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MODULUS TECHNIQUES IN GEOMETRIC FUNCTION THEORY

TOSHIYUKI SUGAWA

Abstract. This is an expository account on quasiconformal mappings and µ-conformal
homeomorphisms with an emphasis on the role played by the modulus of an annulus or a
semiannulus. In order that the reader gets acquainted with modulus techniques, we give
proofs for some of typical and important results. We also include several recent results
on µ-conformal homeomorphisms.
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1. Introduction

In geometric function theory, the (conformal) modulus of a ring (an annulus) is a
key notion to analyze local behaviour of mappings. For instance, as we will see later,
quasiconformal mappings can be characterized in terms of the moduli of annuli. In this
survey, we exhibit techniques to derive useful properties of the mappings by observing the
modulus change of annuli under homeomorphisms of a certain kind.

Basically, the same technique can be used in higher dimensions. We, however, restrict
ourselves to the case of plane mappings for the sake of simplicity. The reader can consult
a nice monograph [4] by Anderson, Vamanamurthy and Vuorinen for the information in
higher dimensions. See also Ahlfors [1] and Lehto-Virtanen [25] for quasiconformal map-
pings, [6], [21], [22] for modern treatments of (possibly degenerate) Beltrami equations,
and [26] for more recent and detailed information about modulus techniques.

A doubly connected domain D in the Riemann sphere Ĉ = C ∪ {∞} is called a ring

(domain) or an annulus. That is to say, a ring B is a connected open subset of Ĉ such

that the complement of the complement Ĉ \ B of B consists of exactly two connected
components, say, E1 and E2. We will say that B separates z1 from z2 when z1 ∈ E1
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and z2 ∈ E2. To avoid an exceptional case, we will always assume that B is not a twice-
punctured sphere (i.e., at least one of E1 and E2 is not a singleton). Then, B is known
to be conformally equivalent to a round ring of the form AR = {z ∈ C : 1 < |z| < R}
for some 1 < R ≤ +∞. Note that the number R is uniquely determined for a given B.
The quantity logR ∈ (0,+∞] is called the (conformal) modulus of the ring B and will
be denoted by modB. (It may be more natural to define the modulus to be 1

2π
logR. In

the present survey, however, we will not adopt this so that some results will take simpler
forms.)

It is, however, not necessarily easy to evaluate or even estimate modB because a
conformal mapping between B and AR cannot be given explicitly except for annuli of
very special types. Therefore, it is desirable to have another expression of the modulus.
Ahlfors and Beurling [3] introduced the concept of extremal length for a curve family. See
also [1] or [2, Chap. 4] for details. As we will see below, this is quite a useful device to
estimate the modulus of a ring.

Let Γ be a curve family in a Borel subset Ω of Ĉ, that is, a collection of curves in Ω. (A
curve is allowed to be broken into at most countable pieces in the most general situation.
In the present survey, however, a curve will mean a continuous map from an interval into

Ĉ for simplicity.) For a non-negative Borel function ρ on Ω, we consider the two quantities

L(Γ, ρ) = inf
γ∈Γ

∫

γ

ρ(z)|dz|

and

Area(ρ) =

∫∫

Ω

ρ(z)2dxdy,

where z = x + iy. Here, we define
∫
γ
ρ(z)|dz| to be +∞ when the integral cannot be

computed appropriately (for instance, when the curve γ is not locally rectifiable whereas
ρ is nonzero on it). See [27] or [30] for more precise definition. The extremal length of Γ,
denoted by λ(Γ), is defined by

λ(Γ) = sup
0<Area(ρ)<+∞

L(Γ, ρ)2

Area(ρ)
.

A function ρ for which the supremum is attained in the above will be called an extremal
metric for the family Γ. Note that λ(Γ) does not depend on the set Ω. In particular, we
can take all non-negative Borel functions ρ on C with 0 < Area(ρ) < ∞ in the above
definition. It should be noted that λ(Γ′) ≥ λ(Γ) when Γ′ ⊂ Γ.

The most important property of extremal length is conformal invariance. Let f :
Ω → Ω′ be a conformal homeomorphism and set f(Γ) = {f(γ) : γ ∈ Γ}. Then we have
λ(f(Γ)) = λ(Γ). This will be seen as a special case of a more general result (see Theorem
2.8 below).

For a ring B, we denote by ΓB the collection of those closed curves in B whose winding
number is ±1 about the two components E1 and E2. In other words, choosing two points
ζ1 ∈ E1 and ζ2 ∈ E2, a closed (oriented) curve γ in B is in ΓB if and only if

1

2πi

∫

γ

z − ζ2
z − ζ1

dz = ±1.
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Also, we denote by Γ′B the collection of open arcs in B joining the two boundary com-
ponents of B. That is to say, an open arc γ in B is in Γ′B if and only if E1 ∪ γ ∪ E2 is a
closed connected set. Then we have the following (cf. Example 3 in Chapter 3D of [1]).
Since it is a good exercise to check it as a warming-up, we include its proof here.

Lemma 1.1. For a ring B in Ĉ,

modB =
2π

λ(ΓB)
= 2πλ(Γ′B).

Proof. By the conformal invariance, we may assume that B is a round ring of the form
AR = {1 < |z| < R} for some R > 1.

Let ρ be a non-negative Borel function on B. For the circle γr : θ 7→ reiθ (1 < r < R),
by the Cauchy-Schwarz inequality, we have

L(ΓB, ρ)
2 ≤

(∫

γr

ρ(z)|dz|
)2

=

(∫ 2π

0

ρ(z)rdθ

)2

≤
∫ 2π

0

rdθ ·
∫ 2π

0

ρ(z)2rdθ = 2πr

∫ 2π

0

ρ(z)2rdθ.

We now divide the above by r and then integrate in 1 < r < R to get

L(ΓB, ρ)
2 logR ≤ 2π

∫ R

1

∫ 2π

0

ρ(z)2rdθdr = 2πArea(ρ),

and hence,

L(ΓB, ρ)
2

Area(ρ)
≤ 2π

logR
.

Taking the supremum in ρ with 0 < Area(ρ) < +∞, we have

λ(ΓB) ≤ 2π

logR
.

We next show the reverse inequality. Define ρ0 by ρ0(z) = 1/|z| if z ∈ B and ρ0(z) = 0
otherwise. Since each γ ∈ ΓB has winding number 1 or -1 about the origin, writing
z = reiθ, we have

2π =

∣∣∣∣
∫

γ

d arg z

∣∣∣∣ ≤
∣∣∣∣
∫

γ

dz

z

∣∣∣∣ ≤
∫

γ

|dz|
|z| =

∫

γ

ρ0(z)|dz|.

Hence, L(ΓB, ρ0) ≥ 2π. Since Area(ρ0) = 2π logR, we have

λ(ΓB) ≥ L(ΓB, ρ0)
2

Area(ρ0)
≥ 2π

logR
.

