UNIFORM PERFECTNESS OF THE LIMIT SETS OF KLEINIAN
GROUPS

TOSHIYUKI SUGAWA

ABSTRACT. A compact set C in the Riemann sphere is said to be uniformly perfect if
bounded are the moduli of those annuli in the complement which separate C. The limit
set of an analytically finite non-elementary Kleinian group is known to be uniformly
perfect.

In this note, we shall show that the limit set of a non-elementary Kleinian group is
uniformly perfect if the quotient orbifold is of Lehner type, i.e., satisfies that the space
of integrable holomorphic quadratic differentials on it is continuously contained in the
space of (hyperbolically) bounded ones. Indeed, we shall state the result in more precise
and quantitative form. As applications, we present estimates of the Hausdorff dimension
of the limit set and the translation length in the region of discontinuity.

1. INTRODUCTION

In this note, we shall consider uniform perfectness of the limit sets of Kleinian groups.
Once one know the limit set is uniformly perfect, the estimation of various quantities
involving Kleinian groups becomes easier (see Section 5). Bishop and Jones effectively
used this fact in their paper [4].

As soon as a proof of uniform perfectness of the limit sets of Schottky groups appeared
in [2], this result was generalized to the case of finitely generated non-elementary Kleinian
groups by several specialists (cf. [13] and [14]). Afterward, Canary remarked in [5] that
the same result holds for analytically finite Kleinian groups. As for Schottky groups, we
should mention the pioneer work of Tsuji [18] (see the comment on Theorem C below).

Recently, Jarvi and Vuorinen [6] proved the same result for finitely generated Kleinian
groups in higher dimensional case. This is a generalization of Tukia’s result [20] (geomet-
rically finite case). It is noteworthy that their proof does not rely on Ahlfors’ Finiteness
Theorem.

In this note, we will present a more general condition for the limit sets of Kleinian
groups to be uniformly perfect (Corollary 3.3). Our method also provides a bound for
uniform perfectness by some geometric quantity. In practice, it is important to know an
explicit bound because the uniform perfectness connects with various quantities involving
geometry of the quotient surface (cf. [16]). Indeed, we shall give some applications in
Sections 5 and 6. In Section 5, we state results relating to regularity in the sense of
Dirichlet and Hausdorff dimension of the limit sets. Section 6 is devoted to an estimate of
translation length in terms of the multiplier of a loxodromic element of a Kleinian group.
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We shall conclude this note by giving several examples of Kleinian groups, one of which
has the limit set which is not uniformly perfect.

2. RIEMANN ORBIFOLDS

A 1-dimensional complex orbifold is a Hausdorff topological space locally modeled on
the quotient of an open subset of the complex plane C under an action of finite group
whose members consist of biholomorphic maps. Note that such a finite group is necessarily
a cyclic group, thus determined by its order. By a Riemann orbifold, we will mean
a connected 1-dimensional complex orbifold. Thus X can be regarded as a pair of a
Riemann surface R and a multiplicity map v : R — N, where the value of v corresponds
to the order of the finite group, therefore the set of singularities (or, branch points)

b(X) = {z € R;v(x) > 1} should be discrete. We set X = R\ b(R). Then X can be
regarded as a subdomain of X without singularities. If v is the constant 1, then X can
be naturally indentified with the underlying Riemann surface R. For a precise definition
and fundamental properties of Riemann orbifolds, we refer the reader to McMullen’s book
[10].

A Riemann orbifold X = (R, v) is called hyperbolic if R has a holomorphic branched
Galois covering map p : H — R from the upper half plane H onto R such that ord¢p =
v(p(¢)) for any ¢ € H, where ord¢p denotes the local degree of p at . The map p is called
a universal covering map of X.

The covering transformation group <« = < x = {y € Aut(H);p o v = p} is called
a Fuchsian model of X. Through the universal covering map, the Riemann orbifold X
inherits the hyperbolic metric py from H, i.e., pg = 2‘1(111 = p*(px). We denote by dx the
hyperbolic distance on X canonically defined by the hyperbolic metric.

