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1 Introduction

The goal of this survey is to describe some topics in quasiconformal analysis of
current interest. We try to emphasize ideas and leave proofs and technicalities
aside, as far as possible. Some easily stated open problems are given. Most of this
material is adopted from [AVV4] and [Vu4].

2 Quasiconformal maps and spheres

2.1. Categories of homeomorphisms. Below we shall discuss homeomor-
phisms of a domain of Rn onto another domain in Rn, n ≥ 2. Conformal maps
provide a well-known subclass of such homeomorphisms. By Riemann’s mapping
theorem this class is very flexible and rich for n = 2 whereas Liouville’s theorem
shows that, for n ≥ 3, conformal maps are the same as Möbius transformations,
i.e., their class is very narrow. Thus the unit ball Bn = {x ∈ Rn : |x| < 1} can
be mapped conformally only onto a half-space or a ball if the dimension is n ≥ 3.
Quasiconformal maps constitute a convenient interpolating category of maps, much
wider than conformal maps, and less general than locally Hölder-continuous home-
omorphisms. We also note that bilipschitz maps are a subclass of quasiconformal
maps. Deferring the definition of a quasisymmetric map to 2.37, we note that bilip-
schitz maps are a subclass of quasisymmetric maps, which in turn are a subclass of
quasiconformal maps.

2.2. Modulus of a curve family. Now follows perhaps the most technical
part of this paper, the definition of the modulus of a curve family. This notion
will be used later mainly in the definition of quasiconformal mappings. Note that
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an alternative definition of quasiconformal mappings can be given in terms of the
geometric notion of linear dilatation (see 2.16). Let G be a domain in Rn and let Γ
be a curve family in G. For p > 1 the p-modulus Mp(Γ) is defined by

Mp(Γ) = inf
ρ∈F (Γ)

∫

G
ρpdm ,(2.3)

where F (Γ) = {ρ : G → Y, ρ Borel:
∫
γ ρds ≥ 1 for all locally rectifiable γ ∈ Γ} ,

Y = {x ∈ R : x ≥ 0} ∪ {∞} . The most important case is p = n and we set M(Γ) =
Mn(Γ)—in this case we just call M(Γ) the modulus of Γ. The extremal length of Γ
is M(Γ)1/(1−n). The modulus is a conformal invariant, i.e. M(Γ) = M(hΓ) if h is a
conformal map and hΓ = {h ◦ γ : γ ∈ Γ}. For the basic properties of the modulus
we refer the reader to [V1], [Car], [Oh], [Vu2].

2.4. Canonical rings. In view of this definition it is perhaps not surprising
that M(Γ) can be explicitly expressed in terms of special functions only in a few
special cases. We now consider three cases where Γ joins the boundary components
of a ring domain. For a domain G ⊂ Rn and E,F ⊂ G let

∆(E,F ;G) = {all curves joining E and F in G}.

If E = B
n
, F = Sn−1(t), t > 1, then

M(∆(E,F ;Rn)) = ωn−1(log t)1−n

where ωn−1 = nπn/2/Γ(1+n
2
) is the (n−1)-dimensional surface area of the unit sphere

Sn−1 = ∂Bn . The so called Grötzsch ring domain has complementary components
E = B

n
, F = [te1,∞), t > 1, and we put

γn(t) ≡M(∆(E,F ;Rn)) .

The bounded Grötzsch ring is obtained if one reflects the Grötzsch ring in ∂Bn . An-
other important ring domain is Teichmüller’s ring with complementary components
E = [−e1, 0], F = [se1,∞), s > 0 , and we set

τn(s) ≡M(∆(E,F ;Rn)) .

The function τn : (0,∞) → (0,∞) defines a decreasing homeorphism with τn(t) =
21−nγn(

√
1 + t) . The functions γn(t), τn(t) are sometimes called the capacities of the

Grötzsch and Teichmüller ring domains, resp.

2.5. Hypergeometric functions. For a, b, c ∈ R, c 6= 0,−1,−2,.. the
(Gaussian) hypergeometric function is defined by the series

F (a, b; c; r) =
∞∑

n=0

(a, n)(b, n)

(c, n)n!
rn

for |r| < 1, where (a, 0) = 1, (a, n+1) = (a, n)(a+n), n = 0, 1, 2, . . .. Its importance
is, in part, connected with its numerous particular cases: there are lists in [PBM]
with hundreds of special cases of F (a, b; c; r) for rational triples (a, b, c) expressed
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in terms of elementary functions. For our purposes, the main particular case of the
hypergeometric function is the complete elliptic integral K(r)

K(r) =
π

2
F (

1

2
,
1

2
; 1; r2), 0 ≤ r < 1.(2.6)

