
A REMARK ON THE AHLFORS-LEHTO UNIVALENCE CRITERION

TOSHIYUKI SUGAWA

Abstract. In this note, we will prove the Ahlfors-Lehto univalence criterion in a general

form. This enables us to deduce lower estimates of the inner radius of univalence for an

arbitrary quasidisk in terms of a given quasiconformal re
ection.

1. Introduction

Let D be a domain in the Riemann sphere bC with hyperbolic metric �D(z)jdzj of con-

stant negative curvature �4: For a holomorphic function ' on D; we de�ne the hyperbolic

sup-norm of ' by

k'kD = sup
z2D

�D(z)
�2j'(z)j:

We denote by B2(D) the complex Banach space consisting of all holomorphic functions

of �nite hyperbolic sup-norm. For a holomorphic map g : D1 ! D2; the pullback g�2 :

' 7! ' Æ g � (g0)2 is a linear contraction from B2(D2) to B2(D1): In particular, if g

is biholomorphic, g�2 : B2(D2) ! B2(D1) becomes an isometric isomorphism. As is well

known, the Schwarzian derivative Sf = (f 00=f 0)0�(f 00=f 0)2=2 of a univalent function f onD

satis�es kSfkD � 12 (see [3]). This result is classical for the unit disk D = fz 2 C ; jzj < 1g;

actually, the better estimate kSfkD � 6 is known. On the other hand, Nehari's theorem

[13] asserts that if a locally univalent function f on D satis�es kSfkD � 2; then f is

necessarily univalent. Hille's example [7] shows that the number 2 is best possible. We

now de�ne the quantity �(D); which is called the inner radius of univalence of D; as

the in�mum of the norm kSfkD of those locally univalent meromorphic functions f on

D which are not globally univalent in D: In other words, �(D) is the possible largest

number � � 0 with the property that the condition kSfkD � � implies univalence of f in

D: Note that the inner radius of univalence is M�obius invariant, namely, �(L(D)) = �(D)

for a M�obius transformation L: In the case D = D ; we already know �(D ) = 2: For a
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comprehensive exposition of these notions and some background, we refer the reader to

the book [9] of O. Lehto.

Ahlfors [1] showed that every quasidisk has positive inner radius of univalence. Con-

versely, Gehring [6] proved that if a simply connected domain has positive inner radius of

univalence then it must be a quasidisk. Later, Lehto [8] pointed out the inner radius of

univalence of a quasidisk can be estimated by using Ahlfors' method as

�(D) � 2 inf
z2D0

j�@�(z)j � j@�(z)j

j�(z)� zj2�D(z)2
;(1)

where � is a quasiconformal re
ection in @D which is continuously di�erentiable o� @D

andD0 = Dnf1; �(1)g: This result may be called the Ahlfors-Lehto univalence criterion.

However, in order to obtain estimate (1) rigorously, a kind of approximation procedure

must work, so an additional assumption was needed. For example, Lehto [9, Lemma

III.5.1] assumed the quasidisk D to be exhausted by domains of the form frz; z 2 Dg for

0 < r < 1: More recently, Betker [5] gave a similar result for general quasidisks under

the assumption that the quasiconformal re
ections � are of a special form associated with

the L�owner chains. For another additional condition, see a remark at the end of the next

section.

We remark that if we content ourselves with an estimate of the form �(D) � c(K) for

a K-quasidisk D; where c(K) is a positive constant depending only on K; the original

idea of Ahlfors [1] is suÆcient. (See Section 2. See also [2, Chapter VI] and [9, Theorem

II.4.1] for slightly di�erent approaches.)

Our main result is to show (1) without any additional assumption, even the continuous

di�erentiability of �: This might be known as a kind of folklore.

Theorem 1. Let D be a quasidisk with a quasiconformal re
ection � in @D: Then the

inequality �(D) � "(�;D) holds for D; where

"(�;D) = 2 ess: inf
z2D

j�@�(z)j � j@�(z)j

j�(z)� zj2�D(z)2
:(2)

Actually, this estimate is known to give often sharp results for several concrete examples

(see [9]). The author, however, does not know if the equality �(D) = sup� "(�;D) always

holds or not, where the supremum is taken over all possible quasiconformal re
ections �

in @D:

Our main theorem has applications to lower estimates of the inner radius of univalence

for a strongly starlike domain (see [15]) and for a round annulus (see [14]). Indeed, the
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quasiconformal re
ections used in those papers are not necessarily of class C1 o� the

boundary.