We have now proved that λ(ΓB) = 2π/ logR = 2π/modB.
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Similarly, we can show the second formula. Indeed, for an admissible ρ and the radial
segment δθ : r 7→ reiθ, we have

L(Γ′B, ρ)
2 ≤

(∫

δθ

ρ(z)|dz|
)2

=

(∫ R

1

ρ(reiθ)dr

)2

≤
∫ R

1

dr

r
·
∫ R

1

ρ(reiθ)2rdr.

Integrating in 0 < θ < 2π, we obtain

2πL(Γ′B, ρ)
2 ≤ logR ·

∫ 2π

0

∫ R

1

ρ(reiθ)2rdrdθ = logR · Area(ρ),

and hence,

λ(Γ′B) ≤ logR

2π
.

Also, since |dz|/|z| ≥ dr/r for z = reiθ, we have for the above ρ0, the inequality∫

γ

ρ0(z)|dz| ≥
∫

γ

dr

r
= logR

holds for each γ ∈ Γ′B. Therefore, L(Γ′B, ρ0) ≥ logR and

λ(Γ′B) ≥ L(Γ′B, ρ0)
2

Area(ρ0)
≥ logR

2π
.

We now complete the proof of λ(Γ′B) = 1
2π

logR = 1
2π

modB. ¤

The above estimations are typical cases of the so-called length-area method.

2. Differential calculus

We summarize very basics on differential calculus necessary for developments of the
theory of quasiconformal mappings or (degenerate) Beltrami equations.

For simplicity, we may assume, for a while, that f is smooth enough on an open set in
C. However, definitions below may be extended for more general f as long as they make
sense.

Complex partial derivatives of a (complex-valued) function f are defined by

fz = ∂f =
1

2
(fx − ify) and fz̄ = ∂̄f =

1

2
(fx + ify),

where fx = ∂f/∂x and fy = ∂f/∂y for z = x+ iy.
The Jacobian Jf of f = u+ iv can be expressed by

Jf = uxvy − uyvx = |fz|2 − |fz̄|2.
Note that, if Jf (z0) 6= 0, f is locally univalent at z0 and, if Jf (z0) > 0 in addition, f
is orientation-preserving at z0. We also note that Jf (z0) > 0 is equivalent to |fz̄(z0)| <
|fz(z0)|.

The complex dilatation µf of f is defined by

µf =
fz̄
fz
.
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Note that |µf | < 1 if f is an orientation-preserving (local) diffeomorphism. It is often
convenient to use the related quantity

Kf (z) =
1 + |µf (z)|
1− |µf (z)| ,

which is sometimes called the pointwise maximal dilatation of f. In applications, it is
important to notice the formula

µϕ◦f◦ψ = µf ◦ ψ · ψ
′

ψ′

and, in particular, |µϕ◦f◦ψ| = |µf | ◦ψ and Kϕ◦f◦ψ = Kf ◦ψ, for non-constant holomorphic
functions ϕ and ψ with ψ′(z) 6= 0. The quantity Kf is obtained by discarding the infor-
mation about the argument of µf . Therefore, it is sometimes necessary to look at a more
refined quantity. Andreian Cazacu [5] introduced the notion of directional dilatations,
which were effectively used by Reich and Walczak [29], Lehto [23] and later by Brakalova
and Jenkins [8], [13], Brakalova [10], [11], Gutlyanskĭı, Martio, Vuorinen and the author
[17], [18]. We now give a definition of it. Let µ be a (Borel measurable, complex-valued)
function on an open set Ω in C with |µ| < 1 and fix a point z0 ∈ C (not necessarily in Ω).
Then, we set

Dµ,z0(z) =

∣∣∣1− µ(z) z̄−z̄0
z−z0

∣∣∣
2

1− |µ(z)|2 =
|1− e−2iθµ(z)|2

1− |µ(z)|2
for z ∈ Ω, where θ = arg(z − z0). It is easy to check the inequalities

1

Kµ(z)
≤ Dµ,z0(z) ≤ Kµ(z), z ∈ Ω,

for Kµ = (1 + |µ|)/(1− |µ|).
Let f be a function with fz(z) 6= 0 on an open set Ω and µ = µf . For a fixed point

z0 ∈ Ω, we write z = z0 + reiθ in polar coordinates. Then, by the chain rule, the partial
derivatives of f with respect to θ and r are computed as

fθ =
∂z

∂θ
fz +

∂z̄

∂θ
fz̄ = ireiθfz − ire−iθfz̄,

fr =
∂z

∂r
fz +

∂z̄

∂r
fz̄ = eiθfz + e−iθfz̄.

It is easy to verify the following formulae:

(2.1) |fθ(z)|2 = r2Dµ,z0(z)Jf (z)

and
|fr(z)|2 = D−µ,z0(z)Jf (z).

Hence, Dµ,z0 and D−µ,z0 are sometimes called the angular dilatation and the radial dilata-
tion of f (or µ) at z0, respectively.

When the theory of quasiconformal mappings was initiated by Grötzsch and Teichmüller,
only smooth ones were considered. Later, however, it was recognized that we need to relax
the smoothness (regularity) assumption to guarantee a normality of the class of (suitably
normalized) K-quasiconformal mappings. Nowadays, it is standard to use a Sobolev space
setting for that.
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For C1 functions f on an open set Ω in C, the Sobolev norm with exponent p ≥ 1 is
defined to be

‖f‖W 1,p(Ω) = ‖f‖Lp(Ω) + ‖fx‖Lp(Ω) + ‖fy‖Lp(Ω).

The completion of the set {f ∈ C1(Ω) : ‖f‖W 1,p < ∞} with respect to this norm is
called the Sobolev space with exponent p and denoted by W 1,p(Ω). We remark that
the completion is realized in the Lebesgue space Lp(Ω) and the partial derivatives are
understood in the sense of distributions. We also denote by W 1,p

loc (Ω) the set of measurable
functions f on Ω such that f |Ω0 ∈ W 1,p(Ω0) for every relatively compact, open subset Ω0

of Ω.
Here is another relating concept. A continuous function f on an open set Ω ⊂ C is

called ACL (Absolutely Continuous on Lines) if for every closed rectangle R = {x + iy :
a ≤ x ≤ b, c ≤ y ≤ d} in Ω, the function f(x + iy) is absolutely continuous in a ≤ x ≤ b
for almost every y ∈ [c, d] (with respect to the 1-dimensional Lebesgue measure) and
absolutely continuous in c ≤ y ≤ d for almost every x ∈ [a, b]. We note that for such a
function f we can define the partial derivatives fx, fy and, therefore, fz, fz̄ as well, as Borel
measurable functions a.e. on Ω. The definition of ACL functions seems to depend strongly
on the coordinates. For instance, it is not clear that f(eiθ(x + iy)) is again ACL for an
ACL function f. However, we do not need to worry about it, when partial derivatives are
locally integrable in Ω. For the proof of the next result, the reader is referred, for instance,
to [16, §4.9.2] or [32, Theorem 2.1.4].