2.7. Conformal map onto a disk minus a radial slit. A conformal
mapping of a concentric annulus onto a disk minus a radial segment starting from
the origin is provided by an elliptic function. Thus we see that for the dimension
n = 2 there is a conformal mapping transforming the bounded Grötzsch ring onto
an annulus. The length of such a segment depends on the ratio of the radii in a
nonelementary fashion. In fact, if the inner and outer radius of the annulus are
t ∈ (0, 1) and 1, then the length r ∈ (0, 1) of the radial segment satisfies the
following transcendental equation, obtained by equating the capacities of these two
ring domains;

2π

log 1
t

=
2π

µ(r)
; µ(r) =

π

2

K(r′)

K(r)
,(2.8)

where r′ =
√

1− r2 and we set µ(1) = 0. For n = 2 the Grötzsch capacity can be
expressed as

γ2(s) = 2π/µ(1/s), s > 1.(2.9)

The properties of γ2(s) are explored in [AVV4].

2.10. Modulus and relative size. We define the relative size of the pair
E,F by

r(E,F ) = min{d(E), d(F )}/d(E,F ) ,

where d(E) = sup{|x− y| : x, y ∈ E} and

d(E,F ) = inf{|x− y| : x ∈ E and y ∈ F}.

If E and F are disjoint continua then M(∆(E,F ;Rn)) and r(E,F ) are simultane-
ously small or large. In fact, there are increasing homeomorphisms hj : [0,∞) →
[0,∞) with hj(0) = 0, j = 1, 2, such that

h1(r(E,F )) ≤M(∆(E,F ;Rn)) ≤ h2(r(E,F ))(2.11)

(see [V1], [Vu2]). The explicit expressions for hj in [Vu2, 7.41-7.42] and [H] involve
special functions.

2.12. Quasiconformal maps. Let K ≥ 1. A homeomorphism f : G→ G′

is termed K-quasiconformal if for all curve families Γ in G

M(fΓ)/K ≤M(Γ) ≤ KM(fΓ).(2.13)

The least constant K in (2.13) is called the maximal dilatation of f.
Note that conformal invariance is embedded in this definition: for K = 1 equality

holds throughout in (2.13). This definition resembles the bilipschitz condition, but
we will see below that quasiconformal maps can transform distances in a highly
nonlinear and totally unlipschitz manner.
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2.14. Schwarz lemma for quasiconformal maps. The Schwarz lemma
for analytic functions is one of the basic results of complex analysis. A counterpart
of this result also holds for quasiconformal maps in the following form.

2.15. Theorem. Let f : Bn → fBn ⊂ Bn be K-quasiconformal and f(0) =
0. Then, for x ∈ Bn,

(1) |f(x)| ≤ ϕK,n(|x|) ≤ λ1−α
n |x|α, α = K1/(1−n),

(2) |f(x)| ≤ ψK,n(|x|) ≡
√

1− ϕ1/K,n(
√

1− |x|2)2,

where ϕK,n(r) ≡ 1/γ−1
n (Kγn(1/r)) and ϕK,2(r) = µ−1(µ(r)/K). If, moreover,

fBn = Bn and β = 1/α, then

(3) |f(x)| ≥ ϕ1/K,n(|x|) ≥ λ1−β
n |x|β,

(4) |f(x)| ≥ ψ1/K,n(|x|).

Note that in Theorem 2.15 both (1) and (2) are asymptotically sharp whenK →
1. Here λ2 = 4, λn ∈ [4, 2en−1) is a constant [AVV4] depending only on n. It
can be shown that, in (1) and (2), ϕK,n(r) and ψK,n(r) are different for n > 2 and
identically equal for n = 2. The Schwarz lemma also shows that quasiconformal
maps are locally Hölder continuous.

There are several equivalent ways of characterizing K-quasiconformal maps,
which have the common feature that for K = 1 the class of conformal maps is
obtained [Car]. When comparing two such definitions, it often happens that a map-
ping K1-quasiconformal in the sense of one definition is K2-quasiconformal in the
sense of another definition, where K2 depends from K1 in an explicit way and, what
is most important, K2 → 1 if K1 → 1. We shall next consider in 2.16 a definition
equivalent to (2.13), based on the linear dilatation. However, finding a sharp bound
for K2 in terms of K1 and the dimension is sometimes difficult. We shall see that in
the case of this definition, finding such a constant K2 explicitly has required a time
span as long as the history of higher-dimensional quasiconformal maps.

2.16. Linear dilatation. For a homeomorphism f : G→ G′, x0 ∈ G, r ∈
(0, d(x0, ∂G)), let

H(x0, f, r) = sup

[
|f(x)− f(x0)|
|f(y)− f(x0)| : |x− x0| = |y − x0| = r

]
,

H(x0, f) = lim sup
r→0

H(x0, f, r).

