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Abstract. A compact set C in the Riemann sphere is said to be uniformly perfect if
bounded are the moduli of those annuli in the complement which separate C: The limit
set of an analytically �nite non-elementary Kleinian group is known to be uniformly
perfect.

In this note, we shall show that the limit set of a non-elementary Kleinian group is
uniformly perfect if the quotient orbifold is of Lehner type, i.e., satis�es that the space
of integrable holomorphic quadratic di�erentials on it is continuously contained in the
space of (hyperbolically) bounded ones. Indeed, we shall state the result in more precise
and quantitative form. As applications, we present estimates of the Hausdor� dimension
of the limit set and the translation length in the region of discontinuity.

1. Introduction

In this note, we shall consider uniform perfectness of the limit sets of Kleinian groups.
Once one know the limit set is uniformly perfect, the estimation of various quantities
involving Kleinian groups becomes easier (see Section 5). Bishop and Jones e�ectively
used this fact in their paper [4].
As soon as a proof of uniform perfectness of the limit sets of Schottky groups appeared

in [2], this result was generalized to the case of �nitely generated non-elementary Kleinian
groups by several specialists (cf. [13] and [14]). Afterward, Canary remarked in [5] that
the same result holds for analytically �nite Kleinian groups. As for Schottky groups, we
should mention the pioneer work of Tsuji [18] (see the comment on Theorem C below).
Recently, J�arvi and Vuorinen [6] proved the same result for �nitely generated Kleinian

groups in higher dimensional case. This is a generalization of Tukia's result [20] (geomet-
rically �nite case). It is noteworthy that their proof does not rely on Ahlfors' Finiteness
Theorem.
In this note, we will present a more general condition for the limit sets of Kleinian

groups to be uniformly perfect (Corollary 3.3). Our method also provides a bound for
uniform perfectness by some geometric quantity. In practice, it is important to know an
explicit bound because the uniform perfectness connects with various quantities involving
geometry of the quotient surface (cf. [16]). Indeed, we shall give some applications in
Sections 5 and 6. In Section 5, we state results relating to regularity in the sense of
Dirichlet and Hausdor� dimension of the limit sets. Section 6 is devoted to an estimate of
translation length in terms of the multiplier of a loxodromic element of a Kleinian group.
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We shall conclude this note by giving several examples of Kleinian groups, one of which
has the limit set which is not uniformly perfect.

2. Riemann orbifolds

A 1-dimensional complex orbifold is a Hausdor� topological space locally modeled on
the quotient of an open subset of the complex plane C under an action of �nite group
whose members consist of biholomorphic maps. Note that such a �nite group is necessarily
a cyclic group, thus determined by its order. By a Riemann orbifold, we will mean
a connected 1-dimensional complex orbifold. Thus X can be regarded as a pair of a
Riemann surface R and a multiplicity map � : R ! N ; where the value of � corresponds
to the order of the �nite group, therefore the set of singularities (or, branch points)

b(X) = fx 2 R; �(x) > 1g should be discrete. We set
�

X = R n b(R): Then
�

X can be
regarded as a subdomain of X without singularities. If � is the constant 1; then X can
be naturally indenti�ed with the underlying Riemann surface R: For a precise de�nition
and fundamental properties of Riemann orbifolds, we refer the reader to McMullen's book
[10].
A Riemann orbifold X = (R; �) is called hyperbolic if R has a holomorphic branched

Galois covering map p : H ! R from the upper half plane H onto R such that ord�p =
�(p(�)) for any � 2 H ; where ord�p denotes the local degree of p at �: The map p is called
a universal covering map of X:
The covering transformation group � = �X = f
 2 Aut(H ); p � 
 = pg is called

a Fuchsian model of X: Through the universal covering map, the Riemann orbifold X
inherits the hyperbolic metric �X from H ; i.e., �H = jdzj

2Imz
= p�(�X): We denote by dX the

hyperbolic distance on X canonically de�ned by the hyperbolic metric.
Let CX denote the set of free homotopy classes [�] = [�]X of non-trivial closed curves

� in
�

X; where a curve � is said to be non-trivial if it is covered by an element 
 2 �
of in�nite order, more precisely, there exists a lift ~� via p such that the initial point is
translated to the terminal one by 
; and said to be freely homotopic to another �0 if both
are covered by the same element of �: (The free homotopy class of a non-trivial curve
precisely corresponds to the conjugacy class of an element of � which covers the curve
and has in�nite order.) And let C�X be the subset of CX consisting of free homotopy classes
of curves which are covered by hyperbolic elements of �:

Remark. It may be more natural to consider all curves in X; but a curve passing
a branch point of X cannot be lifted via p in a unique way even if the initial point is
assigned, so being freely homotopic fails to be an equivalence relation. To avoid this
di�culty, we may assign a sort of \multiplicity data" to the curve. Precisely speaking,
we may consider a (regular) curve as the pair (
; n
) of a C1 map 
 : S1 ! R with

0(�) 6= 0 and n
 : S

1 ! Z such that 0 � n
(�) � �(
(�))� 1; where n
(�) indicates the
winding number of 
 around 
(�): But, we will not adopt this formulation for the sake of
simplicity.
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We write `X(�) =
R
�
�X and `X [�] = inf�02[�] `X(�

0): By de�nition, if 
 2 � covers �;
then

`X [�] = l
 = cosh�1

� jtr
j
2

�
;(2.1)

where l
 denotes the translation length of 
 and tr
 is the trace of a representative of 

in SL(2;R):
Now we set

L(X) = inf
[�]2CX

`X [�] = inf

2�X : of in�nite order

l
 and

L�(X) = inf
[�]2C�

X

`X [�] = inf

2�X : hyperbolic

l
 :

We call X is modulated if L(X) > 0: We note here that if X is a Riemann surface R;
the constant L(R) is nothing but 2IR; where IR is the injectivity radius of R; so we may
say that R is of bounded geometry if L(R) > 0 (see [16]).
When the Fuchsian model �X of X is �nitely generated, the quantity L�(X) represents

the hyperbolic length of the shortest closed geodesic in X: A closed geodesic shortest in
the curves in X other than boundary curves is called systole of X: Hence, L�(X) can be
thought as the length of systole of X if � is �nitely generated and of the �rst kind. It has
been recognized that the length of systole is quite an important function on the moduli
space of X (cf. [15]).
Let A2(X) and B2(X) be the complex Banach spaces consisting of holomorphic qua-

dratic di�erentials ' = '(z)dz2 on X with norms

k'k1 =
ZZ

X

j'j =
ZZ

X

j'(z)jdxdy;
k'k1 = sup ��2

X j'j = sup ��2
X (z)j'(z)j;

respectively. The spaces A2(X) and B2(X) are canonically isomorphic to the spaces
A2(H ; � ) and B2(H ; � ) of integrable and bounded holomorphic automorphic forms on H
of weight �4 for �; respectively. And we set

�(X) = supfk'k1;' 2 A2(X) with k'k1 � 1g:
For these spaces, the inclusion problem was �rst settled by Niebur and Sheingorn [12].
The following strong form is due to Matsuzaki [8].

Theorem 2.1. The space A2(X) is (continuously) included by B2(X) if and only if

L�(X) > 0: Furthermore, there exist universal constants r0 and r1 such that

1

2�L�(
�

X)
� �(X) � maxf r0

L�(X)
; r1g:

Note that the inclusion map
�

X ,! X induces the restriction maps A2(X)! A2(
�

X) and

B2(X)! B2(
�

X); which are, respectively, an isometric isomorphism and a bounded linear
operator with k'k

B2(
�

X)
� k'kB2(X) by virtue of the monotonicity of hyperbolic metrics:

�X � � �

X
: Therefore, we have �(

�

X) � �(X): In fact, �(
�

X) � �(X) � 3�(
�

X) holds (see

[17]).
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In this article, we will say that X is of Lehner type if L�(X) > 0: Generally, for a
(possibly disconnected) 1-dimensional complex orbifold X; we de�ne L(X) = inf L(X0)
and L�(X) = inf L�(X0); where the in�ma are taken over all connected components X0

of X; and we say that X is modulated or of Lehner type if L(X) > 0 or L�(X) > 0;
respectively.
A closed set C in the Riemann sphere bC with #C � 3 is called uniformly perfect if

there exists a constant c > 0 such that C \ fz; cr < jz � aj < rg 6= ; for all a 2 C and

0 < r < diamC: This is equivalent to the condition that the complement R = bC n C is
modulated (see Section 5).