Lemma 2.2. Let f be a continuous function on an open set Ω ⊂ C. If f is ACL and the
partial derivatives of f are integrable in Ω, then f ∈ W 1,1

loc (Ω). Conversely, every function

f in W 1,1
loc (Ω) is ACL in Ω. Moreover, their partial derivatives as ACL functions are same

as distributional derivatives.

The following property was discovered by Gehring and Lehto (cf. [1] or [25]) and often
very useful.

Lemma 2.3. Let f be a continuous open mapping of a domain Ω into C. Suppose that f
has the partial derivatives fx and fy a.e. in Ω. Then f is totally differentiable at almost
every point in Ω.

We recall here that f is called totally differentiable at z0 if

f(z0 + z) = f(z0) + Ax+By + o(|z|)
as z = x+ iy → 0 for some constants A,B ∈ C.

We are now ready to give an analytical definition of quasiconformal mappings.

Definition 2.4. Let Ω and Ω′ be domains in the Riemann sphere Ĉ = C ∪ {∞} and
let K ≥ 1 be a constant. A homeomorphism f : Ω → Ω′ is called K-quasiconformal if
f ∈ W 1,1

loc (Ω \ {∞, f−1(∞)}) and

|fz̄| ≤ k|fz| a.e. in Ω,

where k = (K − 1)/(K + 1).

If we do not care about K, the mapping f is simply called quasiconformal. The next
result is fundamental in the study of quasiconformal mappings.
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Theorem 2.5 (The measurable Riemann mapping theorem). Let µ be a complex-valued
measurable function on C with ‖µ‖∞ < 1. Then there exists a quasiconformal mapping

f : Ĉ→ Ĉ satisfying

(2.6) fz̄ = µfz

a.e. in C. Moreover, such an f is unique up to post-composition with a Möbius transfor-
mation.

The equation in (2.6) is called the Beltrami equation. The condition ‖µ‖∞ < 1 implies
a uniform ellipticity of the equation. It is, however, occasionally necessary to consider the
degenerate case when |µ| < 1 a.e. but ‖µ‖∞ = 1. Such a case occurs, for instance, in the
study of planar harmonic mappings, transonic gas dynamics and parabolic bifurcations
of a complex dynamics.

A measurable function µ on Ω is called a Beltrami coefficient if |µ| < 1 a.e. on Ω. For
such a µ, a homeomorphism f : Ω → Ω′ is called µ-conformal if f ∈ W 1,1

loc (Ω) and fz̄ = µfz
a.e. in Ω. In the degenerate case, we should note that a homeomorphic solution might not
exist and, even if it exists, the uniqueness assertion (the Stöılow property) might not be
true.

We also have the following result concerning quasiconformal mappings.

Lemma 2.7. Let f be a quasiconformal mapping of a domain Ω. Then fz(z) 6= 0 a.e. in
Ω.

Therefore, we can define the complex dilatation µf = fz̄/fz as a Borel measurable
function on Ω for a quasiconformal mapping of Ω andK-quasiconformality is characterized
by Kf = (1 + |µf |)/(1− |µf |) ≤ K a.e. in Ω.

The extremal length is important in connection with quasiconformal mappings.

Theorem 2.8. Let f : Ω → Ω′ be a K-quasiconformal mapping and Γ be a curve family
in Ω. Then

λ(Γ)

K
≤ λ(f(Γ)) ≤ Kλ(Γ).

Proof. For a non-negative Borel function ρ on Ω, we define ρ′ so that the formula

ρ = ρ′ ◦ f · (|fz| − |fz̄|)
is valid on Ω. If we write w = f(z), then we have dw = fzdz + fz̄ z̄ so that |dw| ≥
(|fz| − |fz̄|)|dz|. Thus, for any γ ∈ Γ, we have

∫

γ

ρ(z)|dz| =
∫

γ

ρ′(w)(|fz| − |fz̄|)|dz| ≤
∫

f(γ)

ρ′(w)|dw|.

Hence,

L(Γ, ρ) ≤ L(f(Γ), ρ′).

On the other hand, by using the inequality

Jf = Kf · (|fz| − |fz̄|)2 ≤ K(|fz| − |fz̄|)2,
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we observe

Area(ρ) =

∫∫

Ω

ρ′(f)2(|fz| − |fz̄|)2dxdy

≥ 1

K

∫∫

Ω

ρ′(f)2Jfdxdy

=
1

K

∫∫

Ω′
ρ′(w)2dudy =

Area(ρ′)
K

.

Thus,
L(Γ, ρ)

Area(ρ)
≤ K · L(f(Γ), ρ′)

Area(ρ′)
.

Taking the supremum in ρ, we get λ(Γ) ≤ λ(f(Γ)). The other inequality can be obtained
by applying f−1 to the first one. ¤

Corollary 2.9. The extremal length is conformally invariant.

We end this section by summarizing basic properties of quasiconformal mappings.

Lemma 2.10.

(1) 1-quasiconformal mapping is nothing but a conformal mapping.
(2) The inverse mapping of a K-quasiconformal mapping is again K-quasiconformal.
(3) The composition of a K-quasiconformal mapping with a K ′-quasiconformal map-

ping is a KK ′-quasiconformal mapping.
(4) Let f and g be quasiconformal mappings of a domain Ω. If µf = µg on Ω then

g = ϕ ◦ f for a conformal mapping ϕ : f(Ω) → g(Ω) (the Stöılow property).
(5) If a sequence of K-quasiconformal mappings fn of a domain Ω converges locally

uniformly on Ω to a homeomorphism f of Ω, then f is also K-quasiconformal.

3. Round rings

A subset B0 of a ring B is called a subring when B0 is a ring with ΓB0 ⊂ ΓB. Then, by the
monotonicity of extremal length, λ(ΓB) ≤ λ(ΓB0). Therefore, we have modB0 ≤ modB.
It is also possible to show that the inequality is strict unless B0 = B.

For z0 ∈ Ĉ and 0 < r1 < r2 < +∞, we set

A(z0; r1, r2) = {z ∈ C : r1 < |z − z0| < r2}
if z0 ∈ C and

A(∞; r1, r2) = A(0, 1/r2, 1/r1)

if z0 = ∞. A ring is said to be round (and centered at z0) if it is of the form A(z0; r1, r2).
Obviously, a ring does not necessarily contain a round subring. However, this is true

if the modulus is large enough. This sort of result was first proved by Teichmüller. A
prototype of the following result was shown by Herron-Liu-Minda [20]. Avkhadiev and
Wirths finally obtained the following sharp form.

Lemma 3.1 (Avkhadiev-Wirths [7]). Let B be a ring in C with modB > π which
separates a given point z0 ∈ C from ∞. Then there is a round subring A of B centered



MODULUS TECHNIQUES IN GEOMETRIC FUNCTION THEORY 9

at z0 such that modA ≥ modB − π. The constant π cannot be replaced by any smaller
number.

For convenience of the reader, we give an outline of the proof.

