CARDIOIDS AND TEICHMULLER SPACES
TOSHIYUKI SUGAWA

ABSTRACT. In this note, we give an expository account on the role played by cardioids
in both Teichmiiller spaces and in complex dynamics. Especially, we will observe that the
shape of the Bers embedding of the Teichmiiller space of a once-punctured rectangular
torus converges to a cardioid in the sense of Carathéodory when the base surface is
pinched along the meridian. A more general and complete result will be included in a
forthcoming paper [27] of the author.

1. INTRODUCTION

A cardioid is a plane curve similar to {e —e%?/2 : § € R}, see Figure 1. In this
note, however, a cardioid means the (open) Jordan region bounded by a cardioid curve.
We will call the standard cardioid the domain bounded by the above curve and denote it
by Cp. Note that the function fo(z) = z — 2?/2 maps the unit disk univalently onto Cj.
Conventionally, we denote by aCy+b the image of Cy under the similarity map z — az-+b.

It is an accidental coincidence that the cardioid appears both in the Kleinian group
theory and in complex dynamics. However, according to Sullivan’s dictionary, the Bers
embedding of the Teichmiiller space of a Riemann surface (or a Fuchsian group) corre-
sponds to the Mandelbrot set (or its generalization). Therefore, this coincidence might
not be a surprising fact. As is well known, the Mandelbrot set contains a cardioid (the

FIGURE 1. The cardioid
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so-called main cardioid) as a connected component of its interior. On the other hand,
as Kalme [12] pointed out, the cardioid appears in the universal Teichmiiller space in a
natural way.

In this note, we point out similarities between the cardioid in the Mandelbrot set and
cardioids in the Bers embedded Teichmiiller spaces. Our emphasis will be put on the
role played by holomorphic motions to give a unified aspect on these matters. Moreover,
we will observe that the shape of a one-dimensional Teichmiiller space tends to that of
a cardioid when the base Riemann surface goes to the boundary of the moduli space, at
least in a special case. It appears that this is a phenomenon which has not been observed
in the literature.
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search Institute, Allahabad, India, for giving him a chance to consider the present topic
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2. HOLOMORPHIC MOTIONS

We briefly summarize the basic properties of holomorphic motions for convenience of
the reader. R

Let E be a subset of the Riemann sphere C = C U {oo} and D be a domain (or a
complex manifold in general) with base point ¢y. A holomorphic motion of E over (D, ty)

isamap H: D X E — C satisfying the following three conditions:
(i) H, = H(t,-) : E — C is injective for each ¢ € D,
(ii) H(-,2) : D — C is holomorphic for each z € E, and

(iii) H(ty,2) =z for z € E.

Mané-Sad-Sullivan [15] revealed the following remarkable facts about holomorphic mo-
tions over the unit disk (see also [3]): Let H be a holomorphic motion of E over (D, 0).
Then

(a) H extends to a holomorphic motion of E uniquely in such a way that the extended

H:DxE —Cis (jointly) continuous, and

(b) H, is |t|-quasiconformal on each component of Int E for each t € D.
Here and hereafter, D denotes the unit disk {z € C : |z| < 1}. Note that we do not
assume any continuity in the variable z for the holomorphic motion H (¢, z). For a constant
0 < k < 1, a sense-preserving homeomorphism f : €2 — Q' between domains in C is called
k-quasiconformal if f has locally integrable partial derivatives on Q \ {oo, f*(c0)} (in
the sense of distribution) such that |f;| < k|f,| holds a.e.

Slodkowski [25] proved another remarkable fact: every holomorphic motion H of E
over the unit disk can be extended to that of C. In particular, H; 1s a restriction of a
|t|-quasiconformal homeomorphism of C for each t € D.

Readers interested in holomorphic motions may consult recent textbooks on Teichmiiller
theory such as Gardiner-Lakic [5] and Hubbard [10] for details.
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FIGURE 2. The Mandelbrot set

3. CARDIOID IN MANDELBROT SET

Even polynomials of the simple form P.(z) = 2? + ¢ are not fully understood in the
context of iterations, that is, in the theory of complex dynamics. We denote by P the
n-th iterate of P., namely, P! = P, and P" = P"'o P, for n = 2,3,.... Here c is a
complex parameter. The boundary of the set K, = {z € C: {P!(2)}n=12,.. is bounded }
is called the Julia set and denoted by .J.. The Mandelbrot set M is defined to be the set
of ¢ € C for which J, is connected (see Figure 2). It is known that .J, is either connected
or a Cantor set and that c € M iff 0 € K,.