Finally, the author would like to express his sincere thanks to Professor F. W. Gehring,

whose suggestion improved the statement of our Main Theorem.

2. Proof of main result

Basically, we shall go along the same line as in [1]. Let a quasiconformal re
ection �

in @D be given, i.e., � is an orientation-reversing homeomorphic involution of bC keeping

each boundary point of D �xed and satisfying that �(�z) is quasiconformal. We note that

j@�j � k0j�@�j a.e. for some constant 0 � k0 < 1:

Noting that the quantity "(�;D) is invariant under the M�obius transformations (see [9,

Sec. II 4.1]), we assume that a quasidisk D is contained in C for a moment. We take a

non-constant meromorphic function f on D with kSfkD < "0 = "(�;D): We wish to show

that f is univalent in D: Set ' = Sf :

Let �0 and �1 be linearly independent solutions of the linear di�erential equation

2y00 + 'y = 0(3)

in D: Note that the Wronskian �0�
0
1 � �00�1 is a non-zero constant and, as is well known,

�1=�0 satis�es the Schwarzian di�erential equation S�1=�0 = ' = Sf in D: In particular,

there exists a M�obius transformation L satisfying �1=�0 = L Æ f: Therefore, when we try

to show the univalence of f; we can assume, and always do so in the sequel, f = �1=�0

and �0�
0
1 � �00�1 � 1:

For instance, if �0 and �1 are taken by the solutions of (3) satisfying the initial conditions

�0 = 1; �00 = 0 and �1 = 0; �01 = 1; respectively, at a reference point z0 in D; then

f = �1=�0 is strongly normalized at z0: f(z0) = f 0(z0)� 1 = f 00(z0) = 0:

To extend f to the whole sphere, we consider the map

F (z) =
�1(z) + (�(z)� z)�01(z)

�0(z) + (�(z)� z)�00(z)
:

We �rst note the M�obius invariance of the above construction. For an A = (ac
b
d) 2

SL(2; C ) let LA be the M�obius transformation induced by the matrix A:We set A�
2' = ('Æ

LA)(L
0
A)

2 and A�
�1=2� = (� Æ LA)(L

0
A)

�1=2; where (L0A)
�1=2(z) = cz + d: A straightforward

calculation shows that A�
�1=2� is a solution of the di�erential equation 2y00+A�

2'y
00 = 0 in

A�1(D) if � is a solution of (3) in D: In particular, we can see that di�erential equation
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(3) always admits two linearly independent (single-valued) solutions in D even if1 2 D:

Setting ~� = L�1A Æ � Æ LA; we consider the map

~F (z) =
A�
�1=2�1(z) + (~�(z)� z)(A�

�1=2�1)
0(z)

A�
�1=2�0(z) + (~�(z)� z)(A�

�1=2�0)
0(z)

:

Then we have the relation F Æ LA = ~F : In fact, using the relation LA(w) � LA(z) =

(w � z)=(cw + d)(cz + d); we obtain

� Æ LA(z) + (� Æ LA(z)� LA(z))�
0 Æ LA(z)

=
A�
�1=2�(z)

cz + d
+ (LA(~�(z))� LA(z))(cz + d)((A�

�1=2�)
0(z)� c� Æ LA(z))

=
A�
�1=2�(z)

cz + d
+

~�(z)� z

c~�(z) + d

 
(A�

�1=2�)
0(z)�

cA�
�1=2�(z)

cz + d

!

=
A�
�1=2�(z) + (~�(z)� z)(A�

�1=2�)
0(z)

c~�(z) + d
:

Taking �1 and �0 as the above �; we see the desired relation.

Next, we need the following fundamental property of F:

Lemma 2. The map F : D ! bC constructed above is K-anti-quasiregular, where K =

(1 + k)=(1� k); k = 1� (1� k0)(1� k1) < 1; and k1 = k'kD="0 < 1:

Proof. By the M�obius invariance of the construction of F; we may assume here that

1 2 @D:We note that the numerator and the denominator in the de�nition of F can never

vanish simultaneously because of the relation �0�
0
1��

0
0�1 � 1: SinceK-anti-quasiregularity

is a local property, it is enough to show that F is K-anti-quasiregular in a neighbourhood

of an arbitrary point, say a; in D: We may assume that �0(a) + (�(a) � a)�00(a) 6= 0: (If

not, consider 1=F instead.) By continuity, we can take an open neighbourhood V of a in

D such that �0 + (�� z)�00 does not vanish at any point of V:

Here, we recall that a non-constant continuous function h : V ! C isK-anti-quasiregular

if and only if h is ACL and has locally square integrable partial derivatives satisfying

j@hj � kj�@hj a.e. in V (see [10, Chapter VI], where the authors used the term \quasicon-

formal function" instead of \quasiregular mapping").