Proof. Let E1 and E2 be the connected components of Ĉ \ B with z0 ∈ E1 and ∞ ∈ E2.
We take a point z1 ∈ E1 so that |z1 − z0| = maxz∈E1 |z − z0|. We may assume that
z0 = 0 and z1 = −1. We claim now that A(0; 1, R) ⊂ B for R = exp( modB − π).
Suppose, to the contrary, that A(0; 1, R) \ B 6= ∅. Since E1 ⊂ {|z| ≤ 1}, E2 must
intersect A(0; 1, R). Therefore, we can take a point w0 ∈ E2 so that |w0| = R. Then,
Teichmüller’s lemma (cf. [1]) implies that modB ≤ modDR, where DR is the Teichmüller
ring C \ ([−1, 0] ∪ [R,+∞)). We now use the inequality modDR < logR + π (see [7]) to
obtain

modB ≤ modDR < logR + π = modB,

which is impossible. The sharpness can be seen at the extremal example B0 = C \
([−1, 0] ∪ [1,+∞)), which satisfies modB0 = π (see Corollary in §4.11 of [2]). Thus we
are done. ¤

Remark 3.2. The authors of [18] wrote that the Herron-Liu-Minda theorem can read
the constant π−1 log 2(1+

√
2) = 0.50118 . . . works in the above lemma instead of π. But,

this was not very correct because there was confusion with the definition of the modulus
of a ring. The constant should be 2 log 2(1 +

√
2) = 3.1490 . . . and the point z0 should be

taken in ∂B. See also [31] for related estimates.

As a consequence of the last lemma, we get information about the size of the bounded
connected component of a ring in C.

Corollary 3.3. Let B be a ring in C and E1 be the bounded component of C \B. Then

diamE1 ≤ eπ−modBdiamB.

Proof. If modB ≤ π, then the inequality clearly holds. Thus we can assume that
modB > π. Take a round subring A = A(z0; r1, r2) of B so that modA ≥ modB − π.
Then

diamE1 ≤ 2r1 =
r1
r2
· 2r2 = e−modAdiamA ≤ eπ−modBdiamB.

¤

In a similar way, we can prove the following form (cf. [18, Lemm 2.8]).

Lemma 3.4 ([19, Theorem 2.8]). Let B be a ring in C and let E1 and E2 be the bounded
and unbounded connected components of C \ B, respectively. If modB > π, then the
inequality

sup
z∈E1

|z − z0| ≤ dist(z0, E2) exp(π −modS)

holds for any point z0 ∈ E1.
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These results fit Euclidean geometry and the point at infinity plays a special role. It
may be sometimes useful to have a spherical variant, where the point at infinity is no
longer special. The spherical (chordal) distance is defined by

d](z, w) =
|z − w|√

(1 + |z|2)(1 + |w|2)
for z, w ∈ Ĉ and the spherical diameter of a set E will be denoted by diam]E. Similarly,
the spherical distance between two sets E1, E2 will be denoted by dist](E1, E2).

Let B be a ring with E1 and E2 as the connected components of its complement. Then
the inequality

min{diam]E1, diam]E2} ≤ π√
2 modB

holds (Lehto-Virtanen [25, Lemma I.6.1]). When modB is large, however, the following
result (see [18]) gives a better bound.

Lemma 3.5. Let B be a ring in Ĉ and let E1 and E2 be the connected components of

Ĉ \B. Then the inequality

min{diam]E1, diam]E2} ≤ C1e
− 1

2
modB

holds, where C1 is an absolute constant.

We remark that the constant can be taken as C1 = 2eπ/2 = 9.6209 . . . . As we noted
above, the value of C1 given in [18, Lemma 2.6] is not correct. This lemma follows from
the next elementary result [18, Lemma 2.7]. Here, a circular domain means a simply

connected domain in Ĉ bounded by a circle or a line.

Lemma 3.6. Let A be a ring in Ĉ whose complement consists of disjoint closed circular
domains E1 and E2. Then

min{diam]E1, diam]E2} ≤ 1

cosh(1
2
modA)

.

Equality holds if and only if diam]E1 = diam]E2 and if the spherical centers of E1 and
E2 are antipodal.

4. Length-area method

Reich and Walczak [29] gave an efficient method to estimate the modulus of the image
of a ring under quasiconformal mappings in terms of its directional dilatations. The
following variant of Reich-Walczak inequality can be found, for example, in [18].

Theorem 4.1. Let µ be a Beltrami coefficient on a domain Ω in C and f : Ω → Ω′ be a
µ-conformal homeomorphism. Suppose that Dµ,z0(z) is locally integrable in a round ring
A = A(z0; r1, r2) ⊂ Ω. Then

(4.2)

∫ r2

r1

dr

rψµ(r, z0)
≤ mod f(A),
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where

ψµ(r, z0) =
1

2π

∫ 2π

0

Dµ,z0(z0 + reiθ)dθ.

Proof. We may assume that z0 = 0 and Ω = A = A(0; 1, R). By post-composing a
conformal mapping, we may further assume that A′ = f(A) = A(0; 1, R′). Since

∫∫

E

Jf (z)dxdy ≤
∫∫

f(E)

dudv < +∞

for a compact subset E of A, we have Jf ∈ L1
loc(A). (In the classical case, indeed equality

holds. For a detailed proof, see [1] or [25].)
Denote by γr the circle |z| = r. Then the assumption f ∈ W 1,1

loc (A) together with the
Gehring-Lehto theorem (Lemma 2.3) implies that, for almost all r ∈ (1, R), f is absolutely
continuous on γr and totally differentiable at every point in γr except for a set of linear
measure 0. By Fubini’s theorem, we observe that Dµ,0 and Jf are integrable on γr for
almost all r ∈ (1, R). For such an r, we have

2π ≤
∫

γr

|d arg f | ≤
∫

γr

|df(z)|
|f(z)| =

∫ 2π

0

|fθ(reiθ)|
|f(reiθ)| dθ.

We use the Cauchy-Schwarz inequality and (2.1) to obtain

(2π)2 ≤ r2

∫ 2π

0

Dµ,0(re
iθ)dθ

∫ 2π

0

Jf
|f |2 (reiθ)dθ,

and hence
2π

rψµ(r)
≤ r

∫ 2π

0

Jf
|f |2 (reiθ)dθ

for almost all r ∈ (1, R), where ψµ(r) = ψµ(r, 0). Integrating both sides with respect to r
from 1 to R, we obtain

2π

∫ R

1

dr

rψµ(r)
≤

∫ R

1

∫ 2π

0

Jf
|f |2 rdθdr =

∫∫

A

Jfdxdy

|f |2

≤
∫∫

A′

dudv

|w|2 = 2π logR′ = 2π mod A′

and thus arrive at the required inequality in (4.2). ¤

The next inequality can also be proved by replacing the curve family of circles by that
of radial segments joining the two boundary components of A in the above proof.

