
τ ∈ M1,c(Rat) with supp τ ∈ U , τ is mean stable, Jker(Gτ ) = ∅, J(Gτ ) 6= ∅ and

∪
L∈Min(Gτ ,Ĉ) L ⊂

F (Gτ ).

Definition 6.3. Let m ∈ N. Let h = (h1, . . . , hm) ∈ (Rat)m be an element such that h1, . . . , hm

are mutually distinct. We set Γ := {h1, . . . , hm}. Let f : ΓN × Ĉ → ΓN × Ĉ be the map defined
by f(γ, y) = (σ(γ), γ1(y)), where γ = (γ1, γ2, . . .) ∈ ΓN and σ : ΓN → ΓN is the shift map
((γ1, γ2, . . .) 7→ (γ2, γ3, . . .)). This map f : ΓN × Ĉ → ΓN × Ĉ is called the skew product associated
with Γ. Let π : ΓN×Ĉ → ΓN and πĈ : ΓN×Ĉ → Ĉ be the canonical projections. Let µ ∈ M1(ΓN×Ĉ)
be an f -invariant Borel probability measure. Let Wm := {(a1, . . . , am) ∈ (0, 1)m |

∑m
j=1 aj = 1}.

For each p = (p1, . . . , pm) ∈ Wm, we define a function p̃ : ΓN × Ĉ → R by p̃(γ, y) := pj if γ1 = hj

(where γ = (γ1, γ2, . . .)), and we set

u(h, p, µ) :=
−(

∫
ΓN×Ĉ log p̃(γ, y) dµ(γ, y))∫

ΓN×Ĉ log ‖(Dγ1)y‖s dµ(γ, y)

(when the integral of the denominator converges), where ‖ · ‖s denotes the norm of the derivative
with respect to the spherical metric on Ĉ.

Definition 6.4. Let h = (h1, . . . , hm) ∈ Pm be an element such that h1, . . . , hm are mutually dis-
tinct. We set Γ := {h1, . . . , hm}. For any (γ, y) ∈ ΓN×C, let Gγ(y) := limn→∞

1
deg(γn,1)

log+ |γn,1(y)|,
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where log+ a := max{log a, 0} for each a > 0. By the arguments in [25], for each γ ∈ ΓN, Gγ(y)
exists, Gγ is subharmonic on C, and Gγ |A∞,γ

is equal to the Green’s function on A∞,γ with pole
at ∞, where A∞,γ := {z ∈ Ĉ | γn,1(z) → ∞ as n → ∞}. Moreover, (γ, y) 7→ Gγ(y) is continuous
on ΓN × C. Let µγ := ddcGγ , where dc := i

2π (∂ − ∂). Note that by the argument in [17, 25], µγ

is a Borel probability measure on Jγ such that suppµγ = Jγ . Furthermore, for each γ ∈ ΓN, let
Ω(γ) =

∑
c Gγ(c), where c runs over all critical points of γ1 in C, counting multiplicities.

Remark 6.5. Let h = (h1, . . . , hm) ∈ (Rat+)m be an element such that h1, . . . , hm are mutually
distinct. Let Γ = {h1, . . . , hm} and let f : ΓN × Ĉ → ΓN × Ĉ be the skew product map associated
with Γ. Moreover, let p = (p1, . . . , pm) ∈ Wm and let τ =

∑m
j=1 pjδhj ∈ M1(Γ). Then, there exists

a unique f -invariant ergodic Borel probability measure µ on ΓN × Ĉ such that π∗(µ) = τ̃ and
hµ(f |σ) = maxρ∈E1(ΓN×Ĉ):f∗(ρ)=ρ,π∗(ρ)=τ̃ hρ(f |σ) =

∑m
j=1 pj log(deg(hj)), where hρ(f |σ) denotes

the relative metric entropy of (f, ρ) with respect to (σ, τ̃), and E1(·) denotes the space of ergodic
measures for f (see [36]). This µ is called the maximal relative entropy measure for f with
respect to (σ, τ̃).

Definition 6.6. Let V be a non-empty open subset of Ĉ. Let ϕ : V → C be a function and let
y ∈ V be a point. Suppose that ϕ is bounded around y. Then we set

Höl(ϕ, y) := inf{β ∈ R | lim sup
z→y

|ϕ(z) − ϕ(y)|
d(z, y)β

= ∞},

where d denotes the spherical distance. This is called the pointwise Hölder exponent of ϕ at
y.