An attracting fized point of P, is a point « € C such that P.(a) = o and |P.(«)| < 1. It
is easily seen that a neighbourhood of an attracting fixed point of P, is contained in K.. In
particular, c € M. A fixed point « of P, must satisfy the relation P.(a)—a = a?—a+c = 0.
If we set A = P!(a) = 2a, then ¢ = \/2 — (A/2)%. We now conclude that P, has an
attracting fixed point iff ¢ € D = {\/2 — (A/2)? : A\ € D}. Therefore, D is contained in
the Mandelbrot set. Indeed, it is easy to see that D is a component of the interior of M
and D = (1/2)Cy. The component D is called the main cardioid of M.

We now see that the Julia set .J. varies holomorphically (in a sense) on the parameter
c € D. A point z is called periodic for P, if P"(z) = z for an integer n and it is called
repelling further if |(P?)'(z)| > 1. It is well known that the set of repelling periodic points
of P, is a dense subset of J.. It is easy to see that Ry = {eme : 2" € Z for some n € N}
is the set of repelling fixed points of Py(z) = z2. Since repelling periodic points do not
collide for ¢ € D, for each zy € R, one can take a repelling periodic point z. of P., ¢ € D,
in such a way that z. is a holomorphic function of ¢ € D assuming z, for ¢ = 0. In this
way, we obtain a function H.(zy) = z. on Ry for each ¢ € D. The same reasoning as above
yields that the function H. is injective on Ry. Thus the map H : (¢, 2) — H.(z) gives a
holomorphic motion of Ry over (D, 0). Since Ry is dense in D, by the Mané-Sad-Sullivan
theorem, the holomorphic motion of Ry extends to that of 0D which will be still denoted
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by the same symbol H(c, z) = H.(z). Thus, one has the relation J. = H.(0D) for ¢ € D.
By the Slodkowski theorem, the map H. can be extended to a quasiconformal map of C
and thus J. = H.(0D) is known to be a quasidisk for ¢ € D. For details and interesting
figures, see Astala and Martin [2].

It is known that near the cusp point 1/4 of the main cardiod D rather complicated
phenomena of phase transition are observed, which are called the parabolic implosion.
See [4] for details and references.

4. BERS EMBEDDING OF TEICHMULLER SPACE

We give minimal basics in the theory of Teichmiiller spaces to state and to prove our
result. For details, see [18] or [11].

In the following, we denote by H the upper half-plane {z € C: Imz > 0} and by H*
the lower half-plane {z € C: Im z < 0}. Let I" be a Fuchsian group acting on H, namely,
[ is a discrete subgroup of PSL(2,R). We denote by Belt(H,I') the space of Beltrami
coefficient for I' on H, more precisely,

1=

Belt(H,T') = {pr € L>®(H) : ||ulloo < 1, (poy)— = p for all y € T'}.

!

2

For i € Belt(H, I'), we denote by f#* the quasiconformal map f of C which is determined
by the Beltrami equations f; = pf, in H and f; = 0 in H* and normalization conditions
f(0) =0, f(1) =1 and f(oo) = co. Note that fT'(f#)~! is a Kleinian group acting on
fH(H) and f*(H*) properly discontinuously.

Noting that f# is conformal on H*, we define a holomorphic function ®(x) on H* by
®(p) = Spujm-, where Sy stands for the Schwarzian derivative of f :

AN 1\ 2 m I\ 2
1 3
s (EY (Y s sy
f' 2\ f fr2\J
It is convenient to measure the Schwarzian derivative by the norm

[l = sup (=2Im 2)*|p(2)].
zeH*

We denote by By(H*) the Banach space consisting of analytic functions ¢ on H* with

By(H',T) = {p € By(H") : (poy)(v')* = p for all y € T'},

which is a closed subspace of By(H*).

