
NORMAL FAMILIES AND QUASICONFORMAL MAPPINGS

TOSHIYUKI SUGAWA

Abstract. In this note, basic theory of normal families of holomorphic functions and
preliminaries of quasiconformal mappings in the complex plane. Especially, our focus will
be on the Ahlfors five island theorem and its proof by following the idea of Bergweiler.
The contents can also be used to course lectures on preparation for complex dynamics
and some exercises are provided for the readers.

1. Introduction

1.1. Complex Dynamics. The theory of it complex dynamics is to study the dynamical
behaviour of the orbits zn = f(zn−1) (n = 1, 2, 3, . . . ) with z0 = z ∈ C of a point z ∈ C
(or z ∈ Ĉ) under the iteration of an entire function f : C → C (or a rational function

f : Ĉ → Ĉ, respectively). The theory was initiated by the French mathematicians Fatou

and Julia in the early 20th century. The domain C (or Ĉ) is divided into two parts; the
stable part and chaotic part. The stable part is the open set where the iteration family
f ◦n = f ◦ f ◦ · · · ◦ f (n-times), (n=1,2,3,. . . ) is normal and called the Fatou set and the
chaotic part is its complement and called the Julia set. Though the theory was almost
forgotten for a long time, the theory was revived around 1980 by the discovery of the
Mandelbrot set together with the rapid development of computing technologies. Since
then, the theory is still growing steadily up to now.

Figure 1. The Julia sets of z2 + 0.37(1 + i), z2 − 0.12 + 0.74i, z(z2 + 2)/(z3 − 1)

The theory is greatly attractive and fascinating but not necessarily easy to understand
with enough rigor. The main reason is perhaps due to the fact that the theory becomes
fully available after the technical notions of normal families and quasiconformal mappings.
The primary aim of the present note is to give the reader such backgrounds which will be
useful to learn the theory of complex dynamics. Note that we do not touch the theory of
complex dynamics in the sequel. If the reader got interests in the theory, he or she should
consult a suitable textbook on complex dynamics. We give some hints for the references
in the last section.
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1.2. Organization and history of the present note. Section 2 gives basic knowledge
about the hyperbolic and the spherical metrics, which will be key notions to understand
normality of families of holomorphic functions. In Section 3, we discuss normal and com-
pactness properties of a family of holomorphic functions on a domain and summarize
basic results. Section 4 devotes to the brief introduction of plane quasiconformal map-
pings. Section 5 deals with useful results in the value distribution theory. We will give
several exercises for the reader in Section 6 and some information about further readings
in Section 7. The present note is by no means self-contained but the author tried to give
proofs for simple statements so that the reader can understand the mechanism by which
the theory works.

This note was originally prepared for a course at the graduate school of the University
of Helsinki in February, 2002. This was a preliminary course for a course on complex
dynamics which was given by Professor Aimo Hinkkanen. The author would like to thank
Professor Matti Vuorinen, who was the host of the author at the University of Helsinki
from 2000 to 2002, and gave a chance of such lectures to the author. The author believes
that the material contained in the present note is still useful for graduate students as well
as bright undergraduate students.

2. Metric

2.1. Metric and distance. Let Ω be a subdomain of the Riemann sphere Ĉ = C∪{∞}
or, more generally, a Riemann surface. A continuous differential form ρ(z)|dz| on Ω is
called a conformal metric on Ω (in a weak sense) if the density ρ(z) is positive for each
point in Ω except for a discrete set. If ρ(z) is always positive, then ρ(z)|dz| is a conformal
metric in the usual sense. When a conformal metric ρ is given for Ω, a distance on Ω can
be associated to ρ in the following manner:

δρ(z, w) = inf
γ

∫
γ

ρ(ζ)|dζ|,

where the infimum is taken over all the rectifiable curves γ joining z and w within Ω. The
distance δρ(z, w) is called the induced distance of ρ.

Let f : Ω0 → Ω be a non-constant holomorphic map. Then the pull-back of ρ under f
is given by

f ∗ρ(z)|dz| = ρ(f(z))|f ′(z)||dz|.
Note that f ∗ρ is a conformal metric on Ω0 while the quantity δρ(f(z), f(w)) is not neces-
sarily a distance on Ω0. The following is obvious but useful below.

2.2. Lemma.

δρ(f(z), f(w)) ≤ δf∗ρ(z, w), z, w ∈ Ω0.

2.3. Hyperbolic metric. The hyperbolic (or Poincaré) metric ρD(z)|dz| on the unit disk
D = {z ∈ C; |z| < 1} is defined by

ρD(z) =
1

1− |z|2
.
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Then the induced distance (called the hyperbolic distance) takes the form

hD(z, w) = arctanh

∣∣∣∣ z − w

1− z̄w

∣∣∣∣ ,
where arctanh t = (1/2) log((1 + t)/(1− t)). For a general domain Ω ⊂ Ĉ with #∂Ω ≥ 3,
the hyperbolic metric ρΩ(z)|dz| on it is defined so that f∗ρΩ = ρD holds for a holomorphic

universal cover f : D → Ω of Ω. A crucial fact is that a domain Ω ⊂ Ĉ with #∂Ω ≤ 2
does not carry the hyperbolic metric, namely, it admits no holomorphic universal cover
from the unit disk.

The Schwarz-Pick lemma yields the useful contraction property f ∗ρΩ ≤ ρΩ0 for any
holomorphic maps f : Ω0 → Ω. The similar inequality hΩ(f(z), f(w)) ≤ hΩ0(z, w) also
holds, where hΩ denotes the hyperbolic distance on Ω induced by ρΩ(z)|dz|. Note that
the hyperbolic distance is complete.

2.4. Spherical metric. The spherical metric σ(z)|dz| on the Riemann sphere Ĉ is defined
by

σ(z) =
1

1 + |z|2
.

This is nothing but the induced metric from the Euclidean metric on R3 when Ĉ is
embedded as the sphere {(x1, x2, x3);x21 + x22 + (x3 − 1/2)2 = 1/22} via the stereographic
projection (see Exercise 2). Therefore, the induced distance between two points is the
length of the shorter arc of the great circle passing through those two points. Due to the
simplicity, we prefer to the use of the chordal distance rather than the arc distance. The
chordal distance is given by

d#(z, w) =
|z − w|√

(1 + |z|2)(1 + |w|2)

for z, w ∈ C while the arc distance is given by 2 arctan(d#(z, w)/2). When either z or w
is the point at infinity, the distance is given by an obvious limiting process.

2.5. Spherical derivative. Recall the fact that a meromorphic function on a domain
can be regarded as a holomorphic map from the domain into the Riemann sphere. Let f
be a meromorphic function on a domain Ω ⊂ C. Then the density of the pull-back of the
spherical metric under f is called the spherical derivative of f and denoted by f# :

f#(z) =
|f ′(z)|

1 + |f(z)|2
.