Theorem 4.3. Let µ be a Beltrami coefficient on a domain Ω in C and f : Ω → Ω′ be a
µ-conformal homeomorphism. Suppose that D−µ,z0(z) is locally integrable in a round ring
A = A(z0; r1, r2) ⊂ Ω Then

(4.4) mod f(A) ≤
[∫ 2π

0

dθ

ϕµ(θ, z0)

]−1

,
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where

ϕµ(θ, z0) =

∫ r2

r1

D−µ,z0(z0 + reiθ)
dr

r
.

5. Application to modulus of continuity

As a special case of Theorem 2.8, we have the inequalities

(5.1)
1

K
modB ≤ mod f(B) ≤ KmodB

for a K-quasiconformal mapping f of a domain Ω and a ring B in Ω. It is a remarkable
fact that the converse is also true. In other words, if a sense-preserving homeomorphism
f : Ω → Ω′ satisfies (5.1) for any ring B ⊂ Ω, then f is K-quasiconformal (see [25]).

As a simple application of results in the previous section, let us see that (5.1) leads to
the well-known (local) Hölder continuity of a K-quasiconformal mapping.

Since we are dealing with local property, we may assume that f is a K-quasiconformal
mapping of the unit disk D = {z ∈ C : |z| < 1} into itself. Take two points z0, z1 in the
smaller disk |z| < 1/2 and consider the round ring A = A(z0; r,

1
2
) ⊂ D for 0 < r < 1/2.

Then, by (5.1), we have

(5.2) mod f(A) ≥ modA

K
=

1

K
log

1

2r
.

Then, by Corollary 3.3, we have

diamE1 ≤ eπ−mod f(A)diam f(A),

where E1 is the bounded component of C \ f(A). Since diam f(A) ≤ diamD = 2, the
above inequality together with (5.2) implies

diamE1 ≤ 2eπ+(log 2r)/K = Cr1/K ,

where C = 21+1/Keπ. When |z1 − z0| < 1/2, we take r = |z1 − z0| to obtain

|f(z1)− f(z0)| ≤ C|z1 − z0|1/K .
If we estimate mod f(A(z0; r, r0)) from below in terms of r, then we could obtain a

modulus of continuity estimate for f at z0 in the same way.
For a function f defined in a neighbourhood of a point z0 ∈ C, its modulus of continuity

at z0 is defined by
δf (z0; r) = sup

|z−z0|≤r
|f(z)− f(z0)|

for a sufficiently small r > 0. For instance, f is continuous at z0 if and only if δf (z0; r) → 0
as r → 0+ and f is Hölder continuous with exponent α at z0 if and only if δf (z0; r) =
O(rα).

We now have the following, whose proof can be done in the same way as above.

Theorem 5.3. Let f be an injective continuous map of the disk D(z0, r0) into the disk
|w| < M and h is a non-negative function on (0,+∞). If the inequality mod f(A) ≥
h( modA) holds for a ring A of the form A(z0; r, r0), 0 < r < r0, then

δf (z0; r) ≤ 2M exp
(
π − h(log r0

r
)
)
.
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An estimate of mod f(A) can be obtained by the Reich-Walczak theorem as stated
in the previous section. We also have a spherical variant of this sort of result by using
Lemma 3.5 instead of Corollary 3.3.

Finally, we state a normality criterion for a family of homeomorphisms of the Riemann
sphere described by a modulus condition as in the following. This sort of result was
used by Lehto [24] and played an important role in the proof of existence theorems of
solutions of degenerate Beltrami equations in Brakalova-Jenkins [12] and Gutlyanskĭı-
Martio-Sugawa-Vuorinen [18]. The following form is found in [18].

Theorem 5.4. Let ρ(z, r, R) be a non-negative function in (z, r, R) ∈ Ĉ × (0,+∞) ×
(0,+∞) with r < R such that ρ(z, r, R) → +∞ as r → 0+ for fixed z and R. Then the

set Hρ of orientation-preserving self-homeomorphisms f of Ĉ satisfying f(0) = 0, f(1) =
1, f(∞) = ∞ and

mod f(A(z0; r, R)) ≥ ρ(z0, r, R)

for every (z0, r, R) ∈ Ĉ × (0,+∞) × (0,+∞) with r < R, is compact in the topology of
uniform convergence with respect to the spherical metric. Moreover, for each R > 0, there
exists a constant C = C(R, ρ) > 0 depending only on R and ρ such that

|f(z1)− f(z2)| ≤ C exp(−ρ(z0, r1, r2)), z1, z2 ∈ D(z0, r1)

for |z0| ≤ R and 0 < r1 < r2 < R.

Here, D(a, r) = {z ∈ C : |z − a| < r}.
6. Modulus of semiannulus

It is well known that a quasiconformal map of the unit disk onto itself has a homeomor-
phic extension to the boundary. But, this is no longer true for general homeomorphisms
of the unit disk.

Let Θ(r) be a real-valued continuous function in 0 < r < 1 which has no finite limit as
r → 1− . Then the mapping f : D→ D defined by

(6.1) f(reiθ) = rei(Θ(r)+θ)

is homeomorphic but has no continuous extension to the boundary. In the next section,
we give a characterization of self-homeomorphisms of the unit disk which has a homeo-
morphic extension to the boundary. To control the boundary behaviour, we need a notion
corresponding to the “half” of a ring. In order to distinguish the genuin boundary, which
is part of the boundary of the original ring, from the new boundary, which is the relative
boundary in the original ring, we adopt a tactical definition for that. Thus, we use a
different term from “ring”.

A subset S of Ĉ is called a semiannulus if it is homeomorphic to

TR = {z ∈ C : 1 ≤ |z| ≤ R, Im z > 0}
for some R ∈ (1,+∞). The two simple arcs in the boundary of S which correspond to
{|z| = 1, Im z > 0} and {|z| = R, Im z > 0} are called the sides of S. A basic account of
semiannulus is given in [19]. Here, we give a more detailed account of it to complement
the paper [19].
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A semiannulus S in a plane domain D is said to be properly embedded in D if S ∩K
is compact whenever K is a compact subset of D. When D is simply connected, D \ S
consists of exactly two connected components (cf. [28, Prop. 2.12]).