Remark 6.7. If Höl(ϕ, y) < 1, then ϕ is non-differentiable at y. If Höl(ϕ, y) > 1, then ϕ is
differentiable at y and the derivative at y is equal to 0.

We now present a result on the non-differentiability of TL,τa and ψi,b,L(z) = [ ∂
∂ai

(TL,τa(z))]|a=b

(in Theorem E) at points in J(Gτ ).

Theorem 6.8. Let m ∈ N with m ≥ 2. Let h = (h1, . . . , hm) ∈ (Rat+)m and we set Γ :=
{h1, h2, . . . , hm}. Let G = 〈h1, . . . , hm〉. Let Wm := {(a1, . . . , am) ∈ (0, 1)m |

∑m
j=1 aj = 1} ∼=

{(a1, . . . , am−1) ∈ (0, 1)m−1 |
∑m−1

j=1 aj < 1}. For each a = (a1, . . . , am) ∈ Wm, let τa :=∑m
j=1 ajδhj ∈ M1,c(Rat). Let p = (p1, . . . , pm) ∈ Wm. Let f : ΓN × Ĉ → ΓN × Ĉ be the skew

product associated with Γ. Let τ :=
∑m

j=1 pjδhj ∈ M1(Γ) ⊂ M1(P). Let µ ∈ M1(ΓN × Ĉ) be the
maximal relative entropy measure for f : ΓN × Ĉ → ΓN × Ĉ with respect to (σ, τ̃). Moreover, let
λ := (πĈ)∗(µ) ∈ M1(Ĉ). Suppose that G is hyperbolic, and h−1

i (J(G)) ∩ h−1
j (J(G)) = ∅ for each

(i, j) with i 6= j. For each L ∈ Min(G, Ĉ), for each i = 1, . . . ,m − 1 and for each z ∈ Ĉ, let
ψi,p,L(z) := [ ∂

∂ai
(TL,τa

(z))]|a=p. Then, we have all of the following.

1. τ is mean stable, Jker(G) = ∅, and Sτ ⊂ F (Gτ ). Moreover, 0 < dimH(J(G)) < 2, supp
λ = J(G), and λ({z}) = 0 for each z ∈ J(G).

2. There exists a Borel subset A of J(G) with λ(A) = 1 such that for each z0 ∈ A and for each
non-constant ϕ ∈ Uτ , Höl(ϕ, z0) = u(h, p, µ).

3. Suppose ]Min(G, Ĉ) 6= 1. Then there exists a Borel subset A of J(G) with λ(A) = 1 such that
for each z0 ∈ A, for each L ∈ Min(G, Ĉ) and for each i = 1, . . . ,m − 1, exactly one of the
following (a),(b),(c) holds.

(a) Höl(ψi,p,L, z1) = Höl(ψi,p,L, z0) < u(h, p, µ) for each z1 ∈ h−1
i ({z0}) ∪ h−1

m ({z0}).
(b) Höl(ψi,p,L, z0) = u(h, p, µ) ≤ Höl(ψi,p,L, z1) for each z1 ∈ h−1

i ({z0}) ∪ h−1
m ({z0}).
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(c) Höl(ψi,p,L, z1) = u(h, p, µ) < Höl(ψi,p,L, z0) for each z1 ∈ h−1
i ({z0}) ∪ h−1

m ({z0}).

4. If h = (h1, . . . , hm) ∈ Pm, then

u(h, p, µ) =
−(

∑m
j=1 pj log pj)∑m

j=1 pj log deg(hj) +
∫
ΓN Ω(γ) dτ̃(γ)

and

2 > dimH(λ) =

∑m
j=1 pj log deg(hj) −

∑m
j=1 pj log pj∑m

j=1 pj log deg(hj) +
∫
ΓN Ω(γ) dτ̃(γ)

> 0.

5. Suppose h = (h1, . . . , hm) ∈ Pm. Moreover, suppose that at least one of the following (a), (b),
and (c) holds: (a)

∑m
j=1 pj log(pj deg(hj)) > 0. (b) P ∗(G) is bounded in C. (c) m = 2. Then,

u(h, p, µ) < 1 and for each non-empty open subset U of J(G) there exists an uncountable
dense subset AU of U such that for each z ∈ AU and for each non-constant ϕ ∈ Uτ , ϕ is
non-differentiable at z.