3. Kleinian groups and main results

LetG be a Kleinian group acting on the Riemann sphere bC ; i.e., G is a discrete subgroup
of PSL(2; C ) whose region of discontinuity 
(G) in bC is not empty. We denote by �(G)

the limit set of G; i.e., �(G) = bC n
(G):
In the following, we always assume that G is non-elementary, in ohter words, #�(G) �

3: Then �(G) is known to be a perfect set. The quotient space X(G) = 
(G)=G has
a natural hyperbolic 1-dimensional complex orbifold structure with which the canonical
projection � : 
(G)! X(G) is a holomorphic covering map.
Let X be a connected component of X(G) and 
 be a connected component of ��1(X):

If q : H ! 
 is a holomorphic universal covering map, then clearly p = � � q is a
holomorphic universal covering map of X: Let H = H
 be the component subgroup of
G corresponding to 
; i.e., H = StabG(
) = fg 2 G; g(
) = 
g: And denote by � ande� the covering transformation groups of q and p; respectively. Then, we have a natural
exact sequence

1 ���! � ���! e� ����! H ���! 1

of group homomorphisms, here � can be described as q � 
 = �(
) � q for all 
 2 e� :
For each h 2 H; we denote by lh;
 the translation length of h in 
 :

lh;
 := inf
z2


d
(z; h(z)):(3.1)

Set

He = fh 2 H; h has a �xed point in 
g and

Hp = fh 2 H; h corresponds to a puncture of X = 
=Hg
Precisely speaking, an element h of H belongs to Hp if and only if there exist an element

h0 2 H of in�nite order and a subdomain ! of 
 with the following properties:

1. h = hn0 for a non-zero integer n;
2. h0(!) = ! and g(!) \ ! = ; for all g 2 H n hh0i; and
3. !=hh0i is conformally equivalent to the punctured disk.

We remark that there may exist an elliptic or parabolic element h of H with h =2 He or
h =2 Hp; respectively (see Example 7.2 below). (Of course, an element of He n f1g or Hp

is necessarily elliptic or parabolic, respectively.) Now we de�ne �H;
; �
�
H;
 as follows:

�H;
 = inf
h2HnHe

lh;
; and ��H;
 = inf
h2Hn(He[Hp)

lh;
:
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Noting that an elliptic or parabolic element in a Fuchsian group always represents a branch
point or a puncture of the quotient surface, similarly we set

�
e�
= inf


2 e�n e�e

l
 = inf
e�3
: of in�nite order

l
 and

��
e�
= inf


2 e�n( e�e[ e�p)
l
 = inf

e�3
: hyperbolic
l
;

where l
 is the translation length of 
 in H ; i.e., l
 = cosh�1(jtr
j=2): We can de�ne
�� ; �

�
� in the same manner, however �� = ��� holds since �(G) has no isolated points.

Let NH;
 be the number de�ned by NH;
 = suph2He
ordh: And we de�ne the number

N�
H;
 as follows: If Hp is non-empty, then N�

H;
 = +1; otherwise we set N�
H;
 = NH;
:

For these constants, the next result is fundamental for our present aim.

Lemma 3.1.

minf 1

NH;


�� ; �H;
g � �
e� � minf�� ; �H;
g; and(3.2)

minf 1

N�
H;


�� ; �
�
H;
g � ��

e�
� minf�� ; ��H;
g:(3.3)

By the relation (2.1), we obtain that �� = L(
) and �
e�
= L(X) and the similar

relations for �� and L� hold, hence the above theorem is equivalent to the following:

minf 1

NH;


L(
); �H;
g � L(X) � minfL(
); �H;
g; and(3.4)

minf 1

N�
H;


L(
); ��H;
g � L�(X) � minfL(
); ��H;
g:(3.5)

Now we de�ne �(G); ��(G); N(G) and N�(G) by inf
 �H;
; inf
 �
�
H;
; sup
 NH;
 and

sup
 N
�
H;
; respectively, where 
 runs over all components of 
(G) and H = H
: Remark

here that the constants �H;
; �
�
H;
; NH;
 and N�

H;
 depend only on the conjugacy class of

 under the action ofG; i.e., on the componentX = 
=H ofX(G): Then, we immediately
obtain the following

Theorem 3.2. For a non-elementary Kleinian group G it follows that

minf 1

N(G)
L(
(G)); �(G)g � L(X(G)) � minfL(
(G)); �(G)g; and

minf 1

N�(G)
L(
(G)); ��(G)g � L�(X(G)) � minfL(
(G)); ��(G)g:

Corollary 3.3. Thus we have L(
(G)) � L�(X(G)): In particular, if X(G) is of Lehner
type then �(G) is uniformly perfect.

