
HOLOMORPHIC MOTIONS AND QUASICONFORMAL EXTENSIONS

TOSHIYUKI SUGAWA

Abstract. In this article, we will consider holomorphic families of univalent functions
parametrized by the unit disk in such a way that the origin corresponds to the identity.
For each member of the family, thanks to the �-lemma, we then have a quasiconfor-
mal extension of it. This method enables us not only to give simple proofs of some
known results, but also to provide new results. Actually, we derive several results about
quasiconformal extendability for typical classes of univalent functions.

1. Introduction

Univalence criteria sometimes produce quasiconformal extension criteria. A number of
authors obtained such a kind of results by means of Grunsky's inequality or L�owner's
method (see, for example, [6] for a comprehensive account, and see also [2]). Grunsky's
inequality does not yield an explicit bound for the maximal dilatations of the quasiconfor-
mal extensions in general, however L�owner's method is sometimes satisfactory but di�cult
to use. On the other hand, the so-called �-lemma and its variants generate quantitative
results on quasiconformal extendability in various situations, which are often sharp. But,
we should notice the reader that this method has the disadvantage that the quasiconformal
extension cannot be given explicitly in many cases.

In this article, we shall demonstrate the power of the �-lemma. First, compare the
following two results.

Theorem A (Krzy_z [15], cf. [21] p.294). Let ! be an analytic function on the unit disk

� with j!0(z)j � k; where 0 � k < 1 is a constant. Then the function f(z) = z + !(1=z)
on the outside of � can be extended to a k-quasiconformal automorphism of the Riemann

sphere by setting f(z) = z + !(�z) on �:

Theorem B (Fait, Krzy_z and Zygmunt [12, Theorem 2']). Let ! be an analytic function

on the unit disk � with j!0(z)j � k; where 0 � k < 1 is a constant. Then the function

f(z) = z+!(z) on � can be extended to a k-quasiconformal automorphism of the Riemann

sphere by setting f(z) = z + !(1=�z) outside �:

As the function f(z) = z + k=z shows, Theorem A is best possible, however Theorem
B can be improved by using the �-lemma as follows: Under the same hypothesis as

in Theorem B, the function f(z) = z + !(z) can be extended to a k0-quasiconformal

automorphism of the Riemann sphere, where k0 = k=(2 � k) < k: In fact, this can be
easily obtained as a corollary of the following result, but a way of k0-quasiconformal
extension of f is not clear from our method.
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Theorem 1.1. Let k be a constant in [0; 1): For an analytic function f on the unit disk

� with f(0) = 0 and f 0(0) 6= 0; let p(z) represent one of the quantities zf 0(z)=f(z);
1 + zf 00(z)=f 0(z) or f 0(z): If jp(z) � (1 + k2)=(1 � k2)j � 2k=(1 � k2) for all z 2 �; the
function f can be extended to a k-quasiconformal automorphism of the Riemann sphere.

In the case that p(z) = zf 0(z)=f(z) or f 0(z) the above result is best possible as the
function p(z) = (1 + kz2)=(1� kz2) indicates (see Section 4 for details).

The remainder of this paper will be organized as follows. In Section 2, we present a
precise de�nition of holomorphic motions and state the �-lemma and its consequences.
We also introduce (the Bers embedding of) the universal Teichm�uller space and recall its
fundamental properties. In Section 3, we shall explain a general principle strengthening
univalence criteria into quasiconformal extension ones thanks to the �-lemma. Section 4
is devoted to applications of the general principle to several concrete cases. Consequently,
we have a number of quasiconformal extension criteria, most of which seem not to appear
in the literature. From these, Theorem 1.1 above immediately follows.

2. Holomorphic motions and the universal Teichm�uller space

We recall here the de�nition of holomorphic motions and its properties. Let � denote
the unit disk in the complex plane. A holomorphic motion of the subset E of the Riemann

sphere bC is a map F : E ��! bC satisfying the following three condtions.

1. For each z 2 E; the map F (z; �) : �! bC is holomorphic,

2. For each � 2 �; the map F� := F (�; �) : E ! bC is injective, and
3. F0 = idE:

The notion of holomorphic motions was �rst introduced by Ma~n�e, Sad and Sullivan
[18] in order to investigate the complex dynamics on the Riemann sphere, and nowadays
proves to be very useful in various aspects. The following results will be fundamental in
our argument.