Unlike the case of rings, a semiannulus is not necessarily mapped to the standard one
TR conformally inside. Therefore, in order to define the modulus of a semiannulus S, we
should take another way. Let ΓS be the collection of open arcs in IntS dividing the two
sides of S and Γ′S be that of closed arcs in S joining the two sides of S. We define the
modulus of S by

modS =
π

λ(ΓS)

so that modTR = logR (see Lemma 6.5 below).
First, we give a topological criterion for a semiannulus to have a positive modulus. Let

us recall the notion of prime ends due to C. Carathéodory (see [28] for details).
Let Ω be a simply connected hyperbolic domain. A simple open arc γ is called a

crosscut of Ω if γ ⊂ Ω and if γ has an endpoint in ∂Ω in both directions. Then it is known
that Ω \ γ consists of exactly two connected components (Proposition 2.12 in [28]). A
sequence of crosscuts Cn (n = 0, 1, 2, . . . ) of Ω is called a nullchain if Cn ∩ Cn+1 = ∅ for
n = 0, 1, 2, . . . , if Cn separates C0 from Cn+1 in Ω for n = 1, 2, 3, . . . and if diam]Cn → 0
as n→∞. Two nullchains Cn, C

′
n are defined to be equivalent if for a sufficiently large m,

there is an n such that Cm separates C ′n from C ′0 and C ′m separates Cn from C0 in Ω. The
equivalence class of a nullchain of crosscuts is called a prime end of Ω. Let P (Ω) denote
the set of all the prime ends of Ω. Note that P (Ω) is endowed with a natural topology.
Carathéodory’s main theorem asserts that a conformal homeomorphism between simply
connected hyperbolic domains Ω and Ω′ gives rise to a one-to-one correspondence (indeed
a homeomorphism) between P (Ω) and P (Ω′) in a natural way. Obviously, P (D) can be
identified with the topological boundary ∂D of the unit disk D. In particular, P (Ω) is
homeomorphic to the circle.

Let S be a semiannulus. Then IntS is a simply connected hyperbolic domain and thus
the Riemann mapping theorem gives us a conformal homeomorphism h : IntS → D. The
sides σ1 and σ2 of S correspond to disjoint open circular arcs O1 and O2 in ∂D under the
mapping h and h extends to a homeomorphism of S onto S ′ = D ∪ (O1 ∪ O1). Let C1

and C2 be the connected components of ∂D \ (O1 ∪ O2). We now observe that h(Γ′S) is
the collection of closed curves joining O1 and O2 in S ′, in other words, h(Γ′S) = Γ′S′ . In
the same way, we can show that h(ΓS) = ΓS′ . It is well known that λ(ΓS′) = +∞ if and
only if λ(Γ′S′) = 0 if and only if one of C1 and C2 reduces to a point. The last condition
is equivalent to that one of the ends of S consists of one prime end. In this way, we can
show the following criterion [19, Lemma 2.1].

Lemma 6.2. Let S be a semiannulus. Then modS = 0 if and only if there exists
a sequence of simple closed arcs γn(n = 0, 1, 2, . . . ) joining the sides of S such that
diam]γn → 0 as n→∞.

In particular, if dist](σ1, σ2) > 0 then modS > 0. The converse is, however, not
true in general. For example, let S = {z : |z| < 3,Re z ≥ 0, , |z − 1| > 1, z 6= 0}.
Then the sides consists of the two segments σ1 = (0, 3i) and σ2 = (0,−3i) and thus
dist](σ1, σ2) = dist(σ1, σ2) = 0. On the other hand, clearly modS > 0.
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In a special but typical situation, the converse is also true.

Lemma 6.3. Let S be a semiannulus embedded in a disk or a half-plane and let σ1 and
σ2 be its sides. Then modS > 0 if and only if dist](σ1, σ2) > 0.

Proof. The “if” part is immediate from Lemma 6.2. To show the “only if” part, we
suppose that dist](σ1, σ2) = 0. Let ∆ be the disk or half-plane in which S is properly
embedded. We now take a sequence of open spherical geodesics γn with endpoints zn ∈ σ1

and z′n ∈ σ2 such that γn ∩ (σ1 ∪ σ2) = ∅ and that diam]γn → 0 as n → ∞. Since ∆ is
convex in spherical geometry, γn ⊂ ∆, and thus, γn ∩ ∂∆ = ∅. Therefore, γn ∩ ∂S = ∅,
which implies γn ⊂ IntS. We now apply Lemma 6.2 to obtain modS = 0. ¤

Let U1 and U2 be the two connected components D \ S for a semiannulus properly
embedded in the unit disk D. Let σ1 and σ2 be the sides of S with σj ⊂ Uj, j = 1, 2.
Then, by Lemma 6.3, if modS > 0, then dist(U1, U2) = dist(U1, U2) = dist(σ1, σ2) > 0.
Therefore, setting βj = Uj ∩∂D (j = 1, 2), one can see that dist(β1, β2) > 0. In particular,
∂D \ (β1 ∪ β2) consists of exactly two non-empty open circular arcs α1, α2.

Let S be a semiannulus properly embedded in the unit disk D and f : TR → S be a
homeomorphism. For a sufficiently small ε > 0, we set Wε = {z ∈ TR : Im z ≤ ε} and
consider a sort of cluster sets

IS =
⋂
ε>0

f(Wε ∩ ∂TR) and JS =
⋂
ε>0

f(Wε).

Note that IS and JS do not depend on the particular choice of R and f. For instance, IS
is indeed the limit sets of the sides of S and JS is the image of the two ends of S. By
definition, it is clear that JS is a (not necessarily disjoint) union of two closed intervals
(possibly singletons) in ∂D, and JS \ IS is a union of two open (possibly empty) intervals.
As a pathological example, we consider the semiannulus S = f({z ∈ D : |Re z| ≤ 1/2})
for a function given in (6.1) with lim supr→1− Θ(r) = +∞. Then S is properly embedded
in D and IS = JS = ∂D. It is evident that JS \ IS = α1∪α2 when modS > 0. Conversely,
when modS = 0, one of the ends must be degenerate by Lemma 6.3 and therefore, the
set JS \ IS cannot have more than one connected component. Thus, we have shown the
following.

Lemma 6.4. Let S be a semiannulus properly embedded in D. Then modS > 0 if and
only if JS \ IS is a disjoint union of two non-empty open intervals in ∂D.

A semiannulus S is said to be conformally equivalent to TR if there is a homeomorphism
f : S → TR which is conformal in IntS. Then, a counterpart of Lemma 1.1 can be given
in the following form.

Lemma 6.5. Let S be a semiannulus and R > 1. Then S is conformally equivalent to
the semiannulus TR if and only if modS = logR. Moreover, λ(ΓS) = 1/λ(Γ′S).

When S is properly embedded in D and modS > 0, we can construct a ring by reflecting
S in the circle |z| = 1. More concretely, let

Ŝ = IntS ∪ (α1 ∪ α2) ∪ {1/z̄ : z ∈ IntS},
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where α1 and α2 are defined above. By the symmetry principle (see [1, Chap. 1.E]),

we have λ(Γ′
Ŝ
) = λ(Γ′S)/2 and therefore modS = mod Ŝ. In this way, the theory of

semiannulli can be reduced to that of rings.
A subset S0 of a semiannulus S is called a subsemiannulus of S if S0 is a semiannulus

satisfying ΓS0 ⊂ ΓS. By definition, we have modS0 ≤ modS.
For ζ1, ζ2 ∈ ∂D we consider the Möbius transformation

Lζ1,ζ2(z) =
ζ2 + z

ζ2 − z
− ζ2 + ζ1
ζ2 − ζ1

=
2ζ2(z − ζ1)

(ζ1 − ζ2)(z − ζ2)
.