3. Compactness properties of a family of holomorphic functions

In this section, we see fundamental properties of limit functions of locally uniformly
convergent sequence of holomorphic maps. The Weierstrass double series theorem implies
that the limit function of such a sequence is necessarily holomorphic, too. The key tool is
the argument principle here. After then, we discuss normality of a family of meromorphic
or analytic functions in the sense of Montel. This concept is indispensable to develope
the theory of complex dynamics.
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3.1. Hurwitz’s theorem. Let fn, n = 1, 2, . . . , be a locally uniformly convergent se-
quence of univalent meromorphic functions on a domain Ω. Then the limit f of the se-
quence is also univalent unless it is a constant.

Proof. On the contrary, we assume that f is non-constant and that there are two points
z1 and z2 in Ω with z1 ̸= z2 such that f(z1) = f(z2) =: w0. We take a smooth Jordan
domain Ω0 with z1, z2 ∈ Ω0 so that Ω0 ⊂ Ω. Since the set of zeros of f −w0 is discrete, we
can choose Ω0 so further that f−w0 ̸= 0 on ∂Ω0. Setm = min{|f(z)−w0|; z ∈ ∂Ω0}(> 0).
We may also assume that f is a bounded holomorphic function on Ω0. Since fn converges
to f uniformly on Ω0, there is an integer n0 such that |fn−f | < m/2 on Ω0 for n ≥ n0. By
construction, we now see that |f −w0 − (fn −w0)| < |f −w0| on ∂Ω0. Rouche’s theorem
implies that the number of zeros of fn − w0 in Ω0 is same as that of f − w0, which is at
least two. This contradicts the univalence of fn. �

The same argument works in the proof of the following assertion.

3.2. Lemma. Let fn be a locally uniformly convergent sequence of holomorphic maps

from a domain Ω into another domain D ⊂ Ĉ. If fn(z0) approaches to a point w0 ∈ ∂D
for some z0 ∈ Ω, then fn converges to w0 locally uniformly in Ω.

3.3. Slight generalization of locally uniform convergence. In practice, we en-
counter the situation that the domain where the function fn is defined may change for
different n’s. We can formulate the concept of locally uniform convergence even for the
case.

Suppose that meromorphic functions fn : Ωn → Ĉ, n = 1, 2, . . . , and f : Ω → Ĉ
are given. The sequence fn is said to converge to f locally uniformly in Ω if for every
compact subset K of Ω there exists an integer k such that K ⊂ Ωn for n ≥ k and that
fn, n = k, k + 1, . . . , converges to f uniformly on K.

If we generalize the notion of locally uniform convergence in this way, the same thing
can be said as in the above.

3.4. Normality. Let Ω be a subdomain of Ĉ. Let (X, d) be a complete metric space and
denote by C(Ω, X) the set of continuous functions from Ω into X. We give to C(Ω, X)
the compact-open topology, in other words, the topology of locally uniform convergence.
A subset F of C(Ω, X) is called normal if the closure of F in C(Ω, X) is compact. Since
C(Ω, X) is metrizable (see Exercise 5), F is normal if and only if any sequence of maps
in F has a locally uniformly convergent subsequence.

3.5. Equicontinuity. A family F ⊂ C(Ω, X) is said to be equicontinuous on a set E ⊂ Ω
if, for any number ε > 0, there exists a number δ > 0 such that d(f(z), f(w)) < ε whenever
z, w ∈ E satisfy d#(z, w) < δ and f ∈ F . Also, F is called locally equicontinuous on Ω if
it is equicontinuous on each compact subset of Ω.

By using these notions, we can characterize the normality in more comprehensive terms.

3.6. Arzelá-Ascoli theorem. A family F ⊂ C(Ω, X) is normal if and only if the fol-
lowing two conditions are satisfied:

(i) F is locally equicontinuous on Ω, and
(ii) for each z ∈ Ω the set {f(z); f ∈ F} is relatively compact in X.
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The proof uses a standard diagonal process. See, for instance, [2] or [18].

3.7. Lemma (Normality is a local property). Let F be a subset of C(Ω, X). Suppose
that, for each point z ∈ Ω, there is an open neighbourhood V of z in Ω so that F is normal
on V. Then F is normal on the whole Ω.

Proof. Use the diagonal process to extract a convergent subsequence from a given sequence
in F . �

3.8. Normality of holomorphic or meromorphic functions. A family F of mero-
morphic functions on a fixed domain Ω is said to be normal as meromorphic functions

if F is normal as a subset of C(Ω, Ĉ), in other words, if any sequence of functions in F
has a subsequence which converges locally uniformly to either a meromorphic function or
∞. In what follows, we will simply say that F is normal if F is normal as meromorphic
functions if no confusion occurs.

A family of holomorphic functions on a fixed domain Ω is said to be normal as holo-
morphic functions if the family is normal as a subset of C(Ω,C), where C is equipped
with the Euclidean metric.

The following criterion is classical.

3.9. Theorem (Montel’s theorem). A family F of holomorphic functions on Ω is
normal as holomorphic functions if and only if it is locally uniformly bounded.

Proof. By Cauchy’s integral formula, locally uniform boundedness implies local equicon-
tinuity. Then use the Arzelá-Ascoli theorem. We now show the converse. If F is not
locally uniformly bounded, then there exist a point z0 ∈ Ω and a sequence fn in F such
that fn(z0) → ∞. Lemma 3.2 now implies that fn converges to ∞ locally uniformly. This
implies that F is not normal as holomorphic functions. �

3.10. Theorem. A family F of meromorphic functions on a domain Ω is normal if and
only if for every z0 ∈ Ω there is a neighbourhood U of z0 such that either |f | < 2 in U or
|f | > 1/2 in U holds for each f ∈ F .

Proof. Note that if a subdomain U is such as above then F is normal in U by Montel’s
theorem. Thus, the “if ” part is a simple consequence of Lemma 3.7. We now show the
“only if ” part. Assume that F is normal and fix a point z0 ∈ Ω. Take a number ε with
0 < ε < d#(1, 2) = d#(1, 1/2). Then the equicontinuity of F guarantees the existence of
a number δ > 0 so that d#(f(z), f(z0)) < ε whenever d#(z, z0) < δ and f ∈ F . Let now
U = {z; d#(z, z0) < δ}. Then either |f | < 2 in U or |f | > 1/2 in U holds according to the
cases |f(z0)| ≤ 1 and |f(z0)| ≥ 1. �

The following result gives an extremely weak sufficient condition for normality.

3.11. Theorem (Montel’s three point theorem). Let a, b and c be distinct three

points in Ĉ. The family F of meromorphic functions on a fixed domain Ω which omit
these three values a, b and c is normal.

