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Abstract

The earthquake theorem states that for any orientation-preserving
homeomorphism f of the boundary S1

∞ of the Poincaré half-plane model
H, there uniquely exists a bijection from H to H which is discontinu-
ous along some geodesics of H and the extension of f . The earthquake
theorem can be applied to the case of surfaces. In particular, the earth-
quake theorem implies that for any two elements in the Teichmüller space
of any complete hyperbolic surface, there uniquely exists an earthquake
map from one to the other. Moreover, in [BKS], the earthquake theorem
was proven in the enhanced Teichmüller space, which is the extension of
the Teichmüller space. The enhanced Teichmüller space have the shear
coordinates. We show the construction of an earthquake map for surfaces.
We fix laminations of earthquake maps and calculate the domains where a
base point moves by earthquake maps in the enhanced Teichmüller space
of a once-punctured torus by using the shear coordinates.

1 Introduction

Thurston defined an earthquake map and proved the earthquake theorem
for closed surfaces in a course at Princeton University during 1976-7. The
contents of this course is summed up in [T1] and [T4]; however, these litera-
tures do not mention the earthquake theorem. Kerckhoff was the first person
to write Thurston’s proof of the earthquake theorem for closed surfaces, ap-
plied this theorem to the Nielsen realization problem and answered it positively
in [K]. Thurston gave a more elementary and more constructive proof of the
earthquake theorem in [T3] later. This proof works in a more general context.
Namely, Thurston proved the earthquake theorem for any complete hyperbolic
surface.

On the other hand, Mess gave a new proof of the earthquake theorem for
closed surfaces by using the Anti de Sitter space in [M]. The earthquake theorem
is an intermediary between hyperbolic geometry and Anti de Sitter geometry.

An earthquake map of the Poincaré half-plane model H is a bijection from
H to H which is discontinuous on some geodesics (we call the union of these
geodesics a lamination) and locally an isometry of H, is extended continuously
to the boundary S1

∞ of H and moves every point of H left (Definition 2). In
[T3], the earthquake theorem for H states that for any orientation-preserving
homeomorphism of S1

∞, there uniquely exists an earthquake map which extends
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continuously to f on S1
∞. We explain the relation between the earthquake the-

orem and the universal Teichmüller space. Any quasiconformal mapping of H
extends continuously to an orientation-preserving homeomorphism on S1

∞ which
is quasisymmetric. We only consider quasiconformal mappings which map 0, 1,
∞ to 0, 1, ∞, respectively. Two quasiconformal mappings are equivalent if they
extend to the same orientation-preserving homeomorphism on S1

∞. The set of
the equivalence classes is the universal Teichmüller space. The earthquake
theorem for H implies that for any two elements of the universal Teichmüller
space, there uniquely exists an earthquake map which maps one to the other.

An earthquake map between two complete hyperbolic surfaces is an earth-
quake map of H which is equivariant with respect to the actions of the Fuchsian
groups of the two surfaces. In [T3], the earthquake theorem for surfaces says
that for any orientation-preserving homeomorphism of S1

∞ equivariant with re-
spect to the actions of the Fuchsian groups of two surfaces, there uniquely
exists an earthquake map equivariant with respect to the actions which extends
continuously to f on S1

∞. In particular, the earthquake theorem for surfaces
implies that for any two elements of the Teichmüller space of a surface, there
uniquely exists an earthquake map of surfaces which maps one to the other.
In addition, if a surface is of finite area, by choosing a base point and taking
earthquake paths from this point, we consider the Thurston compactification of
the Teichmüller space of the surface ([FLP]). From the above arguments, the
earthquake theorem is important in the Teichmüller theory.

Note that there exists an earthquake map corresponding to an orientation-
preserving homeomorphism of S1

∞ which is not quasisymmetric. We can con-
sider an earthquake map which put out an element of the Teichmüller space.
Therefore, we consider the enhanced Teichmüller space, which has the Te-
ichmülle space as a subspace. The enhanced Teichmüller space of a surface
of finite type with at least one puncture was introduced in [FG1]. This space
is the natural extension of the Teichmüller space from the perspective of the
representation theory and cluster algebra and has the shear coordinates, which
is a diffeomorphism between the space and the product space of the spaces of
all positive real numbers. It is proved in [BKS] that for any two elements of
the enhanced Teichmüller space, there uniquely exists an earthquake map which
maps one to the other. This proof is based on [M].

In this paper, we calculate some examples of an earthquake map in the en-
hanced Teichmüller space of a once-punctured torus. First, we show how we
construct an earthquake map for surfaces which have a lamination intersecting
a fundamental domain of a surface finite times. Next, We fix a base point and
move it by earthquake maps of different laminations and search for the domains
where it moves when we fix laminations. The domains are different from each
other when the laminations are different from each other, for there uniquely
exists an earthquake map from the base point to any point. Therefore, we give
a decomposition of the enhanced Teichmüller space of a once-punctured torus.
It will be useful to grasp the motions of earthquake maps in the enhanced Te-
ichmüller space and understand the new developments of the Teichmüller theory
and Anti de Sitter geometry related to the earthquake theorem.
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3 Preliminaries

Let H be the Poincaré half-plane model and S1
∞ be the boundary of H.