Now we show that F is ACL in V; precisely, for any closed rectangle fx+ iy; x0 � x �

x1; y0 � y � y1g contained in V; F (x + iy) is absolutely continuous in x 2 [x0; x1] for
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a.e. y 2 [y0; y1] and in y 2 [y0; y1] for a.e. x 2 [x0; x1]: Since �j + (� � z)�0j is absolutely

continuous in x 2 [x0; x1] for a.e. y and for j = 0; 1; and since �0 + (� � z)�00 does not

vanish there, we can conclude that the quotient F (x + iy) is also absolutely continuous

in x 2 [x0; x1] for a.e. y 2 [y0; y1] and in y 2 [y0; y1] for a.e. x 2 [x0; x1] (see, for example,

[12, p.50]). Hence, F is ACL in V:

Next, we investigate the partial derivatives of F: A formal calculation gives us

@F =
@� + (�� z)2'=2

(�0 + (�� z)�00)
2

and �@F =
�@�

(�0 + (�� z)�00)
2
:

Since � has locally square integrable partial derivatives in D and since the denominator

is locally bounded away from 0 in V; we can observe that @F and �@F are both locally

square integrable in V: Furthermore, we have

@F (z)
�@F (z)

=
@�(z) + (�(z)� z)2'(z)=2

�@�(z)
:

Hence the assumption k'kD = "0k1 implies

k@F=�@Fk1 � 1� (1� k0)(1� k1) = k:

Hence, we have shown that F is K-anti-quasiregular in V:

Now we consider the map f̂ : D [D� ! bC de�ned by

f̂(z) =

(
f(z) for z 2 D;

F (�(z)) for z 2 D�;
(4)

where D� = bC nD: It is not so clear that f̂ can be extended to @D continuously because

' can not be extended to @D or beyond it in general. In order to overcome this diÆculty,

we approximate ' by better quadratic di�erentials. In fact, for a general ' 2 B2(D); we

have the following result, which is essentially due to Bers [4, Lemma 1].

Proposition 3. Let D be a Jordan domain in bC : For any ' 2 B2(D) there exists a

sequence ('j)j of holomorphic functions in D such that k'jkD � k'kD and 'j tends to

' uniformly on each compact subset of D as j !1:

Proof. We denote by g : D ! D the Riemann mapping function of D with g(0) = z0

and g0(0) > 0: Let Dj; j = 1; 2; : : : be Jordan domains with Dj+1 � Dj and withT
j Dj = D: Then the Carath�eodory kernel theorem implies that the Riemann mapping
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functions gj of Dj with gj(0) = z0 and g
0
j(0) > 0 converge to g uniformly on each compact

subset of the unit disk as j tends to 1: Now we set 'j = (g Æ g�1j )�2': We then have

k'jkD � k'jkDj
= k'kD by the Schwarz-Pick lemma: �D � �Dj

: We also have 'j ! '

locally uniformly as j !1:

With this result in mind, we can deduce our main result from the following lemma.

Lemma 4. Suppose that ' 2 B2(D) with k'kD � k1"0 is holomorphic in D; where

0 � k1 < 1 and "0 = "(�;D); which is given by (2). Then the function f̂ de�ned

by (4) extends to a K-quasiconformal homeomorphism of the Riemann sphere, where

K = (1 + k)=(1� k) and k = 1� (1� k0)(1� k1):

Actually, we can prove our main theorem as follows. Let ' 2 B2(D) satisfy k'kD < "0

and set k1 = k'kD="0: We take a sequence ('j)j as in Proposition 3. Let f̂ and f̂j

be the functions in bC n @D de�ned by (4) for ' and 'j; respectively, so that both are

strongly normalized at z0 2 D: Then, by the above lemma, each f̂j can be continued

to a K-quasiconformal homeomorphism of bC : Since those K-quasiconformal mappings

which are conformal in D and strongly normalized at z0 form a normal family, f̂j has a

subsequence converging to a K-quasiconformal mapping uniformly in bC : By construction,
the limit mapping coincides with f̂ in bC n@D: This implies that f̂ has a K-quasiconformal

extension to the whole sphere. Now the proof of our main theorem is complete up to the

above lemma.