It is known that ®(u) € By(H*,T') for o € Belt(H, T') and that the image ®(Belt(H,T"))
coincides with the Bers embedding of the Teichmiiller space of I'. We set Teich(I') =
®(Belt(H, ")) and we identify it with the Teichmiiller space of T" (or equivalently, of the
orbifold H/T'). It is known that Teich(T") is a bounded contractible domain in By (H*,T").
The map ®p = @ : Belt(H, I') — Teich(I') is called the Bers projection and known to be a
holomorphic split submersion. In the case when I is the trivial group 1, the set Teich(1)
is called the universal Teichmauller space.

We denote by o(I") and i(T") the outer and inner radii of the Teichmiiller space Teich(T"),
in other words, o(I") is the smallest number r with Teich(I") C {¢ € Bo(H*,T) : ||¢||m <
r} and i(T") is the largest number r with Teich(I") D {¢ € Bo(H*,T) : ||p||m < r}.
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It is well known that i(1) = 2 and o(1) = 6 for trivial group 1, and hence, 2 < i(T") <
o(T") < 6 for an arbitrary Fuchsian group I' unless Teich(I") is a singleton. For a cofinite
Fuchsian group T, it is also known that ¢(I") > 2 (cf. [20]) and o(T") < 6 (due to Sekigawa
[24]). Furthermore, Nakanishi and Yamamoto [22] and Nakanishi and Velling [21] gave
characterizing conditions for I' to satisfy o(I') = 6 and i(I') = 2, respectively. It is
remarkable that their conditions are coincident. In particular, o(I') = 6 iff i(I') = 2. One
can see that the present investigation lie in the same line as above-mentioned studies.

5. KALME’S OBSERVATION

Kalme [12] made an interesting observation on a special holomorphic family of quasi-
conformal maps of the Riemann sphere. Following [12], we present some facts related to
our investigation.

For a complex number oo € C, consider the function

Fa(Z) — ¥ — ealogz

on H*, where the branch of log z is taken so that —7m < argz = Im logz < 0 for z € H*.
Since F!(z) = az® ! # 0, the map F,, is locally univalent for v # 0. A characterization
of univalence of F,, is known.

Lemma 1 (Royster [23]). Let « € C\ {0}. Then, F, is univalent in H* if and only if
either | — 1| <1 or Ja+1] < 1.

An easy computation gives
1—a? .
Sr.(2) = T9.2 2(1 - CYZ)SOO(Z)a
where o} € By(H*) is given by () = 1/(42?). Note that ||}z = 1.
An interesting fact is that the holomorphic motion f; = Fi_; (|t| < 1) of H* can be
extended to that of the Riemann sphere in an explicit way:

f(2) = {zz‘ zeH

21t z € H*.
Note that f; is normalized and has the Beltrami coefficient
z |00(2)]
Z)=—t=-—=—t1
,U/ft( ) > 20 (Z)

for 2 € H, where ¢q(2) = i(z) = 1/(42?) for z € H. This is of the form of a Teichmiiller
differential on H and, by definition of ®, one has the relation

(5.1) O (—tpg) = 2(1 — (1 —1)*)pp = go(t) 5,
where o0l )
Yo t
- d t)=4t——]).
o= and oty =1 (1= 5)

We can now see that the intersection of Teich(1) with the linear span of ¢} is precisely
the cardioid 4Cy (times ¢f).

Hille [9] observed that for ¢ € R\ {0}, Fj. is a universal covering projection onto an
annulus, and hence, is never univalent whereas Sg._(z) = (1+¢%)/(22?) and thus the norm
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ISk, ||m = 2(1 + £?) tends to 2 as £ — 0. We point out that the point Sp_ approaches to
the inward cusp of the above cardioid 4Cy¢g from the outside.

6. ONE-DIMENSIONAL TEICHMULLER SPACES.

From now on, we restrict ourselves to one-dimensional Teichmiiller spaces. For simplic-
ity, we assume Fuchsian groups to be torsion-free. Then dim Teich(I") = 1 iff the signature
of I"is (0,4) or (1,1). Since to each Fuchsian group I' of signature (0,4), there corresponds
a Fuchsian group I'" of signature (1,1) such that Teich(I') = Teich(I") (cf. [13]), without
loss of generality we may further assume that I is of signature (1,1). Then the quotient
Riemann surface H/I" is represented by a once-punctured torus of the form 7" = (C\2) /€2,
where

Q = (wy, ws)z = {Mmwy + nwe : m,n € Z}
and wy,wy € C with Im (wy/wy) > 0. We also write Teich(T) for Teich(I") when 7" = H/T".

