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Abstract. In this survey, we give an expository account of the universal Te-
ichmüller space with emphasis on the connection with univalent functions.
In the theory, the Schwarzian derivative plays an important role. We also
introduce many interesting results involving Schwarzian derivatives and pre-
Schwarzian derivatives, as well.
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1. Preliminary

In this section, we prepare basic tools to understand the universal Teichmüller
space. The material is more or less standard, but for convenience, an expository
account will be given without proofs. The most convenient reference for overall
topics is perhaps the recently published handbook [58].

1.1. Quasiconformal mappings. A homeomorhism f of a plane domain D
onto another domain D′ is called a quasiconformal map if f has locally square
integrable partial derivatives (in the sense of distribution) and satisfies the in-
equality

|fz̄| ≤ k|fz|
almost everywhere in D, where k is a constant with 0 ≤ k < 1,

fz = 1
2
(fx − ify), fz̄ = 1

2
(fx + ify)

and

fx =
∂f

∂x
, fy =

∂f

∂y
.

It turns out that f preserves sets of (2-dimensional) Lebesgue measure zero and,
in particular, fz 6= 0 a.e. Thus the quotient µ = fz̄/fz is well defined as a Borel
measurable function on D and satisfies ‖µ‖∞ ≤ k < 1. This function is sometimes
called the complex dilatation of f and denoted by µf . More specifically, f is also
called aK-quasiconformal map, whereK = (1+k)/(1−k). The minimalK = (1+
‖µ‖∞)/(1−‖µ‖∞) is called the maximal dilatation of f and denoted by K(f). It
is known that a 1-quasiconformal map is conformal (i.e., biholomorphic) and vice
versa. The composition of a K1-quasiconformal map and a K2-quasiconformal
map is K1K2-quasiconformal map and the inverse map of a K-quasiconformal
map is also K-quasiconformal. In particular, K-quasiconformality is preserved
under composition with conformal maps. Therefore, K-quasiconformality and,
hence, quasiconformality can be defined for homeomorphisms between Riemann
surfaces. In particular, we can argue quasiconformality of a homeomorphism of

the Riemann sphere Ĉ = C ∪ {∞}.
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More precise information about compositions of quasiconformal maps will be
needed later. Let f : Ω → Ω′ and g : Ω → Ω′′ be quasiconformal maps. Then
the complex dilatation of g ◦ f−1 is given by

(µg◦f−1 ◦ f)
fz
fz

=
µg − µf

1− µf · µg
.(1.1.1)

In particular, we obtain the following lemma.

Lemma 1.1.2. Let f : Ω → Ω′ and g : Ω → Ω′′ be quasiconformal maps. Then
g ◦ f−1 is conformal on Ω′ if and only if µf = µg a.e. in Ω.

Fundamental in the theory of quasiconformal maps is the following exsistence
and uniqueness theorem.

Theorem 1.1.3 (The measurable Riemann mapping theorem). For any mea-
surable function µ on C with ‖µ‖∞ < 1, there exists a unique quasiconformal
map f : C→ C such that f(0) = 0, f(1) = 1 and fz̄ = µfz a.e. in C.

For the proof of the theorem and for more information about quasiconformal
maps, the reader should consult the books [3] and [66] as well as the paper [4]
by Ahlfors and Bers.

We denote by Belt(D) the open unit ball of the space L∞(D) for a domain
(or, more generally, a measurable set) D. An element µ of Belt(D) is called a
Beltrami coefficient on D. For a Beltrami coefficient µ on C, the function f given
in the measurable Riemann mapping theorem will be denoted by fµ throughout
the present survey.

Let µ be a Beltrami coefficient on the outside D
∗ of the unit disk. We extend µ

to µ∗ ∈ Belt(C) by setting µ∗(z) = µ(1/z̄) for z ∈ D
∗. Let f be a quasiconformal

automorphism of Ĉ fixing 1,−1,−i with µf = µ∗. Since f(z) and 1/f(1/z̄)
both have the same complex dilatation µ∗ and satisfy the same normalization
condition, they must be equal by uniqueness part of the measurable Riemann
mapping theorem. In particular, |f(z)|2 = 1 for z ∈ ∂D, and consequently, f

maps D
∗ onto itself. We define wµ : Ĉ→ Ĉ by wµ = f. Recall that wµ fixes 1,−1

and −i.
The following fact was observed by Ahlfors and Bers [4].

Theorem 1.1.4. Let µt be a family of Beltrami coefficients on C holomor-
phically parametrized over a complex manifold X. Then the map t 7→ fµt(z) is
holomorphic on X for a fixed z ∈ C.

We do not explain the meaning of “holomorphically parametrized” here. It
is, however, sufficient practically to know that (tµ + ν)/(1 + tν̄µ) is a family of
Beltrami coefficients holomorphically parametrized over the unit disk |t| < 1,
where µ, ν ∈ Belt(C).
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1.2. Hyperbolic Riemann surfaces. A connected complex manifold of com-
plex dimension one is called a Riemann surface. The Poincaré-Koebe uniformiza-
tion theorem tells us that every Riemann surface R admits an analytic universal
covering projection p of the unit disk D = {z ∈ C : |z| < 1} onto R except for

the case when R is conformally equivalent to the Riemann sphere Ĉ, the complex
plane C, the punctured complex plane C

∗ = C\{0} or a complex torus (a smooth
elliptic curve). Those non-exceptional Riemann surfaces are called hyperbolic.

The group of analytic automorphisms of R is denoted by Aut(R). The group
of disk automorphisms Aut(D) is identified with PSU(1, 1) and isomorphic to
PSL(2,R) through the Möbius transformation M : H = {z : Im z > 0} → D

defined by M(z) = (z − i)/(z + i). Thus Aut(D) inherits a structure of real Lie
group. A subgroup Γ of Aut(D) is called Fuchsian if Γ is discrete. It is known
that Γ is discrete if and only if Γ acts on D properly discontinuously. Note
also that Γ is torsion-free if and only if Γ acts on D without fixed points. The
covering transformation group Γ = {γ ∈ Aut(D) : p ◦ γ = p} is a torsion-free
Fuchsian group and will be called the Fuchsian model of R. Conversely, for a
given torsion-free Fuchsian group Γ the quotient space D/Γ has natural complex
structure so that the projection D→ D/Γ becomes an analytic universal covering.
In this way, theory of hyperbolic Riemann surfaces can be translated into that
of torsion-free Fuchsian groups.

Since the Poincaré metric ρD(z)|dz| = |dz|/(1−|z|2) is invariant under the pull-
back by analytic automorphisms of D, it projects to a smooth metric, denoted
by ρR = ρR(w)|dw|, on the hyperbolic Riemann surface R via p. The metric
ρR is called the hyperbolic metric of R. Thus ρR is characterized by the relation
ρD = p∗(ρR) = ρR(p(z))|p′(z)||dz|.

Note that ρR has constant Gaussian curvature −4, in other words, ∆ log ρR =
4ρ2

R.

The Schwarz-Pick lemma implies the contraction property f ∗ρS ≤ ρR for a
holomorphic map f : R → S between hyperbolic Riemann surafaces R and S,
where equality holds at some (hence every) point in R iff f is a covering projection
of R onto S.

1.3. Quadratic differentials. Let H(D) be the set of analytic functions on
the unit disk D and let n be a non-negative integer. For a Fuchsian group Γ,
a function ϕ ∈ H(D) is said to be automorphic for Γ (with weight −2n) if ϕ
satisfies the functional equation (ϕ ◦ γ)(γ′)n = ϕ for every γ ∈ Γ, that is to say,
ϕ(z)dzn is an invariant n-form for Γ. The set of automorphic functions for Γ with
weight −2n will be denoted by Hn(D,Γ).