Corollary 3.4. For a torsion-free non-elementary Kleinian group G; the complex orbifold

X(G) = 
(G)=G satis�es

L(X(G)) = minfL(
(G)); �(G)g:
The counterpart L�(X(G)) = minfL(
(G)); ��(G)g does not hold in general (see Ex-

ample 7.3 below).
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Remark. To guarantee that �(G) > 0 it is su�cient to assume that supz2
(G) �(z) <1;
where �(z) denotes the injectivity radius of 
(G) at z (oral communication with Prof.
Matsuzaki). But, this condition seems to be hard to check.

In the case that G is analytically �nite, i.e., X(G) consists of a �nite number of Riemann
orbifolds of �nite type, it is easily veri�ed that L�(X(G)) > 0 thus we have the following
collorary.

Corollary 3.5 (Canary [5]). For an analytically �nite non-elementary Kleinian group G;
the limit set �(G) is uniformly perfect.

We should remark that by Ahlfors' Finiteness Theorem this result produces the �nitely
generated case.

4. Proof of Lemma 3.1

Under the situation of the lemma, �rst we prove the next elementary

Lemma 4.1. For an element h 2 H; we have

inf

2��1(h)

l
 = lh;
:(4.1)

Proof. Let 
 2 ��1(h); then q � 
 = h � q by de�nition. For a � 2 H we put z = q(�):
Then, by the de�nition of metrics and the Schwarz-Pick lemma, we have

dH (�; 
(�)) � d
(q(�); q(
(�))) = d
(z; h(z)) � lh;
:

Since � is arbitrary, it follows that l
 � lh;
:
Now we prove the reverse inequality. Take a point z in 
; and let � be a geodesic

arc joining z and h(z) in 
 such that d
(z; h(z)) =
R
�
�
: Choose a point � 2 H with

q(�) = z; and let � be a lift of � via q with initial point �; then the terminal point of � can

be written by 
(�) for some 
 2 e� : We note here that �(
) = h by de�nition. Therefore,
we have

d
(z; h(z)) =

Z
�

�
 =

Z
�

�H � dH (�; 
(�));

thus d
(z; h(z)) � l
 � inf
2��1(h) l
 : Since z is arbitrary, we have lh;
 � inf
2��1(h) l
:
Now the proof is completed.

Now we prove Lemma 3.1. First, we note that if 
 2 e� is elliptic, then h = �(
) 2
He n f1g: Note also that ��1(1) = �: Therefore we conclude that

(� n f1g) [ ��1(H nHe) � e� n e�e;
and this and the above lemma immediately yield the right-hand side inequality in (3.2).
In order to get the left-hand side inequality, we consider an element 
 of the residual

part ��1(He n f1g) n e�e: Since h = �(
) is of �nite order, say n; we have 
n 2 ��1(1) = �;
thus nl
 = l
n � �� : Hence l
 � ��=n � ��=NH;
: By this observation, we are convinced

the validity of the left-hand side of (3.2). Noting that any parabolic element of e� is
mapped to Hp by the homomorphism �; we can show the inequality (3.3) in the same
way as above.
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5. Some consequences

In this section, we shall exhibit several applications of our theorems. We denote by
M
(G) (M�


(G)) the supremum of the moduli of annuli (round annuli, respectively) sepa-

rating �(G); where the modulus of an annulus is de�ned here as the number m when this
annulus is conformally equivalent to the round annulus fz 2 C ; 1 < jzj < emg and the
round annulus means a bounded annulus with boundary consisting of concentric circles,
and we say that an annulus A separates �(G) if A \ �(G) = ; and if both components

of bC n A intersects �(G): If 1 2 �(G); then we can de�ne another constant C
(G) by
infz2
(G) �(z)�
(G)(z); where �(z) denotes the Euclidean distance from z to �(G): Here it
should be noted that �(z)�
(G)(z) � 1 is always true. For these constants, we know the
following estimates.

Theorem A (cf. [16]). For a non-elementary Kleinian group G; we obtain

L � �2

M
(G)

� minfLeL; 1
2
L2 coth2(L=2)g; and

1

2
M
(G) �K0 �M�


(G) �M
(G);

where L = L(
(G)) and K0 is an absolute constant � 1:7332 : : : : Moreover if 1 2 �(G);
we also have

M
(G) �K1 �M�

(G) �M
(G); and

tanhL=2

4
� C
(G) �

p
3Lp

�2 + 4L2
;(5.1)

where K1 is an absolute constant � 2:8911 : : : :

In particular, L(
(G)) > 0 if and only if M
(G) <1: The �rst inequality in the above
partly follows from the next result, which is an improvement of Maskit's one [7] and will
be used later.