Remark. Under the assumption that � is of class C1 o� the boundary @D and that '

is holomorphic in D with k'kD < "0; a direct calculation shows

@f̂(z) = �
1 + (z � �(z))2'(�(z))@�(z)=2

(�0(�(z)) + (z � �(z))�00(�(z)))
2

and

�@f̂(z) = �
(z � �(z))2'(�(z))�@�(z)=2

(�0(�(z)) + (z � �(z))�00(�(z)))
2

at every z 2 D� n f1; �(1)g: Therefore, if (�(z) � z)2 �@�(z) vanishes at the boundary,

then we would obtain continuous extensions of @f̂ and �@f̂ to bC : Moreover, the limits of

f̂(z + t)� f̂(z)

t
and

f̂(z + it)� f̂(z)

t
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when t tending to 0 along the real axis both exist and are equal to f 0(z) and if 0(z);

respectively, for each z 2 @D: In fact, when z + t or z + it approaches to z in D�; the

above quotients tend to the desired values by (7) below. This implies that our f̂ has

continuous partial derivatives everywhere in bC : Hence, we can conclude that f̂ is a local

C1-di�eomorphism of bC ; and hence, a global C1-di�eomorphism of it. Thus, if we restrict

ourselves to this case, the proof would become much simpler than ours.

We note that it is always possible to take such a quasiconformal re
ection � for any

quasidisk D (see [1] or [9, Section II.4]).

3. Proof of Lemma 4

Let ' be as in Lemma 4. We assume that D is bounded for a moment. Then the

solutions �0 and �1 of (3) are holomorphic in D: Thus f̂ can be continuously extended to

the whole sphere and f̂(@D) is the image of the quasicircle @D under the locally univalent

meromorphic map �1=�0: Now we require an extension theorem for quasiregular mappings.

Lemma 5. Let 
 be a plane domain and C be an open quasiarc (or a quasicircle) in 


such that 
 n C is an open set in bC : Suppose that h : 
 ! bC is a continuous map such

that hj
nC is a K-quasiregular map and that, for each x 2 C; h maps C \ U injectively

onto a quasiarc for some open neighbourhood U of x in 
: Then h is K-quasiregular in


:

Proof. If once we know that h is quasiregular in 
; we can conclude that h is K-

quasiregular because j�@h=@hj � (K�1)=(K+1) a.e. by assumption. Since quasiregularity

is a local property, it suÆces to show that h is quasiregular in an open neighbourhood

U of each x 2 C: The assumption allows us to take an open neighbourhood U of x so

that h maps U \ C injectively onto a quasiarc. Then, by composing suitable quasicon-

formal mappings, we may further assume that U is an open disk centered at x = 0 with

U \ C = U \ R and that h(U \ R) � R: Set U� = fz 2 U ;�Im z � 0g: By the re
ection

principle for quasiregular mappings [11], the mapping hjU� extends to a quasiregular one

in U for each signature. This means that h is ACL and has locally square integrable

partial derivatives in U; and hence h is quasiregular there.
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By this lemma, our mapping f̂ turns out to be a K-quasiregular mapping on bC ; and
hence, f̂ can be decomposed to the form gÆ! for a K-quasiconformal mapping ! : bC ! bC
and a rational function g (see [10, Chapter VI]). Suppose that the degree of g is greater

than one. Then there exists a branch point, say b�; of g: Set a� = !�1(b�) and a = �(a�):

In this time, by M�obius conjugation, we assume that 0;1 2 @D and the branch points

of f̂ and their re
ections under � are all �nite.

Since f̂ is locally injective in D; the point a� must lie in bC nD; thus a 2 D:

First, we show that a =2 D: Suppose that a 2 D: By assumption, note that �0(a) +

(�(a)� a)�00(a) 6= 0: We now investigate the local behaviour of F near the point a: Since

a� is a branch point of F Æ�; the image of the positively oriented loop jz�aj = r under F

would have winding number N with N < �1 around F (a) for a suÆciently small r > 0:

Setting Æ = z � a and Æ� = �(z)� �(a); we have

�j(z) + (�(z)� z)�0j(z) = �j(a) + �0j(a)Æ + (�(a)� a+ Æ� � Æ)(�0j(a) + �00j (a)Æ) +O(Æ2)

= �j(a) + (�(a)� a+ Æ�)�0j(a) + (�(a)� a)�00j (a)Æ + o(Æ)

as Æ ! 0 for j = 0; 1: Using the relations �0�
0
1 � �00�1 = 1 and �00j = �'�j=2 also, we

calculate

F (z)� F (a) =
�1(z) + (�(z)� z)�01(z)