Proof. Without loss of generality, we can assume that {a, b, c} = {0, 1,∞}. Set D =

Ĉ\{0, 1,∞}. Since normality is a local property (Lemma 3.7), we may also assume that Ω
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is the unit disk D. Let fn, n = 1, 2, . . . , be a sequence of functions in F .We now show that
there is a locally uniformly convergent subsequence of fn. If the set {fn(0), n = 1, 2, . . . }
accumulates at a point in ∂D, Lemma 3.2 provides a desired subsequence. If not, we may
further assume that fn(0) converges to a point w0 inD. In particular, hD(fn(0), w0) < 1 for
sufficiently large n. Note that the hyperbolic disk BD(w0, t) = {w ∈ D;hD(w0, w) < t} is
bounded due to the completeness of the hyperbolic distance. The contraction property of
the hyperbolic distance yields the inequality hD(fn(z), fn(0)) ≤ hD(z, 0) = arctanh(|z|).
Hence, fn(Dr) ⊂ BD(w0, 1 + t), where t = arctanh(r), and therefore, the sequence fn
is uniformly bounded in Dr = {|z| < r}. By Theorem 3.9, we finally choose a locally
uniformly convergent subsequence. �

We remark that the final argument in the above proof is essentially same as the Schottky
theorem.

3.12. A simple proof of the great Picard theorem. If we assume Montel’s three
point theorem, we can derive the great Picard theorem relatively easily from the little
Picard theorem. Recall now these theorems.

The little Picard theorem: Suppose that a meromorphic function f defined on the plane

C omits at least three values in Ĉ. Then f must be a constant.
The great Picard thereom: Suppose that a meromorphic function f defined on the punc-

tured disk D∗ = {0 < |z| < 1} omits at least three values in Ĉ. Then the origin is either
a pole of f or a removable singularity of f.

The following proof is due to Montel.

Proof of the great Picard theorem. Suppose that a meromorphic function f on D∗ omits
three values, say w1, w2 and w3. We consider the sequence fn defined by fn(z) = f(z/n).
Then, by Theorem 3.11, the sequence fn, n = k, k + 1, . . . , is normal on |z| < k. By
the diagonal process, we can now take a subsequence fnj

of fn such that the sequence
fnj

, j = k, k+1, . . . , is uniformly convergent in |z| ≤ k. Let g be the limit function defined
on C∗ = C \ {0} of fnj

. Then, by Lemma 3.2, g is either a constant function with value

wi for some i or a holomorphic map from C∗ into Ĉ \ {w1, w2, w3}. In the latter case,
however, g must be constant. Indeed, the function g(ez) is constant by the little Picard
theorem. At any event, g must be a constant function, say 0. Consider now the small
circles γj = {|z| = 1/nj}. Since fnj

converges to 0 uniformly on the unit circle, for every
ε > 0, we have |f | < ε on γj, j ≥ j0 for some j0. The maximum modulus principle now
yields that |f | < ε on the annulus 1/nj+1 < |z| < 1/nj for j ≥ j0. Hence, |f | < ε in
the neighbourhood of the origin. Riemann’s removable singularity theorem implies the
desired conclusion. �

We now show a very convenient necessary and sufficient condition for normality.

3.13. Theorem (Marty’s theorem). A family F of meromorphic functions on a do-
main Ω ⊂ C is normal if and only if the spherical derivatives f# of f ∈ F are locally
uniformly bounded in Ω.

Proof. Since the target space Ĉ is compact, normality is equivalent to local equicontinuity
in this case by the Arzelá-Ascoli theorem.
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First we show the “if ” part. Let z0 ∈ Ω be given and take a sufficiently small r > 0 so
that V = {z ∈ C; |z − z0| ≤ r} ⊂ Ω. Then there is a constant M such that f# ≤ M on
V for every f ∈ F . By Lemma 2.2, for z ∈ V and f ∈ F we have

d#(f(z), f(z0)) ≤ δf∗σ(z, z0) ≤M |z − z0|.

This estimate implies local equicontinuity of F on Ω.
Next we show the “only if ” part. By Theorem 3.10, for each point z0 ∈ Ω there is a disk

V = {z ∈ C; |z− z0| ≤ r} such that either |f | ≤ 2 in V or |f | ≥ 1/2 in V for every f ∈ F .
If |f | ≤ 2 holds in V, by Cauchy’s estimate, one obtains the inequality |f ′(z)| ≤ 8/r in
|z − z0| ≤ r/2. Therefore, f#(z) ≤ 8/r in |z − z0| ≤ r/2. In the case when |f | ≥ 1/2, the
same inequality is obtained by considering 1/f instead of f above. �

The following characterization of non-normality is often used to deduce a deep connec-
tion between apparently different properties.

3.14. Theorem (Zalcman’s lemma). Let F be a family of meromorphic functions on a
domain Ω ⊂ C. Then F is not normal if and only if there exist a sequence fn of functions
in F , a sequence zn of points in Ω tending to a point z0 in Ω, a sequence ρn of positive
numbers tending to 0 and a non-constant meromorphic function f on C whose spherical
derivative is bounded such that fn(zn + ρnz) → f(z) locally uniformly in C.

The following proof is due to Bergweiler [7].

Proof. If fn is locally uniformly convergent, then the limit of the functions fn(zn + ρnz)
must be constant in the above situation. Therefore, sufficiency of the above condition is
clear.

We assume that F is not normal in order to show the converse direction. Then Marty’s
theorem implies that there exist a sequence fn of functions in F and a sequence ζn of
points in Ω tending to a point ζ0 ∈ Ω such that f#

n (ζn) → ∞.We may assume that ζ0 = 0
and D ⊂ Ω. Choose zn ∈ D so that

Mn := max
|z|≤1

(1− |z|)f#
n (z) = (1− |zn|)f#

n (zn)

and set ρn = 1/f#
n (zn). SinceMn ≥ (1−|ζn|)f#

n (ζn), we see thatMn → ∞ and hence that
ρn = (1−|zn|)/Mn → 0. Since |zn+ρnz| < 1 for |z| < Mn, the function gn(z) = fn(zn+ρnz)
is defined for |z| < Mn and satisfies

g#n (z) = ρnf
#
n (zn + ρnz) ≤

1− |zn|
1− |zn + ρnz|

≤ 1− |zn|
1− |zn| − ρn|z|

=
1

1− |z|/Mn

there. By Marty’s theorem, the sequence gn, n = k, k + 1, . . . , forms a normal family in
|z| < Mk for each k. Therefore, gn has a subsequence which is locally uniformly convergent
in C. Replacing the original fn by a suitable subsequence, we may assume that gn converges

to a meromorphic function f : C → Ĉ locally uniformly on C and that zn tends to a point
z0 ∈ Ω. Since g#n (0) = 1 for all n, we have f#(0) = 1, and therefore, f is non-constant.
Furthermore, by the above estimate, we obtain f#(z) ≤ 1 for all z ∈ C. �

Normality of a sequence fn of meromorphic functions in Ω does not imply convergence
without extra assumptions. The following general property on sequences is useful to note.
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3.15. Lemma. Let an, n = 1, 2, . . . , be a sequence of points in a metric space (X, d) and
let a ∈ X. Suppose that every subsequence of an has a subsequence which converges to a.
Then an itself converges to a.