Then H(x0, f) is called the linear dilatation of f at x0.

x

r
r

f

lr f(x)

L
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There is an alternative characterization of quasiconformal maps, to the effect
that a homeomorphism with bounded linear dilatation

sup{H(x, f) : x ∈ G} ≤ L <∞

is quasiconformal [V1]. We shall next review the known estimates for the constant
L in terms of the maximal dilatation.

Consider first the case n = 2. A. Mori proved in [Mor2] that if f : G→ G′, with
G,G′ ⊂ R2, is K-quasiconformal, then for all x0 ∈ G

H(x0, f) ≤ eπK .(2.17)

This bound is not sharp when K → 1. The sharp bound

H(x0, f) ≤ λ(K) =
u2

1− u2
, u = ϕK,2(1/

√
2) ,(2.18)

is due to Lehto, Virtanen, and Väisälä [LVV] in the particular case G = R2 and due
to Shah Dao-Shing and Fan Le-Le [SF] in the general case of a proper subdomain
G ⊂ R2. Here for n ≥ 2, K > 0, r ∈ (0, 1)

ϕK,n(r) = 1/γ−1
n (Kγn(1/r))

defines a homeomorphism ϕK,n : [0, 1]→ [0, 1] .
Next we consider the case n ≥ 2. If f : G → G′ , with G,G′ ⊂ Rn, is K-quasi-

conformal then, by a 1962 result of F.W. Gehring [G1, Lemma 8, pp. 371-372],

H(x0, f) ≤ d(n,K) ≡ exp



(
Kωn−1

τn(1)

)1/(n−1)

(2.19)

for all x0 ∈ G , where τn is the capacity of the Teichmüller condenser (see 2.4). For
n = 2, the earlier result of A. Mori (2.17) is recovered as a particular case of (2.19),
that is, d(2, K) = eπK . Unfortunately d(n,K) 9 1 as K → 1. In 1986 M. Vuorinen
sharpened the bound (2.19) to

H(x0, f) ≤ c(n,K) ≡ 1 + τ−1
n (τn(1)/K)(2.20)

<
1

10
d(n,K) .

Note that c(n,K) → 2 as K → 1 [Vu2, 10.22, 10.32]. In 1990 Vuorinen proved for
a K-quasiconformal map f : Rn → Rn of the whole space Rn [Vu3]

H(0, f) ≤ exp(6(K + 1)2
√
K − 1) ≡ s(K)(2.21)

with the desirable property s(K) → 1 as K → 1. In 1996 P. Seittenranta [Se2]
proved a similar result for maps of proper subdomains G of Rn : a K-quasiconfor-
mal mapping f : G→ G′ satisfies

H(x0, f) ≤ s(K)(2.22)

for all x0 ∈ G with the same s(K) as in (2.21). Note that (2.22) would easily follow
from (2.21) if we could solve a local structure problem stated below. In fact, slightly
better bounds than (2.21) and (2.22), involving the special function τn are known.
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2.23. Open problem. Can the upper bound (2.22) be replaced by s(n,K)
with limn→∞ s(n,K) = 1 for each fixed K > 1?

2.24. Quasispheres and quasicircles. If f : Rn → Rn, n ≥ 2, is K-quasi-
conformal, then the set fSn−1 is called a K-quasisphere or, if n = 2, a K-quasicircle.
Here, as usual, Sn−1 = ∂Bn and Bn = {x ∈ Rn : |x| < 1}.

Plane domains that are bounded by quasicircles, called quasidisks, have been
studied extensively. See the surveys of Gehring [G5], [G7]. Compared to what is
known for the dimension n = 2, very little is known in higher dimensions n ≥ 3.
We shall formulate below some open problems, both for the plane and the higher-
dimensional case.

Part of the interest in quasispheres derives from the fact that these sets can
have interesting geometric structure of fractal type. In fact, some of the differences
between the categories of bilipschitz and quasiconformal maps can be understood if
one studies the geometric structure of the images of spheres under these maps.

2.25. Examples of quasicircles. (1) Perhaps the most widely known
example of a nonrectifiable quasicircle is the snowflake curve (also called von Koch
curve), which is constructed in the following way. Take an equilateral triangle.
To each side adjoin an equilateral triangle whose base agrees with the middle-third
segment of the side; then remove this middle-third segment. Iterating this procedure
recursively ad infinitum we get as a result a nonrectifiable Jordan curve of Hausdorff
dimension > 1. Other similar examples are given in [GV2], [G5, p. 25], and [LV, p.
110].