An element ϕ of Hn(D,Γ) for a torsion-free Fuchsian group Γ projects to a
holomorphic n-form q = q(w)dwn on R = D/Γ so that p∗nq = ϕ(z)dzn, where p∗nq
means the pull-back q(p(w))(p′(w))n of the n-form q by the canonical projection
p : D→ D/Γ.
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We now define two norms for ϕ ∈ Hn(D,Γ) by

‖ϕ‖An(D,Γ) =

∫∫
ω

|ϕ(z)|(1− |z|2)n−2dxdy,

‖ϕ‖Bn(D,Γ) = sup
z∈D
|ϕ(z)|(1− |z|2)n,

where ω is a fundamental domain for Γ, that is, a subdomain of D such that
ω ∩ γ(ω) = ∅ for every γ ∈ Γ with γ 6= id,

⋃
γ∈Γ γ(ω̄) = D and ∂ω is of zero

area. We denote by An(D,Γ) and Bn(D,Γ) the subsets of Hn(D,Γ) consisting of
ϕ with finite norm ‖ϕ‖An(D,Γ) and ‖ϕ‖Bn(D,Γ), respectively. It is easy to see that
these become complex Banach spaces. When Γ is the trivial group 1, we write
An(D) and Bn(D) for An(D, 1) and Bn(D, 1), respectively.

The definition of the spaces An(D) and Bn(D) can be extended for hyperbolic
Riemann surfaces R. Let Hn(R) denote the set of holomorphic n-forms on R and
set

‖ϕ‖An(R) =

∫∫
R

|ϕ(w)|ρR(w)2−ndxdy,

‖ϕ‖Bn(R) = sup
w∈R
|ϕ(w)|ρR(w)−n

for ϕ = ϕ(w)dwn in Hn(R). Here, we should note that |ϕ(w)|ρR(w)−n does not
depend on the choice of the local coordinate w, in other words, |ϕ|ρ−nR can be
regarded as a function on R.

The Banach spaces An(D,Γ) and An(D/Γ) (resp. Bn(D,Γ) and Bn(D/Γ)) are
isometrically isomorphic through the pull-back p∗n by the projection p : D→ D/Γ.
Also, the following invariance property is convenient to note.

Lemma 1.3.1. Let R and S be hyperbolic Riemann surfaces and let p : R → S
be a conformal homeomorphism. Then the pullback operator p∗n : Bn(S)→ Bn(R)
is a linear isometry, in other words,

‖p∗nϕ‖Bn(R) = ‖ϕ‖Bn(S), ϕ ∈ Bn(S).

In the theory of Teichmüller spaces, it is important to consider the spaces A2

and B2 as we shall see later. A 2-form q(w)dw2 is traditionally called a quadratic
differential.

1.4. Univalent functions. In connection with the universal Teichmüller space,
the theory of univalent functions is of particular importance. The best textbook
in this direction is [64] by O. Lehto.

We denote by S the set of analytic univalent functions f on the unit disk
so normalized that f(0) = 0 and f ′(0) = 1. An analytic function f around the
origin is said to be strongly normalized if f(0) = f ′(0) − 1 = f ′′(0) = 0. Let
S0 be the subset of S consisting of strongly normalized functions. For f ∈ S ,
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the function g = f/(1 + af), where a = f ′′(0)/2, is strongly normalized but not
necessarily analytic in D. It is thus natural to consider the wider class

S̃0 = {f : meromorphic and univalent in D and strongly normalized}

than S0.

The following meromorphic counterpart is also useful in the theory of univalent
functions. Let Σ be the set of meromorphic univalent functions F on the exterior

D
∗ = {ζ ∈ Ĉ : |ζ| > 1} of the unit disk so normalized that

F (ζ) = ζ + b0 +
b1

ζ
+
b2

ζ2
+ . . .(1.4.1)

in |ζ| > 1.

For f ∈ S , the function F (ζ) = 1/f(1/ζ) belongs to Σ and satisfies the
condition 0 /∈ F (D∗), and vice versa. Let Σ′ denote the set of those functions F ∈
Σ that satisfy 0 /∈ F (D∗).Moreover, b0 = 0 for a function F (ζ) = ζ+b0+b1/ζ+. . .

in Σ if and only if f ∈ S̃0, where f(z) = 1/F (1/z). Hence, if we set

Σ0 = {F ∈ Σ : F (ζ)− ζ → 0 as ζ →∞},

the correspondence f(z) 7→ F (ζ) = 1/f(1/ζ) gives bijections of S̃0 onto Σ0 and
of S0 onto Σ′0, where we define Σ′0 = Σ0 ∩ Σ′.

1.5. Grunsky inequality. For a meromorphic function F near the point at
infinity with an expansion of the form (1.4.1), we take a single-valued branch of
log((F (ζ) − F (ω))/(ζ − ω)) in |ζ| > R and |ω| > R for sufficiently large R > 0
and expand it in the form

log
F (ζ)− F (ω)

ζ − ω
= −

∞∑
j=1

∞∑
k=1

bj,k
ζjωk

there. The coefficients bj,k are called the Grunsky coefficients of F. It is easy to
see that bj,k = bk,j and b1,k = bk for j, k ≥ 1, where bk is the coefficient in (1.4.1).
The last relation is deduced in the following way. If we write F (ζ) = ζ+b0+G(ζ),
then G(ζ) = O(|ζ|−1) as ζ →∞. Fix ω for a moment. Since

log
F (ζ)− F (ω)

ζ − ω
= log

(
1 +

G(ζ)−G(ω)

ζ − ω

)
=
G(ζ)−G(ω)

ζ − ω
+O(|ζ|−2),

we obtain
∞∑
k=1

b1,k

ωk
= − lim

ζ→∞
ζ log

F (ζ)− F (ω)

ζ − ω

= − lim
ζ→∞

ζ
G(ζ)−G(ω)

ζ − ω
= G(ω),

from which the required relation follows.
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The following theorem is greatly useful in the theory of Teichmüller spaces as
well as the theory of univalent functions. See [40], [27] or [82] for the proof and
applications.

Theorem 1.5.1 (Grunsky). A meromorphic function F (ζ) with expansion of the
form (1.4.1) around ζ =∞ is analytically continued to a univalent meromorphic
function in |ζ| > 1 if and only if the inequality

∞∑
k=1

k

∣∣∣∣∣
∞∑
j=1

bj,kxj

∣∣∣∣∣
2

≤
∞∑
j=1

|xj|2

j
(1.5.2)

holds for an arbitrary sequence of complex numbers x1, x2, . . . .

The inequality in (1.5.2) is known as the strong Grunsky inequality. Noting
b1,k = bk, we take (x1, x2, x3, . . . ) = (1, 0, 0, . . . ) to obtain

∞∑
k=1

k|bk|2 ≤ 1.(1.5.3)

This inequality is known as Gronwall’s area theorem.

