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1 Introduction

Let R" (n > 2) denote the n-dimensional Euclidean space. We use the notation D to
denote the upper half space of R”, that is,

D={z=(21,...., xp_1,2,) : x, > 0}.
Denote by B(z,r) the open ball centered at x with radius r, and set oB(x,r) =
B(z,or) for 0 > 0 and S(z,r) = 0B(z,7).
Let p be a (Radon) measure on R" satisfying the doubling condition :
4(2B) < Mu(B)

for every ball B C R". If 1 < p < oo and (G is a bounded open set in R", then we
define the (p, u)-capacity by

cap, ,(E: G) = inf /G F)Pdu(y),

where the infimum is taken over all Borel measurable functions f such that

/ lz —y|* P f(y)dy > 1 forall z € E.
G

We write cap, ,(E) = 0 if cap, ,(E N G;G) = 0 for all bounded open set G in R™.
Let w € L},.(R") be nonnegative. For ¢ > 1, we say that w € A, if there exists a

loc

constant C' > 0 such that

sup (]{3 w(y)dy> (]{3 w(y)l/“‘”d@/)q1 <C,

where the supremum is taken over all balls B in R".



A continuous function u on D is called monotone in the sense of Lebesgue (see [5])
if for every relatively compact open set G C D,

max u — maxu and min v = min .
a oG a oG

If u is a monotone Sobolev function on D and p > n — 1, then

muw—Mfﬂsww(iiémwﬁvmavm)mj (1)

TTZ

for all z,2’ € B(y,r), whenever B(y,2r) C D (see [6, Theorem 1] and [4, Theorem
2.8]). For further results of monotone functions, we refer to [3], [7], [13] and [15].
Manfredi-Villamor [8] proved the following result.

THEOREM A. Let n —1 < p <n and w be an A, weight for some 1 < g < p/(n —1).
Let u be a monotone Sobolev function on the unit ball B satisfying

/B IVu(z)[Pw(z)dz < oc. (2)

Then, for each ¢ > 0, there exists an open set U in R™ satisfying cap,.,(U) < € such
that for every xy € OB\ U, if we have a curve v C B ending at xo with

lim  wu(x) = a,
T—T0,TEY

then it follows that u has a nontangential limit o at x.

Our aim in this talk is to improve their result.

2 Nontangential limits

Let p be a measure on R" satisfying the doubling condition and
/ . / s
p(B) [ dia(B)
u(B) — diam(DB)

for all B = B(&',7") and B = B(§,r) with &,§ € 0D and B’ C B, where s > 1 and
diam(B) denotes the diameter of B.
A pair (u,g) € Lj, . (D;u) x LP (D;u) is called monotone if u is continuous on D

loc loc
and
QLBguvww@)up )

(3)

lu(z) —up| < Mr (M(UlB)



for every x € B with 0B C D, where 0 > 1, B = B(y,r) and

s :7{3 u(y)duly) = @ /B u(y)du(y).

Our first aim is to establish the nontangential limit result.

THEOREM 1. Let (u, g) be a monotone pair. Define

E,={¢€0D: 1€ — y\l_”\Vu(y)]dy =00}
B(£,1)ND

and

E, = {£€0D :limsup (r‘pu(B(&T)))_l/B g(y)Pdu(y) > 0}.

r—0

(&,r)ND

Then u has a nontangential limit at every £ € 0D — (E; U Es).

For a proof of Theorem 1, it suffices to note the following easy lemma.

LeEMMA 1. If B = B(a,r) is a ball and B C G, then

cap, ,(B; G) < Mr~Pu(B).

REMARK 1. If
[ 1Vu@)laua) < oc
D

and

/D gla)dp(z) < oo,

then we see that £ U Ej is of cap,, ,-capacity zero.

REMARK 2. Let 1 < ¢ <p/(n—1). Let w be a Muckenhoupt (A,) weight, and define

du(y) = w(y)dy.

If uw is monotone in the sense of Lebesgue, then (u,|Vul|) satisfies the monotonicity
property (4) by applying Hélder’s inequality to (1) with p replaced by p/q (see also

Manfredi-Villamor [8]).

COROLLARY 1. Let n—1 < p <n and w be an A, weight for some 1 < ¢ < p/(n—1).
Let u be a monotone Sobolev function on D satisfying (2). Then there exists a set
E C 0D satisfying cap,.,(E) = 0 such that u has a nontangential limit at every

l‘oEaD\E




3 Lindelof theorem

Now we show the Lindelof theorem for monotone Sobolev functions.

THEOREM 2. Let (u,g) be a monotone pair with g satisfying (7). Suppose p > s — 1,
and set

E = {£€0D:limsup (T_p,u(B(ﬁ,r)))_l /B(£ )ng(z)pdu(z) > 0}.

r—0

If ¢ € OD — E and there exists a curve v in D tending to £ along which u has a finite
limit, then u has a nontangential limit at £.

REMARK 3. In Theorem?2, if we consider

h(r)=sup rPu(B(& r)),

0<t<r,e€OD

then we see that Hy(E) = 0.

REMARK 4. Let 1 < ¢ <p/(n—1). Let w be a Muckenhoupt (A,) weight, and define

du(y) = w(y)dy.

Then (3) holds for s = ng. In this case, however, we do not need the condition that
p>s—1.

COROLLARY 2. Let 1 < ¢ < p/(n—1) and w be a Muckenhoupt (A,) weight. Suppose
w is a monotone Sobolev function on D satisfying (6), and set

r—0

E = {¢€dD:limsup (rPu(BE )" /B o VPR > 0}

If ¢ € OD — E and there exists a curve v in D tending to £ along which u has a finite
limit, then u has a nontangential limit at £.




COROLLARY 3. Let u be a monotone Sobolev function on D satisfying

/ |Vu(2)|Pzedz < oo, (8)
D
where p >n —1 and 0 <n+ a — p < 1. Define

Erta—p = {£€ 0D :limsup rp_a_"/ |Vu(z)|Pzdz > 0}.
B(¢,r)ND

r—0

If £ € 0D — E,, 14—, and there exists a curve v in D tending to £ along which u has a
finite limit, then v has a nontangential limit at &.

REMARK 5. We know that E,,,,_, has (n + a — p)-dimensional Hausdorff measure

zero, and hence it is of C_,/,,-capacity zero; for these results, see Meyers [9, 10] and
the author’s book [13].

REMARK 6. Let w(y) = |y,|* and ¢ > 1. Then w € A, if and only if -1 < v < ¢ — 1.
In this case, Corollary 2 may not imply Corollary 3 when n > 3.
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