Definition 1 ([T3] 2.2 Definition.) A closed subset of H which is the disjoint
union of geodesics is called a lamination. The empty set is also a lamination.
A geodesic of a lamination is called a leaf . A connected component of the
complement of a lamination is called a gap. Both a leaf and a gap are called a
stratum.

Since it is possible that a lamination is the union of uncountable geodesics,
there can be several decompositions of a lamination into leaves. Throughout
this paper, let a lamination have the information of a decomposition.

Definition 2 ([T3] 2.3 Definition.) Let λ be a lamination of H. A map E :
H → H is called an (λ-left) earthquake map if E meets the following conditions:

1. The map E is bijective and maps each stratum of λ to a stratum of
another lamination by a restriction of an element of PSL(2,R). We call
this restriction a stratum map for each stratum.

2. The map E is continuously extended to an orientation-preserving home-
omorphism of S1

∞ by continuously extending each stratum map to the
intersection of S1

∞ and the boundary of the stratum.

3. For two different strata A and B, let EA : H→H be the element of
PSL(2,R) such that the restriction of EA to A is equal to the restriction
of E to A. EB is defined similarly. Then, cmp(A,B) := E−1

A ◦EB : H→H
is a hyperbolic element of PSL(2,R) whose axis weakly separates A and
B (i.e. any curve which joins a point of A to a point of B must cross the
axis) and which moves B to the left in the view of A. The map cmp(A,B)
is called a comparison isometry .

We can assure that if we change A and B in the third condition, we get the
same condition.

Thurston gave us the complete proof of the earthquake theorem for H, how-
ever, he did not give the proof of the earthquake theorem for surfaces explicitly.
We introduce Thurston’s proof for H and give the proof for surfaces explicitly.
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Theorem 3 ([T3] 3.1.Theorem) For any orientation-preserving homeomorphism
f of S1

∞, there uniquely exists an earthquake map E which is extended to f on
S1
∞.

Proof . Here, we only prove an existence of an earthquake for the proof of the
next theorem. We take an orientation-preserving homeomorphism f : S1

∞ → S1
∞

and construct the earthquake map that extends to f on S1
∞. We fix a point

x0 ∈ H.
We define

C := {(x, γ ◦ f)| x ∈ H, γ ∈ PSL2R, γ(x0) = x)}

and let p : C ↠ H be the projection. We endow C with the compact-open
topology. For (x, h) ∈ C, h : S1

∞ → S1
∞ is called extreme left if h has at least

one fixed point and h(θ) ≥ θ for any θ ∈ [0, 2π). Here, we take a fixed point w0

of h and θ is the center angle of x from w0 to a point of S1
∞. We define

XL := {(x, g) ∈ C| g is extreme left}

and prove XL is homeomorphic to H by p. We take (x, g) ∈ C and y0 ∈ S1
∞.

Let θ be the center angle of x from y0 to a point of S1
∞. Since S1

∞ is compact,
there is a minimum value T of the function h(θ)− θ. The function h(θ) + T is
the unique extreme left homeomorphism. XL is proven to be homeomorphic to
H by p.

For (x, g) ∈ XL, let Fix(g) be the set of all fixed points of g and H(g) be
the convex hull of Fix(g) in H∪S1

∞. We show that for any two distinct extreme
left homeomorphisms g1 and g2,

(H(g1) ∩H(g2)) ∩H = ∅. (1)

Suppose that there are two geodesics l1 and l2 such that li ∈ H(gi) (i = 1, 2)
and l1 ∩ l2 ̸= ∅. Let x1 and x2 be the endpoints of l1 and y1 and y2 be the
endpoints of l2. The movements of x1, x2, g1(y1), g1(y2) on S1

∞ by g2 ◦g−1
1 are

counterclockwise, counterclockwise, clockwise, clockwise, respectively, for both
of g1 and g2 are extreme left. Therefore, g2 ◦ g−1

1 has four fixed points by the
intermediate value theorem and

g2 ◦ g−1
1 = id

is proven. We have shown (1).
We induce the topology by Hausdorff metric in the set of all closed subsets

in H ∪ S1
∞. Then, H is continuous.

XL is homeomorphic toH, and the compactificationXL ofXL is considered
to beH∪S1

∞. We extendH toH by assigning x ∈ S1
∞ toH(x) := {x} ⊂ H∪S1

∞.
Note that the element (x′, γ ◦ f) of XL which is near a point b in the boundary
of XL have all fixed points near b in S1

∞. It shows that H is continuous.
We will show that for any x ∈ H, there is an element (x′, γ ◦ f) in XL such
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that x ∈ H(γ ◦ f). We define

h : XL → H ∪ S1
∞, g 7→ the center of gravity of H(g).

We take a positive real number ϵ and let

β : XL → R≥0

be the bump function with compact support in ϵ-neighborhood of x0 and the
integral value 1. The convolution β ⋆h is continuous and the restriction of β ⋆h
to S1

∞ is the identity. Therefore, β ⋆ h is surjective. Let β = βi, ϵ = ϵi and
consider the function sequence βi ⋆ h such that ϵi → 0. Let g be the limit of
the function sequence gi such that βi ⋆ h(gi) = x. Since XL is compact, there
exists a converging subsequence of gi . It is shown that x ∈ H(g).