It is also known that inequality (1.5.2) can be replaced in the above theorem
by the (classical) Grunsky inequality:∣∣∣∣∣

∞∑
j=1

∞∑
k=1

bj,kxjxk

∣∣∣∣∣ ≤
∞∑
j=1

|xj|2

j
.(1.5.4)

The symmetric matrix (
√
jkbj,k) defines a linear operator on `2, where bj,k are

the Grunsky coefficient of a meromorphic function F (ζ) around ζ = ∞. This
is sometimes called the Grunsky operator and will be denoted by G[F ] in the
following. The strong Grunsky inequality says that F ∈ Σ if and only if G[F ]
is a bounded linear operator on `2 with operator norm ≤ 1. Here, the operator
norm ‖G[F ]‖ of G[F ] is defined by

‖G[F ]‖2 = sup
‖y‖2=1

∞∑
k=1

∣∣∣∣∣
∞∑
j=1

√
jkbj,kyj

∣∣∣∣∣
2

,

where ‖y‖2 = (
∑

k |yk|2)1/2 for y = (y1, y2, . . . ). Thus, F ∈ Σ ⇔ ‖G[F ]‖ ≤ 1.

It is known (cf. [82]) that F has a quasiconformal extension to Ĉ if and only if
‖G[F ]‖ < 1.

1.6. Schwarzian derivative. For a non-constant meromorphic function f on
a domain, we define Tf and Sf by

Tf =
f ′′

f ′
= (log f ′)′,

Sf = (Tf )′ − 1

2
(Tf )

2 =
f ′′′

f ′
− 3

2

(
f ′

f

)2

.
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These are called the pre-Schwarzian derivative and the Schwarzian derivative of
f, respectively. Note that Tf is analytic at a finite point z0 if and only if f is
analytic and injective around z0. Similarly, Sf is analytic at z0 if and only if f is
meromorphic and injective around z0. The following two lemmas show usefulness
of these operations.

Lemma 1.6.1. Let f be a non-constant meromorphic function on a domain
D. The pre-Schwarzian derivative of f vanishes on D if and only if f is (the
restriction of) a similarity. The Schwarzian derivative of f vanishes on D if
and only if f is (the restriction of) a Möbius transformation.

Lemma 1.6.2. Let f and g be non-constant meromorphic functions for which
the composition f ◦ g is defined. Then

Tf◦g = (Tf ) ◦ g · g′ + Tg = g∗1(Tf ) + Tg,

Sf◦g = (Sf ) ◦ g · (g′)2 + Sg = g∗2(Sf ) + Sg.

Combining these lemmas, we observe that SL◦f◦M = M∗
2 (Sf ) for Möbius trans-

formations L and M. Thus the Schwarzian derivative behaves like a quadratic
differential.

2. The universal Teichmüller space

We have two choices to develop the theory of the (universal) Teichmüller
space; the unit disk model or the upper half-plane model. Although they can
be translated into each other, in principle, via the Möbius transformation z 7→
(z− i)/(z+ i), both models have their own advantage and thus can be chosen at
will according to the purpose. In the present survey, we will take the unit disk
model to connect with the theory of univalent functions in a direct way.

2.1. Definition 1: the quotient space of quasiconformal maps. We de-
note by QC(D) the set of quasiconformal automorphisms of the unit disk D. As
we will observe later, every function in QC(D) extends to a unique homeomor-
phism of the closed unit disk D. Thus, we may think that every f ∈ QC(D)
is a self-homeomorphism of the closed unit disk D. Two functions f and g in

QC(D) are said to be Teichmüller equivalent and denoted by f
T∼g if there exists

a disk automorphism L ∈ Aut(D) such that g = L◦f on ∂D. The quotient space

QC(D)/
T∼ is a model of the universal Teichmüller space and will be denoted

by T1 for a moment. The equivalence class represented by f ∈ QC(D) will be
denoted by [f ] below.

Let f, g ∈ QC(D). The Teichmüller distance between p = [f ] and q = [g] is
defined by

d1(p, q) = inf
f1

T∼f,g1
T∼g

1

2
logK(g1 ◦ f−1

1 ).
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Recall here that K(f) denotes the maximal dilatation of f. By a compactness
property of quasiconformal maps, one can check that d1(p, q) is indeed a distance
on T1. In this way, T1 becomes a metric space. It can also be shown that T1

is a complete metric space with metric d1 by a normality property of the set of
normalized K-quasiconformal automorphisms of C (see [66]).

2.2. Definition 2: quasisymmetric functions. The notion of quasisymmet-
ric functions was created by Beurling and Ahlfors [17] for functions on the real
line. We give here a corresponding definition of quasisymmetric functions on the
unit circle. A sense-preserving homeomorphism h of the unit circle ∂D is called
quasisymmetric if

1

M
≤ |h(ei(s+t))− h(eis)|
|h(eis)− h(ei(s−t))|

≤M, s ∈ R, 0 < t <
π

2

for a constant M ≥ 1. The set of all quasisymmetric funtions on the unit circle
will be denoted by QS(∂D). The main result in [17] can be stated as follows.

Theorem 2.2.1 (Beurling-Ahlfors). The restriction of a quasiconformal au-
tomorphism of the unit disk to the unit circle is quasisymmetric. Conversely, a
quasisymmetric function on the unit circle can be extended to a quasiconformal
automorphism of the unit disk.

Two functions h1 and h2 on the unit circle are called Möbius equivalent if there
exists a disk automorphism L ∈ Aut(D) such that h2 = L ◦ h1. Let T2 denote
the quotient space of QS(∂D) by the Möbius equivalence. By the above theorem
of Beurling and Ahlfors, one readily sees that T1 can be identified with T2 in a
natural manner.

In order to get rid of taking quotient, we can define T2 as follows. A (sense-
preserving) homeomorphism h of ∂D is said to be normalized if h fixes the points
1,−1 and −i. Since every Möbius equivalence class of quasisymmetric functions
is represented by a unique normalized one, one can identify T2 with the set of
normalized quasisymmetric functions on the unit circle.

See [35] for a modern treatment of quasisymmetric functions.

2.3. Definition 3: marked quasidisks. A simply connected domain D in Ĉ

is called a quasidisk if D is the image of the unit disk under a quasiconformal

automorphism of Ĉ. If D is the image under a K-quasiconformal automorphism,
then D is called a K-quasidisk. Many characteristic properties of quasidisks are
known. See, for instance, [38].

Let D be a quasidisk (or a Jordan domain more generally) and x1, x2, x3

are positively ordered (distinct) points on ∂D. The quadruple (D, x1, x2, x3)
will be called a marked quasidisk. By the Riemann mapping theorem and the
Carathéodory extension theorem, there exists a unique conformal homeomor-
phism g : H→ D with g(0) = x1, g(1) = x2 and g(∞) = x3.
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We denote by Q the set of all marked quasidisks in Ĉ. Two marked quasidisks
(D, xj) and (D′, x′j) are said to be Möbius equivalent if D′ = L(D) and x′j =

L(xj), j = 1, 2, 3, for some Möbius transformation L ∈ Möb = Aut(Ĉ). We can
define a pseudo-metric on Q by

d((D, xj), (D
′, x′j)) = ‖Sf‖B2(D),

where f is a conformal homeomorphisms of D onto D′ with f(xj) = x′j. It is easy
to see that d(D,D′) = 0 if and only if D and D′ are Möbius equivalent.

The set T3 of Möbius equivalence classes of all marked quasidisks constitutes
another model of the universal Teichmüller space and the above-defined pseudo-
metric gives a metric on T3, which will be denoted by d3, i.e.,

d3(p, q) = inf
(D,xj)∈p,(D′,x′j)∈q

d((D, xj), (D
′, x′j))

for p, q ∈ T3.

We can again take a suitable normalization to avoid the process of quotient
and even marking. For instance, we may say that a quasidisk D is normalized if
its boundary contains the points 0, 1 and∞ in positive order along the boundary

curve. If we denote by Q0 the set of normalized quasidisks in Ĉ, then T3 can
be identified with Q0 naturally, and the restriction of the distance d on Q0

corresponds to the distance d3 on T3.