In recent years, much progress has been made in the study of one-dimensional Te-
ichmiiller spaces. For instance, Minsky [16] proved that the Bers embedding of a one-
dimensional Teichmiiller space is a Jordan domain. By using Minsky’s method, Miyachi
[17] showed that the one-dimensional Teichmiiller space is “cusp-shaped” at every bound-
ary point corresponding to a cusp. Goodman [6] even observed a spiraling shape of the
boundary of the one-dimensional Teichmiiller space. Computer graphics of the Bers em-
beddings are presented by [13] and [14]. Also, the inner and outer radii of the Teichmiiller
space of a once-punctured square torus are numerically computed in [26].

In [27], the following result is proved.

Theorem 2. The Bers embedding Teich(T) of the Teichmiiller space of a once-punctured
torus T' converges to a cardioid in the sense of Carathéodory (under suitable indentification
of Bo(T) = B2(D,T') with C), when T goes to infinity in the moduli space

There is some technicality with the suitable choice of the basis of the vector space By(T)
so that one can identify By(7T) with C. Therefore, in this note, we restrict ourselves to
the case when T is a rectangular torus for the sake of simplicity. See [27] for the general
case.

Let ) be the lattice generated by A > 0 and i = v/—1 over Z, namely, ) = {m\+ni :
m,n € Z}. We set T\ = (C\ Q,)/2\. We denote by m,(¢) = [(] the canonical projection
C \ Q)\ — 1.

Take a holomorphic universal covering projection p, of the upper half-plane H onto
C\ Q, so that py(i) = ay and p)(i)/i > 0. Then ¢, = ) o p, is a holomorphic universal
covering projection of H onto 7). Let I'y be the covering transformation group of ¢, :
H — T). Note that H/T' = T.

Let ¢y be the pullback of the quadratic differential d¢? on C\ €, under the map py,
namely, @, = (p})?. Further let

o = ([@allm) ' @x-
Then, by definition, ¢, € By(H,T'y) and ||p)||lx = 1.

Set also

Pr(z) = SOA—(Z)

Then ¢} € Bo(H*,T')) and ||} ||m = 1.
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Since d¢% on C\ 2, projects to a nontrivial holomorphic quadratic differential on T)
via 7y, the vector space By(H*,T")) is spanned by ¢%. Let
Uy ={w € C:wyp) € Teich(T'))}.
Then, our result can be stated as in the following.

Theorem 3. The domain Uy converges to the cardioid 4Cy in the sense of Carathéodory
as A —0+.

Since U, is a simply connected bounded domain (indeed, a Jordan domain by Minsky’s
theorem), there exists a conformal homeomorphism ¢, of the unit disk D onto Uy such
that g\(0) =0 and ¢ (0) > 0. Recall that go(¢) = 2(1 — (¢ — 1)?) is a conformal map of D
onto the cardioid 4Cy. Then, the last theorem can be restated in the following way.

Theorem 4. The conformal map gy converges to the map go locally uniformly on D.

We illustrate the shape of the boundary of Teich(T"y) for several values of A (see Figures
3 through 6, and compare with Figure 7). We remark that the boundary curve is drawn
very roughly near the “main” cusp when A is small. This is simply because of our algorithm
of computation.

7. PROOF OF THEOREM 4

Let pe\q, (€)|d¢| and ppy ([¢])|d¢] be the hyperbolic metrics on C\ €25 and T}, respec-
tively. The density functions (the hyperbolic densities) pc\q, (¢)|d(| and pr, ([¢]) are

FIGURE 3. Bers embedding for the punctured square torus (A = 1)

FIGURE 4. Bers embedding for small A
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FIGURE 5. Bers embedding for very small A

FIiGURE 6. Bers embedding for very very small A

FIGURE 7. The cardioid 4Cy = {2(1 — a?) : |a — 1] < 1}.
characterized by the relations pp, ([¢]) = peia, (€) and peq, (pA(2))[PA(2)| = pr(2)
1/(2Im z). The following assertion can be found (in a more general form) in [26].

Lemma 5. The hyperbolic density pr,([C]) of T\ takes its minimum at the point |a,]
[(A+1)/2].