Let Cx denote the set of free homotopy classes [a] = [a]x of non-trivial closed curves

«a in X, where a curve « is said to be non-trivial if it is covered by an element v € «
of infinite order, more precisely, there exists a lift & via p such that the initial point is
translated to the terminal one by v, and said to be freely homotopic to another o’ if both
are covered by the same element of <. (The free homotopy class of a non-trivial curve
precisely corresponds to the conjugacy class of an element of < which covers the curve
and has infinite order.) And let C% be the subset of Cx consisting of free homotopy classes
of curves which are covered by hyperbolic elements of < .

Remark. It may be more natural to consider all curves in X, but a curve passing
a branch point of X cannot be lifted via p in a unique way even if the initial point is
assigned, so being freely homotopic fails to be an equivalence relation. To avoid this
difficulty, we may assign a sort of “multiplicity data” to the curve. Precisely speaking,
we may consider a (regular) curve as the pair (y,7n,) of a C! map v : S' — R with
Y'(¢) # 0 and n,, : S' — Z such that 0 < n,(¢) < v(y(¢)) — 1, where n,(¢) indicates the
winding number of v around v(¢). But, we will not adopt this formulation for the sake of
simplicity.



We write {x(a) = [ px and lx[a] = infycq) £x (/). By definition, if v € < covers «,
then

t
(2.1) ¢x[a] = I, = cosh ™! <| ;ﬂ) :
where [, denotes the translation length of v and try is the trace of a representative of ~y
in SL(2,R).
Now we set
L(X) = inf = inf
( ) [al}IEICX EX [Oé] yElx: ofliﬂﬁnite order l7 and
L*(X)= inf ¢ = inf L.
( ) [al}lelC;( X[a] vefx:llgfperbolic K

We call X is modulated if L(X) > 0. We note here that if X is a Riemann surface R,
the constant L(R) is nothing but 2/g, where Ig is the injectivity radius of R, so we may
say that R is of bounded geometry if L(R) > 0 (see [16]).

When the Fuchsian model < x of X is finitely generated, the quantity L*(X) represents
the hyperbolic length of the shortest closed geodesic in X. A closed geodesic shortest in
the curves in X other than boundary curves is called systole of X. Hence, L*(X) can be
thought as the length of systole of X if < is finitely generated and of the first kind. It has
been recognized that the length of systole is quite an important function on the moduli
space of X (cf. [15]).

Let Ay(X) and By(X) be the complex Banach spaces consisting of holomorphic qua-
dratic differentials ¢ = ¢(2)d2* on X with norms

o= [ 1el=[[ tetoldod,

[olloo = sup py°|e0| = sup p3*(2)|¢(2)],

respectively. The spaces As(X) and By(X) are canonically isomorphic to the spaces
Ay(H, < ) and By(H, < ) of integrable and bounded holomorphic automorphic forms on H
of weight —4 for < | respectively. And we set

K(X) = sup{|l¢lloo; ¢ € A2(X) with [J[ls < 1}

For these spaces, the inclusion problem was first settled by Niebur and Sheingorn [12].
The following strong form is due to Matsuzaki [8].

Theorem 2.1. The space Ay(X) is (continuously) included by By(X) if and only if
L*(X) > 0. Furthermore, there exist universal constants ro and ry such that

1
——— < r(X) < maX{L*L

27 L*(X) GO

Note that the inclusion map X < X induces the restriction maps A;(X) — Ay(X) and

[e]

By(X) — By(X), which are, respectively, an isometric isomorphism and a bounded linear
operator with ||<p||B & < |l¢||Bo(x) by virtue of the monotonicity of hyperbolic metrics:
2

[e] [e] [e]

px < Py Therefore, we have k(X) < k(X). In fact, k(X) < k(X) < 3k(X) holds (see
[17]).



In this article, we will say that X is of Lehner type if L*(X) > 0. Generally, for a
(possibly disconnected) 1-dimensional complex orbifold X, we define L(X) = inf L(X)
and L*(X) = inf L*(X,), where the infima are taken over all connected components X
of X, and we say that X is modulated or of Lehner type if L(X) > 0 or L*(X) > 0,
respectively. R

A closed set C' in the Riemann sphere C with #C' > 3 is called uniformly perfect if
there exists a constant ¢ > 0 such that C N {z;cr < |z —a| < r} # 0 for all a € C' and
0 < r < diamC. This is equivalent to the condition that the complement R = C \ C is
modulated (see Section 5).