In the above, the marking is important. For two simply connected hyperbolic
domains D1 and D2, we set

d(D,D′) = inf
f :D→D′ conformal

‖Sf‖B2(D).

It is easy to see that d is a pseudo-distance. Lehto [64] posed a question whether
or not d(D,D′) = 0 implies that D and D′ are Möbius equivalent. Osgood and
Stowe [78] answered to this question in the negative (see also [18]).

2.4. Definition 4: Bers embedding. Let D be a hyperbolic domain in Ĉ. We
define a subset T (D) of B2(D) to consists of those holomorphic quadratic differ-
entials ϕ(z)dz2 on D such that ϕ = Sf for some univalent meromorphic function
f on D which extends to a quasiconformal automorphism of the Riemann sphere.
Note that ‖Sf‖B2(D) ≤ 12 for every univalent meromorphic function f on D (see
§5.2 and [9]). By Lemmas 1.6.1 and 1.6.2, for a Möbius transformation L, the
pull-back L∗2 gives an isometoric isomorphism of B2(L(D)) onto B2(D). In par-
ticular, for a circle domain ∆, that is, the interior or the exterior of a circle, or a
half-plane, the space B2(∆) is isomorphic, say, to B2(D∗). The space T4 = T (D∗)
(or its equivalent) is a model of the universal Teichmüller space and known as
the Bers embedding of the universal Teichmüller space.

Ahlfors [2] showed the following.

Theorem 2.4.1. T (D∗) is a bounded, connected and open subset of B2(D∗).
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Thus T4 = T (D∗) inherits a complex structure and a metric from B2(D∗). We
denote by d4 the distance, namely, d4(ϕ, ψ) = ‖ϕ−ψ‖B2(D∗) for ϕ, ψ ∈ T4. Since
T (D∗) is bounded, the distance d4 is not complete.

2.5. Equivalence of T1 through T4. We see now that the above definitions of
the universal Teichmüller space are all equivalent. Firstly, consider the restriction
map QC(D) → QS(∂D) defined by f 7→ f |∂D. Then this map yields a bijection
of T1 onto T2.

Secondly, we see the equivalence of T3 and T4. For ϕ ∈ T4 = T (D∗), by

definition, there exists a quasiconformal map f of Ĉ fixing 0, 1,∞ such that f is
conformal on D

∗ and satisfies Sf = ϕ. Then the image D = f(D∗) is a normalized
quasidisk. Therefore, the correspondence ϕ 7→ D gives a map T4 → T3. We next
show that this map is bijective. Suppose that a normalized quasidisk D is given.

By definition, D = h(D∗) for some quasiconformal map h of Ĉ with h(1) =

0, h(−1) = 1 and h(−i) = ∞. Let µ = µh|D∗ and set f = h ◦ (wµ)−1 : Ĉ → Ĉ.

Then f is quasiconformal map of Ĉ, is conformal on wµ(D∗) = D
∗ and satifies

f(1) = 0, f(−1) = 1 and f(−i) =∞. Therefore, ϕ = Sf belongs to T4 = T (D∗).
In this way, we obtain the map of T3 into T4, which is obviuosly the inverse map
of the previously defined map of T4 to T3. We have now concluded that T3 and
T4 are equivalent by those maps.

Finally, we connect T1 with T4. Let h ∈ QC(D). We define µ ∈ Belt(C) by

µ =

{
µh on D,

0 on D
∗

and define a quasiconformal map f : Ĉ → Ĉ by f = fµ, where fµ was defined
in §1.1. Since f is conformal in D

∗, the Schwarzian derivative Sf belongs to
T4 = T (D∗). Note that f◦h−1 is conformal in D by construction. Let h1 ∈ QC(D)
be Teichmüller equivalent to h and define f1 in the same way as above. We claim
now that Sf1 = Sf . By assumption, h1 = L ◦ h on ∂D for an L ∈ Aut(D). Define

a map g : Ĉ→ Ĉ by

g =

{
f1 ◦ f−1 on Ĉ \ f(D),

f1 ◦ h−1
1 ◦ L ◦ h ◦ f−1 on f(D).

It is clear that g is conformal on f(D) and f(D∗). Furthermore, since h−1
1 ◦L◦h =

id on ∂D, the map g is continuous on Ĉ. Since C = f(∂D) and g(C) = f1(∂D) are

both quasicircles, it turns out that g is quasiconformal in Ĉ. Since µg = 0 a.e.,
we conclude that g is conformal, hence, a Möbius map. Because of the relation
f1 = g ◦ f on f(D∗), Sf = Sf1 follows as required.

In this way, we obtain the mapping of T1 to T4 : [h] 7→ Sf |∗
D
. It is not difficult

to see that this mapping is bijective. This map is called the Bers embedding.
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3. Analytic properties of the Bers embedding

3.1. The Teichmüller space of a Riemann surface. It is beyond the scope
of the present survey to develop the theory of Teichmüller spaces of Riemann
surfaces in full generality. Here, our forcus will be on the Bers embedding of
the Teichmüller space of a Riemann surface. See [71], [43], [33], [34] for general
properties of Teichmüller spaces. See also [1], [108] for a differential geometric
approach, [90] for an algebraic approach.

For simplicity, we assume a Riemann surface R to be hyperbolic, in other
words, there exists a torsion-free Fuchsian group Γ acting on D such that D/Γ
is conformally equivalent to R. Thus, we can identify R with D/Γ. We denote
by p : D → D/Γ = R the canonical projection. Two quasiconformal maps
fj : R→ Sj, j = 1, 2, are called Teichmüller equivalent if there exists a conformal
homeomorphism g : S1 → S2 such that f−1

2 ◦ g ◦ f1 : R → R is homotopic to
the identity relative to the ideal boundary. We omit the explanation of the term
“relative to the ideal boundary”. See the references given above for details. Also,
[31] gives several useful equivalent conditions for that.

The Teichmüller space Teich(R) of R is defined as the set of all the Teichmüller
equivalence classes of such quasiconformal maps of R onto another surface.

Suppose that f1 : R → S1 and f2 : R → S2 are quasiconformal maps. Let Γj
be a Fuchsian model of Sj acting on D and hj : D → D be a lift of fj, namely,
pj ◦ hj = fj ◦ p, where pj : D→ D/Γj = Sj is the canonical projection. Then, it
is known that f1 and f2 are Teichmüller equivalent if and only if h1 and h2 are
Teichmüller equivalent in the sense of §2.1. Note that hj ◦ γ ◦ h−1

j ∈ Γj for each

γ ∈ Γ, namely, hjΓh
−1
j = Γj.

Set
QC(D,Γ) = {h ∈ QC(D) : hΓh−1 is Fuchsian}

and denote by Teich(Γ) the quotient space QC(D,Γ)/
T∼.As we have seen, Teich(R)

and Teich(Γ) are canonically isomorphic through the universal covering projec-
tion p : D → D/Γ = R. Also, Teich(Γ) is naturally contained in Teich(1) = T1.
In this sense, the universal Teichmüller space T (D∗) contains all the Teichmüller
space of an arbitrary hyperbolic Riemann surface.