Corollary 6. The supremum of (2Im 2)%|ox(2)| over z € H is attained at z = i.

Proof. Letting ¢ = p,(z), we have the relation
(2Im 2)*[oa(2)] = peva, (€)%
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which is known to take its maximum at ¢ = a) = py(i) by the last lemma. O

By the normalization of ¢,, we have thus the relation 4|p,(i)| = ||¢al]lm = 1. On the

other hand, ¢,(i) = p}(i)? < 0. Therefore, p,(i) = ¢x(1)/||Pallz < 0 and thus
) 1
) orl) = .

We also note the following fact, which will be used later.

Lemma 7. The hyperbolic density pc\a, (£ +1/2) converges to w/2 uniformly in § € R as
A—=0+.

Proof. Observe that C\ €2, converges to the parallel strip S = {¢ : 0 < Im( < 1} with
respect to the point i/2 in the sense of Carathéodory when A — 0+. Thus, the hyperbolic
density pc\o, converges to pg locally uniformly on S (cf. [8]). Since poa, (£ +1/2) is a
periodic function of £ with period A and since pg(€+1/2) = 7/2, the assertion follows. [

We now define the curves
ax(s) =Jax+As] (0<s<1
Ba(s) =[ar+1is] (0<s< 1)
on T, where we recall that ay = (A +1)/2. Then, by the obvious symmetry of T), these
are simple hyperbolic geodesics of Ty (see Figure 8).

We take the lifts & and ) of them starting at i via the covering projection ¢, : H — 7:,\.
We denote by A, and B, the elements of 'y C PSL(2,R) corresponding to &, and f,,
respectively. In other words, @) (1) = Ax(@x(0)) = Ax(i) and Bx(1) = Ba(5r(0)) = Bi(i).
See Figure 9.

)

a,\+1'1
S
A+l
1 Ba .
aa ayr+A
o
0 A

FIGURE 8. Geodesics on T
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By (1)

FiGURE 9. Lifts of curves on H

Let o and 7 be the hyperbolic lengths of curves a;, and ), respectively. Then A, and
B, can be represented by

Ay =+ <eo 6&) and B, — + <cosh7' smh7'>.

sinh7 coshT
Since the commutator [Ay, B,] must be parabolic, the following relation is required:
sinh osinh 7 = 1.

We remark that this sort of relation was already found by Hayman [7, §7].
We note the following fact.

Lemma 8. The hyperbolic length o of ay tends to 0 as A — 0+ .

Proof. By definition, o can be computed by

A A
7= [ pneif2s = [ poa (€ i/
0 0
By Lemma 7, we see that o ~ 7A/2 as A = 0+ . In particular, the assertion follows. [

A crucial result is the following variant of a proposition due to T. Nakanishi [19, Propo-
sition 3.1].

Lemma 9 (Nakanishi’s lemma). Let G,, be a sequence of Fuchsian groups acting on H
each of which contains a hyperbolic element of the form z — M,z such that M, — 1
as n — oo. Further let ¢, be an element of By(H, G,) such that p, converges locally
uniformly to a holomorphic function oo on H. Then @ (2) = ¢/2% for some constant c.
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Proof. Write ¢, (z) = P,(2)/2? and ¢ (2) = Px(2)/2?. Then P, — P, locally uniformly.
Since ¢, (M,2)M? = ¢,(z), we have P,(MFz) = P,(z) for any k € Z. Letting n — oo,
we can see that P, is constant along the positive imaginary axis, which implies that Py
is constant. U

Lemma 10. The quadratic differential ©x(z) converges to @o(z) = 1/(42%) locally uni-
formly on H as A\ — 0+ .

Proof. Since ||ox|lm = 1, the family {¢,} is locally bounded on H and thus normal.
Let A\, be any sequence of positive numbers tending to 0 such that ) converges locally
uniformly on H. Then Lemmas 8 and 9 imply that the limit function has the form c/z%.
On the other hand, by (7.1), the constant ¢ must be 1/4, which is independent of the
sequence \,. Thus a standard argument gives us the local uniform convergence of ¢, to
1/(42%). O

Let
_ el
M= —.
P
Then tp, € Belt(H,I'y) for every ¢ € D. Since ®(—tuy) € By(H*,T)), we can write
O(—tuy) = cp} for some ¢ € C for each ¢t € D. We define the function hy : D — C by the

relation
(—tpr) = ha(t) @
We now show the following.