Proof. Suppose, on the contrary, that an does not converge to a. By definition, there are
infinitely many n’s so that d(an, a) ≥ ε0 for some fixed ε0 > 0. If we take a subsequence
from those n’s, then it has no subsequence which converges to a. The contradiction now
completes the proof. �

As an easy application of the above principle, we can show Vitali’s theorem.

3.16. Theorem (Vitali’s theorem). Suppose that a sequence fn, n = 1, 2, . . . , of mero-
morphic functions forms a normal family on a domain Ω. Assume that there is a subset
W of Ω with accumulation points in Ω such that fn(z0) converges for each z0 ∈ W. Then
fn converges to a meromorphic function locally uniformly on Ω.

Proof. We recall that the space C(Ω, Ĉ) with the topology of locally uniform convergence
is metrizable. By hypothesis, fn has a subsequence which converges to a meromorphic

function f in C(Ω, Ĉ). We now show that fn actually converges to f in C(Ω, Ĉ). Let
fnj

be any subsequence of fn. Then, normality of {fn} implies that fnj
has a convergent

subsequence in C(Ω, Ĉ) with limit being g. By assumption, f(z0) = g(z0) for each z0 ∈ W.
Now the identity theorem implies that f = g. Hence, Lemma 3.15 can be used to conclude
the result. �

4. Plane quasiconformal mappings

4.1. ACL functions. A continuous function f defined in a domain Ω ⊂ C is said to be
ACL (absolutely continuous on lines) if for any closed rectangle R = [a, b]×[c, d] contained
in Ω the function f(x+ iy) is absolutely continuous in a ≤ x ≤ b for almost all y ∈ [c, d]
and absolutely continuous in c ≤ y ≤ d for almost all x ∈ [a, b].

Note that we can define the partial derivatives fx and fy a.e. in Ω for an ACL functions.
Formally, we define

fz =
1

2
(fx − ify) and fz̄ =

1

2
(fx + ify).

The reader may feel dissatisfaction because the above definition seems to strongly de-
pend on the coordinates. We try to give a more natural formulation under a mild extra
assumption. (See also Theorem 4.4 below.)

Recall that a locally integrable function g is called a distributional derivative ∂xf of f
in Ω if ∫

Ω

φxfdm = −
∫
Ω

φgdm

holds for every smooth function φ with compact support in Ω, where dm denotes the
plane Lebesgue measure. Note that the smoothness requires only C1 in this case. The
distributional derivative ∂yf is also defined similarly.
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4.2. Lemma. Let f : Ω → C be a continuous function. Suppose that f is ACL and has
locally integrable partial derivatives fx, fy in Ω. Then fx and fy are distributional deriva-
tives ∂xf and ∂yf in Ω, respectively. Conversely, if f has locally integrable distributional
derivatives in Ω, then f is ACL in Ω and fx = ∂xf and fy = ∂yf hold.

Proof. First we show the first part. We need to show that∫
Ω

φxfdm = −
∫
Ω

φfxdm

for a smooth function φ with compact support in Ω. By using the partition of unity, we
may assume that the support of φ lies in a closed rectangle R = [a, b] × [c, d] ⊂ Ω. By
Fubini’s theorem, we compute∫

R

(φxf + φfx)dm =

∫ d

c

∫ b

a

(φxf + φfx)dxdy.

Because φxf+φfx = (φf)x, we have
∫ b

a
(φxf+φfx)dx = [φf ]ba = 0 for almost all y ∈ [c, d].

Hence, the desired identity has been shown. We can handle with fy similarly.
Next we show the second part. Let g = ∂xf. Suppose that a closed rectangle R =

[a, b] × [c, d] ⊂ Ω is given. Since g ∈ L1(R), by Fubini’s theorem, there is a set E of full
measure in [c, d] so that g(x + iy) ∈ L1([a, b]) for each y ∈ E. Set Rη = [a, b] × [c, η] for
c < η < d. Assume that the distributional derivative g = ∂xf is locally integrable in Ω.
Take φ(x+ iy) = ψ(x)θ(y) as a test function, where smooth functions ψ(x) and θ(y) have
supports in [a, b] and [c, η], respectively. Then we have∫∫

Rη

ψ′(x)θ(y)f(x+ iy)dxdy = −
∫∫

Rη

ψ(x)θ(y)g(x+ iy)dxdy.

Letting θ(y) tend to 1 boundedly while ψ(x) being fixed, we get∫ η

c

∫ b

a

ψ′(x)f(x+ iy)dxdy = −
∫ η

c

∫ b

a

ψ(x)g(x+ iy)dxdy.

Differentiating both sides with respect to η, we obtain

(4.1)

∫ b

a

ψ′(x)f(x+ iy)dx = −
∫ b

a

ψ(x)g(x+ iy)dx

for almost all y ∈ E. The exceptional set in y here may depend on ψ. Nevertheless, we
choose a common exceptional null set N for all ψ ∈ C1

0([a, b]) because the space C
1
0([a, b])

is separable. Fix ξ ∈ (a, b]. By a suitable approximation, we can check that equation (4.1)
still holds for the function ψn defined by ψn(x) = n(x−a) for a ≤ x ≤ a+1/n, ψn(x) = 1
for a+1/n ≤ x ≤ ξ−1/n, ψn(x) = n(ξ−x) for ξ−1/n ≤ x ≤ ξ and ψn(x) = 0 otherwise,
where n is a sufficiently large integer. Letting n tend to ∞, we finally obtain

f(a+ iy)− f(ξ + iy) = −
∫ ξ

a

g(x+ iy)dx

for every ξ ∈ (a, b] and y ∈ E \ N. Therefore, f(x + iy) is absolutely continuous in
a ≤ x ≤ b for every y ∈ E \N and the partial derivative fx coincides with g. �
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4.3. Definition of quasiconformal mappings. Let K ≥ 1 be a constant. A homeo-
morphism f from a domain Ω ⊂ C onto another Ω′ ⊂ C is called K-quasiconformal if f
is ACL in Ω and if there is a measurable function µ on Ω with ∥µ∥∞ ≤ (K − 1)/(K + 1)
such that

(4.2) fz̄(z) = µ(z)fz(z)

holds a.e. in Ω.

For a proof of the following useful result, see [13].

4.4. Theorem (Gehring-Lehto). Suppose that a continuous open mapping f : Ω → C
has the partial derivatives fx and fy a.e. in Ω. Then f is totally differentiable at almost
every point in Ω.