Theorem C (Ma~n�e-Sad-Sullivan [18] and Bers-Royden [7]). Let F : E � � ! bC be a

holomorphic motion of E: Then the following hold.

1. The map F is uniformly jointly continuous in two variables. Therefore, F uniquely

extends to a holomorphic motion of E; which will be denoted still by the same letter.

2. For each � 2 �; the map F� is quasiconformal in the interior Int(E) of E:
3. The Beltrami coe�cient �(�) = �@F�=@F� is a holomorphic map from � to the unit

ball of the complex Banach space L1(Int(E)):

The next striking result was �rst established by S lodkowski [22]. For another proof, see
also Astala-Martin [4] and Douady [9].

Theorem D. Every holomorphic motion of E can be extended to a holomorphic motion

of the whole sphere bC :
We should note that the above extension is not necessarily unique. These two theorems

have various applications to the Teichm�uller theory (see [11]).
Now we remind the reader of the de�nition of the universal Teichm�uller space and

relavant notions (see, as a general reference, [17]). Let Bj(D) (j = 1; 2) denote the
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complex Banach space consisting of all holomorphic functions ' on the hyperbolic domain
D in bC with hyperbolic (Poincar�e) metric �D(z)jdzj of constant negative curvature �4
such that the norms

k'kj;D = sup
z2D

�D(z)�jj'(z)j
are �nite. The universal Teichm�uller space T (�) is the set of Schwarzian derivatives
Sf = (f 00=f 0)0 � (f 00=f 0)2=2 of those univalent functions f on the unit disk which can
be quasiconformally extended to the whole sphere. The famous Nehari-Kraus theorem
claims that kSfk2;� � 6 for a univalent function f on �; hence T (�) � B2(�): Moreover,
by Ahlfors, T (�) is shown to be a bounded contractible domain of B2(�):

We also note that kTfk1;� � 6 holds for a univalent function f; where Tf denotes the
pre-Schwarzian derivative f 00=f 0 of f: Thus, the set T1(�) of Tf of all univalent functions
f : � ! C which admit quasiconformal extensions to the whole sphere is sometimes
thought to be another model of the universal Teichm�uller space (cf. [3] and [24]).

The Teichm�uller distance between pair of points Sf and Sg of T (�) is de�ned by

dT (Sf ; Sg) = inf
h
d�(0; k�hk1);

where h runs over all quasiconformal automorphisms of bC such that h = f � g�1 on g(�)
with Beltrami coe�cient �h = h�z=hz and d� denotes the hyperbolic distance determined
by the hyperbolic metric ��(z)jdzj = jdzj=(1 � jzj2) on �; i.e., d�(z; w) = arctanh(jz �
wj=j1 � �zwj): We note that the in�mum is always attained by some h: In particular,
we note that the quantity dT (Sf ; 0) measures the smallest maximal dilatation of the

quasiconformal extension of f: A quasiconformal extension ~f to bC of f is called extremal

if the Beltrami coe�cient � of ~f satis�es dT (0; Sf) = d�(0; k�k1): It is known that ~f
is extremal if and only if � satis�es the Hamilton-Krushkal' condition (cf. Gardiner [13]
Chapter 6):

sup
'

����
ZZ

��

�(z)'(z)dxdy

���� = k�k1;
where the supremum is taken over all integrable holomorphic quadratic di�erentials ' =
'(z)dz2 on the exterior �� of the unit disk with k'k =

RR
��
j'(z)jdxdy � 1: Note that

the Hamilton-Krushkal' condition is conformally invariant.
The cerebrated Royden-Gardiner theorem states that the Teichm�uller distance dT co-

incides with the Kobayashi (pseudo-)distance on T (�) (for a modern proof also using the
optimal �-lemma, see [11]). By the contraction property of Kobayashi pseudo-distance,
we have the following (known) result as a simple corollary.

Proposition 2.1. Suppose that h : � ! T (�) is a holomorphic map. Then we have

dT (h(s); h(t)) � d�(s; t) for any s; t 2 �:
Let � : M1 ! T (�) denote the Bers projection, where Mk = f� 2 L1(C ); k�k1 <

k; �j� = 0g: Precisely speaking, �(�) is the Schwarzian derivative of w�j�; where w�

is a homeomorphic solution of the Beltrami equation w�z = �wz on bC (note that w� is
conformal on � by the assumption � = 0 on �). As is well-known, the map � : M1 !
T (�) is a holomorphic submersion.