3. KLEINIAN GROUPS AND MAIN RESULTS

Let GG be a Kleinian group acting on the Riemann sp\here @, i.e., G is a discrete subgroup
of PSL(2, C) whose region of discontinuity 2(G) in C is not empty. We denote by A(G)
the limit set of G, i.e., A(G) = C \ 2(G).

In the following, we always assume that G is non-elementary, in ohter words, #A(G) >
3. Then A(G) is known to be a perfect set. The quotient space X (G) = 2(G)/G has
a natural hyperbolic 1-dimensional complex orbifold structure with which the canonical
projection 7 : 2(G) — X(G) is a holomorphic covering map.

Let X be a connected component of X (G) and {2 be a connected component of 7! (X).
If ¢ : H — (2 is a holomorphic universal covering map, then clearly p = moq is a
holomorphic universal covering map of X. Let H = H be the component subgroup of
G corresponding to (2, i.e., H = Stabg(£2) = {g € G;g(£2) = 2}. And denote by < and
< the covering transformation groups of ¢ and p, respectively. Then, we have a natural
exact sequence

1 y y o X H > 1
of group homomorphisms, here x can be described as g oy = x(7y) o ¢ for all y € <.
For each h € H, we denote by [, ;, the translation length of A in (2 :

(3.1) lho = Zlgg do(z, h(2)).

Set

H. = {h € H;h has a fixed point in 2} and
H, = {h € H;h corresponds to a puncture of X = 2/H}
Precisely speaking, an element h of H belongs to H, if and only if there exist an element
ho € H of infinite order and a subdomain w of 2 with the following properties:

1. h = h{ for a non-zero integer n,

2. ho(w) =w and g(w)Nw =0 for all g € H \ (hy), and

3. w/(hy) is conformally equivalent to the punctured disk.

We remark that there may exist an elliptic or parabolic element h of H with h ¢ H, or
h ¢ H,, respectively (see Example 7.2 below). (Of course, an element of H, \ {1} or H,
is necessarily elliptic or parabolic, respectively.) Now we define Ap ¢, A as follows:

)\HQ: inf lh_Q and A} = inf lh_Q.
’ heH\H. B2 em\(Houm,)



Noting that an elliptic or parabolic element in a Fuchsian group always represents a branch
point or a puncture of the quotient surface, similarly we set

Ag= inf [, = _ inf [, and
~yel'\I. I'>7: of infinite order

Ar=_inf [,=  inf Ly,
yEI\(IeUly) I'>7: hyperbolic

where [, is the translation length of v in H, i.e., [, = cosh™'(|try|/2). We can define

Ar, A} in the same manner, however A\p = A} holds since A(G) has no isolated points.

Let Ny o be the number defined by Ny o = sup,cy ordh. And we define the number

Njr o as follows: If H), is non-empty, then Ny , = 400, otherwise we set N , = Ny o.
For these constants, the next result is fundamental for our present aim.

Lemma 3.1.

(3.2) min{ A Ame}t < Ag <min{Ar, Ag e}, and

Nu.o

1
(3.3) min{NT)\p, Mgt S A5 <min{Ar, Ay o}
H.0

By the relation (2.1), we obtain that Ay = L(£2) and Az = L(X) and the similar
relations for A* and L* hold, hence the above theorem is equivalent to the following:

(3.4) min{N1 L(2), po} < L(X) <min{L(£2),A\gn}, and
(3.5) min{N;}QL(Q), Aot < LX) <min{L(£2), \j; o}

Now we define A\(G), \*(G), N(G) and N*(G) by info Ao, info A} o,5up, Ng,o and
supg, N o, respectively, where (2 runs over all components of 2(G) and H = Hg,. Remark
here that the constants Ay o, Ay o, Ng.o and Nj , depend only on the conjugacy class of
(2 under the action of G, i.e., on the component X = 2/H of X (G). Then, we immediately
obtain the following

Theorem 3.2. For a non-elementary Kleinian group G it follows that

min N(l G L) NG) = LIX(G) < minfL@(G), NG}, and
min{ 5 LG, X (6)) € I (X(G) < min{L(2(6)). X' (G)}

Corollary 3.3. Thus we have L(2(G)) > L*(X(G)). In particular, if X (G) is of Lehner
type then A(G) is uniformly perfect.