4.5. Equivalent definition of quasiconformality. Let f : Ω → Ω′ be an ACL home-
omorphism. We consider the positive Borel measure λ = λf on Ω defined by λ(E) =
m(f(E)). Lebesgue’s theorem gives a unique decomposition λ = λa + λs, where λa is the
absolutely continuous part of λ and λs is the singular part of λ with respect to m. The
Radon-Nikodym derivative of λa is given by

dλa
dm

(z0) = lim
r→0

λ(B(z0, r))

πr2

for almost every z0 ∈ Ω, where B(z0, r) = {z; |z − z0| ≤ r}. On the other hand, if f is
totally differentiable at z0, then clearly λ(B(z0, r))/(πr

2) → Jf (z0) as r → 0, where Jf
denotes the Jacobian of f, namely, Jf = |fz|2 − |fz̄|2. Hence, by Gehring-Lehto theorem,
we conclude that dλa/dm = Jf a.e. in Ω. Therefore, for a compact subset E of Ω, we have∫

E

Jf (z)dxdy = λa(E) ≤ λ(E) <∞.

In particular, the Jacobian Jf is locally integrable.
If, in addition, f is K-quasiconformal, then Jf = (1− |µ|2)|fz|2 ≥ (1− k2)|fz|2, where

k = (K − 1)/(K +1). Therefore local integrability of Jf implies local square integrability
of fz and hence fz̄. In this way, we have come to another definition of quasiconformal
mappings.

A homeomorphism f : Ω → Ω′ is K-quasiconformal if and only if f has locally integrable
distributional derivatives fz and fz̄ which satisfy (4.2) for a measurable function µ on Ω
satisfying ∥µ∥∞ ≤ (K − 1)/(K + 1).

The “if ” part follows from Lemma 4.2. The “only if ” part is a consequence of the
above observation. Note that we can replace local integrability of fz and fz̄ by local
square integrability of them in the above characterization.

4.6. Condition (N). A homeomorphism f : Ω → Ω′ is said to satisfy condition (N) if
f preserves null sets, namely, if m(f(E)) = 0 for every Borel set E ⊂ Ω with m(E) = 0,
where m denotes the plane Lebesgue measure. This condition is same as the absolute
continuity of the measure λ defined in §4.5 with respect to the plane Lebesgue measure,
in other words, λs = 0. Note that a homeomorphism f satisfying condition (N) maps
Lebesgue measurable sets to Lebesgue measurable sets.

We prepare a lemma for the possible use of a proof of condition (N).
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4.7. Lemma. Let Ω be a bounded domain with boundary of area zero. If a sequence
Ωn of domains is given in such a way that χn(z) → χ(z) as n → ∞ for each point
z ∈ C \ ∂Ω, where χn and χ denote the characteristic functions of the sets Ωn and Ω.
Then m(Ωn) → m(Ω) as n→ ∞.

Proof. By Lebesgue’s convergence theorem, m(Ωn) =
∫
C χndm→

∫
C χdm = m(Ω). �

4.8. Theorem. A quasiconformal mapping f : Ω → Ω′ satisfies condition (N) and

(4.3) λf (E) =

∫
E

Jf (z)dm(z)

for each Borel set E ⊂ Ω.

Proof. Set λ = λf . Since the second part of the above statement implies that λs = 0, it is
enough to show (4.3). Let R be a closed rectangle contained in Ω such that f is absolutely
continuous on the boundary of R. Note that f(∂R) is then rectifiable and, in particular,
of area zero. By using mollifiers (smoothing operators), we may take a sequence fn of
C1-functions in a fixed neighbourhood of R in such a way that fn converges to f uniformly
on R and satisfies (fn)z → fz and (fn)z̄ → fz̄ in L2(R). Then

∫
R
Jfndm →

∫
R
Jfdm as

n → ∞. On the other hand, since
∫
R
Jfndm = m(fn(R)) → m(f(R)) = λ(R) by Lemma

4.7, we obtain
∫
R
Jfdm = λ(R). Since every open set of Ω can be expressed as a countable

disjoint union of such rectangles up to null sets, (4.3) is valid also for any open subset,
and hence, for any Borel subset of Ω. �

4.9. Remark. By the standard approximation of a measurable function by simple func-
tions, the relation in (4.3) can easily be strengthened to the formula∫

Ω

φ(f(z))Jf (z)dm(z) =

∫
Ω′
φ(w)dm(w)

for an integrable function φ on Ω′, which is a generalization of a classical formula for the
change of variables.

4.10. Lemma (Chain rule). Let f : Ω → Ω′ be a K-quasiconformal mapping with locally
Lp derivatives for some p ≥ 2 and g : Ω′ → C be a continuous mapping with locally Lq

derivatives for some q > 1 with 1/p+ 1/q ≤ 1. Then g ◦ f has locally Lr derivatives in Ω
for r = p q/(p+ q − 2) and satisfies

(4.4) (g ◦ f)z = (gz ◦ f)fz + (gz̄ ◦ f)f̄z and (g ◦ f)z̄ = (gz ◦ f)fz̄ + (gz̄ ◦ f)f̄z̄

and

(4.5) ∥(g ◦ f)z∥Lr(Ω0) + ∥(g ◦ f)z̄∥Lr(Ω0) ≤M∥fz∥1−2/q
Lp(Ω0)

(∥gz∥Lq(f(Ω0)) + ∥gz̄∥Lq(f(Ω0)))

for each relatively compact subdomain Ω0 of Ω, where M is a constant depending only on
K.
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Proof. Note that |fz̄|2 ≤ k2|fz|2 ≤ (k2/(1− k2))Jf a.e., where k = (K − 1)/(K + 1) < 1.
First, assuming (4.4), we show inequality (4.5). By Hölder’s inequality,∫

Ω0

|(gz ◦ f)fz|rdm ≤
(∫

Ω0

|gz ◦ f |q|fz|2dm
)r/q (∫

Ω0

|fz|pdm
)1−r/q

.

Then, by Remark 4.9, we have

(1− k2)

∫
Ω0

|gz ◦ f |q|fz|2dm ≤
∫
Ω0

|gz ◦ f |qJfdm =

∫
f(Ω0)

|gz|qdm.

Similar estimates apply to other terms and (4.5) is obtained.
Next we prove (4.4). When g is smooth, Lemma 4.2 yields that g ◦ f has locally

integrable derivatives satisfying (4.4). For a general g, we consider an approximating
sequence gn of g so that ∥(gn)z−gz∥Lq(Ω0) → 0 and ∥(gn)z̄−gz̄∥Lq(Ω0) → 0. Then, by (4.5),
(gn ◦ f)z and (gn ◦ f)z̄ form Cauchy sequences in Lr(Ω0). Those limits are easily seen to
equal the distributional derivatives of ∂z(g ◦ f) and ∂z̄(g ◦ f), respectively. Formulas in
(4.4) also follow from this observation. �

4.11. Composition of quasiconformal mappings. Suppose that f and g are both
quasiconformal in Lemma 4.10. Let fz̄ = µfz and gz̄ = νgz and adopt the (temporary)
convention µ = 0 on the set {z; fz(z) = 0}. Then, by the chain rule (4.4), composition
h = f ◦ g satisfies

hz̄ = (gz ◦ f)µfz + (νgz) ◦ f · f̄z = (gz ◦ f)fz
[
µ+ (ν ◦ f)fz

fz

]
hz = (gz ◦ f)fz + (νgz) ◦ f · µfz = (gz ◦ f)fz

[
1 + µ̄(ν ◦ f)fz

fz

]
.