The �-lemma has an important application to the Teichm�uller theory. Now we explain
it. Let h : �! T (�) be a holomorphic map. We choose a �0 2M1 such that �(�0) = h(0)
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and �x it. For each � 2 �; a meromorphic function f� on � is uniquely determined by the
conditions: (1) Sf� = h(�); (2) f�(0) = f 0�(0)� 1 = f 00� (0) = 0: In such a way, we obtain a
holomorphic motion F (z; �) = f� � f�1

0 (z) of f0(�): By Theorem D, F can be extended
to a holomorphic motion ~F of the whole sphere. By assumption, the univalent function
f0 has a unique quasiconformal extension ~f0 with Beltrami coe�cient �0: Let ~h(�) denote
the Beltrami coe�cient of the quasiconformal map ~F�� ~f0: By virtue of Theorem C (3), we

then see that the map ~h : �!M1 is holomorphic and satis�es � � ~h = h and ~h(0) = �0:
Thus we have proved the following:

Proposition 2.2 ([11]). Suppose that a holomorphic map h : � ! T (�) and a point

�0 2 M1 such that �(�0) = h(0) are given. Then, there exists a holomorphic map ~h :

�!M1 such that � � ~h = h on � and that ~h(0) = �0:

We will call ~h a lift of h with ~h(0) = �0: This need not be uniquely determined by only

the condition ~h(0) = �0:

Example 2.1. As the simplest example, we consider the holomorphic motion F (z; t) =
f(tz)=t of the unit disk for a normalized univalent function f : �! C so that f(0) = 0 and
f 0(0) = 1: (Of course, we set F (z; 0) = limt!0 f(tz)=t = z:) By Theorem D, F extends to a
holomorphic motion ~F of the whole sphere. We then have a j�j-quasiconformal extension
~F� of F�: Note that ~F� can be chosen so that ~F�(1) = 1: But, without this restriction, it
turns out that F� can be extended to a j�j2-quasiconformal map (Krushkal' [14]). In fact,
the map h : �! T (�) de�ned by h(�)(z) = SF�(z) = �2SF (�z) satis�es that h0(0) = 0:
Thus the claim follows from the next theorem.

Theorem E (Krushkal' [14]). Suppose that a holomorphic map h : � ! T (�) satis�es

that h0(0) = � � � = h(m)(0) = 0: Then dT (h(0); h(t)) � d�(0; tm+1) holds for every t 2 �:
Problem. For the above h : � ! T (�); can we choose a lift ~h : � ! M1 of h so that
~h0(0) = � � � = ~h(m)(0) = 0?

If this is true, we have an easy proof of Theorem E by applying Schwarz's lemma to
the function t�m�1(~h(t)� �0)=(1� ��0

~h(t)); where �0 = ~h(0):

3. Univalence criteria and quasiconformal extensions

In this section, we explain how univalence criteria generate quasiconformal extension
criteria by means of the �-lemma. First, we state a general principle which leads to
quasiconformal extensions of univalent functions.

Suppose that given are a hyperbolic simply connected domain U and an operation P on
meromorphic functions on a plane domain D associated with a univalence criterion. Let
N (D) be a class of meromorphic functions on D normalized at a point a 2 D so that the
operator P : N (D) !M(D) is injective, where M(D) is another class of meromorphic
functions on D satisfyng the condition A at the point a; where the condition A is empty
or '(a) = p0; where p0 is the point appearing just below. Further assume the following
conditions:

(1) (univalence criterion). if f 2 N (D) satis�es Pf(D) � U; the function f must be
univalent in D;
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(2) idD 2 N (D) and PidD(z) = p0 for all z 2 D; where p0 is a point in U;
(3) Hol0(D;U) � P (N (D)); where Hol0(D;U) is the class of holomorphic functions f

on D with values in U satisfying the condition A,
(4) (holomorphic dependence of P ). for a holomorphic family '� in Hol0(D;U) (i.e.,

the map � 7! '�(z) is a bC -valued holomorphic function for every �xed z 2 D), the
corresponding functions f� in N (D) such that Pf� = '� form a holomorphic family,
too.

Under these circumstances, we can show the following claim.

