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Recently, Heinonen and Koskela showed, as a corollary of their deep re-
sult, the following extension theorem.

Proposition 1 ([3],4.2 Theorem) Suppose that f is a quasiconformal map

of the complement of a closed set E in Rn into Rn, n � 2, and suppose that

each point x 2 E has the following property: there is a sequence of radii rj,
rj ! 0 as j ! 1, such that the annular region B(x; arj) � B(x; rj=a) does
not meet E for some a > 1 independent of x. Then f has a quasiconfor-

mal extension to R̂n = Rn [ f1g. Moreover, the dilatation of the extension

agrees with the dilataiton of f .

There, they remarked that this result may be new even for conformal
maps in the plane. So it is noteworthy to give a di�erent proof of a more
general extension theorem on 2-dimensional quasiconformal maps of the plane
based on some classical results in the function theory.

We begin with the following de�nition, which weakens the condition in
the above theorem to a conformally invariant one.

De�nition We say that a closed set E in the complex plane is annularly
coarse if each point x 2 E has the following property: there is a sequence of
mutually disjoint nested annuli fRkg

1

k=1 such that the modulus m(Rk) of Rk

satis�es
m(Rk) � c

with a positive c. Here we say that a sequence of annuli fRkg
1

k=1 is nested if
every Rk (k > 1) separates Rk�1 from x.
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Also note that the positive constant c can depend on x.

Now we will prove the following

Theorem 2 Suppose that f is a quasiconformal map of the complement

of a closed set E in the complex plane C into C and suppose that E is

annularly coarse. Then f has a quasiconformal extension to Ĉ. Moreover,

the dilatation of the extension agrees with the dilataiton of f .

1 Known facts and basic lemmas

In 2-dimensional case, we have the following

Proposition 3 Let E be a compact set in C. Then the following conditions

are mutually equivalent.

1. Every conformal map of D = C � E is the restriction of a M�obius

transformaiton.

2. Every quasiconformal map of D = Ĉ� E has a quasiconformal exten-

sion to the whole Ĉ.

3. For every relatively compact neighborhood U of E, every quasiconformal

map of U � E has a quasiconformal extension to U .

Proof. First assume the condition 1) and take any quasiconformal map f of
D = C � E. Here we may assume that f(1) = 1. Let � be the Beltrami
coe�cient of f�1 on f(C � E). Set � = 0 on C � f(C � E), and we have
a quasiconformal map g of Ĉ with the complex dilatation � (cf. [1] and
[4]). Then, g � f has vanishing complex dilatation on C� E, and hence the
assumption implies that it is a M�obius transformation T . Thus f can be
extended a quasiconformal map g�1 � T of the whole Ĉ.

Next assume the condition 2) and take a relatively compact neighborhood
U of E and a quasiconformal map f of U�E arbitrarily. Since E is compact,
the famous extention theorem ( [6] II Theorem 8.1) gives a neighborhood V of
E in U and a quasiconformal map g of Ĉ�E which coincides with f on V �E.
Then the assumption implies that g can be extended to a quasiconformal map
of Ĉ, which clearly gives a quasiconformal extension of f to U .
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Finally, assume the condition 3) and take any conformal map f of D =
C � E. Then f can be extended to a quasiconformal map g of C. Hence
if E has vanishing area, then this g is actually conformal, and hence is a
M�obius transformation. If not, consider the extremal (horizontal) slit map h
of C� E. Then h should be extended a quasiconformal map of C. But this
is impossible, for C�f(C�E) has vanishing area by Koebe's uniformization
theorem.

Remark Koebe's uniformization theorem asserts that every planar domain

 can map conformally onto the complement of some union of horizontal
slits and points whose total area vanishes. And an example of such univalent
holomorphic maps are the extremal slit maps. (See for instance, [5].)

As a condition which assures these extension properties, we know the
following; we say that a compact set E has absolutely vanishing area if C�
g(C�E) has vanishing area for every univalent holomorphic map g of C�E.

Actually, the following fact is classically well-known.

Lemma 4 Let E be a compact set in C with absolutely vanishing area.

Then every conformal map of D = C � E is the restriciton of a M�obius

transformaiton.

Proof. Ahlfors and Beurling ([2] showed that D belongs to OAD if and only
if E has absolutely vanishing area, which is also equivalent the condition 1)
in Proposition 3. (Also see [8] VI and [7] I x2.)

Now, it is clear from the de�nition that an annularly coarse compact set
is totally disconnected (or even absolutely disconnected). Furthermore, we
see the following

Lemma 5 Every annularly coarse compact set E has absolutely vanishing

area.

Proof. It su�ces to show that E has vanishing area. For this purpose, �x a
point a 2 E arbitrarily. Then there is a sequence of mutually disjoint nested
annuli Rk such that m(Rk) � c for every k with a positive constant c.

Let dk be the diameter of the bounded component Fk of C�Rk. Then we
can �nd a positive constant � (depending only on c) such that Rk\B(a; 2dk)
contains a ball Bk with radius �dk, where and in the sequel, we set B(a; r) =
fjz � aj � rg.
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For the sake of convenience, we include a direct proof of this assertion.
Let Ak be the distance between Fk and F

0

k = C� (Fk [Rk), and zk 2 Fk and
z0k 2 F 0

k satisfy jzk � z0kj = Ak. Also take two points wk; w
0

k 2 Fk satis�ng
jwk � w0kj = dk. Further we may assume that jwk � zkj � dk=2. Then Rk

separates wk and zk from z0k and 1, and hence

Tk(z) = �
z � zk
wk � zk

maps Rk onto a region admissible to the extremal problem of Teichm�uller
(see [1]). Under the notation of [1], we have

c < M(Rk) �
1

2�
log	(j(zk � z0k)=(zk � wk)j)

�
1

2�
log	(2Ak=dk);

and since log	(x)! 0 as x! 0, we can �nd a positive � = �(c) such that

Ak � �2dk:

for every k, which gives the assertion.
Now set rk = 2dk for every k, and we have

Area(E \ B(a; rk))

Area(B(a; rk))
< 1�

�(�dk)
2

�r2k
= 1�

�2

4
:

This implies that a is not a density point of E. Since a is arbitrary, we
conclude that the area of E vanishes.

2 Proof of Theorem 2

First �x an annularly coarse closed set E arbitrarily. For every n, set En =
E \ B(0; n). Then every En is compact and the assumption implies that
there is a neighborhood Un of En such that the boundary of Un is a comapct
set in D = C� E.

Let f be a quasiconformal map of C�E. Then Proposition 3 implies that
f can be extended uniquely to a quasiconformal map, say fn, of C�E \ Un
and the maximal dilataiton of fn is the same as that of f by Lemma 5.

Since K-quasiconformal maps are sequencially compact, we conclude that
f has a desired extension to the whole C.
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