Therefore, h satisfies the Beltrami equation hz̄ = ωhz with

(4.6) ω =
µ+ (ν ◦ f)fz

fz

1 + µ̄(ν ◦ f)fz
fz

.

It is easy to check that ∥ω∥∞ ≤ (k1 + k2)/(1 − k1k2) if ∥µ∥∞ ≤ k1 and ∥ν∥∞ ≤ k2.
Thus, we conclude that the composition of K1 and K2-quasiconformal mappings is K1K2-
quasiconformal.

Note that ω = µ if g is analytic, namely, if gz̄ = 0.

The following result is very important to do almost everything with quasiconformal
or quasiregular business. This is first established by Morrey in 1930s. Later, Bojarski
observed that K-quasiconformal mapping has locally Lp-derivatives, where p = p(K) > 2
is a constant depending only onK. Recently, Astala proved that any number p < 2K/(K−
1) works, where 2K/(K − 1) has been conjectured to be the best constant. The reader
will find a self-contained proof of Theorems 4.12 and 4.19 in [4].
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4.12. Theorem (The measurable Riemann mapping theorem). Let µ be a complex
valued measurable function on the complex plane with ∥µ∥∞ < 1. Then there exists a
unique normalized quasiconformal mapping f : C → C satisfying fz̄ = µfz a.e. in C.

It is usual to normalize f by f(0) = 0 and f(1) = 1. The above function f will be called
the normalized µ-conformal homeomorphism of C and denoted by wµ in the sequel.

4.13. Theorem. The inverse of a K-quasiconformal mapping is also K-quasiconformal.

From the analytic definition of quasiconformal mappings, it is not clear that the inverse
of a quasiconformal mapping is again quasiconformal. Below we give a proof based on
the measurable Riemann mapping theorem, although this fact is usually proved in the
course of the proof of it as in [4]. There are several ways to show this claim, none of which
seems easy to give a short proof in our framework. For instance, that is almost trivial if
we adopt a geometric definition of quasiconformal mappings. However, it is not easy to
prove the equivalence of those definitions.

Proof. Let f : Ω → Ω′ be a K-quasiconformal mapping satisfying fz̄ = µfz, where µ is
chosen so that µ = 0 on the set where fz vanishes and that supz∈Ω |µ(z)| = ∥µ∥∞. Then
define ν by

(4.7) ν = −
(
fz

fz
· µ

)
◦ f−1

on Ω′. Note that ν is Lebesgue measurable by Theorem 4.8. (If µ is Borel measurable,
then it is immediate to see that ν is Borel measurable without appealing to Theorem
4.8.) We extend ν to C by setting ν = 0 off Ω. Then ∥ν∥∞ ≤ (K − 1)/(K + 1). Let
h : C → C be a quasiconformal mapping with hz̄ = µhz whose existence is guaranteed by
Theorem 4.12. Then, by (4.6), we see that (h ◦ f)z̄ = 0 a.e. in Ω. Weyl’s lemma implies
that φ = h ◦ f is conformal in Ω. Hence, f−1 = φ−1 ◦ h is quasiconformal. �

Applying Theorem 4.8 to the function f−1, we obtain the following.

4.14. Corollary. The inverse of a quasiconformal mapping f satisfies condition (N). In
particular, |Jf | > 0 a.e.

The last assertion enables us to see that the coefficient µ(z) in (4.2) is determined
by the function f in the sense of “almost everywhere” since fz ̸= 0 a.e. We call µ the
Beltrami coefficient of f. Sometimes the Beltrami coefficient of f is denoted by µf . Note
also that the Beltrami coefficient of f−1 is given by (4.7).

4.15. Lemma (Stöılow property). Let f : Ω → Ω′ be a quasiconformal mapping sat-
isfying fz̄ = µfz. Suppose that a continuous function g : Ω → C with locally square
integrable derivatives also satisfies the Beltrami equation gz̄ = µgz in Ω. Then there exists
a holomorphic function φ : Ω′ → C so that g = φ ◦ f.

Proof. More generally, if gz̄ = νgz, by combining (4.6) with (4.7), the Beltrami coefficient
of φ = g ◦ f−1 is given by (

µg◦f−1

)
◦ f =

ν − µ

1− µ̄ν

fz

fz
.

Thus, if ν = µ, we have (φ)z̄ = 0. From Weyl’s lemma, the conclusion follows. �
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4.16. Definition of quasiregular mappings. A continuous function g : Ω → C with
locally square integrable derivatives is called quasiregular if there exists a measurable
function µ on Ω with ∥µ∥∞ < 1 such that gz̄ = µgz a.e. in Ω. By the above theorem, g
is quasiregular if and only if g decomposes into the form g = φ ◦ f, where f : Ω → Ω′ is
a quasiconformal mapping and φ : Ω′ → C is a holomorphic function. Note that gz ̸= 0
a.e. in Ω, and hence, the coefficient µ is determined by g, unless g is constant.

For quasiregular mappings, we refer to [13] and [17].

4.17. Continuity on Beltrami coefficients. Suppose that a sequence of measurable
functions µn, n = 1, 2, . . . , on C satisfies ∥µn∥∞ ≤ k(< 1) for all n and µn → µ a.e. for

some µ. Then the normalized µn-conformal homeomorphisms wµn : Ĉ → Ĉ converge to

wµ uniformly on Ĉ.
See, for instance, [4].

4.18. Beltrami coefficients with parameters. We often encounter the situation that
the Beltrami coefficients in question have parameters. In practice, it is important to see
dependence of the solutions of Beltrami equations on those parameters. A typical and
important case is as follows. Let µt be a family of Beltrami coefficients on C parametrized
by t over a domain D ⊂ C. The family is said to be holomorphic if the mapping t 7→ µt

is holomorphic from D into the unit ball of the complex Banach space L∞(C). In other
words, for each t0 ∈ D, the Beltrami coefficient µt is written in the form

(4.8) µt = µt0 + (t− t0)ν + |t− t0|εt,
where ν ∈ L∞(C) and ∥εt∥∞ → 0 as t→ t0.

We set

θω(z) = − 1

π

∫∫
C

z(z − 1)

ζ(ζ − 1)(ζ − z)
ω(ζ)dξdη

and θµ,ν = θω ◦ f, where f is the normalized µ-conformal homeomorphism and

ω =

(
ν

1− |µ|2
fz

fz

)
◦ f−1.