(2) The Julia set Jf of an iteration z 7→ f(z) is the set of all those points
that remain bounded under the repeated iterations. As a rule, Jf has an interesting
fractal type structure, and for suitable f, Jf is a quasicircle. For the case of quadratic
f, see [GM] and for rational f see [St].

(3) Images of circles under bilipschitz maps are always rectifiable (and hence
of Hausdorff dimension 1) but they may fail to have tangents at some points. In
fact, bilipschitz maps are differentiable only almost everywhere and if this “bad
set” of zero measure is nonempty peculiar things may happen. See [VVW] for a
construction of a bilipschitz circle which is (q, 2)- thick in the sense of definition ??
below.

(4) There are examples of Jordan domains with rectifiable boundaries which are
not bounded by quasispheres. For instance, the “rooms and corridors”-type domains
violating the Ahlfors condition in (2.30) can be used.

(5) We next give a construction of a bilipschitz map f : R2 → R2 with f(0) = 0
which carries rays passing through 0 to “logarithmic spirals” through 0. We first fix
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an integer p ≥ 5 and note that there exists L ≥ 1 and an L−bilipschitz mapping of

the annulus B
2
(p) \ B2 which is identity on S1(p) and a restriction of the rotation

z 7→ eiθz, θ ∈ (0, π/(2p)), on S1(1). The boundary values of this map guarantee that
this mapping can be extended to an L−bilipschitz map of the whole plane, which in
the annuli B(pk+1) \B(pk) , k ∈ Z , agrees with our original map up to conjugations
by suitable rotations and dilations. For a similar construction, see Luukkainen and
Väisälä [LuV, 3.10 (4), 4.11].

(6) The univalent function

f(z) =
∫ z

0
exp{ib

∞∑

k=0

ζ2k}dζ, b <
1

4
,

defined in the unit disk B2, provides an analytic representation of a quasicircle
Γ = f(∂D) that fails to have a tangent at each of its points. For details see Ch.
Pommerenke [Po, pp.304-305].

2.26. Particular classes of domains. The unit ball in Rn is the standard
domain for most applications in quasiconformal analysis. Since the early 1960’s
several classes of domains have been introduced in studies on quasiconformal maps.
It is not our goal to review such studies, but we note that at least the following two
types of domain classes have been studied:

(1) domains satisfying a geometric condition;
(2) domains characterized by conditions involving moduli of curve families, ca-

pacities, or other analytic conditions.
Domains of type (1) include so-called uniform domains and their various gen-

eralizations. Domains of type (2) include, e.g., so-called QED-domains. A domain
G ⊂ Rn is called c−QED, c ∈ (0, 1] if, for each pair of disjoint continua F1, F2 ⊂ G,
it is true that M(∆(F1, F2;G)) ≥ cM(∆(F1, F2;Rn)). There is a useful survey of
some of these classes by J. Väisälä [V6].

Let us look at a property of the unit ball. For nondegerate continua E,F ⊂ Bn

we have
M(∆(E,F ;Rn)) ≥M(∆(E,F ;Bn)) ≥

M(∆(E,F ;Rn))/2 ≥ 1

2
h1(r(E,F ))

by [G4] and (2.11). (In particular, the unit ball is 1/2-QED.) For a domain D ⊂ Rn
and r0 > 0 we set

L(D, r0) = inf
r(E,F )≥r0

M(∆(E,F ;D)) ,(2.27)

where E and F are continua. For all dimensions n ≥ 2 it is easy to construct “rooms
and corridors” type Jordan domains with L(D, r0) = 0 (only simplest estimates of
moduli are needed from [V1, pp. 20-24]). For dimensions n ≥ 3 one can construct
such domains also in the form

Dg = {(x, y, z) ∈ R3 : x > 0, |y| < g(x)}

for a suitable homeomorphism g : [0,∞) → [0,∞), g(0) = 0, g ′(0) = 0; now the
access to the “ridge” A ≡ {(0, y, 0) : y ∈ R} of the domain gets narrower and
narrower as we approach A from within Dg.
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G1

F

E

It is not difficult to show with the help of (2.11) that the class of domains with
L(D, r0) > 0 is invariant under quasiconformal maps of Rn. Hence we see that
boundaries of domains with L(D, r0) = 0 cannot be quasispheres.

G2

F

E

One can also construct domains D ⊂ Rn such that for a pair of disjoint continua
E,F ⊂ D with r(E,F ) =∞ we have M(∆(E,F ;D)) <∞.