Corollary 3.4. For a torsion-free non-elementary Kleinian group G, the complex orbifold

X(G) = 2(G)/G satisfies
L(X(G)) = min{ L(£2(G)), A(G) }-

The counterpart L*(X(G)) = min{L(£2(G)), \*(G)} does not hold in general (see Ex-
ample 7.3 below).



Remark. To guarantee that A\(G) > 0 it is sufficient to assume that sup,c o) t(2) < 0o,
where ¢(z) denotes the injectivity radius of 2(G) at z (oral communication with Prof.
Matsuzaki). But, this condition seems to be hard to check.

In the case that G is analytically finite, i.e., X (G) consists of a finite number of Riemann
orbifolds of finite type, it is easily verified that L*(X(G)) > 0 thus we have the following
collorary.

Corollary 3.5 (Canary [5]). For an analytically finite non-elementary Kleinian group G,
the limit set A(G) is uniformly perfect.

We should remark that by Ahlfors’ Finiteness Theorem this result produces the finitely
generated case.

4. PROOF OF LEMMA 3.1
Under the situation of the lemma, first we prove the next elementary

Lemma 4.1. For an element h € H, we have

4.1 inf 1 =1l 0.
(41) decin T 7

Proof. Let v € x'(h), then g oy = h o q by definition. For a ¢ € H we put 2z = ¢(().
Then, by the definition of metrics and the Schwarz-Pick lemma, we have

diz (€, 7(C)) = da(q(€), ¢(v(C))) = da(z, h(2)) = ln.o-

Since ( is arbitrary, it follows that [, > [} 0.

Now we prove the reverse inequality. Take a point z in {2, and let a be a geodesic
arc joining z and h(z) in §2 such that do(z,h(z)) = [, pe. Choose a point ¢ € H with
q(¢) = z, and let 3 be a lift of o via ¢ with initial point ¢, then the terminal point of § can

be written by v({) for some v € < . We note here that y(v) = h by definition. Therefore,
we have

do(z, h(2)) Z/PQ = /,BPH > dm(¢,7(€)),

thus do(z, h(z)) > I, > inf e\ 1) [,. Since z is arbitrary, we have I, o > inf e, -1 1.
Now the proof is completed.

Now we prove Lemma 3.1. First, we note that if v € < is elliptic, then h = x(y) €
H,\ {1}. Note also that x~!(1) = < . Therefore we conclude that

C \{IHUXT'HN\H) C< \<o,
and this and the above lemma immediately yield the right-hand side inequality in (3.2).
In order to get the left-hand side inequality, we consider an element 7 of the residual
part x L(H,\ {1})\ < .. Since h = x(7) is of finite order, say n, we have 4" € x (1) = <,
thus nl, = l,» > Ap. Hence I, > Ar/n > A /Ny o. By this observation, we are convinced
the validity of the left-hand side of (3.2). Noting that any parabolic element of < s
mapped to H, by the homomorphism y, we can show the inequality (3.3) in the same

way as above.



5. SOME CONSEQUENCES

In this section, we shall exhibit several applications of our theorems. We denote by
Moy (M FZ(G)) the supremum of the moduli of annuli (round annuli, respectively) sepa-
rating A(G), where the modulus of an annulus is defined here as the number m when this
annulus is conformally equivalent to the round annulus {z € C,1 < |z| < e™} and the
round annulus means a bounded annulus with boundary consisting of concentric circles,
and we say that an annulus A separates A(G) if AN A(G) = 0 and if both components
of C \ A intersects A(G). If co € A(G), then we can define another constant Coe) by
inf.c @) 0(2) po(e) (2), where 0(z) denotes the Euclidean distance from z to A(G). Here it
should be noted that §(2)po(e) (2) < 1 is always true. For these constants, we know the
following estimates.

Theorem A (cf. [16]). For a non-elementary Kleinian group G, we obtain

2
L<

1
< min{Le", =L*coth®’(L/2)}, and

1
§MQ(G) — Ko < Mgy < Mo,

where L = L(£2(G)) and Ky is an absolute constant < 1.7332.... Moreover if oo € A(G),
we also have
Mo — K1 < My < Mo@), and
tanh L /2 V3L
7/ < Coe) £ ———=,
4 V2 4+ 412

where K; 1s an absolute constant < 2.8911. ...

(5.1)

In particular, L(§2(G)) > 0 if and only if M@y < co. The first inequality in the above
partly follows from the next result, which is an improvement of Maskit’s one [7] and will
be used later.