From the above arguments, for any x ∈ H, there uniquely exists an extreme
left homeomorphism g such that x ∈ H(g). Therefore, we get the lamination
which is the union of all the boundaries of H(g) (g ∈ XL). The definition of
E : H → H is as follows: for any stratum A, we take gA ∈ XL and γA ∈ PSL2R
such that A ⊂ H(gA) and gA = γ−1

A ◦ f . Define the restriction of E to A as
γA. When we consider the extension E to S1

∞, note that for any point x in the
intersection of S1

∞ and the closure of A, γ−1
A ◦ f(x) = x and E(x) = γA(x) =

f(x). All we have to prove is that the comparison isometry of E meets the
condition of an earthquake map. We take two distinct strata A and B, and
consider the comparison isometry

cmp(A,B) = γ−1
A ◦ γB = gA ◦ g−1

B .

Let gA and gB ∈ XL satisfying A ∈ H(gA) and B ∈ H(gB). Let ∂A and ∂B
be the boundaries of A and B, respectively. H(gA) and H(gB) are closed and
have no intersection. There are a1, a2, b1 and b2 ∈ S1

∞ such that a1 and a2
are the nearest points to the endpoints of the interval which is the connected
component of S1

∞−∂B and includes ∂A and that b1 and b2 are the nearest points
to the endpoints of the interval which is a connected component of S1

∞ − ∂A
and includes ∂B. The movements of gB(a1), gB(a2), gB(b1) = b1 and gB(b2) =
b2 by cmp(A,B) are clockwise, clockwise, counterclockwise, counterclockwise,
respectively. There are at least two fixed points of cmp(A,B) between ∂A and
∂B by the intermediate value theorem. Therefore, the map cmp(A,B) is a
hyperbolic element which has an axis between A and B and moves left. We
have proved that E is an earthquake map. ■

Theorem 4 ([T3] 5.4.Corollary) Let M and N be complete hyperbolic surfaces
which are allowed to be of infinite type. For an orientation-preserving homeo-
morphism f : M → N whose lift f̃ : H → H can be extended to an orientation-
preserving homeomorphism f̄ of S1

∞, there uniquely exists an earthquake map

Ẽ which is continuously extended to f̄ on S1
∞. Furthermore, the lamination λ

of Ẽ is projected on a lamination of M and Ẽ(λ) is projected on a lamination
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of N . The map Ẽ induces a map E : M → N such that E ◦ πM = πN ◦ Ẽ. We
also call E an (λ-left) earthquake map.

Proof . Let Γ and Γ′ be the Fuchsian groups of M and N , respectively. All we
have to prove is that the lamination λ on H is projected on the lamination of
M . Suppose that it is not projected on the lamination of M , that is to say, there
are two leaves of the lamination on H which are projected and have a transitive
intersection on M . Then, as we constructed a left earthquake as above, there
are γ ∈ Γ, g and g′ ∈ XL such that

γ(H(g)) ∩ γ(H(g′)) ̸= ∅ and γ(H(g)) ̸= H(g′).

We fix these γ, g and g′. In other words, there are y1, y2 ∈ γ(Fix(g)), x′
1, x′

2 ∈
γ(Fix(g)) such that the geodesic joining y1 to y2 and the geodesic joining x′

1

to x′
2 have a transitive intersection. Here, γ(Fix(g)) =Fix(γgγ−1) and we can

represent g = γXL ◦ f̃ , γXL ∈ PSL2R. By the symmetry of f̃ of the Fuchsian
groups, there is γ′ ∈ Γ′ such that f̃ ◦ γ−1 ◦ f̃−1 = γ′. Therefore, we calculate

γ ◦ g ◦ γ−1 = γ ◦ γXL ◦ γ′ ◦ f̃

and understand γ ◦g ◦γ−1 ∈ C. We examine whether γ ◦g ◦γ−1 is extreme left.
The map γ ◦ g ◦ γ−1 has y1, y2 as fixed points. Since g(x) ≥ x (x ∈ S1

∞) and
γ and γ−1 are orientation-preserving, γ ◦ g ◦ γ−1(x) ≥ x (x ∈ S1

∞), that is to
say, γ ◦ g ◦ γ−1 is extreme left. By γ(H(g)) = H(γ ◦ g ◦ γ−1), the convex hulls
of these extreme left homeomorphisms γ ◦ g ◦ γ−1 and g′ have an intersection.
It is a contradiction. ■

Next, let S be an oriented topological surface of finite type of genus g with
s punctures. Suppose that s > 0 and the Euler number 2− 2g − n < 0.

Definition 5 An element C of the fundamental group π1S of S is called peripheral
if C is homotopic to a puncture. C is called essential if C is neither trivial nor
peripheral.

Definition 6 Let X be the set of all representations ρ : π1S → PSL2R meeting
the conditions (i) ρ is faithful, (ii) the image of ρ is a discrete subgroup of
PSL2R and (iii) ρ maps every peripheral element of π1S to a parabolic element
and every essential one to a hyperbolic one. We get a quotient space of X by
identifying elements ρ and ρ′ of X if there is an element γ of PSL2R such that
ρ′ = γ ◦ ρ ◦ γ−1. This quotient space is called the Teichmüller space T (S) of S.