By using (1.1.1), the complex dilatation of f ∈ QC(D,Γ) is seen to be con-
tained in

Belt(D,Γ) = {µ ∈ Belt(D) : (µ ◦ γ)γ′/γ′ = µ ∀γ ∈ Γ}.
Furthermore, for h ∈ QC(D,Γ), let f be the function constructed in §2.5 and let
γ ∈ Γ. Since f and γ ◦f ◦γ−1 has the same complex dilatation, γ ◦f ◦γ−1 = L◦f
for an L ∈ Aut(Ĉ) = Möb by Lemma 1.1.2. Lemma 1.6.2 now implies that
γ∗2(Sf ) = Sf . Therefore, Sf is contained in the closed subspace B2(D∗,Γ) of
B2(D∗) defined in §1.3. As in the previous section, we see that Sf depends only on
the Teichmüller equivalence class of h in QC(D,Γ) and the corresponding h 7→ Sf
is one-to-one, we obtain an embedding βΓ : Teich(D,Γ) → B2(D∗,Γ), which is
called the Bers embedding of Teich(D,Γ). We set T (D∗,Γ) = βΓ(Teich(D,Γ)).
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Bers [14] showed that T (D∗,Γ) is a bounded domain in B2(D∗,Γ). It is obvious
that T (D∗,Γ) is contained in T (D∗) by definition. Indeed, by using the Douady-
Earle extension [26], it can be seen that

T (D∗,Γ) = T (D∗) ∩B2(D∗,Γ)

and that T (D∗,Γ) is contractible.

3.2. Relationship with quasi-Teichmüller spaces. In view of the descrip-
tion of the set T (D∗,Γ), it may be natural to consider the following sets more

generally. Let D be a hyperbolic domain in Ĉ and let G be a subgroup of Aut(D).
Typically, G is a Kleinian group and D is a connected component of its region
of discontinuity. Then we set (cf. [94])

S(D,G) = {ϕ ∈ B2(D,G) : ∃f : D → Ĉ s.t. ϕ = Sf and f is univalent in D},

T (D,G) = {ϕ ∈ B2(D,G) : ∃f : D → Ĉ s.t. ϕ = Sf and f extends to a qc map of Ĉ},

For a circle domain ∆ and a Fuchsian group Γ acting on ∆, the set S(∆,Γ)
sometimes called the quasi-Teichmüller space of Γ. (But, note that this termi-
nology is not popular.) Clearly, T (D,G) ⊂ S(D,G). It is easy to see that S(D∗)
is closed while, as Ahlfors showed, T (D∗) is open in B2(D∗). The boundary of
T (∆,Γ) in B2(∆,Γ) is called the Bers boundary and is important in relation
with the deformation theory of Kleinian groups (see [15]).

When G is the trivial group 1, we write S(D), T (D) for S(D, 1), T (D, 1), re-

spectively. Note that under the mapping f 7→ Sf , the sets S̃0 and Σ0 correspond
to S(D) and S(D∗), respectively, in one-to-one fashion. It is a challenging prob-
lem to characterize those functions f in S whose Schwarzian derivatives lie on
∂T (D). See [7] and [41] for some attempts.

In 1970’s, it had been a conjecture of Bers [15] that the closure of T (D∗) in
B2(D∗) is S(D∗). In 1978, Gehring [37] disproved it. Prior to it, Gehring [36]
proved the weaker assertion that the interior of S(D∗) in B2(D∗) coincides with
T (D∗). See [32] for a relevant result. Thurston [106] proved the more striking
result that S(D∗) even has an isolated point in B2(D∗) (see also [5]). After that,
the Bers conjecture was reformulated in the form that the closure of T (D∗,Γ)
is equal to S(D∗,Γ) for a cofinite Fuchain group Γ, that is, a finitely generalted
Fuchsian group of the first kind. (This is nowadays generalized to the Bers-
Thurston density conjecture.) Shiga [91] proved a weaker version of it: the
interior of S(D∗,Γ) in B2(D∗,Γ) coincides with T (D∗,Γ) for a cofinite Γ. In the

line of these studies, the author showed that S(D∗,Γ)\T (D∗) 6= ∅ for a Fuchsian
group Γ of the second kind ([95]) and that the interior of S(D∗,Γ) in B2(D∗,Γ)
coincides with T (D∗,Γ) for a finitely generated, purely hyperbolic Fuchsian group
Γ of the second kind ([96]). Matsuzaki [68] generalized the former to the case
of a certain kind of inifinitely generated Fuchsian groups of the first kind. In
recent years, a huge amount of progress has been made in the theory of Kleinian
groups, which enabled to prove the Bers-Thurston conjecture partially. See, for
instance, [19] and [76] for the recent progress.
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We end the subsection with the following conjecture.

Conjecture 3.2.1. The interior of quasi-Teichmüller space S(D∗,Γ) in B2(D∗,Γ)
is equal to the Bers embedding T (D∗,Γ) of the Teichmüller space of a Fuchsian
group Γ acting on D

∗.

Note that Zhuravlev (Žuravlev) [112] proved that T (D∗,Γ) is the connected
component of the interior of S(D∗,Γ) which contains the origin for an arbitrary
Fuchsian group Γ (see also [94]). Thus the conjecture is equivalent to connect-
edness of the interior of S(D∗,Γ).

3.3. The Bers projection. Let D be a hyperbolic domain in Ĉ and denote

by E its complement in Ĉ. We define the map Φ : Belt(E)→ B2(D) by Φ(µ) =
Sfµ|D , where fµ is defined as in §1.1 for µ which is extended to C by setting µ = 0
on D. Recall here that Belt(E) is the open unit ball of the complex Banach space
L∞(E) with norm ‖ · ‖∞. It is clear by definition that Φ(Belt(E)) = T (D). The
map Φ : Belt(E) → T (D) is called the (generalized) Bers projection. It is
known that Φ : Belt(E)→ B2(D) is holomorphic (cf. [94]) and that the Fréchet
derivative d0Φ : L∞(E)→ B2(D) of Φ at the origin is described by

d0Φ[ν](z) = − 6

π

∫∫
E

ν(ζ)

(ζ − z)4
dξdη (ζ = ξ + iη)

for ν ∈ L∞(E). Bers [14] strengthened Ahlfors’ theorem (Theorem 2.4.1) to the
following form.

Theorem 3.3.1. The Bers projection Φ : Belt(D) → T (D∗) is a holomorphic
split submersion, in other words, the Fréchet derivative of Φ at every point exists
and has a (bounded) left inverse.

Indeed, Bers showed the above theorem for the projection Φ : Belt(D,Γ) →
T (D∗,Γ) for an arbitrary Fuchsian group Γ. In particular, T (D∗,Γ) is shown to
be an open subset of B2(D∗,Γ).

3.4. Convexity. Krushkal [54] proved that the Bers embedding T (D∗) of the
universal Teichmüller space is not starlike with respect to any point, and hence,
not convex in B2(D∗). For non-starlikeness of general Teichmüller spaces, see
Krushkal [57] and Toki [107].

In spite of the above fact, the (Bers embededing of the) Teichmüller spaces
enjoy many kinds of convexity properties. We briefly list some of them in this
subsection.

The most useful is perhaps the following “disk convexity” due to Zhuravlev
[112], which is shown as an application of the Grunsky inequality. A weaker
version can be proved also by the λ-lemma (see [98]).

Theorem 3.4.1 (Zhuravlev). Let Γ be a Fuchsian group acting on D
∗. Suppose

that a continuous map α : D → B2(D∗,Γ) is holomorphic in D and satisfies
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α(∂D) ⊂ S(D∗). Then α(D) ⊂ S(D∗,Γ). Furthermore, if α(D) ∩ T (D∗) is non-
empty, then α(D) ⊂ T (D∗,Γ).