Note that the quantity θµ,ν is linear in ν.

4.19. Thoerem (Holomorphic dependence on parameters). Let µt be a holomor-
phic family of Beltrami coefficients over D. Then wµt(z) is holomorphic in t ∈ D for a
fixed z ∈ C. Moreover, ẇµt0 (z) = limt→t0(w

µt(z) − wµt0 (z))/(t − t0) = θµt0 ,ν(z) if µt has
the expansion in (4.8) and the convergence is uniform on each compact set in C.

For the proof and more refined results, see [4].

5. The Ahlfors five island theorem

In this section, we give an exposition of the cerebrated Ahlfors five island theorem based
on Bergweiler [7].

5.1. Some terminology. Let f : Ω → Ĉ be a meromorphic function. For a given Jordan

domain D in Ĉ, a connected component D0 of f−1(D) is called a simple island over D if
f : D0 → D is a conformal homeomorphism.
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5.2. Theorem (Ahlfors five island theorem). Let D1, . . . , D5 be Jordan domains in

Ĉ whose closures are pairwise disjoint. Every non-constant meromorphic function f :

C → Ĉ has a simple island over Dj for some j = 1, . . . , 5.

The following statement is also known (see Exercise 11).

5.3. Theorem (Ahlfors). Let D1, D2, D3 be bounded Jordan domains in C whose clo-
sures are pairwise disjoint. Every non-constant entire function f : C → C has a simple
island over Dj for some j = 1, 2, 3.

5.4. Bergweiler’s formulation. In what follows, let Dj, j = 1, 2, . . . , q, denote Jordan
domains which have pairwise disjoint closures. We denote by FA(Ω, {Dj}qj=1) the family

of all meromorphic functions f : Ω → Ĉ which have no simple islands over Dj for any
j = 1, . . . , q. Then the Ahlfors five island theorem says that FA(C, {Dj}5j=1) consists of
only the constant functions.

Similarly, for given distinct points a1, . . . , aq in Ĉ, let FN(Ω, {aj}qj=1) denote the family

of all meromorphic functions f : Ω → Ĉ which have no simple aj-points for every j =
1, . . . , q. Then the values aj are said to be totally ramified.

We consider now the following four assertions:

A1. The family FA(Ω, {Dj}5j=1) is normal for every domain Ω ⊂ C.
A2. The family FA(C, {Dj}5j=1) consists of only the constant functions.

N1. The family FN(Ω, {aj}5j=1) is normal for every domain Ω ⊂ C.
N2. The family FN(C, {aj}5j=1) consists of only the constant functions.

The second assertion is just a rephrase of the Ahlfors five island theorem. The last two
assertions were proved by R. Nevanlinna in 1920’s. Our aim in the rest of the present
section is to give a proof for the above four assertions.

5.5. A1 ⇒ N1 and A2 ⇒ N2. For given a1, . . . , a5, take a sufficiently small disks
D1, . . . , D5 such that aj ∈ Dj. Because FA(Ω, {Dj}5j=1) ⊃ FN(Ω, {aj}5j=1), assertions N1
and N2 follows from A1 and A2, respectively.

5.6. Bloch’s principle. Next we show equivalence of assertions X1 and X2 for X=A or
N. This kind of equivalence is known as Bloch’s principle which gives some heuristics to
analogues between local properties of functions between global ones. See, for instance,
[20] and [9].

For the sake of brevity, we shall use the symbol F(Ω) to designate the family FA(Ω, {Dj}5j=1)

or FN(Ω, {aj}5j=1).
To deduce X2 from X1 is simple. Indeed, if f ∈ F(C) is non-constant, then the family

of functions f(nz), n = 1, 2, . . . , is not normal at the origin. In order to deduce X1 from
X2, we have just to use Zalzman’s theorem, which ensures the existence of a non-constant
function f ∈ F(C) under the hypothesis that F(Ω) is not normal.
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5.7. N2 ⇒ A2. We assume that there is a non-constant function f in FA(C, {Dj}5j=1).
We may assume that the closure of Dj does not contain ∞ for every j. Fix five distinct
values a1, . . . , a5 ∈ C and consider the disks ∆j(ε) = {|z− aj| < ε} for 0 < ε < min{|aj −
ak|; j ̸= k}. It is obvious that there is a quasiconformal mapping ψε : C → C such that
ψε(Dj) ⊂ ∆j(ε) for all j = 1, . . . , 5. Let µε be the Beltrami coefficient of the quasiregular
mapping ψε◦f. Then, the measurable Riemann mapping theorem guarantees the existence
of normalized µε-conformal homeomorphism ϕε : C → C. By construction, we see that
gε = ψε ◦ f ◦ ϕε is a meromorphic function contained in FA(C, {∆j(ε)}5j=1).

We take now a sequence εn tending to zero. We may assume that the sequence gεn is
not normal, because otherwise one may replace it by gεn(Mnz) for a suitable sequenceMn

tending to ∞. Zalzman’s theorem yields now that, passing to a subsequence if necessary,
gεn(zn + ρnz) converges to a non-constant g in C for some sequences zn and ρn. We see
that g ∈ ∩∞

n=1FA(C, {∆j(εn)}5j=1) = FN(C, {aj}5j=1). This violates the validity of assertion
N2.

5.8. Lemma (Schwarz lemma for square roots). Let F be a holomorphic function
on the unit disk D. Suppose that F has only multiple zeros and that |F | < 1 in D. Then
|F ′(0)|2 ≤ 4|F (0)|.

If one could take a holomorphic square root G of F, the above inequality is nothing
but the assertion |G′(0)| ≤ 1. The proof uses a result of Ahlfors on the ultrahyperbolic
metrics [1].

Proof. By approximating F (z) by F (rz), we may assume that F is holomorphic on a
neighbourhood of the closed unit disk and |F | < 1 there. Put

u(z) = log
|F ′(z)|

2
√

|F (z)|(1− |F (z)|)
and v(z) = log

1

1− |z|2
.

Note that u(z) → −∞ when z approaches to a zero of F with multiplicity at least three,
while u(z) is finite and smooth at any other points containing zeros of F with multiplicity
two. Also note that v(z) → ∞ as |z| → 1. Therefore, the function w = u − v takes its
maximum at some point z0 in D, where w is smooth. Then ∆w(z0) ≤ 0. On the other
hand, since ∆u = 4e2u and ∆v = 4e2v, we see that ∆w(z0) = 4(e2u(z0)− e2v(z0)), and thus,
u(z0) ≤ v(z0). By the choice of z0, we obtain u(z)−v(z) = w(z) ≤ w(z0) = u(z0)−v(z0) ≤
0. In particular, u(0) ≤ v(0), which implies the desired inequality. �

5.9. Proof of N1. We assume that assertion N1 is false. Then, by Zalcman’s theorem,
there exists a non-constant f ∈ FN(C, {aj}5j=1) with bounded spherical derivative. We
may assume that none of aj’s is ∞. Then consider the entire function

g(z) =
f ′(z)2∏5

j=1(f(z)− aj)
.