Theorem B (cf. [16]). Let R be a hyperbolic Riemann surface. For the free homotopy
class [a] of a non-trivial loop « in R, we have the following estimate.

trla] < 5 Egla] < (glale )

In the above, Fr[a] denotes the extremal length of the curve family [«], more precisely,
Egla] = sup, f [ ro(2)?dzdy)~", where the supremum is taken over all Borel measurable
conformal metrics o satlsfylng that [, o(2)|dz| > 1 for any o/ € [@] (such a metric o is
called admissible for [a]).

Furthermore, Pommerenke has given a remarkable characterization of uniform perfect-
ness in terms of capacity density.

Theorem C (Pommerenke [13]). A(G) is uniformly perfect if and only if there ezists
a constant ¢ € (0,1] such that Cap(A(G) N B(a,r)) > cr for any a € A(G) and 0 <
r < diam(A(G)), where Cap denotes the logarithmic capacity and B(a,r) the closed disk
centered at a with radius r.



Here we mention the work of Tsuji. He proved in [18] that any point of the limit set of a
non-elementary (finitely generated) Schottky group has a positive capacity density (with
a uniform bound). In view of the above theorem, this is a substantial proof of uniform
perfectness of it. Earlier than this, Myrberg [11] showed that any non-elementary Kleinian
group has the limit set of positive capacity.

We also note that Cap(B(a,r)) = r and 2-7¢" 2@ can be taken as the constant ¢ in
the above statement (see [16]). In particular, by virtue of Wiener’s criterion, we have the
following

Corollary 5.1. If L(2(G)) > 0 the limit set A(G) is regular in the sense of Dirichlet.
For general Kleinian groups, at least we can state the following

Corollary 5.2. Let G be a non-elementary Kleinian group. Any loxodromic or parabolic
fized point of G is a reqular point of A(G) in the sense of Dirichlet.

In fact, if 2 is a fixed point of a loxodromic or parabolic element v of GG, then  is con-
tained in a finitely generated non-elementary subgroup Gg of G. Since A(G)) is uniformly
perfect, by Theorem C, we see that lim ,_Cap(A(G) N B(z,7))/r > lim,_,Cap(A(Go) N
B(zp,7))/r > 0, which implies the regularity of A(G) at 2y (see, for example, Tsuji [19]
p.104). Further, we should note that the set of loxodromic fixed points of a non-elementary
Kleinian group is dense in the limit set.

Another application of unifom perfectness is concerned with the Hausdorff dimension.
This sort of result is essentially due to Jarvi-Vuorinen [6]. The following quantitative
form follows from a result in [16].

Theorem D.The Hausdorff dimension H-dim(A(G)) of A(G) can be estimated from below

as follows.
) log 2 log 2
H-dim(A(G)) > > > .
(A(G)) = 1og(26Mn(c) +1) ( M?z(G) + 10g3>

As an immediate consequence of this, we can see that any non-elementary Kleinian
group has the limit set of positive Hausdorff dimemsion.

6. ESTIMATE OF TRANSLATION LENGTH

As an application of (5.1), we present here an estimate of the translation length of a
loxodromic element of Kleinian group in the region of discontinuity in terms of the trace
or the multiplier. Before stating our result, we refer to a general result on translation
length, which is suggested to the author by K. Matsuzaki. The original idea is due to
Bers [3]. See also the proof of Proposition 6.4 in [9].

Let G be a non-elementary Kleinian group and H a component subgroup of G corre-
sponding to a component (2 of the region of discontinuity 2(G). Let h be a loxodromic ele-
ment of H, i.e., n = tr?(h) € C\ [0, 4]. By the Mobius invariance of [, o and tr?*(h), we may
assume that h has the form h(z) = Az with |A| > 1 where n = (\/X+\/X71)2 = A+ +2
We note that 0,00 € A(G) under this assumption. For an arbitrary z, € {2, let « be a
geodesic arc joining zy and h(zp) in 2 such that dg(z20,h(20)) = Lo(a). Without loss
of generality, we may further assume that z; = 1. Now we consider the quotient map



p: C — C/(h)y =0 T, and set R = p(£2) = 2/(h) C T. Then f = p.a = p(«)
is a closed geodesic in R, where R is endowed with the hyperbolic metric. We note
here that {o(a) = (g(B). In view of Theorem B, we have ZEg[3] < (g[Ble’#l). Since
8] = [Blr C [B]r, by the monotonicity of extremal length (cf. [1]), it turns out that
Eg[B] > Er[f]r. Thus it is sufficient to compute Er|[3]r.