Outline of the proof. For each z ∈ D, there exists a unique Fz ∈ Σ0 such that
SFz = α(z). Let B(`2) denote the complex Hilbert space consisting of bounded
linear operators on `2. Then the map β : D→ B(`2) defined by z 7→ G[Fz] turns
to be holomorphic. Then the (generalized) maximum principle implies that

sup
z∈D
‖β(z)‖ = sup

z∈∂D
‖β(z)‖ ≤ 1

and that either ‖β(z)‖ < 1 for all z ∈ D or else ‖β(z)‖ = 1 for all z ∈ D.
Theorem 1.5.1 now yields that α(D) ⊂ S(D∗). If we assume that α(z0) ∈ T (D∗)
for some point z0 ∈ D in addition, then ‖β(z0)‖ < 1 and thus ‖β(z)‖ < 1 for all
z ∈ D. This means that α(D) ⊂ T (D∗) ∩B2(D∗,Γ) = T (D∗,Γ).

We remark that the above argument is a variant of Lehto’s principle (see [12]
or [64]).

A more sophisticated application of Grunsky inequality to Teichmüller spaces
can be found in [92].

Bers and Ehrenpreis [16] proved that finite dimensional Teichmüller spaces
are holomorphically convex. Krushkal [55] strengthened it by showing that the
Teichmüller space of an arbitrary Riemann surface R is complex hyperconvex,
that is to say, there exists a negative plurisubharmonic function u(x) on Teich(R)
such that u(x) → 0 when x tends to ∞. He proved it by pointing out that the
function log tanh(d(x, y)) gives the Green function on Teich(R), where d(x, y)
denotes the Teichmüller distance of Teich(R). Krushkal [56] also proved that
finite dimensional Teichmüller spaces are polynomially convex.

3.5. Teichmüller distance and other natural distances (metrics). In §2,
we defined two kinds of distances on the universal Teichmüller space; the Te-
ichmüller distance and the distance induced by the Bers embedding. These
distances can be defined for the Teichmüller space of an arbitrary Riemann sur-
face. On the other hand, since Teichmüller spaces have complex structure, it
carries natural invariant distances for holomorphic maps (see [44] as a general
reference).

Let X be a complex (Banach) manifold. The Kobayashi pseudo-distance
dK(x, y) is defined as

inf
N∑
j=1

dD(zj−1, zj),

where the infimum is taken over all finitely many holomorphic maps fj : D →
X (j = 1, . . . , N) which satisfy fj(zj) = fj+1(zj)(1 < j < N), f1(z0) = x, and
fN(zN) = y. Here, dD(z, w) denotes the Poincaré distance of D:

dD(z, w) = arctanh

∣∣∣∣ w − z1− z̄w

∣∣∣∣ .
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The following theorem was proved by Royden [87] for finite dimensional case
and by Gardiner (see [33] or [34]) for general case. (For a simple proof using the
λ-lemma, see [30].)

Theorem 3.5.1. The Kobayashi pseudo-distance of the Teichmüller space of a
Riemann surface is equal to the Teichmüller distance.

For other invariant metrics on Teichmüller spaces, see [71, Appendix 6].

Earle [29] proved that the Carathéodory (pseudo)distance of the Teichmüller
space of an arbitrary Fuchsian group is complete.

The Weil-Petersson metric is another important (Riemannian) metric on finite
dimensional Teichmüller spaces. Since the complex structure of the Teichmüller
space of a general Riemann surface is modelled on a complex Banach space which
may not be reflexive, this metric cannot be defined on general Teichmüller spaces
unless the structure of the space is changed. However, some attempts were made
to construct analogs of the Weil-Petersson metric on the universal Teichmüller
space, see [72], [73], [103], [104].

4. Pre-Schwarzian models

The Schwarzian derivative plays an important role in the definition of the
Teichmüller space. But, it is not easy to treat with Schwarzian derivative, in
general, because of its complicated form. Therefore, some attempts of replacing
Schwarzian by pre-Schwarzian have been made. See [111] and [6]. Though the
pre-Schwarzian model is sometimes called “poor man’s model” (cf. [41]) since
it does not have much invariance, this model is interesting in connection with
geometric function theory.

When dealing with pre-Schwarzian derivative, the point at infinity plays a
special role. Therefore, we have to consider the case ∞ ∈ D separately.

4.1. The models T̂ (D) and T̂ (H). Let ∆ be a disk or a half-plane in C. Set

Ŝ(∆) = {Tf : f : ∆→ C is holomorphic and univalent}
and

T̂ (∆) = {Tf : f : ∆→ C is holomorphic and extends to a qc map of Ĉ}.
Here, Tf denotes the pre-Schwarzian derivative of f (see §1.6). By definition,

T̂ (∆) ⊂ Ŝ(∆).

We recall that the pre-Schwarzian derivative vanishes only when the function
is affine. Since each circle domain in C is similar (affinely equivalent) to either the
unit disk D or the half-plane H = {z ∈ C : Im z > 0}. Therefore, we may restrict
ourselves on the two cases ∆ = D and H. First let f ∈ S . By the well-known
inequality (cf. [27]) ∣∣(1− |z|2)Tf (z)− 2z̄

∣∣ ≤ 4,(4.1.1)
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we obtain ‖Tf‖B1(D) ≤ 6. In particular, Ŝ(D) ⊂ B1(D). Note also that the con-
stant 6 is sharp as the Koebe function K(z) = z/(1− z)2 shows. It is easy to see

that Ŝ(D) is closed in B1(D).

Let L(z) = (z − i)/(z + i). Note that ‖TL‖B1(H) = 4 and hence TL ∈ T̂ (H).
Since L∗1 : B1(D) → B1(H) is a linear isometry and Tf◦L = L∗1(Tf ) + TL, the

space T̂ (H) is contained in B1(H) and it is isometrically equivalent to T̂ (D). In

this sense, it is enough to consider only T̂ (D).

We define the map π : B1(D) → B2(D) by π(ψ) = ψ′ − ψ2/2. By definition,

π(Ŝ(D)) = S(D) and π(T̂ (D)) = T (D). Duren, Shapiro and Shields [28] noticed
that this map is continuous (see also §5.3).

Astala and Gehring [6] proved an analogous result to the case of Schwarzian
derivative.

Theorem 4.1.2. The interior of Ŝ(D) in B1(D) is equal to T̂ (D), while the

closure of T̂ (D) in B1(D) is not equal to Ŝ(D). Moreover, ∂T (D) \ π(∂T̂ (D)) is
not empty.

Zhuravlev [111] revealed the following remarkable property of T̂ (D).

Theorem 4.1.3 (Zhuravlev). The space T̂ (D) decomposes into the uncountably

many connected components T̂0 and T̂ω, ω ∈ ∂D, where

T̂0 = {Tf ∈ T̂ (D) : f(D) is bounded } and T̂ω = {Tf ∈ T̂ (D) : f(z)→∞ as z → ω}.

Moreover, {ψ ∈ B1(D) : ‖ψ − ψω‖B1(D) < 1} ⊂ T̂ω holds for each ω ∈ ∂D, where
ψω(z) = 2ω̄/(1− ω̄z) is the pre-Schwarzian derivative of the function z/(1− ω̄z).

Note that the map π is not injective even in each connected component of
T̂ (D). Therefore, we should note that this model of the universal Teichmüller
space has some redundancy.