Lemma 11. The function hy is a conformal homeomorshism of D onto Uy satisfying

ha(0) =0, ha(t) = ha(t), and, in particular, b’ (0) € R\ {0}.

Proof. Since the map ¢ — ®p, (—tpy) is of the form of a Teichmiiller map, h, is
known to be a proper holomorphic injection of D into Uy (see, for instance, [18]). Since
dim Teich(T"y) = 1, this map is indeed a conformal homeomorphism.

By the symmetry of €2, we have the relation p)(—2) — ay + ay = pa(z). Therefore,
©x = (p))? satisfies p)(—2) = @(2). Hence, px(—2) = px(z). This implies ®(tuy)(—z) =
®(tp)(z), which is equivalent to hy(£)pi(—2) = ha(t)@i(2). Since @i (—2) = p3(2), we
have the relation hy(t) = hy (). O

Remark. The quasiconformal deformation of T corresponding to ®(—tsu,) can be con-
structed explicitly. Indeed, define a holomorphic motion H of C over (D, 0) by

¢—1C
H(t,()=Hi(()==——, teD (el
( 7<) t(C) 1 4t ) ) C
Note that H;(£2)) = Q}—;EA' Thus, H; induces a quasiconformal map T\ — Ti—l'i” Since
the Beltrami coefficient of H,; is —t, its lift to H via p, has the Beltrami coefficient

—tph [P\ = —t|oal/ox = —tua.
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By Lemma 10, we see that the Teichmiiller differential py = ||/ coverges pointwise
to 1o = |ol/¢o = z/Z. We now use the following basic property of quasiconformal maps.
It can be read from a paper of Ahlfors and Bers [1], but we give a proof for convenience.

Proposition 12. Let y1,, be a sequence of measurable functions on C such that ||py]|e < 1
and p, — p a.e. Then the normalized tp,-quasiconformal map f'*(z) converges to f™(z)
locally uniformly in (t,2) € D x C.

Proof. We set f,(t,z) = f*(z) and fo(t,2) = f%(z). Suppose that real numbers
£>0,0<k<1,T>0 are given. By Theorem 8 in [1], the function f, (¢, 2) is uniformly
continuous in the parameter ¢ forn =1,2,...,00 and |z| < T. Hence, there exists a § > 0
such that |f,(z,t) — fu(z,t')| < € whenever n = 1,2,...,00, |2| < T and |t — t'| < 4.
We choose finitely many points t1,...,t, in the disk |[t| < k so that min{|t —¢;|,j =
1,...,m} < ¢ for every ¢t with |[¢t| < k. Theorem 9 in [1] implies that f,(¢;,2) = fx (%, 2)
as n. — oo uniformly on |z| < T for each j. Thus, there exists a number N such that
|fu(tj, 2) = foo(tj, 2)| < € holds whenever j =1,...,m,|z| <T and n > N.

For each t with |t| < k, z with |2| < T and n > N, choosing j so that |t —¢;| < 6, we
have

|fult,2) = foo(t, 2)]
< [fa(ts 2) = falts 2 + [fa(ts, 2) = foo (b, 2)| 4 | foo(t5, 2) — foo(t, 2)]
< 3e.

Thus the required assertion has been proved. 0]

By the above proposition, [~ (z) converges to f~%°(z) locally uniformly in (¢,2) €
D x Cas A — 0+ . Since f~"* is analytic in H*, the Weierstrass double series theorem
implies that

D(—tur)(2) = Sp-tux (2) = Sp-tuo (2) = ®(—tpo)(2)
locally uniformly in (¢, z) € D x H*. By definition of k) and (5.1), the above convergence
is equivalent to the locally uniform convergence

ha(t)@3(2) = g0(t) @ (2)-
Since ¢y — ¢; by Lemma 10, we now see that hy — go locally uniformly on D. In
particular, h)(0) — g4(0) = 4. Since A/, (0) is continuous in A and, by Lemma 11, assumes
non-zero real numbers, we also see that A, (0) > 0 for all A > 0. By the uniqueness of the
Riemann mapping function and by Lemma 11, we obtain g, = h). Thus Theorem 4 has
been proved.
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