Definition 7 [FG1] Let X ′ be the set of all representations ρ : π1S → PSL2R
meeting the conditions (i) ρ is faithful, (ii) the image of ρ is a discrete subgroup
of PSL2R and (iii) ρ maps every peripheral element of π1S to a parabolic
or hyperbolic element and every essential one to a hyperbolic one. We get
a quotient space of X ′ by identifying elements ρ and ρ′ of X ′ if there is an
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element γ of PSL2R such that ρ′ = γ ◦ ρ ◦ γ−1. This quotient space is called
the enhanced Teichmüller space (or the holed Teichmüller space) T̂ (S) of S.

Definition 8 We define the correspondence between ‘a pair of a square and its
diagonal line in H ∪ S1

∞ with every vertex in S1
∞’ and ‘a positive real number’.

Given a square and a diagonal line of the square, let D be the diagonal line.
Let x be one endpoint of D and z be the other endpoint. Let y and w be the
other two vertices of a square so that the order of x, y, z, and w is clockwise.
We define

XD :=
w − x

w − z
· z − y

y − x
= −[x : y : z : w],

where [x : y : z : w] is the cross ratio. Since the cross ratio is invariant under
Möbius transformations, XD does not change if we choose the other endpoint
as x.

Definition 9 An ideal arc of S is an arc embedded to S with both endpoints
in punctures. An ideal triangulation of S is a collection of ideal arcs whose
complement in S is a collection of triangles whose edges are ideal arcs.

Theorem 10 (Thurston[T2], Fock-Goncharov[FG1] Section 4.1, see also Penner[P]
Chapter 2 Theorem 4.4) We fix an ideal triangulation of S. It has 6g − 6 + 3s
ideal arcs v1, v2, . . . , v6g−6+3s. For ρ ∈ T̂ (S), we consider the projection from
H to S. For each pair of a square and its diagonal line vj consisting of ideal
arcs, we take a lift of the pair in H and compute a positive real number Xvj

.
Then, we get a real analytic homeomorphism

T̂ (S) → (R>0)
6g−6+3s, ρ 7→ (Xv1 , Xv2

, . . . , Xv6g−6+3s
).

Penner calls (Xv1
, Xv2 , . . . , Xv6g−6+3s

) the shear coordinates. Moreover, an

element of T̂ (S) is in T (S) if and only if for each puncture, the product of
all the shear coordinates of the edges which have at least one endpoint in the
puncture is equal to 1. Here, if an edge has both endpoints in the puncture, we
square the shear coordinate of the edge.

Note that since the cross ratio is invariant under Möbius transformations,
Xvj does not depend on the choice of a lift.

Theorem 11 ([FG1] Section4.1 and [P] Chapter 2 Theorem 4.7.) We take an
ideal triangulation of S. We choose the edges v1, v2, v3, v4, and v5 on H
which are the lifts of the edges of the ideal triangulation and construct two ideal
triangles as in the following picture. Let X1, X2, X3, X4, and X5 be the shear
coordinates of the edges v1, v2, v3, v4, and v5, respectively.
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We make a new triangulation and new shear coordinates on S by the flip of v5
as in the following picture. Let the new edges be v′1, v′2, v′3, v′4 and v′5 and its
shear coordinates be X ′

1, X ′
2, X ′

3, X ′
4 and X ′

5, respectively.

Then, we get the relation between these old and new shear coordinates. If
v1, v2, v3 and v4 are different from each other, then

X ′
1 = X1(1 +X−1

5 )−1 (1)

X ′
2 = X2(1 +X5) (2)

X ′
3 = X3(1 +X−1

5 )−1 (3)

X ′
4 = X4(1 +X5) (4)

X ′
5 = X−1

5 (5)

If v1 = v3, then (1) and (3) are modified to X ′
1 = X1(1 + X−1

5 )−2 and X ′
3 =

X3(1 +X−1
5 )−2. If v2 = v4. If (2) and (4) are modified to X ′

2 = X2(1 +X5)
2

and X ′
4 = X4(1+X5)

2. If v1 = v2, then (1) and (2) are modified to X ′
1 = X1X5

and X ′
2 = X2X5. If v1 = v4, then (1) and (4) are modified to X ′

1 = X1X5

and X ′
4 = X4X5. If v2 = v3, then (2) and (3) are modified to X ′

2 = X2X5

and X ′
3 = X3X5. If v3 = v4, then (3) and (4) are modified to X ′

3 = X3X5 and
X ′

4 = X4X5.

We state the earthquake theorem for the enhanced Teichmüller space.

