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Abstract. We improve an estimate of the constant in Smale’s mean value
conjecture, by using the Bieberbach theorem for coefficients of univalent func-
tions and an estimate of the hyperbolic density on a certain simply connected
domain.

1. Introduction and result

Let P (z) be a complex polynomial of degree d ≥ 2, and let z1, z2, . . ., zd−1 be
the critical points of P (z). Smale [11] stated that, if z is not a critical point of P ,
then the following inequality holds:

(1) min
i

∣∣∣∣P (z)− P (zi)
z − zi

∣∣∣∣ ≤ 4|P ′(z)|.

Furthermore, he also formulated the following conjecture, which is known as Smale’s
mean value conjecture. See also [10] and [12].

Conjecture 1. Let P (z) be a polynomial of degree d ≥ 2 and let z1, z2, . . ., zd−1

be the critical points of P (z). If z is not a critical point of P , then

(2) min
i

∣∣∣∣P (z)− P (zi)
(z − zi)P ′(z)

∣∣∣∣ ≤ d− 1
d

.

A weaker version of Smale’s conjecture is the inequality with constant 1 instead
of (d − 1)/d in (2). Let S(P, z) be the left-hand side of inequality (2), and denote
by K(d), d ≥ 2, the smallest constant such that S(P, z) ≤ K(d) holds for all
polynomials P of degree d and for all z 6= zi. Inequality (1) shows that K(d) ≤ 4
and in view of the example P (z) = zd− z, one has the inequality K(d) ≥ (d−1)/d.
Smale’s mean value conjecture thus says that K(d) ≤ (d− 1)/d. This conjecture
has been proved only for degrees d = 2, 3, 4 (see [9]) and d = 5 (see [3]). For d ≥ 6,
it has been proved only under some additional conditions. See [7], [13] and [14]. In
a general case, Beardon, Minda and Ng [1] proved that

K(d) ≤ 4
d−2
d−1 =: K1(d)

and Conte, Fujikawa and Lakic [2] verified that

K(d) ≤ 4
d− 1
d + 1

=: K2(d) (< K1(d)).
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Furthermore, Schmeisser [8] showed that

K(d) ≤ 2d − (d + 1)
d(d− 1)

=: K3(d).

In this paper, we improve these estimates.

Theorem 1. Let P be a polynomial of degree d ≥ 2 with critical points z1, z2, . . . , zd−1.
If z is not a critical point of P , then

min
i

∣∣∣∣P (z)− P (zi)
(z − zi)P ′(z)

∣∣∣∣ ≤ 4 · 1 + (d− 2)4
1

1−d

d + 1
= : K0(d).

Remark. For d ≥ 7, our constant K0(d) is better than the other ones. More
precisely,
(i) K0(d) < K2(d) < K3(d) for d ≥ 8;
(ii) K0(7) = 2.48425 . . . < K3(7) < K2(7);
(iii) K3(d) < K0(d) < K2(d) for d ≤ 6.
In particular, K3(6) = 1.9. Note also that these results are superfluous when d ≤ 5
since Smale’s conjecture was already proved.

For all linear transformations α and β, we have S(β ◦ P ◦ α, α−1(z)) = S(P, z).
Thus we have only to consider for z = 0 and for polynomials P satisfying P (0) = 0,
P ′(0) = 1 (see [1]). Namely, Smale’s mean value conjecture is equivalent to the
following.

Conjecture 2. Let P (z) be a polynomial of degree d ≥ 2 with P (0) = 0 and
P ′(0) = 1, and let z1, z2, . . ., zd−1 be the critical points of P (z). Then

min
i

∣∣∣∣P (zi)
zi

∣∣∣∣ ≤ d− 1
d

.

Conjecture 2 is called the normalized conjecture, and this has been proved for
polynomials satisfying certain conditions. For example, either if all the critical
points of P are real or if all the zeros of P but the origin have the same modulus,
then the normalized conjecture is true. Furthermore, Ng [6] showed that S(P, 0) ≤ 2
for odd polynomials P . For a general case, we have the following, which is equivalent
to Theorem 1.

Theorem 2. Let P (z) be a polynomial of degree d ≥ 2 with P (0) = 0 and P ′(0) = 1,
and z1, z2, . . ., zd−1 the critical points of P (z). Then

min
i

∣∣∣∣P (zi)
zi

∣∣∣∣ ≤ K0(d).
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2. Proof of Theorem

We have only to prove Theorem 2. We denote by ρΩ(z)|dz| the hyperbolic
metric of a hyperbolic domain with curvature −4. The quantity ρΩ(z) is called the
hyperbolic density of Ω at z ∈ Ω. For instance, the unit disk D = {z ∈ C : |z| < 1}
has the hyperbolic density

ρD(z) =
1

1− |z|2
.