�0(z) + (�(z)� z)�00(z)
�
�1(a) + (�(a)� a)�01(a)

�0(a) + (�(a)� a)�00(a)

=
'(a)(�(a)� a)2Æ=2 + Æ� + o(Æ)

(�0(a) + (�(a)� a)�00(a))
2 + o(1)

=
�(z)� �(a) + c(z � a) + o(z � a)

(�0(a) + (�(a)� a)�00(a))
2 + o(1)

as z ! a; where c = '(a)(�(a)� a)2=2: From k'kD � k1"0; we deduce

jcj � k1

�
j�(a)� aj�D(a)

j�(z)� zj�D(z)

�2

(j�@�(z)j � j@�(z)j)

for almost all z 2 D: So, if we are given a number s with k1 < s < 1; then we can �nd a

suÆciently small number r so that

jcj < s � ess: inf
D(a;r)

(j�@�j � j@�j)(5)

holds, where D (a; r) = fz 2 C ; jz � aj < rg: We now need the following fact about the

local behaviour of quasiconformal maps, which might be interesting in itself.

8



Lemma 6. Let h : C ! C be a quasiconformal homeomorphism. For a point a 2 C

and a radius r > 0; suppose that E = ess: infD(a;r)(j@hj � j�@hj) > 0: Then, the map

ht(z) = h(z)+ t�z is quasiconformal on the disk D (a; (1� s)r) for any t 2 C with jtj < sE:

Furthermore, we have

jht(z)� ht(a)j � (sE � jtj)jz � aj for z 2 D (a; (1 � s)r):(6)

We postpone the proof to Section 4 because we require some trick to show this.

Set H(z) = (�(z) + cz)=(�0(a) + (�(a)� a)�00(a))
2: Using (5), we now apply the above

lemma to the case h = �� and t = �c and see that H is anti-quasiconformal near the

point a: In particular, the image of the positively oriented loop `r : jz � aj = r under H

has winding number �1 around the point H(a) for r small enough. Now estimate (6)

guarantees that F (z)�F (a) = (H(z)�H(a))(1+ o(1)) as z ! a; which implies that the

winding number of the image of `r under F around the point F (a) = H(a) is equal to

that of H for suÆciently small r: This contradicts the fact that a is a branch point of F:

We now conclude that a =2 D:

Therefore, the point a� must lie in @D if f̂ has a branch point a�: Since a = �(a�) = a�

in this case, we may use the letter a instead of a�:

We will use the following important fact on quasiconformal re
ections to deduce a

contradiction.

Lemma 7 ([9, Lemma I.6.3]). Let � be a K-quasiconformal re
ection in C with 1 2 C:

Then

1

M(K)
jz � �j � j�(z)� �j �M(K)jz � �j

for any z 2 C and � 2 C; where M(K) > 1 is a constant depending only on K:

The map f̂ is never injective near a while f̂ jD = f = �1=�0 is injective near a; so we

can select sequences of pairs of points zn and wn in D and closed arcs �n connecting

zn and wn in D such that F (zn) = F (wn) and F (�n) has winding number �1 around

F (a) = f(a); and that zn ! a; wn ! a and diam�n ! 0 as n!1; where diam stands

for the Euclidean diameter. Here and hereafter, we always understand that curves are

parametrized by the standard interval [0; 1]:

9



Now we consider the asymptotic behaviour of F (z) as z tends to a in D: Keeping

Lemma 7 in mind, in the same way as above, we can show that

F (z)� F (a) =
�1(z) + (�(z)� z)�01(z)

�0(z) + (�(z)� z)�00(z)
�
�1(a)

�0(a)

= �0(a)
�2(�(z)� a) +O((z � a)2)(7)

as z ! a in D:

Therefore, combining with Lemma 7, we have F (�n(t))� F (a)� �0(a)
�2(��n(t)� a) =

O((�n(t) � a)2) = O((��n(t)� a)2) uniformly in t as n !1; where ��n(t) = �(�n(t)): In

particular, �0(a)
2(F (�n(t))� F (a))=(��n(t)� a) = 1 + o(1); hence

jF (�n(t))� F (a)� �0(a)
�2(��n(t)� a)j < jF (�n(t))� F (a)j(8)

holds in t 2 [0; 1] for suÆciently large n:

Now we may assume jznj � jwnj for every n: Since F (zn) = F (wn) we have Æn :=

jz�n � w�
nj = O(jzn � aj2) as n!1 by (7), where we set z�n = �(zn) and w�

n = �(wn):

Here, we recall a fundamental property of quasidisks. The linear connectedness of D�

asserts the existence of a constant M > 1 such that any pair of points in D� \ D (c; r)

can be joined by a curve in D� \ D (c;Mr) for all c 2 C and r > 0 (see [6] or [9]). In

particular, there exists a sequence of curves ��n connecting w�
n and z�n in D� \ D (z�n ;MÆn):

Therefore we have j(F (zn)�F (a))� �0(a)
�2(��n(t)� a)j �M j�0(a)j

�2Æn+O(jzn� aj2) =

O(jzn � aj2) = O(jz�n � aj2) = O(jF (zn)� F (a)j2) as n!1; and then

j(F (zn)� F (a))� �0(a)
�2(��n(t)� a)j < jF (zn)� F (a)j(9)

for n large enough.

Now we conclude from (8) and (9) that the closed curves F (�n) � F (a) and 
�n � a;

where 
�n := ��n � �
�
n; have the same winding number around 0 for suÆciently large n: By

the choice of �n; we see that 

�
n has winding number �1; and hence 
�n separates a from1

for such an n: Since a and 1 belong to @D� and since 
�n is a curve in D�; this situation

contradicts the fact that D� is simply connected. This contradiction is caused by the

assumption deg g > 1: Therefore we can now conclude that g is a M�obius transformation,

and hence the proof of Lemma 4 is now complete except for Lemma 6.

4. Proof of Lemma 6

Set k0 = k�@h=@hk1 < 1: Without loss of generality, we can assume that a = 0: We

simply write D (r) = D (0; r): First note that ht(z) = h(z) + t�z is quasiregular in D (r) for

10



jtj < E: In fact, j�@ht=@htj � (j@�j+ jtj)=j�@�j � k0 + k1 � k0k1 = 1� (1� k0)(1� k1) < 1

a.e. in D (r) if jtj=E = k1 < 1:

Put " = 1� s: Now we use the auxiliary function � : C ! C which is de�ned by

�(z) =

8><>:
�z if jzj � "r

"(1� ")�1(r � jzj)�z=jzj if "r � jzj � r

0 if r � jzj:

Then we can extend htjD("r) to the complex plane, which will be still denoted by the same

letter, by the relation ht = h + t�: Since

@�(z) = �
"r

2(1� ")
�
jzj

z2
and �@�(z) =

"r

2(1� ")

�
1

jzj
�

2

r

�
;

we have j@�j � 1=2(1 � ") = 1=2s and j�@�j � maxf"; j1 � 2"jg=2(1 � ") < 1=2s on the

annulus f"r < jzj < rg: Setting k = jtj=sE < 1; we see that���� �@ht@ht

���� � j�@hj+ jtj=2s

j@hj � jtj=2s
�

2j�@hj+ k(j@hj � j�@hj)

2j@hj � k(j@hj � j�@hj)
�

m+ k0
1 +mk0

< 1

holds a.e. in the above annulus, where m = k=(2� k) < 1: Combining this with the fact

that ht is quasiregular in jzj < "r and in jzj > r; we can see that ht is quasiregular in C

for each t 2 D (sE): Set �t = �@ht=@ht and let !t be the quasiconformal automorphism of

C satisfying the partial di�erential equation �@!t = �t@!t a.e. on C and the normalization

!t(0) = 0 and !t(1) = 1: Then Qt = ht Æ !
�1
t is an entire function for each t 2 D (sE):

Since ht = h near the point at in�nity, Qt can be holomorphically extended to 1 so

that Q�1
t (1) = f1g and that Qt is locally biholomorphic near 1: In particular, Qt

is a polynomial of degree 1; and hence an analytic automorphism of C : Thus we can

conclude that ht = Q�1
t Æ !t is also a quasiconformal map of C : Since ht(z) = h(z) + t�z

for z 2 D ("r) = D ((1 � s)r); the �rst assertion in Lemma 6 now follows.

The latter part of Lemma 6 can immediately be deduced from the former one. Indeed,

for each �xed z 2 D ((1�s)r) other than 0 and for t 2 D (sE); the fact that h(z)+(t+u)�z =

ht(z) + u�z never vanishes whenever jtj + juj < sE implies that jht(z)j � (sE � jtj)j�zj =

(sE � jtj)jzj:
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