Theorem 12 ([BKS] Theorem 1.4.) For any two points in the enhanced Te-
ichmüller space T̂ (S), there uniquely exists an earthquake map from one to the
other.
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4 Results

Let M and N be complete hyperbolic surfaces allowed to be of infinite type.
By Theorem 4, if we consider all the earthquake maps from H to H which are
equivariant with respect to the actions of the Fuchsian groups of M and N ,
we consider all the earthquake maps from M to N . For the later calculation,
we construct earthquake maps from H to H, equivariant with respect to the
actions of the Fuchsian groups M and N , and with a lamination whose lift
λ on H crosses a fundamental domain of M finite times. Then, a leaf of the
lamination must be adjacent to two different gaps. Let Γ be the Fuchsian group
of M . Let l1, l2, . . . , ln be leaves of λ such that {γ(x) | γ ∈ Γ, x ∈ ∪n

j=1lj} =
λ, no element of Γ maps lj1 to lj2 (j1 ̸= j2) and l1, l2, . . . , ln intersect the
same fundamental domain F0. We suppose that the boundary of F0 crosses
the lamination transversally. Let g1, g2, . . . , gm be all the gaps adjacent to
l1, l2, . . . , or ln (if j1 ̸= j2, then gj1 ̸= gj2). The strata l1, l2, . . . , ln and
g1, g2, . . . , gm cover F0. First, we choose one gap gfirst of g1, g2, . . . , gm
and give the identity to gfirst. We give each gap gj a hyperbolic element hj

whose axis is the geodesic adjacent to gj and weakly separating gj and gfirst
and which moves gj left in the view of gfirst. Next, we define a stratum map
on gj . We define the identity as the stratum map of gfirst. When j ̸= first,
we take a path γ of finite length and not tangent to the leaves l1, l2, . . . , or ln
joining gfirst to gj in F0. Let gfirst =: gj0 , gj1 , . . . , gjm′ , gjm′+1

:= gj be the
gaps which γ passes through. We may impose the condition that γ should pass
through lji when γ gets in each gap gji . Then, the order of the gaps which γ
passes through is unique. We define a stratum map

Egj := hj1 ◦ hj2 ◦ · · · ◦ hjm′+1

for each gap gj . We define the same stratum map of each lj as of gj . We
have defined an earthquake map on the strata which have an intersection with
F0. Finally, we recursively define an earthquake map on H. If there is a leaf l
between a gap ∆α which a stratum map Eα has been given to and a gap ∆β

which a stratum map has not been given to, we take the element γα of Γ which
maps some gα to ∆α and some gβ to ∆β (gα, gβ ∈ {g1, g2, . . . , gm}). Then,
we define a stratum map

Eβ := Eα ◦ γα ◦ E−1
gα ◦ Egβ ◦ γ−1

α

as the stratum map of gβ . Repeating the above construction of a stratum map,
we construct a left earthquake on H.

In the following, we consider the case where S is a once-punctured torus.
First, we fix the base point ρ0 of T̂ (S) as follows: the fundamental domain F0 of
the base point ρ0(π1S) is the square whose vertices are −1, 0, 1, ∞ and whose
edges are geodesics in H. Let ρ0(π1S) be the free group of rank two generated
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by automorphisms f and g of H, where

f(z) :=
z + 1

z + 2
, g(z) :=

2z + 1

z + 1
.

Second, we fix an ideal triangulation of S as follows: we give the fundamental
domain F0 an ideal triangulation whose triangles are two geodesic triangles,
one of which has vertices in −1, 0, ∞ and the other of which has vertices in
0, 1, ∞. It also gives S an ideal triangulation. Moreover, we consider the
shear coordinates on T̂ (S). Let a be the edge joining 0 and 1. Let b be the
edge joining 1 and ∞. Let e be the edge joining 0 and ∞. The coordinates
(Xa, Xb, Xe) give the shear coordinates on T̂ (S). We calculate that the shear
coordinates of ρ0 are (1, 1, 1). We consider the changes of the shear coordinates
from the base point ρ0 by left earthquakes.

Example 13 (i) Let a lamination λ1 on F0 be a collection of three geodesics
whose endpoints are 0 and 1, −1 and ∞, and (1 +

√
5)/2 and (1 −

√
5)/2 (it

is a simple closed geodesic on the surface of ρ0). Furthermore, we define a
lamination λ1 on H by taking all images of the lamination on F0 by ρ(π1S).
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We define

E1(z) :=
2az − a+

√
5a2 − 4

(−a+
√
5a2 − 4)z + 3a−

√
5a2 − 4

,

E2(z) :=
λz

2(λ− 1)z − λ+ 2
.

Since E1 and E2 must move left, we need the condition that 1 ≤ a and 1 ≤ λ < 2.
E1 is a hyperbolic element which has (1+

√
5)/2 and (1−

√
5)/2 as fixed points.

E2 is a hyperbolic element which has 0 and 1 as fixed points and maps 1/2 to
λ/2. Let ∆0 and ∆′

0 be the gaps as the above picture. We define ∆f := f(∆0),
∆gf := g ◦ f(∆0) and so forth. Now, we define an earthquake map E by
E|∆0

:= id, E|∆′
0
:= E1, E|∆f

:= E1 ◦ E2, E|∆′
f
:= E1 ◦ E2 ◦ f ◦ E1 ◦ f−1,

E|∆g
:= id, E|∆′

g
:= E1 and so forth. This construction conforms to the above

construction in this section. The points 0, 1/2, 1, 2, ∞ and −1 are mapped to
(a−

√
−4 + 5a2)/(−3a+

√
−4 + 5a2), (a2(8−5λ)+a

√
−4 + 5a2(−4+λ)+2(−2+

λ))/(4−3a
√
−4 + 5a2(−2+λ)−2λ+a2(−14+5λ)), (a+

√
−4 + 5a2)/(2a), 2, ∞

and −1 by E, respectively. We calculate that these shear coordinates are(
4a2λ

(3a−
√
5a2 − 4)2(2− λ)

,
(3a−

√
5a2 − 4)2

4
,

1

a2

)
, (1 ≤ a, 1 ≤ λ < 2).