The function ¢(z) = exp(2miz) is a universal covering map of C* from the complex plane
C. Let & be a lift of a via ¢ with initial point 0 and 7 denote the terminal point of &. In
particular, exp(27iT) = A, so we may write 7 = ﬁ log \. Further note that poq: C — T
is a quotient map of C by the lattice generated by 1 and 7 over Z. And it follows that any
curve in [3]r is lifted to an arc with initial point a in [0, 1] and terminal point a + 7, and
vice versa. Thus, by the standard length-area method (cf. [1]), one can easily see that the
extremal admissible metric for [3]r is given by the projection o of |7|~!|dz| under p o g,
hence Er[flr = ([[,0?)~' = (7|72 [Im7])~" = |7]*/|Im7| = [Im(1/7)|~". Thus we have

2 log \|?
o rgotatsl 5 TP [10gA”
RlBET = ST = Tog

The quantity log A is sometimes called the complex length of h (cf. [9]). Here, denote by
Logz the principal branch of log z, i.e., Logz is the branch of the logarithm determined
by —m < ImLogz < 7. Since |log A| > |Log)| and z, is arbitrary, we have the following

Proposition 6.1. Let G be a non-elementary Kleinian group and H its component sub-
group which corresponds to a component §2 of 2(G). For any lozodromic element h of
H with multiplier A we have an estimate of the translation length of h in {2 as in the

following:
E

Log\
l lh,_Q > |
hETT = 4log ||

The left-hand side of this inequality is of exponential order, but in general it seems to
be difficult to improve this order. But, if the limit set A(G) is uniformly perfect, we have
an estimate of linear order.

(> log|A|/4).

Theorem 6.2. Let H be a component subgroup of a non-elementary Kleinian group G
corresponding to a component 2 of 2(G), and suppose that C = 1tanh(L(£2)/2) > 0.
Then, for a lozodromic element h € H, the translation length l}, o can be estimated as

In,a > C|Log)|,
where X is the multiplier of h, i.e., tr?>(h) = A + A7 + 2.

Remarks. Noting that C' > 1 tanh(L(£2(G))/2), we can see C' > 0 if A(G) is uniformly
perfect.
In case (2 is simply connected, L({2) = oo by definition, so we have [; o > |Log\|/4.
We further remark that, in general, we cannot estimate the translation length from
above by the trace or multiplier. This can be understood by the existence of accidental
parabolic transformations.

Proof. We shall prove the theorem under the exactly same normalizations and notation
in the previous sentences. If we denote by d(z) the distance from z to A(G), by (5.1), we



have 0(2)pn(z) > C for z € 2 and 6(2) < |z| because 0 € A(G). Then, we compute

|dz| |dz|
d h = dz| >C | —>C | —
o) = [ ooyl = ¢ [ 50 [
= 0/ d¢| > C /d(‘ = C|log A\| > C|Log)\|.
Now the theorem is proved. O O

7. EXAMPLES

In this section, we present simple examples of Kleinian groups of Schottky type. The

first construction provides an example of an infinitely generated Kleinian group whose
boundary is not uniformly perfect. Looking at Theorem 3.2, one may guess that it
is sufficient to construct a Kleinian group whose quotient orbifold has arbitrarily short
geodesics which are lifted to closed curves in the region of discontinuity. In fact, such an
example can be given by infinitely generated Schottky groups as Pommerenke indicated
n [13].
Example 7.1. Let a;,b; € C be sequences tending to oo, and r; > 0 and «; € C with
laj| = 1 be given so that all closed disks A; = Blaj,rj),B; = B(bj,r;) are disjoint
(j=1,2,...). Weset g;(z) = b; —
and gj_l, respectively, thus G = (g1, g2, . . . ) is an infinitely generated Schottky group with
a fundamental domain C \ U;(4; U B;) C 2(G).

Now we set 7; = dist(a;, (Ugz;Ak) U (UxBg)) > rj. Then, we can directly see that
Mgy > sup; 7j/rj, hence A(G) is not uniformly perfect if sup; 7;/r; = oo.

then A; and B; are the isometric circles for g,

za’

The second construction serves an infinitely generated Kleinian group G which contains
a parabolic element h which does not represent any puncture of 2(G)/G.