2.28. Quasiconformal images of B3. By Liouville’s theorem, the unit
ball Bn, n ≥ 3, can be mapped conformally only onto another ball or a half-space.
Gehring and Väisälä [GV1] created an extensive theory which gives necessary (and,
in certain cases, sufficient) conditions for a domain to be of the form fBn where
f : Bn → Rn is quasiconformal. They also exhibited several interesting domains
illuminating their results which we shall now discuss.

(1) The first example is an apple-shaped domain (cf. picture). By [GV1] such a
domain cannot, in general, be mapped quasiconformally onto B3.
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(2) On the other hand, there are onion-shaped domains that can be so mapped.

(3) In examples (1) and (2) above, the critical behavior takes place near one
boundary point at the tip of a spire. In the case of an onion-shaped domain the spire
is outwards-directed and for apple-shaped domains it is inwards-directed. In this
and the following example the critical set consists of the edge of a boundary “ridge”.
An example of a domain with inward-directed ridge is shown (“yoyo-domain”) in
the picture below. The shape of the yoyo can be so chosen that the domain is a
quasiconformal image of B3.

(4) Consider now a “ufo-shaped” domain where the ridge is outward-directed
(cf. the picture below). In this case the shape can be so chosen that the domain is
not quasiconformally equivalent to B3.

(5) P. Tukia [Tu2] used an example of S. Rickman to construct a domain whose
boundary is the Cartesian product K×R where K is a snowflake-style curve with a
periodic structure. The domain underneath the surface fails to be quasiconformally
equivalent to B3.
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(6) Note that for dimensions n ≥ 3 it is possible that a Jordan domain can
be quasiconformally mapped onto Bn but that its complement fails to have this
property.

2.29. Ahlfors’ condition for quasicircles. Quasicircles have been stud-
ied extensively and many characterizations for them given by many authors. For
interesting surveys, see [G5], [G7]. Chronologically, one of the first characterizations
was given by L. V. Ahlfors in [Ah1] and this result still continues to be the most

popular one and it reads as follows: A Jordan curve C ⊂ R2
is a quasicircle if and

only if there exists a constant m ≥ 1 such that for all finite points a, b ∈ C

min{d(C1), d(C2)} ≤ m|a− b| ,(2.30)

where C1 and C2 are the components of C \ {a, b} and where d stands for the
Euclidean diameter.

Note that this formulation shows that (2.30) guarantees the existence of a K-
quasiconformal mapping f : R2 → R2 such that C = fS1. However, the least upper
bound for K in terms of m, is not known.

a C

b

C1

2

C

2.31. Open problem. Generalize Ahlfors’ condition to quasispheres.

2.32. Bilipschitz circles and spheres. In harmony with our hierarchy
of the categories of maps in 1.1, it is natural to ask if a criterion similar to (2.30)
exists also for bilipschitz circles or surfaces. The case n = 2 was settled by P. Tukia
[Tu1] in 1980 and also by D. Jerison- C. Kenig [JK] in 1982. The case n ≥ 3 is open.
Some results of this type were obtained by S. Semmes [S1], [S2] and T. Toro [To1],
[To2].

2.33. Open problem. Find the least K for which a quadrilateral with
given dimensions is a K-quasicircle. A particular case is the rectangle. R. Kühnau

10



[Küh2, p. 104] has proved that a triangle with the least angle απ(< π/3) is a K-
quasicircle with K2 ≥ (1 + d)/(1− d), d = |1− α|, with equality for the equilateral
triangle (α = 1/3). (In fact, equality holds for all α ∈ (0, 1/3) by S. Werner [We].)

2.34. Open problem - triangle condition. We say that a Jordan curve

C ⊂ R2
with ∞ ∈ C satisfies a triangle condition if there exists a constant M ≥ 1

such that for all successive finite points a, b, c ∈ C we have

|a− b|+ |b− c| ≤M |a− c|(2.35)

Show that there exists a constant K ≥ 1 such that C = fR where f : R2 → R2

is K-quasiconformal. Give K = K(M) explicitly in terms of M with K(M)→ 1 as
M → 1.

C

a

b

c

2.36. Remarks. (1) From a result of S. Agard - F.W. Gehring [AG] it
follows that K(M) ≥ 1 + 0.25(M − 1) for M ∈ (1, 2).

(2) D. Trotsenko has informed the author (1996) about an idea to settle the open
problem 2.34 with K(M) ≤ 1 + c1

√
M − 1, c1 = 105, for M < 1 + 10−13. See also

[Tr].