Theorem B (cf. [16]). Let R be a hyperbolic Riemann surface. For the free homotopy

class [�] of a non-trivial loop � in R; we have the following estimate.

`R[�] � �

2
ER[�] � `R[�]e

`R[�]:

In the above, ER[�] denotes the extremal length of the curve family [�]; more precisely,
ER[�] = sup�(

RR
R
�(z)2dxdy)�1; where the supremum is taken over all Borel measurable

conformal metrics � satisfying that
R
�0
�(z)jdzj � 1 for any �0 2 [�] (such a metric � is

called admissible for [�]).
Furthermore, Pommerenke has given a remarkable characterization of uniform perfect-

ness in terms of capacity density.

Theorem C (Pommerenke [13]). �(G) is uniformly perfect if and only if there exists

a constant c 2 (0; 1] such that Cap(�(G) \ B(a; r)) � cr for any a 2 �(G) and 0 <
r < diam(�(G)); where Cap denotes the logarithmic capacity and B(a; r) the closed disk

centered at a with radius r:
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Here we mention the work of Tsuji. He proved in [18] that any point of the limit set of a
non-elementary (�nitely generated) Schottky group has a positive capacity density (with
a uniform bound). In view of the above theorem, this is a substantial proof of uniform
perfectness of it. Earlier than this, Myrberg [11] showed that any non-elementary Kleinian
group has the limit set of positive capacity.
We also note that Cap(B(a; r)) = r and 2�7e�M

�


(G) can be taken as the constant c in
the above statement (see [16]). In particular, by virtue of Wiener's criterion, we have the
following

Corollary 5.1. If L(
(G)) > 0 the limit set �(G) is regular in the sense of Dirichlet.

For general Kleinian groups, at least we can state the following

Corollary 5.2. Let G be a non-elementary Kleinian group. Any loxodromic or parabolic

�xed point of G is a regular point of �(G) in the sense of Dirichlet.

In fact, if z0 is a �xed point of a loxodromic or parabolic element 
 of G; then 
 is con-
tained in a �nitely generated non-elementary subgroup G0 of G: Since �(G0) is uniformly
perfect, by Theorem C, we see that lim r!0Cap(�(G)\B(z0; r))=r � lim r!0Cap(�(G0)\
B(z0; r))=r > 0; which implies the regularity of �(G) at z0 (see, for example, Tsuji [19]
p.104). Further, we should note that the set of loxodromic �xed points of a non-elementary
Kleinian group is dense in the limit set.
Another application of unifom perfectness is concerned with the Hausdor� dimension.

This sort of result is essentially due to J�arvi-Vuorinen [6]. The following quantitative
form follows from a result in [16].

Theorem D.The Hausdor� dimension H-dim(�(G)) of �(G) can be estimated from below

as follows.

H-dim(�(G)) � log 2

log(2eM
�


(G) + 1)

 
� log 2

M�

(G) + log 3

!
:

As an immediate consequence of this, we can see that any non-elementary Kleinian
group has the limit set of positive Hausdor� dimemsion.

6. Estimate of translation length

As an application of (5.1), we present here an estimate of the translation length of a
loxodromic element of Kleinian group in the region of discontinuity in terms of the trace
or the multiplier. Before stating our result, we refer to a general result on translation
length, which is suggested to the author by K. Matsuzaki. The original idea is due to
Bers [3]. See also the proof of Proposition 6.4 in [9].
Let G be a non-elementary Kleinian group and H a component subgroup of G corre-

sponding to a component 
 of the region of discontinuity 
(G): Let h be a loxodromic ele-
ment of H; i.e., � = tr2(h) 2 C n [0; 4]: By the M�obius invariance of lh;
 and tr2(h); we may

assume that h has the form h(z) = �z with j�j > 1 where � = (
p
�+

p
�
�1
)2 = �+��1+2:

We note that 0;1 2 �(G) under this assumption. For an arbitrary z0 2 
; let � be a
geodesic arc joining z0 and h(z0) in 
 such that d
(z0; h(z0)) = `
(�): Without loss
of generality, we may further assume that z0 = 1: Now we consider the quotient map
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p : C � ! C �=hhi =: T; and set R = p(
) = 
=hhi � T: Then � = p�� = p(�)
is a closed geodesic in R; where R is endowed with the hyperbolic metric. We note
here that `
(�) = `R(�): In view of Theorem B, we have �

2
ER[�] � `R[�]e

`R[�]: Since
[�] = [�]R � [�]T ; by the monotonicity of extremal length (cf. [1]), it turns out that
ER[�] � ET [�]T : Thus it is su�cient to compute ET [�]T :
The function q(z) = exp(2�iz) is a universal covering map of C � from the complex plane

C : Let ~� be a lift of � via q with initial point 0 and � denote the terminal point of ~�: In
particular, exp(2�i�) = �; so we may write � = 1

2�i
log�: Further note that p � q : C ! T

is a quotient map of C by the lattice generated by 1 and � over Z: And it follows that any
curve in [�]T is lifted to an arc with initial point a in [0; 1] and terminal point a+ �; and
vice versa. Thus, by the standard length-area method (cf. [1]), one can easily see that the
extremal admissible metric for [�]T is given by the projection � of j� j�1jdzj under p � q;
hence ET [�]T = (

RR
T
�2)�1 = (j� j�2 � jIm� j)�1 = j� j2=jIm� j = jIm(1=�)j�1: Thus we have

`R[�]e
`R[�] � �j� j2

2jIm� j =
j log�j2
4 log j�j :

The quantity log� is sometimes called the complex length of h (cf. [9]). Here, denote by
Logz the principal branch of log z; i.e., Logz is the branch of the logarithm determined
by �� < ImLogz � �: Since j log�j � jLog�j and z0 is arbitrary, we have the following

Proposition 6.1. Let G be a non-elementary Kleinian group and H its component sub-

group which corresponds to a component 
 of 
(G): For any loxodromic element h of

H with multiplier � we have an estimate of the translation length of h in 
 as in the

following:

lh;
e
lh;
 � jLog�j2

4 log j�j (� log j�j/ 4):

The left-hand side of this inequality is of exponential order, but in general it seems to
be di�cult to improve this order. But, if the limit set �(G) is uniformly perfect, we have
an estimate of linear order.

Theorem 6.2. Let H be a component subgroup of a non-elementary Kleinian group G
corresponding to a component 
 of 
(G); and suppose that C = 1

4
tanh(L(
)=2) > 0:

Then, for a loxodromic element h 2 H; the translation length lh;
 can be estimated as

lh;
 � CjLog�j;
where � is the multiplier of h; i.e., tr2(h) = �+ ��1 + 2:

Remarks. Noting that C � 1
4
tanh(L(
(G))=2); we can see C > 0 if �(G) is uniformly

perfect.
In case 
 is simply connected, L(
) =1 by de�nition, so we have lh;
 � jLog�j=4:
We further remark that, in general, we cannot estimate the translation length from

above by the trace or multiplier. This can be understood by the existence of accidental
parabolic transformations.

Proof. We shall prove the theorem under the exactly same normalizations and notation
in the previous sentences. If we denote by �(z) the distance from z to �(G); by (5.1), we
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have �(z)�
(z) � C for z 2 
 and �(z) � jzj because 0 2 �(G): Then, we compute

d
(z0; h(z0)) =

Z
�

�
(z)jdzj � C

Z
�

jdzj
�(z)

� C

Z
�

jdzj
jzj

= C

Z
~�

jd�j � C

����Z
~�

d�

���� = Cj log�j � CjLog�j:
Now the theorem is proved.

7. Examples

In this section, we present simple examples of Kleinian groups of Schottky type. The
�rst construction provides an example of an in�nitely generated Kleinian group whose
boundary is not uniformly perfect. Looking at Theorem 3.2, one may guess that it
is su�cient to construct a Kleinian group whose quotient orbifold has arbitrarily short
geodesics which are lifted to closed curves in the region of discontinuity. In fact, such an
example can be given by in�nitely generated Schottky groups as Pommerenke indicated
in [13].

Example 7.1. Let aj; bj 2 C be sequences tending to 1; and rj > 0 and �j 2 C with
j�jj = 1 be given so that all closed disks Aj = B(aj; rj); Bj = B(bj; rj) are disjoint

(j = 1; 2; : : : ): We set gj(z) = bj � �jr
2
j

z�aj
; then Aj and Bj are the isometric circles for gj

and g�1
j ; respectively, thus G = hg1; g2; : : : i is an in�nitely generated Schottky group with

a fundamental domain C n [j(Aj [ Bj) � 
(G):
Now we set ~rj = dist(aj; ([k 6=jAk) [ ([kBk)) > rj: Then, we can directly see that

M�

(G) � supj ~rj=rj; hence �(G) is not uniformly perfect if supj ~rj=rj =1:

The second construction serves an in�nitely generated Kleinian group G which contains
a parabolic element h which does not represent any puncture of 
(G)=G:

Example 7.2. Let h be the transformation z 7! z+2i: For j 2 Z; we take aj; bj 2 R and
0 < rj < 1 in such a way that bj�aj > 2rj and aj+1�bj > rj+rj+1 and limj!�1 aj = �1:

Taking a sequence �j in the unit circle, we set gj(z) = bj � �jr
2
j

z�aj
: Then the domain

! = fz 2 C ; jImzj < 1gn[j(Aj[Bj) is a fundamental domain of the Kleinian groupG with
free generators h; gj(j 2 Z); where Aj = B(aj; rj) and Bj = B(bj; rj): In particular, one
can observe that the Riemann surface 
(G)=G has no punctures. Let �j : [�1; 1]! 
(G)
be the curve given by �j(t) = ti + (aj + bj)=2: Since �(�j(t)) � (bj � aj)=2� rj; we have

`
(G)(�j) �
Z
�j

jdzj
�(z)

� 4

bj � aj � 2rj
;

where �(z) denotes the Euclidean distance from z to �(G): Since h(�j(�1)) = �j(1); we see
that lh;
(G) � infj2Z`
(G)(�j): Therefore, if supj(bj�aj) =1; then we obtain lh;
(G) = 0:
On the other hand, if rj = r0; �j = �0; aj = a0 + 2j(b0 � a0) and bj = b0 + 2j(b0 � a0)

for all j 2 Z; then G is a normal subgroup of the Kleinian group eG = hh; h�; g0i; where
h�(z) = z + 2(b0 � a0): The property G C eG implies 
( eG) = 
(G): Since Y = 
(G)= eG
is a compact Riemann surface of genus 2, thus L(Y ) > 0; we have �(G) � L(X(G)) �
L(Y ) > 0: In particular, lh;
 > 0 in this case.
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Finally we give a family of �nitely generated torsion-free Kleinian groups which shows
that the counterpart for L� in Corollary 3.4 does not hold.

Example 7.3. Let 0 < r < 1 and � 2 C with j�j = 1 be �xed. Set h(z) = z + 2i and
gt(z) = 2t� �r2=z; where t > 1 is a real parameter. Then Gt = hh; gti is a free Kleinian
group with fundamental domain ! = !̂ n (B [ B0); where !̂ = fz 2 C ; jImzj < 1g; B =
fjzj � rg and B0 = fjz � 2tj � rg: Since h represents a pair of punctures of the quotient
surface, the element h is contained in Gp: We now prove the following claim: There exist

constants K < +1 and c > 0 depending only on r such that

c � minfL(
(Gt)); �
�(Gt)g and(7.1)

L�(X(Gt)) � K

t
:(7.2)

Let us write g = gt; G = Gt and 
 = 
(Gt): We begin with a few preliminary observa-
tions. We set Bn = hn(B) and B0

n = hn(B0) for n 2 Z: Then we know that �(G) \ C �
~! := C n [n2Z(Bn [ B0

n): Since 1 2 �(G); it follows that 0 = g�1(1) and 2t = g(1)
belong to �(G): For later use, we estimate the quantity d = supfjzj; z 2 B \�(G)g: First
we note

d = sup
w2�(G)nB0

jg�1(w)j = sup
w2�(G)nB0

r2

jw � 2tj = r2=dist(2t; �(G) nB0):

Since 2 � r � dist(2t; �(G) n B0) � 2; we obtain r2=2 � d � r2=(2 � r) < r2: In
particular, we see

dist(@B;B \ �(G)) � 1� r2:(7.3)

Noting g�1(2t� 2i) = ��r2=2 2 �(G); we also have diam�0 � r2:
For simplicity, we further assume that 0 < r � 1=4 in the sequel. First we prove

L(
) � c1 > 0: To see this, it su�ces to show that M�

 is uniformly bounded by Theorem

A. Let A be an arbitrary round annulus in 
 which separates �(G): Set � = exp(�m(A));
where m(A) denotes the modulus of A: We note here the following elementary lemma.