Remark 6.9. By Theorems A and 6.8, it follows that under the assumptions of Theorem 6.8, the
chaos of the averaged system disappears in the C0 “sense”, but it remains in the C1 “sense”.

We now present a result on the representation of pointwise Hölder exponent of non-constant
ϕ ∈ Uτ at almost every point in J(Gτ ) with respect to the δ-dimensional Hausdorff measure, where
δ = dimH(J(Gτ )).

Definition 6.10. Let m ∈ N and let (h1, . . . , hm) ∈ (Rat)m. Let Γ = {h1, . . . , hm}. Let ΓN × Ĉ →
ΓN × Ĉ be the skew product associated with Γ. For each γ = (γ1, γ2, . . .) ∈ ΓN, we set Jγ := {z ∈
Ĉ | ∀ nbd U of z, {γn · · · γ1|U : U → Ĉ}n∈N is not equiconti. on U}. Let J̃(f) :=

∪
γ∈ΓN{γ} × Jγ ,

where the closure is taken in the product space ΓN × Ĉ.
For each compact metric space X, we set C(X) := {ϕ : X → C | ϕ is conti.} endowed with the

supremum norm.

Theorem 6.11. Let m ∈ N with m ≥ 2. Let h = (h1, . . . , hm) ∈ (Rat+)m and we set Γ :=
{h1, h2, . . . , hm}. Let G = 〈h1, . . . , hm〉. Let p = (p1, . . . , pm) ∈ Wm. Let f : ΓN × Ĉ → ΓN × Ĉ be
the skew product associated with Γ. Let τ :=

∑m
j=1 pjδhj

∈ M1(Γ) ⊂ M1(Rat+). Suppose that G is
hyperbolic and h−1

i (J(G))∩h−1
j (J(G)) = ∅ for each (i, j) with i 6= j. Let δ := dimH(J(G)) and let

Hδ be the δ-dimensional Hausdorff measure. Let L̃ : C(J̃(f)) → C(J̃(f)) be the operator defined
by L̃(ϕ)(z) =

∑
f(γ,w)=z ϕ(γ,w)‖(Dγ1)w‖−δ

s , where γ = (γ1, γ2, . . .), and ‖ · ‖s denotes the norm

of the derivative with respect to the spherical metric on Ĉ. Moreover, let L : C(J(G)) → C(J(G))
be the operator defined by L(ϕ)(z) =

∑m
j=1

∑
hj(w)=z ϕ(w)‖(Dhj)w‖−δ

s . Then, we have all of the
following.

1. τ is mean stable and Jker(G) = ∅.

2. There exists a unique element ν̃ ∈ M1(J̃(f)) such that L̃∗(ν̃) = ν̃. Moreover, the limits
α̃ = limn→∞ L̃n(1) ∈ C(J̃(f)) and α = limn→∞ Ln(1) ∈ C(J(G)) exist, where 1 denotes the
constant function taking its value 1.

3. Let ν := (πĈ)∗(ν̃) ∈ M1(J(G)). Then 0 < δ < 2, 0 < Hδ(J(G)) < ∞, and ν = Hδ

Hδ(J(G))
.

4. Let ρ̃ := α̃ν̃ ∈ M1(J̃(f)). Then ρ̃ is f-invariant and ergodic. Moreover, minz∈J(G) α(z) > 0.

5. There exists a Borel subset of A of J(G) with Hδ(A) = Hδ(J(G)) such that for each z0 ∈ A
and for each non-constant ϕ ∈ Uτ ,

Höl(ϕ, z0) = u(h, p, ρ̃) =
−

∑m
j=1(log pj)

∫
h−1

j (J(G))
α(y) dHδ(y)∑m

j=1

∫
h−1

j (J(G))
α(y) log ‖(Dhj)y‖s dHδ(y)

.
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Remark 6.12. Let m ∈ N with m ≥ 2. Let h = (h1, . . . , hm) ∈ Pm and let G = 〈h1, . . . , hm〉.
Let p = (p1, . . . , pm) ∈ Wm and let τ =

∑m
j=1 pjδhj

. Suppose that K̂(G) 6= ∅, G is hyperbolic, and
h−1

i (J(G))∩h−1
j (J(G)) = ∅ for each (i, j) with i 6= j. Then, T∞,τ belongs to Uτ and is non-constant.