2.37. Quasisymmetric maps. Let η : [0,∞) → [0,∞) be a homeomor-
phism with η(0) = 0 and let f : G → G′ be a homeomorphism, where G,G′ ⊂ Rn.
We say [TV1] that f is η-quasisymmetric if, for all a, b, c ∈ G with a 6= c ,

|f(a)− f(b)|
|f(a)− f(c)| ≤ η

(
|a− b|
|a− c|

)
(2.38)

2.39. Beurling - Ahlfors extension result. A. Beurling and L. Ahlfors
[BAh] introduced the class of homeomorphisms h : R→ R satisfying

1

M
≤ h(x+ t)− h(x)

h(x)− h(x− t) ≤M(2.40)

for all x ∈ R, t > 0, and for some M > 1. Such homeomorphisms were later termed
quasisymmetric. Note that, for maps of the real axis, condition (2.40) agrees with
(2.38) under the additional constraint |a − b| = |a − c|. Beurling and Ahlfors also
proved that a homeomorphism f : R → R of the real axis can be extended to a
K-quasiconformal map f ∗ : R2 → R2 iff f satisfies (2.40). We remark that again
there is a problem of finding the optimal constant K if M > 1 is given. It is known
by [L, p. 34 ] that one can choose K ≤ min{M 3/2, 2M − 1}.
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2.41. Quasisymmetry - quasiconformality. If f : G → G′ satisfies
(2.38) it follows easily that H(x0, f) ≤ η(1) for all x0 ∈ G. By the alternative
characterization of quasiconformality in terms of the linear dilatation 2.16, we thus
see that quasisymmetric maps constitute a subclass of quasiconformal maps. As a
rule, these two classes of maps are different. However, if G = Rn then quasiconfor-
mal maps are η-quasisymmetric, by a result of P. Tukia and J. Väisälä [TV1]. Much
more delicate is the question of finding for a given K > 1 an explicit ηK which is
“asymptotically sharp” when K → 1. In [Vu3] it was shown, for the first time, that
an explicit ηK,n(t) exists which tends to t as K → 1: If f : Rn → Rn, n ≥ 2, is
K-quasiconformal, then f is ηK,n-quasisymmetric with





ηK,n(1) ≤ exp(6(K + 1)2
√
K − 1),

ηK,n(t) ≤ ηK,n(1)ϕK,n(t), 0 < t < 1,
ηK,n(t) ≤ ηK,n(1)/ϕ1/K,n(1/t), t > 1.

(2.42)

Here ϕK,n(t) is the distortion function in the quasiconformal Schwarz lemma
with

λ1−β
n rβ ≤ ϕ1/K,n(r) ≤ ϕK,n(r) ≤ λ1−α

n rα ,(2.43)

α = K1/(1−n) = 1/β, λn ∈ [4, 2en−1). A K-quasiconformal map of Bn need not
be quasisymmetric, but its restriction to B

n
(s), s ∈ (0, 1), is quasisymmetric. In

fact, P. Seittenranta [Se2] proved that for prescribed K > 1 and n ≥ 2, there exists
an explicit s ∈ (0, 1) such that f |Bn

(s) is ηK,n-quasisymmetric where ηK,n is of the
same type as in (2.42).

2.44. Linear approximation property. Our examples of quasicircles in
2.25 show that quasicircles need not have tangents at any point. On the other hand,
when K → 1, we expect that K-quasicircles become more like usual circles. We
next introduce a definition which enables us to quantify such a passage to the limit:

Given integers n ≥ 2, p ∈ {1, ..., n− 1}, and positive numbers r0 > 0, δ ∈ (0, 1),
we say that a compact set E ⊂ Rn satisfies the linear approximation property with
parameters (p, δ, r0) if for every x ∈ E and every r ∈ (0, r0) there exists a p-
dimensional hyperplane Vr 3 x such that

E ∩Bn(x, r) ⊂ {w ∈ Rn : d(w, Vr) ≤ δr}.

12
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2δ
r

Bn(x, r)

x

P. Mattila and M. Vuorinen proved in 1990 [MatV] that quasispheres satisfy this
property.

2.45. Theorem. Let K2 > 1 be such that

c = ηK,n(1)−2/2 > 15/32

for all K ∈ (1, K2]. Then a K-quasisphere E = fSn−1 satisfies the linear approxi-
mation property with parameters

(n− 1, 4g(K), d(E)g(K)), g(K) =
√

1− 2c .(2.46)

Observe that here δ = 4g(K)→ 0 as K → 1.
This limit behavior shows that, the closer K−1 is to 0, the better K-quasispheres

can be locally approximated by (n − 1)-dimensional hyperplanes. Note that at a
point x ∈ E the approximating hyperplanes Vr may depend on r: they will very
strongly depend on r if x is a “bad” point. An example of such bad behavior is a
quasicircle which logarithmically spirals in a neighborhood of a point x.