Theorem 3.1. Let L : � ! U be a Riemann mapping function of U with L(0) = p0: If
f 2 N (D) satis�es Pf(D) � L(Bk) for some k 2 [0; 1); the function f can be extended to

a k-quasiconformal automorphism ~f of bC ; where Bk = fz 2 C ; jzj � kg: Further such an
~f can be chosen so that ~f(1) = 1 when Hol0(D;U) � P (N (D) \ Hol(D; C )):

Proof. We de�ne a holomorphic family '� in Hol0(D;U) parametrized through � 2 � by

'�(z) = L

�
�

k
L�1 � Pf (z)

�
:

Let F� be the holomorphic family in N (D) uniquely determined by PF� = '�: By the
univalence criterion, we then observe that F (z; �) = F�(z) is a holomorphic motion of D:
When Hol0(D;U) � P (N (D) \ Hol(D; C )); we see D � C since Pid = p0 2 Hol0(D;U)
implies idD 2 Hol(D; C ); therefore we can extend F to a holomorphic motion of D[f1g
by setting F (1; �) = 1: Now the optimal �-lemma (Theorem D) produces a holomorphic

motion ~F of bC whose restriction to D (or D [ f1g) coincides with F: By Theorem C,
each ~F� is a j�j-quasiconformal extension of F�: Since PFk = 'k = Pf ; we have f = Fk;
thus the proof is now complete.

Remarks. 1. In the above proof, the condition A was needed only for guaranteeing
that L(k�1�L�1 � ') 2 P (N (D)) for all ' 2 M(D) with '(�) � Bk and � 2 �:

2. One may think that the above theorem can be generalized as follows: If Pf(D) �
gk(�) the function f 2 N (D) can be extended to a k-quasiconformal automorphism of bC ;
where g(z; �) = g�(z) is a holomorphic function from ��� into U satisfying that g� is

univalent for each � 2 � n f0g; while g0 is the constant function p0: Actually, this can
be shown by taking '� = g� � g�1

k � Pf however it is not a proper generalization because
it is always true that gk(�) � L(Bk): The last assertion is easily obtained by applying
Schwarz's lemma to the function � 7! L�1(g(z; �)):

Corollary 3.2. Under the same hypothesis as in Theorem 3.1, the norm of the Schwarzian

derivative of the function f is estimated as kSfk2;D � 12k: When D is a unit disk � we

have a better one: kSfk2;� � 6k: Furthermore if Hol0(�;U) � P (N (�) \Hol(�; C )); we
also have kTfk1;� � 6k:

Proof. By a theorem of Beardon and Gehring [5], we know that kSfk2;D � 12 for any
univalent function f on the hyperbolic plane donain D: Hence our estimate follows from
Lehto's majorant principle. The other cases can be treated in the same fashion.
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In the case D = �; we can consider the map h : � ! T (�) de�ned by h(�) = SF�;
where F� is the holomorphic family constructed above. It is easy to see that h : �! T (�)
is actually holomorphic and h(0) = 0: If h0(0) = 0; by Theorem E, we would then have
a better estimate dT (h(�); 0) � d�(0; �2); which implies that F� can be extended to a

j�j2-quasiconformal automorphism of bC : We will see below when h0(0) = 0 happens in
concrete examples.

4. Applications

Now we apply the theorem shown in the preceeding section to several examples.
First we consider the operation Pf = f 0 for non-constant holomorphic functions on

a convex domain D � C : Now �x a point a 2 D; and consider the class N (D) =
ff 2 Hol(D; C ); f(a) = 0g and M(D) = Hol(D; C ): (Therefore, the condition A is
vacuous here.) For � 2 (��=2; �=2); we set U� = fz 2 C

� ; j arg z � �j < �=2g: Then the
Noshiro-Warschawski theorem yields that if Pf(D) � U� the function f 2 N (D) should
be univalent. Hence Theorem 3.1 is now applicable. The Riemann mapping function
L� : � ! U� of U� with L�(0) = 1 is given by L�(z) = (1 + e2i�z)=(1 � z): Since the
assumption f(a) = 0 is not essential for quasiconformal extendability, we have the next

Theorem 4.1. Let D be a convex domain and take a point a in D: Suppose that a holo-

morphic function f on D satis�es f 0(D) � L�(Bk): Then the function f can be extended

to a k-quasiconformal automorphism of the Riemann sphere �xing 1:

Note that

L�(Bk) =

�
z 2 C ;

����z � 1 + e2i�k2

1� k2

���� � 2k cos �

1� k2

�
:

Suppose that the convex domain D is also a quasidisk, in other words, the Riemann
mapping function g : � ! D of D can be extended to a quasiconformal mapping.
Under the same notation as in Section 3, we consider h(�) = SF��g = g�SF� + Sg; where
g� : B2(D) ! B2(�) is the isometric isomorphism de�ned by the pullback g�'(z) =
'(g(z))g0(z)2 by g: We set  = k�1L�1

� � f 0: We then have '� = L�(� ) = 1 + (1 +

e2i�)� + O(�2) as � ! 0: Hence, h(�) = g�('00�='� � 3('0�='�)2=2) + Sg = Sg + (1 +
e2i�)�g�( 00) + O(�2) as � ! 0: Theorefore, we can see that h0(0) = (1 + e2i�)g�( 00):
In particular, h0(0) = 0 if and only if  00 = 0; i.e., f 0(z) = L�(c(z + d)) with constants
c and d satisfying supw2@D jw + dj � k=jcj; and in that case f can be extended to a

k2-quasiconformal automorphism of bC by Theorem E.
It is not clear from the proof whether Theorem 4.1 is best possible or not. In the

case that � = 0 and D = �; actually, this is best possible. In fact, take the normalized
holomorphic function f2 : � ! C determined by the relation f 02(z) = L0(kz

2) = 1 �
2kz2 + : : : : Explicitly,

f2(z) = �z +
1p
k

log
1 +

p
kz

1�p
kz
:

Then the meromorphic function g2(z) = 1=f2(1=z) belongs to the classical class �0 of
normalized univalent meromorphic function on jzj > 1 and can be represented by the
power series

g2(z) = z � 2k

3
z�1 +

2k2

45
z�3 +

46k3

945
z�5 + � � �
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in jzj > 1: On the other hand, by a theorem of Schi�er (see [10, x4.7]), any g(z) =
z + b1=z + b2=z

2 + : : : in �0 satis�es jb2j � 2=3: Now, from the Lehto majorant principle
[17, xx3.5, 3.6], it follows that a function g 2 �0 admitting �-quasiconformal mapping

of bC should satisfy jb2j � 2�=3: Hence, f2 cannot be extended to any �-quasiconformal
mapping for an arbitrary � < k:

A normalized analytic function f on the unit disk is called close-to-convex if

Ref 0(z)=g0(z) > 0 8z 2 �
for some univalent function g on � whose image is convex. Note that the function g
need not be normalized here. For subclasses of close-to-convex functions, the following
statement is immediately veri�ed from Theorem 4.1.

Corollary 4.2. Let g be a conformal mapping from the unit disk onto a convex domain D
which admits a k1-quasiconformal automorphism of the Riemann sphere. For constants

k2 2 [0; 1) and � 2 (��=2; �=2); suppose that an analytic function f on the unit disk

satis�es that f 0(z)=g0(z) 2 L�(Bk2) for any z 2 �: Then f can be extended to a (k1 +
k2)=(1 + k1k2)-quasiconformal automorphism of the Riemann sphere.

Proof. The function h(z) = f(g�1(z)) satis�es h0(D) � L�(Bk2): Now the result follows
from Theorem 4.1 and from the fact that the composition of k1 and k2-quasiconformal
mappings becomes a (k1 + k2)=(1 + k1k2)-quasiconformal mapping.

Remark. The �-lemma does not tell us any explicit construction of the quasiconformal
extension. At least, in this case, we have a concrete way of k0-quasiconformal extension
of a function f 2 N (�) with f 0(�) � L0(Bk); where k0 = 2k=(1 + k2): In fact, writing as
f(z) = (1+k2)z=(1�k2)+p(z); we can extend f by setting f(z) = (1+k2)z=(1�k2)+p(1=�z)
outside the unit disk �:

Secondly, we consider the operation Pf(z) = zf 0(z)=f(z) on holomorphic functions f
on the unit disk �: Let N (�) be the set of holomorphic functions f on the unit disk
normalized so that f(0) = f 0(0) � 1 = 0 and M(�) the set of holomorphic functions
' on � satisfying the condition A: '(0) = 1: Fix � 2 (��=2; �=2): Then the condition
Pf(�) � U� says that f is �-spirallike, in particular, univalent on � (see, for example,
[10]). For a ' 2 M(D); we have the following expression of the function f 2 N (�) with
Pf = ' :

f(z) = z exp

�Z z

0

'(�)� 1

�
d�

�
:

In particular, the holomorphic dependence of the operator P is evident. So, Theorem 3.1
is now applicable.