Lemma 1 ([1]). For every domain Ω of the form C − (R1 ∪ · · · ∪ Rn) where Ri

are rays of the form {reiθi | r ≥ 1}, the hyperbolic density ρΩ(z) of Ω satisfies the
inequality

ρΩ(0) ≤ 4−
1
n .

We will prove our theorem by using this lemma and the Bieberbach theorem for
univalent functions on D (see [5]). The proof is based on the argument in [2].

Proof of Theorem 2. We may assume that mini |zi| = |z1| with z1 > 0 and
mini |P (zi)| = 1 by compositions of linear transformations, see [2]. Then

min
i

∣∣∣∣P (zi)
zi

∣∣∣∣ ≤ ∣∣∣∣P (zj)
zj

∣∣∣∣ = 1
|zj |

≤ 1
z1

,

where j is the integer satisfying

|P (zj)| = min
i
|P (zi)| = 1.

Thus we will prove that
1
z1

≤ K0(d).

Since z1, . . . , zd−1 are critical points of P and P ′(0) = 1, we have

P ′(z) =
(

1− z

z1

)(
1− z

z2

)
· · ·
(

1− z

zd−1

)
.

Then, since P (0) = 0, this gives

P (z) = z −

(
1
2

d−1∑
i=1

1
zi

)
z2 +

1
3

d−1∑
i 6=j

1
zizj

 z3

− · · ·+ (−1)d−1 zd

d · z1z2 · · · zd−1
.

Let Ri be the ray of the form {reiθi | r ≥ 1} that passes through P (zi). By
Lemma 1, the hyperbolic density ρΩ(z) of Ω = C− (R1 ∪ · · · ∪Rd−1) satisfies

ρΩ(0) ≤ 4−
1

d−1 .

Since Ω does not contain any critical value of P , one can take a (single-valued)
branch f of the inverse function P−1 on Ω so that f(0) = 0. In this way, we obtain
a univalent function

f : Ω → C− {z1, . . . , zd−1}
such that f(0) = 0 and P (f(w)) = w for all w ∈ Ω. Then f has the form

f(w) = w + a2w
2 + a3w

3 + · · · .
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Since f omits the value z1 in Ω, the function

f1(w) =
f(w)

1− f(w)/z1

= w +
(

a2 +
1
z1

)
w2 + · · ·

is analytic in Ω. By applying the Bieberbach theorem [5, Theorem 2.2] to the
univalent function f1 on D (⊂ Ω), we have

(3)
∣∣∣∣a2 +

1
z1

∣∣∣∣ ≤ 2.

Since P (f(w)) = w, we obtain

−P ′′(0) = f ′′(0) = 2a2.

Thus

a2 = −P ′′(0)
2

=
1
2

d−1∑
i=1

1
zi

.

Therefore inequality (3) yields that∣∣∣∣∣ 3
z1

+
d−1∑
i=2

1
zi

∣∣∣∣∣ ≤ 4.

Since we assumed that z1 is real, we have

(4)
3
z1

+
d−1∑
i=2

Re
1
zi
≤ 4.

Let φ : D → Ω be a conformal homeomorphism satisfying φ(0) = 0, which has
the form

φ(ζ) = c1ζ + c2ζ
2 + · · · .

Since the hyperbolic density ρΩ on Ω satisfies

ρΩ(φ(ζ))|φ′(ζ)| = ρD(ζ),

we have ρΩ(0)|c1| = ρD(0) = 1. Thus

|c1| =
1

ρΩ(0)
≥ 4

1
d−1 .

Consider the function

g(ζ) = (f ◦ φ)(ζ)
= c1ζ + (c2 + c2

1a2)ζ2 + · · · ,

which maps D conformally into C−{z1, . . . , zd−1}. Furthermore, for i = 1, · · · , d−1,
set

gi(ζ) =
g(ζ)

1− g(ζ)/zi

= c1ζ +
(

c2 + c2
1

(
a2 +

1
zi

))
ζ2 + · · · ,
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and hi(ζ) := gi(ζ)/c1. Then hi : D → C is a univalent function satisfying hi(0) = 0
and h′i(0) = 1. By applying the Bieberbach theorem to hi(ζ), we have∣∣∣∣c2

c1
+ c1

(
a2 +

1
zi

)∣∣∣∣ ≤ 2,

namely, ∣∣∣∣c2

c2
1

+ a2 +
1
zi

∣∣∣∣ ≤ 2
|c1|

.

In particular, ∣∣∣∣c2

c2
1

+ a2 +
1
z1

∣∣∣∣ ≤ 2
|c1|

.

By the triangle inequality, we see that∣∣∣∣ 1zi
− 1

z1

∣∣∣∣ ≤ 4
|c1|

≤ 4 · 4−
1

d−1 = 4
d−2
d−1 .