Remark 6.13. Let m ∈ N with m ≥ 2. Let h = (h1, . . . , hm) ∈ Pm and we set Γ := {h1, . . . , hm}.
Let G = 〈h1, . . . , hm〉. Let p = (p1, . . . , pm) ∈ Wm. Let f : ΓN × Ĉ → ΓN × Ĉ be the skew
product associated with Γ. Let τ :=

∑m
j=1 pjδhj ∈ M1(Γ) ⊂ M1(P). Suppose that K̂(G) 6= ∅, G is

hyperbolic, and h−1
i (J(G)) ∩ h−1

j (J(G)) = ∅ for each (i, j) with i 6= j. Moreover, suppose we have
at least one of the following (a),(b),(c): (a)

∑m
j=1 pj log(pj deg(hj)) > 0. (b) P ∗(G) is bounded

in C. (c) m = 2. Then, combining Theorem 6.8, Theorem 6.11, and Remark 6.12, it follows that
there exists a number q > 0 such that if p1 < q, then we have all of the following.

1. Let µ be the maximal relative entropy measure for f with respect to (σ, τ̃). Let λ = (πĈ)∗µ ∈
M1(J(G)). Then for λ-a.e. z0 ∈ J(G) and for each non-constant ϕ ∈ Uτ (e.g., ϕ = T∞,τ ),
lim supy→z0

|ϕ(y)−ϕ(z0)|
|y−z0| = ∞ and ϕ is not differentiable at z0.

2. Let δ = dimH(J(G)) and let Hδ be the δ-dimensional Hausdorff measure. Then 0 <

Hδ(J(G)) < ∞ and for Hδ-a.e. z0 ∈ J(G) and for any ϕ ∈ LS(Uf,τ (Ĉ)) (e.g., ϕ = T∞,τ ),
lim supy→z0

|ϕ(y)−ϕ(z0)|
|y−z0| = 0 and ϕ is differentiable at z0.

Combining Theorem 3.1 and Theorem 6.8, we obtain the following result.

Corollary 6.14. Let m ∈ N with m ≥ 2. Let h = (h1, . . . , hm) ∈ Pm and we set Γ := {h1, . . . , hm}.
Let G = 〈h1, . . . , hm〉. Let p = (p1, . . . , pm) ∈ Wm. Let f : ΓN × Ĉ → ΓN × Ĉ be the skew
product associated with Γ. Let τ :=

∑m
j=1 pjδhj ∈ M1(Γ) ⊂ M1(P). Suppose that K̂(G) 6= ∅, G is

hyperbolic, and h−1
i (J(G)) ∩ h−1

j (J(G)) = ∅ for each (i, j) with i 6= j. Moreover, suppose we have
at least one of the following (a), (b), (c): (a)

∑m
j=1 pj log(pj deg(hj)) > 0. (b) P ∗(G) is bounded

in C. (c) m = 2. Let ϕ ∈ C(Ĉ). Then, we have exactly one of the following (i) and (ii).

(i) There exists a constant function ζ ∈ C(Ĉ) such that Mn
τ (ϕ) → ζ as n → ∞ in C(Ĉ).

(ii) There exists a non-constant element ψ ∈ Uτ and a number l ∈ N such that

– M l
τ (ψ) = ψ,

– each element of {M j
τ (ψ)}l−1

j=0 belongs to Uτ , is non-constant, and is locally constant on
F (G),

– there exists an uncountable dense subset A of J(G) such that for each z0 ∈ A and for
each j, M j

τ (ψ) is not differentiable at z0, and

– Mnl+j
τ (ϕ) → M j

τ (ψ) as n → ∞ for each j = 0, . . . , l − 1.

Remark 6.15. In the proof of Theorem 6.8, we use the Birkhoff ergodic theorem and the Koebe
distortion theorem, in order to show that for each non-constant ϕ ∈ Uτ , Höl(ϕ, z0) = u(h, p, µ).
Moreover, we apply potential theory in order to calculate u(h, p, µ) by using p, deg(hj), and Ω(γ).
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