2.47. Jones’ β-parameters. In the same year as [MatV] appeared, P.
Jones [Jo] introduced “β-parameters” for the analysis of geometric properties of
plane sets. In fact, the particular case n = 2, p = 1, of the linear approximation
property is very close to the condition used by Jones in his investigations. Later on,
Jones’ β-parameters were used extensively by C. Bishop - P. Jones [BJ1], G. David
- S. Semmes [DS], K. Okikiolu [Ok], and H. Pajot [Paj].

2.48. Open problem. For n = 2 the parameter δ of the linear approxi-
mation property in (2.46) is roughly

√
K − 1. Can this be reduced, say to K − 1,

when K is close to 1?

2.49. Open problem. The Hausdorff dimension of a K-quasicircle has a
majorant of the form 1 + 10(K − 1)2 (see [BP2], [MatV, 1.8]). Is there a similar
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bound for the Hausdorff dimension of a K-quasisphere in Rn, e.g. in the form
n− 1 + c(K − 1)2 where c is a constant?

2.50. Rectifiability of quasispheres. Snowflake-type quasicircles provide
examples of locally nonrectifiable curves. We now briefly review conditions under
which quasicircles will be rectifiable. If f : Rn → Rn is K-quasiconformal and
t ∈ (0, 1/2), then for convenience of notation we set

K(t) = K(f |A(t)), A(t) =
⋃

x∈Sn−1

Bn(x, t) .(2.51)

t

A natural question is this: Does K(t) → 1 as t → 0 imply that fSn−1 is
rectifiable? For n = 2, J. Becker and Ch. Pommerenke [BP1] have shown that
the answer is in the negative. Imposing a stronger condition for the convergence
K(t)→ 1, we have a positive result [MatV]:

2.52. Theorem. If
∫ 1/2

0

1− α(t)

t
dt <∞, α(t) = K(t)1/(1−n) ,(2.53)

then fSn−1 is rectifiable.

An alternative proof of Theorem 2.52 was given by Yu. G. Reshetnyak in [Re2,
pp. 378-382]. For some related results see also [GuV]. For n = 2 one can replace
condition (2.53) by a slightly weaker one, as shown in [ABL], [Carle].

2.54. Quasiconformal maps of Sn−1. Many of the peculiarities of
quasiconformal maps exhibited above are connected with the interesting geomet-
ric structure of quasispheres. We will now briefly discuss the simplest case when
f : Rn → Rn is a K-quasiconformal map with fSn−1 = Sn−1. Let g = f |Sn−1.
Then H(x, g) ≤ H(x, f) for every x ∈ Sn−1. By the alternative characterization
mentioned in 2.16, we see that if n − 1 ≥ 2, then g is quasiconformal [note: we
have not defined quasiconformality in dimension 1]. Thus for n ≥ 3 the restriction
g satisfies all the properties of a quasiconformal map. In particular, g is absolutely
continuous with respect to the (n− 1)-dimensional Hausdorff measure on Sn−1. For
n = 2 the situation is drastically different, as the following result of Beurling and
Ahlfors shows.

2.55. Beurling - Ahlfors’ singular function. In [BAh] Beurling and
Ahlfors constructed a homeomorphism h : R → R satisfying the condition (2.40)
for some M > 1 such that h is not absolutely continuous with respect to the 1-
dimensional Lebesgue measure. By their extension result mentioned in 2.39, h is
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the restriction of a quasiconformal mapping h∗ of R2. If g is a Möbius transformation
with g(S1) = R, then the conjugation g−1 ◦ h∗ ◦ g is the required counterexample.

2.56. Tukia’s quasisymmetric function. Answering a question of W.K.
Hayman and A. Hinkkanen, P. Tukia constructed in [Tu3] an example showing that
a quasisymmetric map f of R can map a set E, with H-dim E < ε onto a set with
H-dim(R \ fE) < ε. See also [BS] and [Ro].

2.57. Thick sets. We conclude this section with a discussion of a property
opposite to the linear approximation property. Let c > 0, p ∈ N. We say that
A ⊂ Rn is (c, p)-thick if, for every x ∈ A and for all r ∈ (0, d(A)/3), there exists a
p-simplex ∆ with vertices in A ∩Bn(x, r) with mp(∆) ≥ crp [VVW], [V5].

Snowflake-type curves are examples of (c, 2)-thick curves. One can even show

that for every K > 1 there are (
√
K−1
768

, 2)-thick K-quasicircles. For this purpose one
uses a snowflake-style construction, but replaces the angles π

3
by smaller ones that

tend to 0 as K → 1 [VVW].
A condition similar to thickness is the notion of wiggly sets [BJ2].