Since we assumed that z1 is real, we have

(5)
1
z1
− 4

d−2
d−1 ≤ Re

1
zi

.

Therefore, inequalities (4) and (5) yield that

3
z1

+ (d− 2)
(

1
z1
− 4

d−2
d−1

)
≤ 4.

This implies that
1
z1

≤ 4 · 1 + (d− 2)4
1

1−d

d + 1
and we have proved our theorem. �

3. Concluding remark

The present framework can be used to show the existence of an extremal poly-
nomial for the constant K(d). Note that the existence of such a polynomial is not
trivial. We end the article by showing the following proposition. Note that Crane
[4, §5] gives essentially the same conclusion and our proof is similar to his argument.

Proposition 1. Let d be an integer with d ≥ 2. There exists a complex polynomial
P (z) of degree at most d such that S(P, 0) = K(d).

Proof. Denote by P0(d) the set of complex polynomials P (z) of degree d satisfying
P (0) = 0, P ′(0) = 1 and mini |P (zi)| = 1, where z1, z2, . . ., zd−1 are the critical
points of P (z). Recall then that S(P, 0) = mini |P (zi)/zi|. Set

P(d) = P0(2) ∪ · · · ∪P0(d)

for d ≥ 2. Our goal is to find a P ∈ P(d) such that S(P, 0) = K(d).
First note that K(d−1) ≤ K(d) for d ≥ 3. Indeed, for each P ∈ P0(d−1) define

Pn ∈ P0(d) so that P ′
n(z) = P ′(z)(1 − z/n) for n = 1, 2, . . . . Then S(Pn, 0) →

S(P, 0) as n →∞. Therefore, K(d− 1) ≤ K(d).
For each P ∈ P0(d), we take a univalent function f on Ω = C−(R1∪· · ·∪Rd−1)

with f(0) = 0 and P ◦ f =id as in the proof of Theorem 2.
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As we have seen in the last section, we have

K(d) = sup
P∈P0(d)

S(P, 0).

Therefore, there is a sequence Pn in P0(d) such that S(Pn, 0) → K(d) as n →∞.
Let fn be the univalent function on Ωn constructed above for f = fn. The restriction
of fn to D is a member of the well-known family S of normalized univalent functions
on the unit disk (cf. [5]). Since S is normal, we may assume that fn converges to
a function f∞ ∈ S uniformly on every compact subset of D.

By the Koebe one-quarter theorem, f(D) contains the disk ∆ = {|z| < 1/4} for
each f ∈ S. Thus we can define the inverse function f−1 of f on ∆. It is easy to
see that f−1

n = Pn converges to f−1
∞ uniformly on every compact subset of ∆. If we

write
Pn(z) = an,0 + an,1z + · · ·+ an,dz

d

and
f−1
∞ (z) = a0 + a1z + · · ·

around z = 0, the Cauchy integral formula gives

ak =
1

2πi

∫
|z|=1/8

f−1
∞ (z)dz

zk+1

= lim
n→∞

1
2πi

∫
|z|=1/8

Pn(z)dz

zk+1

=

{
limn→∞ an,k (0 ≤ k ≤ d)
0 (d < k).

Therefore, f−1
∞ is the restriction of a polynomial Q of degree ≤ d to ∆ and Pn

converges to Q uniformly on every compact subset of C.
The degree of the limit polynomial Q is at least 2. Indeed, we take a critical point

ζn of Pn ∈ P(d) so that |Pn(ζn)| = 1. Since K(d) ≥ 1−1/d ≥ 1/2, we may assume
that S(Pn, 0) ≥ 1/3 for sufficiently large n. Since S(Pn, 0) ≤ |Pn(ζn)/ζn| = 1/|ζn|,
we have |ζn| ≤ 3. Then we can take a subsequence so that ζn converges to a point
ζ, which satisfies Q′(ζ) = 0. In particular, deg Q ≥ 2.

Next we will prove that S(Q, 0) = K(d). Let η 6= 0 be a critical point of Q such
that S(Q, 0) = |Q(η)/η|. By the Hurwitz theorem, we can take a critical point ηn

of Pn so that ηn → η, and hence,

|Pn(ηn)/ηn| → |Q(η)/η| = S(Q, 0).

Since
S(Pn, 0) ≤ |Pn(ηn)/ηn|

and
S(Pn, 0) → K(d),

we have S(Q, 0) ≥ K(d). On the other hand,

S(Q, 0) ≤ K(deg Q) ≤ K(d),

and thus, S(Q, 0) = K(d). �

In the above proof, it seems difficult to exclude the possibility that Q ∈ P(d−1).
However, if we knew that K(d−1) < K(d), then we could conclude that Q ∈ P(d).
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Note that Crane [4] pointed out that the assertion K(d− 1) < K(d) would lead to
several conclusions concerning extremal polynomials.
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