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1 Introduction

Let Rn (n ≥ 2) denote the n-dimensional Euclidean space. We use the notation D to
denote the upper half space of Rn, that is,

D = {x = (x1, ..., xn−1, xn) : xn > 0}.

Denote by B(x, r) the open ball centered at x with radius r, and set σB(x, r) =
B(x, σr) for σ > 0 and S(x, r) = ∂B(x, r).

Let µ be a (Radon) measure on Rn satisfying the doubling condition :

µ(2B) ≤ Mµ(B)

for every ball B ⊂ Rn. If 1 < p < ∞ and G is a bounded open set in Rn, then we
define the (p, µ)-capacity by

capp,µ(E; G) = inf

∫
G

|f(y)|pdµ(y),

where the infimum is taken over all Borel measurable functions f such that

∫
G

|x − y|1−pf(y)dy ≥ 1 for all x ∈ E.

We write capp,µ(E) = 0 if capp,µ(E ∩ G; G) = 0 for all bounded open set G in Rn.
Let w ∈ L1

loc(R
n) be nonnegative. For q > 1, we say that w ∈ Aq if there exists a

constant C > 0 such that

sup
B

(
−
∫

B

w(y)dy

)(
−
∫

B

w(y)1/(1−q)dy

)q−1

< C,

where the supremum is taken over all balls B in Rn.
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A continuous function u on D is called monotone in the sense of Lebesgue (see [5])
if for every relatively compact open set G ⊂ D,

max
G

u = max
∂G

u and min
G

u = min
∂G

u.

If u is a monotone Sobolev function on D and p > n − 1, then

|u(x) − u(x′)| ≤ Mr

(
1

rn

∫
B(y,2r)

|∇u(z)|pdz

)1/p

(1)

for all x, x′ ∈ B(y, r), whenever B(y, 2r) ⊂ D (see [6, Theorem 1] and [4, Theorem
2.8]). For further results of monotone functions, we refer to [3], [7], [13] and [15].

Manfredi-Villamor [8] proved the following result.

Theorem A. Let n − 1 < p ≤ n and w be an Aq weight for some 1 < q < p/(n − 1).
Let u be a monotone Sobolev function on the unit ball B satisfying

∫
B

|∇u(z)|pw(z)dz < ∞. (2)

Then, for each ε > 0, there exists an open set U in Rn satisfying capp,w(U) < ε such
that for every x0 ∈ ∂B \ U , if we have a curve γ ⊂ B ending at x0 with

lim
x→x0,x∈γ

u(x) = α,

then it follows that u has a nontangential limit α at x0.

Our aim in this talk is to improve their result.

2 Nontangential limits

Let µ be a measure on Rn satisfying the doubling condition and

µ(B′)
µ(B)

≥ M

(
diam(B′)
diam(B)

)s

(3)

for all B′ = B(ξ′, r′) and B = B(ξ, r) with ξ′, ξ ∈ ∂D and B′ ⊂ B, where s > 1 and
diam(B) denotes the diameter of B.

A pair (u, g) ∈ L1
loc(D; µ) × Lp

loc(D; µ) is called monotone if u is continuous on D
and

|u(x) − uB| ≤ Mr

(
1

µ(σB)

∫
σB

g(z)pdµ(z)

)1/p

(4)
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for every x ∈ B with σB ⊂ D, where σ > 1, B = B(y, r) and

uB = −
∫

B

u(y)dµ(y) =
1

µ(B)

∫
B

u(y)dµ(y).

Our first aim is to establish the nontangential limit result.

Theorem 1. Let (u, g) be a monotone pair. Define

E1 = {ξ ∈ ∂D :

∫
B(ξ,1)∩D

|ξ − y|1−n|∇u(y)|dy = ∞} (5)

and

E2 = {ξ ∈ ∂D : lim sup
r→0

(
r−pµ(B(ξ, r))

)−1
∫

B(ξ,r)∩D

g(y)pdµ(y) > 0}.

Then u has a nontangential limit at every ξ ∈ ∂D − (E1 ∪ E2).

For a proof of Theorem 1, it suffices to note the following easy lemma.

Lemma 1. If B = B(a, r) is a ball and B ⊂ G, then

capp,µ(B; G) ≤ Mr−pµ(B).

Remark 1. If ∫
D

|∇u(x)|pdµ(x) < ∞ (6)

and ∫
D

g(x)pdµ(x) < ∞, (7)

then we see that E1 ∪ E2 is of capp,µ-capacity zero.

Remark 2. Let 1 < q < p/(n− 1). Let w be a Muckenhoupt (Aq) weight, and define

dµ(y) = w(y)dy.

If u is monotone in the sense of Lebesgue, then (u, |∇u|) satisfies the monotonicity
property (4) by applying Hölder’s inequality to (1) with p replaced by p/q (see also
Manfredi-Villamor [8]).

Corollary 1. Let n− 1 < p ≤ n and w be an Aq weight for some 1 < q < p/(n− 1).
Let u be a monotone Sobolev function on D satisfying (2). Then there exists a set
E ⊂ ∂D satisfying capp,w(E) = 0 such that u has a nontangential limit at every
x0 ∈ ∂D \ E.
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3 Lindelöf theorem

Now we show the Lindelöf theorem for monotone Sobolev functions.

Theorem 2. Let (u, g) be a monotone pair with g satisfying (7). Suppose p > s − 1,
and set

E = {ξ ∈ ∂D : lim sup
r→0

(
r−pµ(B(ξ, r))

)−1
∫

B(ξ,r)∩D

g(z)pdµ(z) > 0}.

If ξ ∈ ∂D −E and there exists a curve γ in D tending to ξ along which u has a finite
limit, then u has a nontangential limit at ξ.

Remark 3. In Theorem2, if we consider

h(r) = sup
0<t<r,ξ∈∂D

r−pµ(B(ξ, r)),

then we see that Hh(E) = 0.

Remark 4. Let 1 < q < p/(n− 1). Let w be a Muckenhoupt (Aq) weight, and define

dµ(y) = w(y)dy.

Then (3) holds for s = nq. In this case, however, we do not need the condition that
p > s − 1.

Corollary 2. Let 1 < q < p/(n−1) and w be a Muckenhoupt (Aq) weight. Suppose
u is a monotone Sobolev function on D satisfying (6), and set

E = {ξ ∈ ∂D : lim sup
r→0

(
r−pw(B(ξ, r))

)−1
∫

B(ξ,r)∩D

|∇u(z)|pw(z)dz > 0}.

If ξ ∈ ∂D −E and there exists a curve γ in D tending to ξ along which u has a finite
limit, then u has a nontangential limit at ξ.
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Corollary 3. Let u be a monotone Sobolev function on D satisfying

∫
D

|∇u(z)|pzα
ndz < ∞, (8)

where p > n − 1 and 0 ≤ n + α − p < 1. Define

En+α−p = {ξ ∈ ∂D : lim sup
r→0

rp−α−n

∫
B(ξ,r)∩D

|∇u(z)|pzα
ndz > 0}.

If ξ ∈ ∂D − En+α−p and there exists a curve γ in D tending to ξ along which u has a
finite limit, then u has a nontangential limit at ξ.

Remark 5. We know that En+α−p has (n + α − p)-dimensional Hausdorff measure
zero, and hence it is of C1−α/p,p-capacity zero; for these results, see Meyers [9, 10] and
the author’s book [13].

Remark 6. Let w(y) = |yn|α and q > 1. Then w ∈ Aq if and only if −1 < α < q − 1.
In this case, Corollary 2 may not imply Corollary 3 when n ≥ 3.
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