The domain where ρ0 moves by the earthquake of λ0 is{
(Xa, Xe, Xe)

∣∣∣∣ 4

(3−
√
5− 4Xe)2

≤ Xa, Xb =
(3−

√
5− 4Xe)

2

4Xe
, 0 < Xe ≤ 1

}
.

(ii) Let a lamination λ2 on F0 be a collection of three geodesics whose endpoints
are 0 and −1, 1 and ∞), and (−1+

√
5)/2 and (−1−

√
5)/2 (it is a simple closed

geodesic on the surface of ρ0). Furthermore, we define a lamination λ1 on H by
taking all images of the lamination on F0 by ρ(π1S).

11



We define

E1(z) :=
2az + a−

√
5a2 − 4

(a−
√
5a2 − 4)z + 3a−

√
5a2 − 4

,

E2(z) := λz − λ+ 1.

Since E1 and E2 must move left, we need the condition that 1 ≤ a and 1 ≤ λ. E1

is a hyperbolic element which has (−1+
√
5)/2 and (−1−

√
5)/2 as fixed points.

E2 is a hyperbolic element which has 1 and ∞ as fixed points. Let ∆0 and ∆′
0

be the gaps as the above picture. We define ∆f := f(∆0) and so forth. Now, we
define an earthquake map E by E|∆0

:= id, E|∆′
0
:= E1, E|∆f

:= id, E|∆′
f
:=

E1, E|∆g
:= E1 ◦ E2, E|∆′

g
:= E1 ◦ E2 ◦ g ◦ E1 ◦ g−1 and so forth. The points

0, 1/2, 1, 2, ∞ and −1 are mapped to 0, 1/2, (−3a+
√
−4 + 5a2)/(2(−2a+√

−4 + 5a2)), (2+3a
√
−4 + 5a2−a2(7+2λ))/(4+a

√
−4 + 5a2(5+λ)−a2(11+

λ)), −2a/(−a+
√
−4 + 5a2) and −1 by E, respectively. We calculate that these

shear coordinates are(
1

a2
,

4a2λ

(3a−
√
5a2 − 4)2

,
(3a−

√
5a2 − 4)2

4

)
, (1 ≤ a, 1 ≤ λ).

The domain where ρ0 moves by the earthquake of λ0 is{
(Xa, Xe, Xe)

∣∣∣∣0 < Xa ≤ 1,
4

(3−
√
5− 4Xa)2

≤ Xb, Xe =
(3−

√
5− 4Xa)

2

4Xa

}
.

We calculate the product of the shear coordinates of Example 13 (i) and (ii)

(i)

(
λ

2− λ

)2

, (1 ≤ λ < 2) (ii) λ2, (1 ≤ λ).

As for Example 13, an earthquake map along a geodesic which flows in a punc-
ture puts the base point out of the Teichmüller space T (S) and an earthquake
map along a geodesic which is closed deforms the base point within the Te-
ichmüller space T (S). There is no quasiconformal mapping of S corresponding
to the former earthquake map.

Example 14 Let a lamination λ0 on F0 be a collection of five geodesics whose
endpoints are 0 and 1, −1 and ∞, 1 and ∞, 0 and −1, and ∞ and 0. Further-
more, we define a lamination λ0 on H by taking all images of the lamination on
F0 by ρ(π1S).
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We define
E1(z) := λ1z,

E2(z) :=
λ2z

2(λ2 − 1)z − λ2 + 2
,

E3(z) := (2λ3 − 1)z + 2(1− λ3).

Since E1, E2, E3 must move left, we need the condition that 1 ≤ λ1, 1 ≤ λ2 <
2 and 1 ≤ λ3. E1 is a hyperbolic element which has 0 and ∞ as fixed points
and maps 1 to λ1. E2 is a hyperbolic element which has 0 and 1 as fixed points
and maps 1/2 to λ2/2. E3 is a hyperbolic element which has 1 and ∞ as fixed
points and maps 2 to 2λ3. Let ∆0 and ∆′

0 be the triangle whose vertices are −1,
0 and ∞ and the triangle whose vertices are 0, 1 and ∞, respectively. We define
∆f := f(∆0), ∆gf := g◦f(∆0) and so forth. Now, we define an earthquake map
E by E|∆0 := id, E|∆′

0
:= E1, E|∆f

:= E1 ◦E2, E|∆′
f
:= E1 ◦E2 ◦ f ◦E1 ◦ f−1,

E|∆g
:= E1 ◦ E3, E|∆′

g
:= E1 ◦ E3 ◦ g ◦ E1 ◦ g−1 and so forth. The points

0, 1/2, 1, 2, ∞ and −1 are mapped to 0, λ1λ2/2, λ1, 2λ1λ3, ∞ and −1 by E,
respectively. We calculate that these shear coordinates are(

λ2

2− λ2
, 2λ3 − 1, λ1

)
, (1 ≤ λ1, 1 ≤ λ2 < 2, 1 ≤ λ3).