Example 7.2. Let h be the transformation z — 2+ 2i. For j € Z, we take a;,b; € R and
0 <r; < linsuch a way that b;—a; > 2r; and a;11—b; > rj+r;;4; and lim;_, 4, a; = £o0.

Taking a sequence «; in the unit circle, we set g;(z) = b; — Za’rj Then the domain
w={z € C|Imz| < 1}\U,(A,;UB,) is a fundamental domain of the Kleinian group G with
free generators h, g;(j € Z), where A; = B(a;,r;) and B; = B(bj, ;). In particular, one
can observe that the Riemann surface 2(G)/G has no punctures. Let 3; : [—1,1] — 2(G)
be the curve given by §;(t) = ti + (a; + b;)/2. Since 6(3;(t)) > (b; — a;)/2 — r;, we have

|dz| 4
) < <
G)(B]) - /ﬂj 5(2) - bj —a; — 27”]',

where 0(z) denotes the Euclidean distance from z to A(G). Since h(3;(—1)) = 3;(1), we see
that Iy o) < infjez Lo (8;). Therefore, if sup;(b; —a;) = oo, then we obtain I, o() = 0.
On the other hand, if r; = 79, ; = ag,a; = ag + 2j(bo — ag) and b; = by + 2j(by — ap)
for all j € Z, then GG is a normal subgroup of the Kleinian group G = (h,h*, go), where
h*(z) = z + 2(by — o). The property G <1 G implies 2(G) = 2(G). Since Y = 2(G)/G
is a compact Riemann surface of genus 2, thus L(Y) > 0, we have A\(G) > L(X(G)) >
L(Y) > 0. In particular, I, o > 0 in this case.
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Finally we give a family of finitely generated torsion-free Kleinian groups which shows
that the counterpart for L* in Corollary 3.4 does not hold.

Example 7.3. Let 0 < r < 1 and a € C with |a] = 1 be fixed. Set h(z) = z + 2i and
gi(2) = 2t — ar?/z, where t > 1 is a real parameter. Then G; = (h, g;) is a free Kleinian
group with fundamental domain w = & \ (B U B'), where © = {z € C;|Imz| < 1}, B =
{|z| < r} and B" = {|z — 2t| < r}. Since h represents a pair of punctures of the quotient
surface, the element h is contained in G,. We now prove the following claim: There ezist
constants K < 400 and ¢ > 0 depending only on r such that

(7.1) ¢ < min{L(2(G,), \"(Gy)} and

K
(7.2) L(X(Gy) < —

Let us write g = g;, G = G and 2 = 2(G;). We begin with a few preliminary observa-
tions. We set B, = h™(B) and B!, = h"(B’) for n € Z. Then we know that A(G)NC C
@ := C\ Upez(B, U B.,). Since co € A(G), it follows that 0 = g~ '(c0) and 2t = g(c0)
belong to A(G). For later use, we estimate the quantity d = sup{|z|;z € BN A(G)}. First

we note

7"2

= 72 /dist(2t, A(G) \ B').

d= sup |¢g ' (w)l= sup

weA(G)\B’| (w)l weA@)\B |w — 2t|

Since 2 — r < dist(2t, A(G) \ B") < 2, we obtain r?/2 < d < r?/(2—7r) < r?. In
particular, we see

(7.3) dist(0B, BN A(G)) > 1 — 2.

Noting g='(2t + 2i) = +ar?/2 € A(G), we also have diamAy > r2.

For simplicity, we further assume that 0 < r < 1/4 in the sequel. First we prove
L(£2) > ¢; > 0. To see this, it suffices to show that M, is uniformly bounded by Theorem
A. Let A be an arbitrary round annulus in (2 which separates A(G). Set p = exp(—m(A)),
where m(A) denotes the modulus of A. We note here the following elementary lemma.

Lemma 7.1. For the round annuli A = {p < |z| < 1}, we set Ay = {plﬂ’ < 2] < 134;3;}.
Then, if a Mobius transformation T maps A into C, we can take a round annulus A" in
T(A) in such a way that T(Ay) C A'. In particular, m(A’) > logl/p + 2log 32 >

3+p
m(A) — 2log 3.