4.2. The model T̂ (D∗). There is some subtlety in consideration of the pre-

Schwarzian model of the universal Teichmüller space T̂ (D∗) on the exterior D
∗ of

the unit circle. The first thing to note is the fact that the Banach space B1(D∗)

is not the right space on which T̂ (D∗) is modeled. We define

Ŝ(D∗) = {TF : F ∈ Σ}
and

T̂ (D∗) = {TF : F ∈ Σ extends to a quasiconformal map of Ĉ}.
If F (ζ) = ζ + b0 + b1/ζ + b2/ζ

2 + . . . , then TF (ζ) = 2b1/ζ
3 + · · · = O(ζ−3) as

ζ →∞. Therefore, the norm

B(ψ) = sup
ζ∈D∗

(|ζ|2 − 1)|ζψ(ζ)|(4.2.1)
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is more natural. Indeed, Becker’s univalence criterion [11] and Avhadiev’s in-
equality [8]

(|ζ|2 − 1)

∣∣∣∣ζF ′′(ζ)

F ′(ζ)

∣∣∣∣ ≤ 6(4.2.2)

imply the following result.

Theorem 4.2.3. If a meromorphic function F (ζ) = ζ + b0 + b1/ζ + . . . in
|ζ| > 1 satisfies B(TF ) ≤ 1, then F ∈ Σ. Conversely, every function F in Σ
satisfies B(TF ) ≤ 6.

We set
B′1(D∗) = {ψ ∈ B1(D∗) : lim

ζ→∞
ζ2ψ(ζ) = 0}.

Then, it is easy to see that B′1(D∗) = {ψ : D
∗ → C holomorphic and B(ψ) <

∞}. The above theorem now yields that Ŝ(D∗) is a bounded subset of B′1(D∗).

We define π : B′1(D∗) → B2(D∗) as before by π(ψ) = ψ′ − ψ2/2. Then π is

continuous [12, Lemma 6.1]. By definition, π(Ŝ(D∗)) = S(D∗) and π(T̂ (D∗)) =

T (D∗). Since T (D∗) is an open set and T̂ (D∗) = π−1(T (D∗)), the set T̂ (D∗) is

also open in B′1(D∗). In this way, we see that the space T̂ (D∗) is a complex
Banach manifold modeled on B′1(D∗). We remark that π does not map B1(D∗)
into B2(D∗).

The set T̂ (D∗) seems to be less investigated, but could be more useful. For

instance, the mapping F 7→ TF sends Σ0 to Ŝ(D∗) bijectively. Recall that the
mapping F 7→ SF sends Σ0 to S(D∗) bijectively. Therefore, the mapping π sends

Ŝ(D∗) to S(D∗) bijectively.

4.3. Loci of typical subclasses of S . Since the differential operator Tf is
closely related with geometric function theory, many classical subclasses of uni-
valent functions correspond to sets with nice properties in Ŝ(D).

We recall several fundamental classes in univalent function theory. We denote
by A the set of analytic functions f in the unit disk D so normalized that f(0) = 0
and f ′(0) = 1. A function f ∈ A is called starlike (convex) if f is univalent and
if f(D) is starlike with respect to the origin (convex). We denote by S ∗ and K
the sets of starlike and convex functions in A , respectively. A function f ∈ A is
called close-to-convex if eiαf ′/g′ has positive real part in D for a convex function
g and for a real constant α. Denote by C the set of close-to-convex functions in
A . It is known that C ⊂ S (cf. [27]).

It is interesting to see how pre-Schwarzians of those functions are located in
the space Ŝ(D). The following result gives an answer to this question.

Theorem 4.3.1 ([25], [49]). {Tf : f ∈ K } and {Tf : f ∈ C } are both convex

subsets of Ŝ(D).

It may be natural to conjecture the following.
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Conjecture 4.3.2 ([46]). The subset {Tf : f ∈ S ∗} of Ŝ(D) is starlike with
respect to the origin.

Note that the vector operations in B1(D) is translated to the Hornich oper-
ations in the space of uniformly locally univalent functions (see, for example,
[46]).

5. Univalence criteria

As is well developed in Lehto’s textbook [64], univalence criteria are closely
connected with the universal Teichmüller space. The present section will be
devoted to this topic.

5.1. Univalence criteria due to Nehari and Ahlfors-Weill. Nehari [74]
proved the following result, which is fundamental in the Teichmüller spaces.

Theorem 5.1.1. Every meromorphic univalent function f on the unit disk
satisfies the inequality ‖Sf‖B2(D) ≤ 6. Conversely, if a meromorphic function f
on the unit disk satisfies the inequality ‖Sf‖B2(D) ≤ 2, then f must be univalent.

The constants 6 and 2 are sharp since the Koebe function K(z) = z/(1− z)2

satisfies ‖SK‖B2(D) = 6 and since the function f(z) = ((1 + z)/(1 − z))iε, ε >
0, is never univalent but ‖Sf‖B2(D) = 2(1 + ε2) can approach 2 (Hille [42]).
The former assertion was first proved by Kraus [53] and reproved by Nehari.
Therefore, it is called nowadays the Kraus-Nehari theorem. The Kraus-Nehari
theorem is a consequence of the Bieberbach theorem. By the Möbius invariance
of (1−|z|2)2|Sf (z)|, it is enough to show the inequality only at the origin, namely,
|Sf (0)| ≤ 6 for f ∈ S . A straightforward computation gives Sf (0) = 6(a3 − a2

2)
for f(z) = z+ a2z

2 + a3z
3 + . . . . If we set F (ζ) = 1/f(1/ζ) = ζ + b0 + b1/ζ + . . . ,

then b1 = a2
2 − a3, and thus the inequality |b1| ≤ 1 (see (1.5.3)) implies the

required one.

The class N = {f ∈ A : ‖Sf‖B2(D) ≤ 2} is sometimes called the Nehari class.
Gehring and Pommerenke [39] showed that f ∈ N maps the unit disk conformally
onto a Jordan domain unless f(D) is Möbius equivalent to the parallel strip
{z : |Im z| < π/4}. For further development, see [22], [23] and [24].

In connection with Nehari’s theorem, Ahlfors and Weill established the fol-
lowing quasiconformal extension criterion. For ϕ ∈ B2(D∗) with ‖ϕ‖B2(D∗) < 2,
we set α[ϕ] ∈ Belt(D) by α[ϕ](z) = −ρD(z)−2ϕ(1/z̄)z̄−4/2. Note that the map
α is the restriction of a bounded linear operator which maps B2(D∗,Γ)2 = {ϕ ∈
B2(D∗,Γ) : ‖ϕ‖B2(D) < 2} into Belt(D∗,Γ) for every Fuchsian group Γ.

Theorem 5.1.2 (Ahlfors-Weill). The map α : B2(D∗)2 → Belt(D) is the local
inverse of the Bers projection Φ : Belt(D)→ T (D∗), in other words, Φ(α[ϕ]) = ϕ
for ϕ ∈ B2(D∗) with ‖ϕ‖B2(D∗) < 2.
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Corollary 5.1.3. The universal Teichmüller space T(D∗) contains the open ball
centered at the origin with radius 2 in B2(D∗).

The map α : B2(D∗)2 → Belt(D) is sometimes called the Ahlfors-Weill section.

5.2. Inner radius and outer radius. Let D be a hyperbolic domain in Ĉ.
The inner radius σI(D) and the outer radius σO(D) of univalence is defined
respectively by

σI(D) = sup{σ ≥ 0 : ‖Sf‖B2(D) ≤ σ ⇒ f is univalent in D},

σO(D) = sup{‖Sf‖B2(D) : f : D → Ĉ is univalent}.

We also define the number τ(D) ∈ [0,+∞] as ‖Sp‖B2(D), where p is a holomorphic
universal covering projection of D onto D. The quantity τ(D) is independent of
the choice of p and thus well defined. Note that τ(D) < ∞ if and only if ∂D is
uniformly perfect (cf. [83] or [99]).

Summarizing theorems of Ahlfors [2], Gehring [36], Nehari [74], we obtain the
following.