Since f# is bounded, g is small when f is large. In particular, g is non-constant and there
is a sequence zn, n = 1, 2, . . . , so that g(zn) → ∞, and hence f(zn) is bounded.

We consider the function hn(z) = f(z+ zn). Since h
#
n (z) = f#(z+ zn), the sequence hn

forms a normal family by Marty’s theorem. Thus, we may assume that hn converges to

a meromorphic function h : C → Ĉ locally uniformly. Since f(zn) is a bounded sequence,



NORMAL FAMILIES AND QUASICONFORMAL MAPPINGS 17

h(0) is a finite value. If h(0) ̸= aj for all j, then g(zn) → h′(0)2/
∏5

j=1(h(0) − aj) ̸= ∞,

which is a contradiction. Thus, h(0) = aj for some j. On the other hand, the sequence

Gn(z) = g(z+ zn) of entire functions converges to H(z) = h′(z)2/
∏5

j=1(h(z)− aj) locally

uniformly in the spherical metric. SinceGn(0) → ∞, by Lemma 3.2, H must be identically
∞. Hence h(z) ≡ aj.

Since |hn(z)−aj| < 1 on D for sufficiently large n, by Lemma 5.8, we obtain |f ′(zn)|2 ≤
4|f(zn)− aj| and hence

|g(zn)| ≤
4∏

k ̸=j |f(zn)− ak|
,

which is a contradiction because f(zn) → aj and g(zn) → ∞.

6. Exercises

1. Show Lemma 2.2.
2. Give an explicit expression of the stereographic projection from C to the sphere

{(x1, x2, x3);x21 + x22 + (x3 − 1/2)2 = 1/22}. Using it, deduce that the induced

metric on Ĉ from the Euclidean metric on R3 coincides with σ(z)|dz|.
3. Give a proof to Lemma 3.2.
4. Let fn, n = 1, 2, . . . , be a locally uniformly convergent sequence of meromorphic

functions on Ω. Suppose that a sequence gn : Dn → Ĉ, n = 1, 2, . . . , of meromor-

phic functions converges to g : D → Ĉ locally uniformly in D and that fn(Ω) ⊂ Dn

for n = 1, 2, . . . . Prove that the composite functions gn◦fn converge to g◦f locally
uniformly on Ω.

5. Show that the space C(Ω, X) introduced in §3.4 is metrizable in the following way.
Let Ωn, n = 1, 2, . . . , be an increasing sequence of relatively compact subdomains
of Ω so that ∪∞

n=1Ωn = Ω. Let δn be a pseudo-distance on C(Ω, X) defined by

δn(f, g) = sup
z∈Ωn

d(f(z), g(z))

for f, g ∈ C(Ω, X). Then prove that

δ(f, g) =
∞∑
n=1

2−n δn(f, g)

1 + δn(f, g)

gives a distance on C(Ω, X). Finally, check that the distance δ gives to C(Ω, X)
the same topology as the compact-open topology.

6. Show that the group Möb of Möbius transformations is not normal in any subdo-
main of the Riemann sphere.

7. Fix three points z1, z2, z3 of Ĉ and take a positive number δ > 0. Is the family

F = {f ∈ Möb;min{d#(f(zj), f(zk)); j, k = 1, 2, 3, j ̸= k} ≥ δ} normal in Ĉ?
8. Let F be a family of holomorphic functions on a domain Ω. If F is normal as

holomorphic functions, then prove that the family F ′ = {f ′; f ∈ F} is normal,
too. Can one say the same thing if one replaces “holomorphic” by “meromorphic”
in the above?
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9. In Theorem 3.13 we needed to assume the domain Ω to be a subdomain of C. In
the general case when Ω ⊂ Ĉ, it is natural to consider the “spherical density of
spherical differential” given by

f ♭(z) =
(1 + |z|2)|f ′(z)|

1 + |f(z)|2
.

Deduce a criterion for normality similar to Marty’s theorem.
10. Prove the following version of the Schwarz lemma: Let F : D → D∗ = D \ {0} be

a holomorphic map. Then |F ′(0)| ≤ 2|F (0)| log(1/|F (0)|) holds.
Hint: Use the hyperbolic metric.

11. Prove Theorem 5.3 by showing the following statement: Let Dj, j = 1, 2, 3, be

Jordan domains and a4 be a point in Ĉ such that any two of these have disjoint
closures. LetHA(Ω) = HA(Ω, D1, D2, D3, a4) denote the family of all meromorphic
functions which has no simple island in Ω over Dj for all j = 1, 2, 3 and which
omits the value a4. Then HA(C) contains only constant functions.
Hint: Letting aj ∈ Dj, j = 1, 2, 3, and assuming aj ̸= ∞, j = 1, 2, 3, 4, consider

the function

g(z) =
f ′(z)4

(f(z)− a1)2(f(z)− a2)2(f(z)− a3)2(f(z)− a4)3
.

7. References

7.1. Complex Dyanmics. It would be nice to refer the reader to several textbooks on
the complex dynamics although this preliminary course will not treat it at all.

Beardon [6] and Steinmets [19] take analytic approach, which enables us to easily
understand the contents. On the other hand, the lecture note [15] by Milnor has more
geometric flavor.

The book [11] by Carleson and Gamelin is somewhat hard to read but useful even for
experts. McMullen’s book [14] gives us keen insights and provides the idea of renormaliza-
tion. The book [16] by Morosawa, Nishimura, Taniguchi and Ueda deals also with entire
functions and higher dimensional cases.

7.2. Quasiconformal mappings. Basic references are Lehto-Virtanen [13] and Ahlfors
[3]. The outstanding paper [4] by Ahlfors and Bers is worth reading even though there are
several misprints. The huge book [5] by Astala, Iwaniec and Martin contains many modern
mathematical tools to develop the theory of plane quasiconformal mappings and their
generalizations. Gutlyanskii, Ryazanov, Srebro and Yakubov [12] also covers degenerate
cases of the Beltrami equation. Recently, a book [10] by Branner and Fagella was publised
to serve as a textbook on quasiconformal surgery of complex dynamics.

7.3. Basic materials. Ahlfors’ book [2] is an excellent textbook on complex analysis
widely covering the necessary materials. In particular, as to the basic properties of normal
families, the reader should consult it. The book [18] by Schiff is also a good source of the
concept of normality. For basic properties of the hyperbolic metric, we refer to the book
[1] by Ahlfors.

Concerning the Ahlfors five island theorem, articles [7] and [8] by Bergweiler provide a
simple proof as well as references.
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