Note that L = Lζ1,ζ2 maps D onto the right half-plane H = {w ∈ C : Rew > 0} in such a
way that L(ζ1) = 0 and L(ζ2) = ∞. For 0 < r1 < r2 < +∞, we set

T (ζ1, ζ2; r1, r2) = D ∩ L−1
ζ1,ζ2

(A(0, r1, r2)).

A semiannulus in D of this form will be called canonical. Note that

modT (ζ1, ζ2; r1, r2) = mod T̂ (ζ1, ζ2; r1, r2) = log
r2
r1
.

We also set

T (ζ; r1, r2) = T (ζ,−ζ; r1, r2).
By using the reflection technique, we can immediately deduce the following from Lemma

3.1.

Lemma 6.6. Let S be a semiannulus properly embedded in D with modB > π and U1

and U2 be the two connected components of D\S. For given points ζj ∈ ∂D∩∂Uj (j = 1, 2),
there exists numbers 0 < r1 < r2 < +∞ such that T = T (ζ1, ζ2; r1, r2) is a subsemiannulus
of S and modT ≥ modS − π.

We also have the following analog to Corollary 3.3.

Theorem 6.7. Let S be a semiannulus properly embedded in D and U1 and U2 be the two
connected components of D \ S. Then

min{diamU1, diamU2} ≤ C exp(−1
2
modS),

where C = 4eπ/2.

For the proof, we prepare a result which is a hyperbolic analog of Lemma 3.6 (cf. [19,
Lemma 2.7]).

Lemma 6.8. Let T be a canonical semiannulus properly embedded in D and let V1 and
V2 be the connected components of its complement in D. Then

min{diamV1, diamV2} ≤ 2

cosh(1
2
modT )

.

Equality holds if and only if T is of the form T (ζ; r, 1/r) for some ζ ∈ ∂D and 0 < r < 1.

Proof. We denote by dΩ the hyperbolic distance on a hyperbolic domain. Suppose that
T is of the form T (ζ1, ζ2; r1, r2). Let L = Lζ1,ζ2 : D→ H. Then the hyperbolic distance of
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the hyperbolic half-planes V1 and V2 in D can be computed by

δ := dD(V1, V2) = dH(L(V1), L(V2)) =

∫ r2

r1

dx

2x
=

1

2
log

r2
r1

=
1

2
modT.

Thus the problem now reduces to finding a configuration of two hyperbolic half-planes
with a fixed hyperbolic distance such that the minimum of their Euclidean diameters
is maximal (namely, the worst case). Such a configuration is attained obviously by the
situation that V2 = −V1. By a suitable rotation, we may assume that ζ1 = 1, ζ2 = −1.
Let a > 0 be the number determined by V1 ∩ R = (a, 1). Since 0 is the midpoint of the
hyperbolic geodesic [−a, a] joining V1 and V2, we have δ/2 = dD(0, a) = arctanh a and
a = tanh(δ/2). The disk automorphism (hyperbolic isometry) g(z) = (z + a)/(1 + az)
maps the hyperbolic half-plane {z ∈ D : Re z > 0} onto V1. Therefore, we see that g(i)
and g(−i) are the tips of V1 and thus diamV1 = |g(i) − g(−i)| = 2(1 − a2)/(1 + a2).
Finally, we get the estimate in this case

diamVj = 2
1− tanh(δ/2)2

1 + tanh(δ/2)2
=

2

cosh δ
.

Since δ = 1
2
modT, the estimate is now shown. The equality case is obvious from the

above argument. ¤

Proof of Theorem 6.7. When modS ≤ π, the assertion trivially holds. We now suppose
that modS > π. Then, by Lemma 6.6, we can take a canonical subsemiannulus T of S.
Let V1, V2 be the two components of D \ T so that Uj ⊂ Vj (j = 1, 2). Since the boundary
circular arc D∩∂Vj is perpendicular to ∂D, at least one of Vj’s, say, V1 is contained in the
half-plane of the form Re eiθw > 0. Then, as is easily checked, diamV1 = |ξ − η|, where ξ
and η are the endpoints of the arc D ∩ ∂V1. Since ξ, η ∈ T , by the last lemma, we have

min{diamU1, diamU2} ≤ diamU1 ≤ diamV1 ≤ 2

cosh(1
2
modT )

< 4 exp(−1
2
modT ).

¤

7. Application to boundary extension

We are now in a position to state a criterion of extendibility of a homeomorphism of D
to a boundary point (cf. [19, Prop. 3.1]).

Proposition 7.1. Let f : D → D be a homeomorphism and let ζ ∈ ∂D. The mapping f
extends continuously to ζ if

lim
r→0+

mod f(T (ζ, ζ ′; r, R)) = +∞

for some ζ ′ ∈ ∂ with ζ ′ 6= ζ and R > 0.

Proof. Let Ur be the connected component of D\T (ζ, ζ ′; r, R) containing ζ in the boundary
for 0 < r < R and let VR be the other one, which does not depend on r. Then the family
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of the sets Ur, 0 < r < R, constitutes a fundamental system of neighbourhoods of ζ.
Theorem 6.7 now yields

min{diam f(Ur), diam f(VR)} ≤ C exp(−1
2
mod f((T (ζ, ζ ′; r, R)))).

By assumption, the last term tends to 0 as r → 0 + . Since diam f(VR) is a fixed number,

this implies that diam f(Ur) → 0 as r → 0. Therefore, the intersection
⋂

0<r<R f(Ur)
consists of a single point. We can now assign this point as the extended value of f at ζ
so that f has a continuous extension to ζ. ¤

We remark that the converse is not true in the last proposition. Indeed, consider the
homeomorphism f : D→ D determined by f(z̄) = f(z), z ∈ D and

f(reiθ) = r exp(i(θ/π)− log(1−r)), 0 ≤ θ ≤ π, 0 < r < 1.

Then, by construction, f extends to 1 continuously by setting f(1) = 1. However, since
f(reiθ) → 1 as r → 1− for any fixed θ with |θ| < π, the converse of the proposition does
not hold (see the proof of the next theorem).

If the assumption of the last proposition is true for every point ζ ∈ ∂D, then the converse
actually holds. The next theorem is due to Brakalova [9], though her formulation is slightly
different. Note that, earlier than it, Jixiu Chen, Zhiguo Chen and Chengqi He [14] proved
a similar result in a special situation (see also the proof of Lemma 2.3 in [15]).

Theorem 7.2 (Brakalova [9]). A homeomorphism f : D → D admits a homeomorphic
extension to D if and only if for each ζ ∈ ∂D,

lim
r→0+

mod f(T (ζ, ζ ′; r, R)) = +∞

for some ζ ′ ∈ ∂D, ζ ′ 6= ζ and R = R(ζ) > 0.

Proof. By Proposition 7.1, f can be extended continuously to every boundary point. It
is almost immediate to see that the extended mapping f̃ : D→ D is indeed continuous.