Theorem 5.2.1. σI(∆) = 2, σO(∆) = 6, τ(∆) = 0 hold for a circle domain ∆.
Let D be a simply connected hyperbolic domain. Then σO(∆) ≤ 12 and τ(D) ≤ 6.
Moreover, D is a quasidisk if and only if σI(D) > 0.

The inequality σO(∆) ≤ 12 is shown as follows. Let f : D → Ĉ be univalent
and set Ω = f(D). Take a conformal map g : D

∗ → D and set h = f ◦ g. Then,
by Lemmas 1.3.1, 1.6.2 and the Kraus-Nehari theorem, we obtain

‖Sf‖B2(D) = ‖g∗2(Sf )‖B2(D∗) = ‖Sh − Sg‖B2(D∗) ≤ ‖Sh‖B2(D∗) + ‖Sg‖B2(D∗) ≤ 12.

It is a remarkable fact due to Beardon and Gehring [9] that σO(D) ≤ 12 holds
even for an arbitrary hyperbolic domain D.

The inner and outer radii of univalence are better understood in the context
of (quasi-) Teichmüller space.

Lemma 5.2.2. Let g : D
∗ → D be a conformal homeomorphism of D

∗ onto a
simply connected hyperbolic domain D. Then {ϕ ∈ S(D∗) : ‖ϕ − Sg‖ < σI(D)}
is the maximal open ball centered at Sg contained in T (D∗). On the other hand,
σO(D) = max{‖ϕ− Sg‖B2(D∗) : ϕ ∈ S(D∗)}.

Lehto [62] proved the following relations.

Theorem 5.2.3. The relation σO(D) = τ(D) + 6 holds for a simply connected
hyperbolic domain D. Furthermore, 2− τ(D) ≤ σI(R) ≤ min{2, 6− τ(D)}.

As for the quantity τ(D), the following are known. For a convex domain D, we
have τ(D) ≤ 2. This result is repeatedly re-discovered by many mathematicians;
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[81], [86], [?], [75], [62]. Suita [102] refined this result by showing the sharp
inequality

τ(f(D)) ≤

{
2, 0 ≤ α ≤ 1/2,

8α(1− α), 1/2 ≤ α ≤ 1

for a convex function f ∈ K of order α, namely, when Re (1+zf ′′(z)/f ′(z)) > α.

It is known that τ(D) ≤ 6(K2 − 1)/(K2 + 1) for a K-quasidisk D (see [64]).
See also [65], [50], [21] for further information.

It is not easy to determine, or even to estimate from below, the value of σI(D),
in general. Known examples are sectors [59], triangles [61], the interiors and the
exteriors of regular polygons [20], [61], some other polygonal domains [69], [70],
the exteriors of hyperbolas [60].

For a general method of estimating σI(D) from below, see [63], [64] and [100].
See also [101].

5.3. Pre-Schwarzian counterpart. One can define quantities similarly as in
the previous section with respect to pre-Schwarzian derivative. We add the
symbol ˆ to indicate it. For instance,

σ̂I(D) = sup{σ ≥ 0 : ‖Tf‖B1(D) ≤ σ ⇒ f is univalent in D}

for a hyperbolic domain D in C. In the case when D = D
∗, we adopt the norm

B(ψ) :

σ̂I(D
∗) = sup{σ ≥ 0 : B(TF ) ≤ σ ⇒ f is univalent in D

∗}.

Duren, Shapiro and Shields [28] proved that σ̂I(D) ≥ 2(
√

5−2) = 0.472 · · · by
observing that ‖ψ′‖B2(D) ≤ 4‖ψ‖B1(D) and thus π(ψ) = ψ′−ψ2/2 is a continuous
map of B1(D) into B2(D). Note that Wirths [109] found the sharp constant
C = (13

√
3 + 55

√
11)/64 = 3.20204 . . . for the estimate ‖ψ′‖B2(D) ≤ C‖ψ‖B1(D).

Nowadays, the best value for this univalence criterion is known.

Theorem 5.3.1. σ̂I(∆) = 1 and σ̂O(∆) = 6 for ∆ = D,H and D
∗.

Becker [10], [11] showed that σ̂I(D) ≥ 1 and σ̂I(D
∗) ≥ 1 and Becker-Pommerenke

[13] showed that equality hold for ∆ = D and that σ̂I(H) = 1. Pommerenke [84]
showed the sharpness for ∆ = D

∗.

By (4.1.1) and the fact that the Koebe function K satisfies ‖TK‖B1(D) = 6, we
see that σ̂O(D) = 6. σ̂O(H) = 6 can be seen by noting the relation

‖ψ‖B1(H) = lim
r→1−

‖ψ‖B1(∆r)

for ψ ∈ B1(H), where ∆r = {z : |z − i(1 + r2)/(1 − r2)| < 2r/(1 − r2)}. The
formula σ̂O(D∗) = 6 follows from the fact that the inequality in (4.2.2) is sharp
for each ζ.

For concrete estimates of τ̂(D) for several geometric classes of domains, see
[110], [97], [77], [47], [48].
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In spite of relative simplicity of the operation Tf , very little is known for
quantities σ̂I(D) and σ̂O(D). Stowe [93] gave non-trivial examples of domains D
for which σ̂I(D) ≥ 1.

5.4. Directions of further investigation. The Bers embedding of Teichmüller
spaces is still mysterious. We know very little about the shape of it. Pictures
of one-dimensional Teichmüller spaces were recently given in [51] and [52]. Note
that the first attempt towards it was done by Porter [85] as early as in 1970’s.

It is an interesting and important problem to describe the intersection of T (∆)

or T̂ (∆) with a (complex) one-dimensional vector subspace of B2(∆) or B1(∆)
for a circle domain. Completely known examples are essentially, as far as the
author knows, the linear hull of 1/(1−z) in B1(∆) [88] and the linear hull of z−2

in B2(H) in [45], only.

The results presented above could be generalized to various directions. We
end this survey with remarks on possible ways to study furthermore.

In this section, we considered mainly the case when the domain is simply
connected. When the domain is multiply connected, the problem will become
much more difficult. See [79] and [80] for fundamental information.

We were concerned here with only pre-Schwarzian and Schwarzian derivatives.
On the other hand, several definitions of higher-order Schwarzian derivatives
have been proposed (e.g., [105], [89]). Thus, we may develop the theory for those
higher-order Schwarzian derivatives.

Of course, we may consider domains in C
n or R

n but with great difficulty
caused by the lack of canonical metrics such as hyperbolic metric, the lack of
Riemann mapping theorem and so on. Note that Martio and Sarvas [67] gave
some injectivity conditions even in higher dimensions.
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11. , Löwnersche Differentialgleichung und Schlichtheitskriterien, Math. Ann. 202
(1973), 321–335.

12. , Conformal mappings with quasiconformal extensions, Aspects of Contemporary
Complex Analysis, Proc. Conf. Durham, 1979, Academic Press, 1980, pp. 37–77.

13. J. Becker and Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete, J. Reine Angew.
Math. 354 (1984), 74–94.

14. L. Bers, A non-standard integral equation with applications to quasiconformal mappings,
Acta Math. 116 (1966), 113–134.

15. , On boundaries of Teichmüller spaces and on Kleinian groups: I, Ann. of Math. (2)
91 (1970), 570–600.

16. L. Bers and L. Ehrenpreis, Holomorphic convexity of Teichmüller spaces, Bull. Amer.
Math. Soc. 70 (1964), 761–764.

17. A. Beurling and L. V. Ahlfors, The boundary correspondence for quasiconformal mappings,
Acta Math. 96 (1956), 125–142.
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