Lemma 7.1. For the round annuli A = f� < jzj < 1g; we set A0 = f� 3+�
1+3�

< jzj < 1+3�
3+�

g:
Then, if a M�obius transformation T maps A into C ; we can take a round annulus A0 in

T (A) in such a way that T (A0) � A0: In particular, m(A0) � log 1=� + 2 log 1+3�
3+�

�
m(A)� 2 log 3:

Now we take the annulus A0 in A with the property similar to the above. And choose
an element f 2 G such that f(A0) \ ! 6= ;: Then f(A) contains a round annulus A0 =
fz; r0 < jz � aj < r1g with f(A0) � A0: We note here that log r1=r0 = m(A0) � m(A0) �
m(A) � 2 log 3: Now we estimate r1=r0 from above. Since A0 separates �(G); we have
r1� r0 � 2; hence r1=r0 � 1+2=r0: By construction, the closed disk E = fz; jz�aj � r0g
intersects �n = Bn \ �(G) or �0

n = B0
n \ �(G) for some n 2 Z: Conjugating by hn; we

may assume that E intersects �0 or �
0
0: Assume that E \�0 6= ;: (The other case can be

treated similarly, so we omit it.) We further divide the case into three parts.

1. In the case E\�(G)n�0 6= ;; we have 2r0 � 2�2r2; thus r1=r0 � 1+2=(1�r2) < 5:
2. In the case E \ �(G) = �0; we have 2r0 � diam�0 � r2; thus r1=r0 � 1 + 2=r2:
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3. In the case E\�(G) ( �0; the annulus A
0 separates �0; therefore r1�r0 � diam�0 �

2r2: On the other hand, by assumption, we can take points z 2 ! \ A0 and w 2
E\�(G): Then r1+r0 � jz�wj > dist(@B;B\�(G)) � 1�r2: By these inequalities,
it follows that r1=r0 � (1 + r2)=(1� 3r2) � 5:

In any case, em(A) � 2 log 3 � r1=r0 � 1 + 2=r2 holds provided that r � 1=4: Hence we
have M�


 � log(1 + 2=r2) + 2 log 3; which implies L(
) � c1 = c1(r) > 0:
In particular, by Theorem A, �(z)�
(z) � C1 holds for z 2 
; where �(z) = dist(z; @
)

and C1 is a positive constant depending only on r: Using this fact, we next show ��(G) �
c2 > 0: First we note the following estimate:

��(G) = inf
f2Gn(Ge[Gp)

inf
z2!

d
(z; f(z)) � inf
f2Gnhhi

inf
z2!

d
(z; f(z)):

For f = g�1; we can use Theorem 6.2 to show

d
(z; f(z)) � lg;
 � C1 log j�j;
where � is the multiplier of g with j�j � 1: By the relation � + ��1 = 4t2=�r2 � 2; we

have j�j � 4t2=r2 � 3 > 1:
Now suppose that f 2 G n hhi is not g�1: Let z0 be a point in !: If f(z0) 2 B then

f(!̂) � B; equivalently, f�1(bC nB) � bC n !̂; which implies f�1(z0) 2 C n !̂ : When f(z0) 2
B0; the same result holds. Since f =2 hhi; we actually see f�1(z0) 2 [n2Znf0g(Bn [ B0

n) in
these cases. Thus, without loss of generality, we may assume that z0 belongs to Bn or B

0
n

for some non-zero integer n because d
(z0; f(z0)) = d
(z0; f
�1(z0)): Let � be a geodesic

arc joining z0 and f(z0) in 
 such that
R
�
�
 = d
(z0; f(z0)): Since !n := hn(!) separates

f(z0) from z0; a component �0 of � \ !n connects a bounded boundary component of !n
with an unbounded one. We now estimate the hyperbolic length of �0 in 
 from below.
By translation invariance under h and symmetry of 
; we may assume that �0 connects
@B with fz; Imz = 1g:
Letting �0 and �1 be endpoints of �0 with j�0j = r and Im�1 = 1; we can estimate as

follows: Z
�

�
(z)jdzj �
Z
�0

�
(z)jdzj � C1

Z
�0

jdzj
�(z)

� C1

Z
�0

jdzj
jzj � C1 log

1

r
:

Here, we used the fact �(z) � jzj: Consequently, we obtain ��(G) � c2; where c2 =
C1minflog(4t2=r2 � 3); log 1=rg: Whence, the inequality (7.1) is now shown.
Finally, we show the inequality (7.2). Let � : [�1; 1] ! 
 be the curve given by

�(s) = 1 + si: Then the image of � in X(G) is a non-trivial closed curve which is not
homotopic to any puncture. Therefore, by the method same as in Example 7.2, we have

L�(X(G)) � `
(�) � 2

t� r
� K

t
;

where K = 2=(1� r):

Remark. Further, in the same fashion as in Example 7.2, we can construct an in�nitely
generated free Kleinian group G with the property that minfL(
(G)); ��(G)g > 0 while
L�(X(G)) = 0:
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