Theorem 4.3. Let � 2 (��=2; �=2) and f be a holomorphic function on the unit disk

with f 0(0) = 1: Suppose that f satis�es zf 0(z)=f(z) 2 L�(Bk) on � for some constant

k 2 [0; 1): Then the function f can be extended to a k-quasiconformal automorphism of

the Riemann sphere �xing 1: In particular, we have kTfk1;� � 6k and kSfk2;� � 6k:
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When � = 0 (i.e., the case of ordinary starlike functions), the above result is best
possible. In fact, the function f 2 N (�) satisfying Pf (z) = L0(kz

2) = (1+kz2)=(1�kz2)
has the form z=(1� kz2); therefore has the k-quasiconformal extension by setting f(z) =
z=(1� kz=�z) outside �; which turns to be conjugate to the a�ne map z 7! z� k�z by the
inversion z 7! 1=z; thus to be extremal.

On the other hand, for general � 2 (��=2; �=2); it is unknown whether the above result
is best possible or not. At least we know so far that the function f 2 N (�) determined
by f 0(z) = L�(kz2) with � 6= 0 has a k0-quasiconformal extension with some k0 < k; which
we show now. The function f has the form z(1 � kz2)��; where � = (1 + e2i�)=2: Then
the function F (z) = 1=f(1=z) = z(1� k=z2)� on �� can be extended to a quasiconformal
mapping by setting F (z) = z(1� k�z2jzj�2=�)� on �: The Beltrami coe�cient � of F has
the form �(z) = �ke2i�jzji tan � on �; in particular, j�(z)j = k a.e. on � thus F is a

k-quasiconformal automorphism of bC : This mapping F is not extremal. In fact, for any
integrable holomorphic quadratic di�erential '(z)dz2 on the unit disk �; we haveZZ

�

�(z)'(z)dxdy =

Z 1

0

Z 2�

0

�(r)'(rei�)rd�dr

= 2�'(0)

Z 1

0

r�(r)dr =
�2�ke2i�'(0)

2 + i tan�
:

From the sharp estimate �j'(0)j � k'k =
RR

�
j'(z)jdxdy; it then follows that

sup
k'k�1

����
ZZ

�

�(z)'(z)dxdy

���� =
2k

j2 + i tan�j < k = k�k1

if � 6= 0: Hence F does not satisfy the Hamilton-Krushkal' condition, equivalently, F is
not extremal.

Now we examine the condition for h0(0) = 0; where h(�) = SF� and F� is as in Section
3. Letting  = k�1L�1

� � Pf ; we see '� = L�(� ) = 1 + (1 + e2i�)� +O(�2) as �! 0: A
straightforward calculation shows that

z2Sf(z) = z

�
z'0(z)

'(z)

�0

� 1

2

�
z'0(z)

'(z)

�2

+
1

2
(1� '(z)2)

if a non-constant holomorphic function f sastis�es zf 0(z)=f(z) = '(z) (cf. [23]). Thus
we have z2SF�(z) = (1 + e2i�)�(z(z 0(z))0 �  (z)) +O(�2); which implies

h0(0)(z) = (1 + e2i�)z�2(z2 00(z) + z 0(z)�  (z)):

In particular, h0(0) = 0 if and only if the function  is a holomorphic solution of the
Fuchsian di�erential equation z2 00(z) + z 0(z) �  (z) = 0: The indicial equation �(� �
1) + � � 1 = �2 � 1 = 0 has the roots 1 and �1; thus a holomorphic solution near the
origin is a constant multiple of the fundamental solution  (z) = z corresponding to the
root 1: Therefore Pf (z) = L�(cz); where c is a constant with jcj � k: By Theorem E, we
conclude that the function f has a k2-quasiconformal extension to the sphere if f satis�es
zf 0(z)=f(z) = P�(kz): Such an f is nothing but the function z=(1 � kz)1+exp(2i�): The
function z=(1� z)1+exp(2i�) is sometimes called the �-spirallike Koebe function.
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Remark. Here we mention a relation with strongly starlike functions. A normal-
ized holomorphic function f on the unit disk is called strongly starlike of order � if
j argPf(z)j = j arg(zf 0(z)=f(z))j � ��=2 on �; where � is a constant with 0 � � � 1: In
[12], it is shown that such a function can be extended to a sin(��=2)-quasiconformal auto-