We next show that f̃ is injective. Suppose, to the contrary, that f̃(ζ1) and f̃(ζ2) are
the same point, say, ω0, for some ζ1, ζ2 ∈ ∂D with ζ1 6= ζ2. We may assume that ζ̄1 = ζ2.
Consider the semiannulus T = T (1,−1; r, R), 0 < r < R, where R = |(ζ1 − 1)/(ζ1 + 1)|.
Then, the outer side σ of T lands at ζ1 and ζ2. By assumption, f(z) tends to the point ω0

when z approaches ζj (j = 1, 2) along σ in both directions. In particular, f(T ) is enclosed
by the Jordan curve f(σ) ∪ {ω0}. Therefore, IT = JT = {ω0} and so JT \ IT = ∅. Lemma
6.4 now implies that mod f(T ) = 0 for any 0 < r < R, which contradicts the assumption

of the theorem. Thus, we have shown that f̃ is injective.
Since D is a compact Hausdorff space, the inverse mapping f̃−1 is also continuous.

Therefore, f̃ : D→ D is a homeomorphism. ¤

From the proof, obviously we can replace “some ζ ′ ∈ ∂D, ζ ′ 6= ζ” by “every ζ ′ ∈
∂D, ζ ′ 6= ζ” in Theorem 7.2. Choosing ζ ′ = −ζ and performing the Möbius transformation
L(z) = i(1 + z)/(1 − z), we can translate the above theorem into a result on the upper
half-plane.
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Theorem 7.3. A homeomorphism f of the upper half-plane H admits a homeomorphic
extension to H if and only if for each a ∈ ∂H = R ∪ {∞},

lim
r→0+

mod f(A(a, r, R) ∩H) = +∞

for some R = R(a) > 0.

We recall that A(∞; r, R) is defined to be A(0; 1/R, 1/r).
Brakalova and Jenkins [13] proved the following.

Theorem 7.4 (Brakalova-Jenkins [13]). Let f be a sense-preserving self-homeomorphism
of the upper half-plane H and satisfies the equation fz̄ = µfz a.e. Suppose that f(z) →∞
if and only if z →∞ in H and that

∫∫

A(t;r,R)∩H

|µ(z)|2 + |Re z̄−t
z−tµ(z)|

1− |µ(z)|2
dxdy

|z − t|2
has a finite limit as r → 0+ for every t ∈ R and some R = R(t) > 0. Then f extends to a
homeomorphism of H in such a way that the boundary function f(t) is differentiable and

f ′(t) = lim
z→a in H

f(z)− f(t)

z − t
> 0, t ∈ R.

Moreover if the convergence in the above is locally uniform for t ∈ R, then f ′ is continuous
on R.

In this theorem, the behaviour of the function at ∞ is assumed. It may be, however,
more natural to describe the assumptions in terms of µ only. Gutlyanskĭı, Sakan and the
author [19] refined this result in the following form. To state it, we introduce the quantity
(cf. [17])

Qµ(r, R) =
1

π log(R/r)

∫∫

A(0;r,R)∩H

Dµ,0(z)

|z|2 dxdy,

which is regarded as the average of Dµ,0 over A(0; r, R) ∩H with respect to the measure
|z|−2dxdy.

Theorem 7.5 ([19]). Let µ be a measurable function on the upper half-plane H with
|µ| < 1 a.e. Assume that the following conditions are satisfied for some positive constants
M and R0 :

(1) lim
R→+∞

Qµ(r, R)

logR
= 0,

(2)

∫∫

A(t;r,R0)∩H

|µ(z)|2
1− |µ(z)|2

dxdy

|z − t|2 converges as r → 0+ for each t ∈ R, and

(3) Re

∫∫

A(t;r,R0)∩H

µ(z)

(z − t)2

dxdy

1− |µ(z)|2 converges as r → 0+ for t ∈ R locally uni-

formly.

Suppose that there exists a µ-conformal self-homeomorphism f of H. Then it extends to
a homeomorphism of H onto itself. Furthermore, if we normalize f so that f(∞) = ∞,
then the boundary function f(t) has a non-vanishing continuous derivative on R.
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For the proof, we need the following fundamental estimates of the modulus change of
semiannuli under a µ-conformal homeomorphism f.

modT

Qµ(r, R)
≤ mod f(T ),

where T = A(0; r, R) ∩H and

− 1

π

∫∫

T

D−µ,t(z)− 1

|z − t|2 dxdy ≤ modT − mod f(T ) ≤ 1

π

∫∫

T

Dµ,t(z)− 1

|z − t|2 dxdy,

where T = A(t; r, R) ∩H, t ∈ R. The first one is a semiannulus version of the inequality
(2.5) in [17] and the second one is a sort of distortion estimate of the modulus (cf. Corollary
2.13 in [17]). See [19] for details.

References

1. L. V. Ahlfors, Lectures on Quasiconformal Mappings, van Nostrand, 1966.
2. , Conformal Invariants, McGraw-Hill, New York, 1973.
3. L. V. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. 83

(1950), 101–129.
4. G. D. Anderson, M. K. Vamanamurthy, and M. K. Vuorinen, Conformal Invariants, Inequalities, and

Quasiconformal Maps, Wiley-Interscience, 1997.
5. C. Andreian Cazacu, Sur les transformations pseudo-analytiques, Rev. Math. Pures Appl. 2 (1957),

383–397.
6. K. Astala, T. Iwaniec, and G. Martin, Elliptic Partiall Differential Equations and Quasiconformal

Mappings in the Plane, Princeton Mathematical Series 48, 2008.
7. F. G. Avkhadiev and K.-J. Wirths, A theorem of Teichmüller, uniformly perfect sets and punishing

factors, preprint (Tech. Univ. Braunschweig, 2005).
8. M. Brakalova and J. A. Jenkins, On the local behavior of certain homeomorphisms, Kodai Math. J.

17 (1994), 201–213.
9. M. A. Brakalova, Boundary extension of µ-homeomorphisms, Complex and Harmonic Analysis,

DEStech Publ., Inc., Lancaster, PA, 2007, pp. 231–247.
10. , Sufficient and necessary conditions for conformality at a point. I. Geometric viewpoint,

Complex Var. Elliptic Equ. 55 (2010), 137–155.
11. , Sufficient and necessary conditions for conformality. II. Analytic viewpoint, Ann. Acad. Sci.

Fenn. Math. 35 (2010), 235–254.
12. M. A. Brakalova and J. A. Jenkins, On solutions of the Beltrami equation, J. Anal. Math. 76 (1998),

67–92.
13. , On a paper of Carleson, Ann. Acad. Sci. Fenn. Math. 27 (2002), 485–490.
14. J. X. Chen, Z. G. Chen, and C. Q. He, Boundary correspondence under µ(z)-homeomorphisms,

Michigan Math. J. 43 (1996), 211–220.
15. Z.-G. Chen, Estimates on µ(z)-homeomorphisms of the unit disk, Israel J. Math. 122 (2001), 347–358.
16. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, 1992.
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