Now we take the annulus Ag in A with the property similar to the above. And choose
an element f € G such that f(Ag) Nw # (). Then f(A) contains a round annulus A’ =
{z;70 < |2z —a|] < ri} with f(Ay) C A’. We note here that logry/rg = m(A") > m(A4y) >
m(A) — 2log3. Now we estimate r1/ry from above. Since A’ separates A(G), we have
ry —ro < 2, hence ry/rg < 1+2/ry. By construction, the closed disk F' = {z;|z —a| < 1o}
intersects A, = B, N A(G) or Al = B! N A(G) for some n € Z. Conjugating by h", we
may assume that E intersects Ay or Aj. Assume that EN Ay # (). (The other case can be
treated similarly, so we omit it.) We further divide the case into three parts.

1. In the case ENA(G)\ Ay # 0, we have 2ry > 2—2r2 thus r{/rg < 1+2/(1—1?) < 5.
2. In the case E N A(G) = Ay, we have 2ry > diamAy > r?, thus ry/rg < 1+ 2/r%
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3. In the case ENA(G) C Ay, the annulus A’ separates Ay, therefore r; —ry < diamAy <
272, On the other hand, by assumption, we can take points 2z € w N A" and w €
ENA(G). Then ry+1¢ > |z —w| > dist(0B, BNA(G)) > 1—r2. By these inequalities,
it, follows that 7y /ro < (1 +7%)/(1 —3r*) < 5.

In any case, ™) —2log3 < ry/ry < 1+ 2/r? holds provided that r < 1/4. Hence we
have Mg, < log(1 + 2/r?) + 2log 3, which implies L(2) > ¢; = ¢;(r) > 0.

In particular, by Theorem A, §(z)pn(2) > C} holds for z € (2, where §(2) = dist(z, 012)
and C is a positive constant depending only on r. Using this fact, we next show \*(G) >
co > 0. First we note the following estimate:

N(G) = inf  infdg(z, f(2)) > inf infdg(z, f(2)).

FEG\(GeUG)) 2€w T feG\(h) zEw
For f = ¢g*!, we can use Theorem 6.2 to show
d(l(za f(Z)) Z lg,!? Z Cl lOg |)\|7

where A is the multiplier of g with |[A\| > 1. By the relation A + A\ ' = 4#2/ar? — 2, we
have || > 4t?/r? — 3 > 1.

Now suppose that f € G\ (h) is not g*'. Let 2z, be a point in w. If f(z) € B then
F(@) C B, equivalently, f1(C\ B) C C\, which implies f !(z) € C\&. When f(z) €
B', the same result holds. Since f ¢ (h), we actually see f~*(2) € Upez\jo}(By U By) in
these cases. Thus, without loss of generality, we may assume that z, belongs to B, or B,
for some non-zero integer n because dp(z9, f(20)) = do(z0, f(20)). Let a be a geodesic
arc joining zo and f(z) in £2 such that [ po = do(20, f(20)). Since wy, := h"(w) separates
f(20) from zy, a component ag of N w,, connects a bounded boundary component of w,
with an unbounded one. We now estimate the hyperbolic length of oy in 2 from below.
By translation invariance under h and symmetry of {2, we may assume that ag connects
0B with {z;Imz = 1}.

Letting ¢y and ¢; be endpoints of ag with |(s| = r and Im(; = 1, we can estimate as

follows:
dz dz 1
/apg(z)|dz| > /ao pa(z)ldz| > Cy /ao % > (O /ao % > (O log;.

Here, we used the fact §(z) < |z|. Consequently, we obtain A*(G) > ¢, where ¢y =
Cy min{log(4t?/r* — 3),log1/r}. Whence, the inequality (7.1) is now shown.

Finally, we show the inequality (7.2). Let § : [—1,1] — {2 be the curve given by
B(s) = 1+ si. Then the image of § in X(G) is a non-trivial closed curve which is not
homotopic to any puncture. Therefore, by the method same as in Example 7.2, we have

2 K
<

L(X(G) < lo(B) < 1 <

where K =2/(1 —r).

Remark. Further, in the same fashion as in Example 7.2, we can construct an infinitely
generated free Kleinian group G with the property that min{L(2(G)), \*(G)} > 0 while
L*(X(G)) =0.
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