morphism of bC �xing 1 by an explicit way. In particular, we have kSfk2;� � 6 sin(��=2):
There is a problem: Can one extend a strongly starlike function of order � to an �-
quasiconformal automorphism of bC ? If this is true, we should have kSfk2;� � 6�: So
far, the author only knows that jSf(0)j � 6� for a strongly starlike function f of order �
and the equality holds if and only if f is a rotation of the function F determined by the
relation zF 0(z)=F (z) = f(1 + z2)=(1� z2)g�: This fact can be shown in the same fashion
as in [8]. (See also [23].)

On the other hand, an elementary geomerty shows that a function f 2 N (�) satisfy-
ing Pf(�) � L0(Bk) is strongly starlike of order �; where � is the number determined
by sin(��=2) = 2k=(1 + k2); equivalently, tan(��=4) = k: Because ��=4 < k < �(<
sin(��=2)) for 0 < k < 1; our result supports the a�rmative answer to the problem
above.

Next we consider the operation Pf(z) = 1 + zf 00(z)=f 0(z): Let N (�) be the set of
holomorphic functions f on the unit disk normalized so that f(0) = f 0(0) � 1 = 0 and
M(�) the set of holomorphic functions ' on � with the condition A: '(0) = 1: Then
the condition Pf(�) � U0 = fz 2 C ; Rez > 0g means that the function f is convex, in
particular, univalent in �: Letting g(z) = zf 0(z); we have, by the Alexander theorem,
Pf(z) = zg0(z)=g(z): Since f is recovered by the formula f(z) =

R z

0
g(�)=�d� from the

function g; in combination with the last example, we obtain the holomorphic dependence
of the operation P: Therefore, by virtue of Theorem 3.1, we have the following:

Theorem 4.4. Suppose that a non-constant holomorphic function f on the unit disk �
satis�es 1 + zf 00(z)=f 0(z) 2 L0(Bk) on � for some constant k 2 [0; 1): Then f can be

extended to a k-quasiconformal automorphism of the Riemann sphere �xing 1:

Corollary 4.5. Under the same situation in the above theorem, we have the norm esti-

mate of the Schwarzian derivative: kSfk2;� � 2k:

This follows from the fact kSfk2;� � 2 for any convex function f on � (see [20] or
[16]) and the Lehto majorant principle. We remark that this corollary also implies k-
quasiconformal extendability of such a function f as above by the Ahlfors-Weill theorem
[1].

Finally, we consider the derivative of h(�) = SF�: We set  = k�1L�1
0 � Pf : Then

'� = L0(� ) = 1 + 2� + O(�2) as � ! 0: In this case, z2SF�(z) = z'0�(z) � ('�(z)2 �
1)=2 = 2�(z 0(z) �  (z)) + O(�2); in particular, h0(0)(z) = 2z�2(z 0(z) �  (z)): Hence,
h0(0) = 0 if and only if  (z) = cz; where c is a constant with jcj � 1: But, the function f
such that Pf (z) = L0(kz) turns out to be the M�obius transformation f(z) = z=(1� kz):

We conclude this section by giving an example of another type. Consider here the
Schwarzian derivative as the operation P; i.e., Pf = Sf : Let D be a hyperbolic simply
connected plane domain and take a �nite point a 2 D: And letN (D) the set of normalized
locally univalent meromorphic functions f on D so that f(a) = f 0(a)�1 = f 00(a) = 0 and

9



M(D) the set of all holomorphic functions ' on D such that '(z) = O(z�4) as z ! 1
if 1 2 D: In this case, the condition A is vacuous. Now we restrict our attention to the
case that D = � with a = 0: Then, by Nehari's result [19], the condition jSf(z)j � �2=2
on the unit disk � forces f 2 N (�) to be univalent. The holomorphic dependence
of the Schwarzian derivative operator is well-known in the complex analytic theory of
Teichm�uller spaces, so we can apply Theorem 3.1 to show the following.

Theorem 4.6. Let k be a constant in [0; 1): If a function f 2 N (�) satis�es that

jSf(z)j � �2k=2 on �; then f can be extended to a k-quasiconformal automorphism of the

whole sphere.

This resut is, of course, not new. And we remark that the above method is also
applicable for any quasidisk D:
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