The domain where ρ0 moves by the earthquake of λ0 is

{(Xa, Xb, Xe) | Xa ≥ 1, Xb ≥ 1, Xe ≥ 1}.

We calculate the earthquakes of different laminations which arise from λ0

by flips.

Example 15 (i) Let λa be the lamination by a flip on a over λ0. In other
words, on F0, λa has five geodesics whose endpoints are 0 and −1, 1 and ∞, 0
and -2, 0 and ∞, and 1/2 and ∞. Furthermore, we define a lamination on H
by taking all images of the lamination on F0 by ρ(π1S).
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We define

E1(z) := λ1z,

E2(z) := (2λ2z − 1)z − λ2 + 1,

E3(z) := (2λ3 − 1)z − 2λ3 + 2.

Since E1, E2, E3 must move left, we need the condition that 1 ≤ λ1, 1 ≤
λ2 and 1 ≤ λ3. E1 is a hyperbolic element which has 0, ∞ as fixed points
and maps 1 to λ1. E2 is a hyperbolic element which has 1/2, ∞ as fixed
points and maps 1 to λ2. E3 is a hyperbolic element which has 1, ∞ as fixed
points and maps 2 to 2λ3. Let ′∆0, ∆0, ∆′

0, ∆′′
0 be the gaps as the above

picture. Let ∆f := f(∆0) and so forth. We define an earthquake map E by
E|′∆0 := f−1 ◦ E−1

2 ◦ f, E|∆0 := id, E|∆′
0
:= E1, E|∆′′

0
:= E1 ◦ E2, E|′∆g :=

E1 ◦E2 ◦E3, E|∆0
:= E1 ◦E2 ◦E3 ◦g◦f−1 ◦E2 ◦f ◦g−1 and so forth. The points

0, 1/2, 1, 2, ∞, −1 are mapped to 0, λ1/2, λ1λ2, λ1(−1+λ2(4−8λ3)+2λ3+
λ2
2(−3 + 8λ3))/λ2, ∞, −1/λ2. We calculate that the shear coordinates are(

1

2λ2 − 1
,
(2λ2 − 1)2(2λ3 − 1)

λ2
2

, λ1λ
2
2

)
, (1 ≤ λ1, 1 ≤ λ2, 1 ≤ λ3).

The domain where ρ0 moves by the earthquake of λa is{
(Xa, Xb, Xe) | 0 < Xa ≤ 1,

4

(Xa + 1)2
≤ Xb,

(Xa + 1)2

4X2
a

≤ Xe

}
.

(ii) Let λb be the lamination by a flip on b over λ0. In other words, on F0, λb

has five geodesics whose endpoints are −1 and ∞, 0 and 1, −1/2 and ∞, 0 and
−1, and −1 and 0. Furthermore, we define a lamination on H by taking all
images of the lamination on F0 by ρ(π1S).
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We define
E1(z) := λ1z,

E2(z) :=
λ2z

(2λ2 − 1)z − λ2 + 2

E3(z) :=
λ3z

(λ3 − 1)z − λ3 + 2
.

Since E1, E2, E3 must move left, we need the condition that 1 ≤ λ1, 1 ≤
λ2 and 1 ≤ λ3. E1 is a hyperbolic element which has 0, ∞ as fixed points
and maps 1 to λ1. E2 is a hyperbolic element which has 1/2, ∞ as fixed
points and maps 1 to λ2. E3 is a hyperbolic element which has 1, ∞ as fixed
points and maps 2 to 2λ3. Let ′∆0, ∆0, ∆′

0, ∆′′
0 be the gaps as the above

picture. Let ∆f := f(∆0) and so forth. We define an earthquake map E by
E|′∆0 := f−1 ◦ E−1

2 ◦ f, E|∆0 := id, E|∆′
0
:= E1, E|∆′′

0
:= E1 ◦ E2, E|′∆g :=

E1 ◦E2 ◦E3, E|∆0 := E1 ◦E2 ◦E3 ◦g◦f−1 ◦E2 ◦f ◦g−1 and so forth. The points
0, 1/2, 1, 2, ∞, −1 are mapped to 0, λ2/2, λ1λ2, λ1(−1+λ2(4−8λ3)+2λ3+
λ2
2(−3 + 8λ3))/λ2, ∞, −1/λ2. We calculate the shear coordinates are(

λ2

(2− λ2)(2− λ3)2
,
2− λ3

λ3
, λ1λ

2
3

)
, (1 ≤ λ1, 1 ≤ λ2 < 2, 1 ≤ λ3 < 2).

The domain where ρ0 moves by the earthquake of λ1 is{
(Xa, Xb, Xe)

∣∣∣∣ (Xb + 1)2

4X2
b

≤ Xa, 0 < Xb ≤ 1,
4

(1 +Xb)2
≤ Xe

}
.