2.58. Open problem. Are there quasispheres in Rn, n ≥ 3, which are
(c, n)-thick for some c > 0?

2.59. Books. The existing books on quasiconformal maps include [Car],
[KK], [L], [LV], [V1]. Generalizations to the case of noninjective mappings, so-called
quasiregular mappings, are studied in [HKM], [I1], [IM2], [Re2], [Ri], [V2], [Vu2].
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2.60. Local structure problem ( from [Vu2, p. 193]) . Prove or
disprove the following assertion. For each n ≥ 2, r ∈ (0, 1), and K ≥ 1 there exists
a number d(n,K, r) with d(n,K, r)→ d(n,K) as r → 0 and d(n,K)→ 1 as K → 1
such that whenever f : Bn → Rn is K–qc, then fBn(r) is a d(n,K, r)–quasiball.
More precisely, the representation fBn(r) = gBn holds where g : Rn → Rn is a
d(n,K, r)–qc mapping with g(∞) = ∞. (Note: It was kindly pointed out by J.
Becker that we can choose d(2, 1, r) = (1 + r)/(1 − r) either by [BC, pp. 39–40] or
by a more general result of S. L. Krushkal’ [KR].)

3 Concluding remarks

The change of Hausdorff dimension under quasiconformal maps was studied in [IM2]
and [Ast]. A subclass of quasicircles, so-called asymptotically conformal curves, was
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studied, for instance, in [BP1], [ABL], [GuR].
During the past few years, there has been progress in the study of fractal ob-

jects in analysis. In this connection also highly irregular surfaces, which admit
parametrizations in terms of quasisymmetric maps, have been studied in [DS]. It
has turned out that the linear approximation property is similar to a condition of
Reifenberg. See for instance a joint paper of G. David and T. Toro [DT] and also
[DKT]. Various other results in this context area include [BJe].
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[BP3] J. Becker and Ch. Pommerenke: Hölder continuity of conformal maps with quasi-
conformal extension, Complex Variables Theory Appl. 10 (1988), 267–272.

[BAh] A. Beurling and L. Ahlfors: The boundary correspondence under quasiconformal
mappings, Acta Math. 96 (1956), 125–142.

[BJ1] C. J. Bishop and P. Jones: Hausdorff dimension and Kleinian groups, Acta Math.
179 (1997), no. 1, 1–39.

[BJ2] C. J. Bishop and P. Jones: Wiggly sets and limit sets, Ark. Mat. 35 (1997), no. 2,
201–224

[BS] C. J. Bishop and T. Steger: Representation theoretic rigidity in PSL(2, R), Acta
Math. 170 (1993), 121–149.

16



[BJe] M. A. Brakalova and J. A. Jenkins: On a paper of L. Carleson: ”On mappings,
conformal at the boundary” [J. Analyse Math. 19 (1967), 1–13]. Ann. Acad. Sci. Fenn.
Math. 27 (2002), no. 2, 485–490.

[Car] P. Caraman: n-Dimensional Quasiconformal (QCf) Mappings, Abacus Press, Tun-
bridge Wells, Kent, England, 1974.

[Carle] L. Carleson: On mappings conformal at the boundary, J. Analyse Math. 19 (1967),
1–13.

[DS] G. David and S. Semmes: Fractured fractals and broken dreams: self-similar geometry
through metric and measure, Bookmanuscript, 1996.

[DT] G. David and T. Toro: Reifenberg flat metric spaces, snowballs, and embeddings.
Math. Ann. 315 (1999), no. 4, 641–710.

[DKT] G. David, C. Kenig, and T. Toro: Asymptotically optimally doubling measures and
Reifenberg flat sets with vanishing constant. Comm. Pure Appl. Math. 54 (2001), no. 4,
385–449.

[Fu] B. Fuglede: Extremal length and functional completion, Acta Math. 98 (1957), 171–
219.

[G1] F. W. Gehring: Symmetrization of rings in space, Trans. Amer. Math. Soc. 101 (1961),
499–519.

[G2] F. W. Gehring: Rings and quasiconformal mappings in space, Trans. Amer. Math.
Soc. 103 (1962), 353–393.

[G3] F. W. Gehring: Quasiconformal mappings, in Complex Analysis and its Applications,
Vol. II, International Atomic Energy Agency, Vienna, 1976, pp. 213–268.

[G4] F. W. Gehring: A remark on domains quasiconformally equivalent to a ball, Ann.
Acad. Sci. Fenn. Ser. A I 2 (1976), 147–155.

[G5] F. W. Gehring: Characteristic Properties of Quasidisks, Les Presses de l’Université
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[V5] J. Väisälä: Bilipschitz and quasisymmetric extension properties, Ann. Acad. Sci. Fenn.
Ser. 11 (1986), 239-274.
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