(iii) Let λe be the lamination by a flip on e over λ0. In other words, on F0, λa

has five geodesics whose endpoints are 0 and 1, −1 and ∞, 1 and ∞, 0 and −1,
and −1 and 1. Furthermore, we define a lamination on H by taking all images
of the lamination on F0 by ρ(π1S).
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We define

E1(z) :=
−λ1z + 1

z − λ1
,

E2(z) :=
λ2z

2(λ2 − 1)z − λ2 + 2
,

E3(z) := (2λ3 − 1)z − 2λ3 + 2.

Since E1, E2, E3 must move left, we need the condition that (1 < λ1 or λ1 =
∞), 1 ≤ λ2 < 2 and 1 ≤ λ3. E1 is a hyperbolic element which has −1 and 1 as
fixed points and maps ∞ to −λ1. E2 is a hyperbolic element which has 0 and 1
as fixed points and maps 1/2 to λ2/2. E3 is a hyperbolic element which has 1
and ∞ as fixed points and maps 2 to 2λ3. Let ∆0 and ∆′

0 be the gaps as in the
above picture. Let ∆f := f(∆0) and so forth. We define an earthquake map E
by E|∆0

:= id, E|∆′
0
:= E1, E|∆′

f
:= E2, E|∆f

:= E2 ◦ f ◦E−1
1 ◦ f−1, E|∆g

:=

E1 ◦E3, E|∆′
g
:= E1 ◦E3 ◦g ◦E1 ◦g−1 and so forth. The points 0, 1/2, 1, 2, ∞

and −1 are mapped to 0, (λ1 + 1)λ2/(2λ1 + λ2), 1, (2λ2
1λ3 − 2λ1 + 1)/(λ2

1 −
2λ1λ3 − λ1 + 1), −λ1 and −1 by E, respectively. We calculate that the shear
coordinates are(
(λ1 + 1)2λ2

λ2
1(2− λ2)

,
λ2
1(2λ3 − 1)

(λ1 − 1)2
,
λ1 − 1

λ1 + 1

)
, (1 < λ1 or λ1 = ∞, 1 ≤ λ2 < 2, 1 ≤ λ3).

The domain where ρ0 moves by the earthquake of λ1 is{
(Xa, Xb, Xe)

∣∣∣∣ 4

(Xe + 1)2
≤ Xa,

(Xe + 1)2

4X2
e

≤ Xb, 0 < Xe ≤ 1

}
.

We make another calculation by Theorem 11. We take another triangulation
with the edges a′, b′, e′ as in the following picture.
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The points 0, 1/2, 1, 2, ∞ and −1 are mapped to 0, (λ1 + 1)λ2/(2λ1 +
λ2), 1, (2λ

2
1λ3−2λ1+1)/(λ2

1−2λ1λ3−λ1+1), −λ1 and −1 by E, respectively
We calculate another shear coordinates

(X ′
a, X ′

b, X ′
e) =

(
4λ2

2− λ2
,
2λ3 − 1

4
,
λ1 + 1

λ1 − 1

)
By Theorem 10,

(Xa, Xb, Xe) = (X ′
a(1 +X ′−1

e )−2, X ′
b(1 +X ′

e)
2, X ′−1

e )

=

(
(λ1 + 1)2λ2

λ2
1(2− λ2)

,
λ2
1(2λ3 − 1)

(λ1 − 1)2
,
λ1 − 1

λ1 + 1

)
.

We get the same result.

We calculate the products of the shear coordinates of Example 14 and Ex-
amples 15 (i), (ii) and (iii)

Example 14

{
λ1λ2(2λ3 − 1)

2− λ2

}2

, (1 ≤ λ1, 1 ≤ λ2 < 2, 1 ≤ λ3)

Example 15 (i) {λ1(2λ2 − 1)(2λ3 − 1)}2, (1 ≤ λ1, 1 ≤ λ2, 1 ≤ λ3),

(ii)

{
λ1λ2λ3

(2− λ2)(2− λ3)

}2

, (1 ≤ λ1, 1 ≤ λ2 < 2, 1 ≤ λ3 < 2)

(iii)

{
(λ1 + 1)λ2(2λ3 − 1)

(λ1 − 1)(2− λ2)

}2

, (1 < λ1 or λ1 = ∞, 1 ≤ λ2 < 2,

1 ≤ λ3).

As for Examples 14 and 15, an earthquake map along a geodesic which flows in a
puncture puts the base point out of the Teichmüller space T (S). Note that there
is a plane which Example 14 and Example 15 (i) share. The plane is the place
where the earthquake maps along other two leaves than a leaf which changes by
a flip moves the base point. Then, a flip of a lamination of an earthquake map
changes a domain where the base point moves by an earthquake map to another
domain adjacent to the original domain. The relation between Example 14 and
Examples 15 (ii) and (iii) is the same.
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By Theorem 12, if laminations are different, then the domains where the base
point moves are different. Therefore, we decompose the enhanced Teichmüller
space into domains where the base point moves by earthquake maps of fixed
laminations. The dimension of each domain is equal to the number of leaves of
its lamination. We have calculated some domains in Examples 14 and 15.
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