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1 De�nitions and main theorems

In general, for a possibly incomplete and branched holomorphic covering
� : R ! Ĉ of Ĉ by a simply connected Riemann surface R, we say that a
point � in Ĉ is a singular value of the projection � if, for every neighborhood
U of �, there exists a connected component V of ��1(U) such that � : V ! U
is not a biholomorphic surjection, which is called a singular component of
��1(U). In other words, a point � is not a singular value of � if and only
if � is evenly covered by �, i.e., we can �nd a neighborhood U of � such
that � maps every connected component of ��1(U) biholomorphically onto
U . The projection � is called a Speiser function if it has only a �nite number
of singular values.

Next, we say that a possibly incomplete and branched holomorphic cov-
ering � : R ! Ĉ covers a domain D in Ĉ almost evenly if there are only a
�nite number of points in D which are not evenly covered, and at every such
point �, there is a �nite number of singular components of ��1(B) for every
suÆciently small disk B with center �.

If such a holomorphic covering � : R! Ĉ , which covers Ĉ almost evenly,
has no algebraic singularities, i.e. branch points, then the projection � is a
meromorphic function with a polynomial Schwarzian derivative ([3], and also
see [1]). And similarly, we can see that, when the projection � has a �nite
number of branch points, � has a rational Schwarzian derivative (cf. [2]).
In the case of a holomorphic covering of C which covers C almost evenly,
the author showed in [4] that the projection � is a structurally �nite entire
function. And we know that f is a sturcturally �nite entire function, possibly
postcomposed by a M�obius transformation, if and only if the Schwarzian
derivative S(f) has the form�
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with suitable polynomials P and Q.
Here recall that, for an entire function f , we can also consider the non-

linearity or the pre-Schwarzian derivative N(f) = f 00=f 0 of f , which deter-
mines the aÆne structure induced by f .

Example 1 g(z) = ez and f(z) = tan z has the same Schwarzian derivative

S(g) = S(f) = �1=2, but N(g) = 1 and N(f) = 2f .

De�nition 1.1 We say that a possibly incomplete and branched holomor-
phic covering � : R! Ĉ is structurally �nite if it covers C almost evenly and
has 1 as a Picard's exceptional value.

Theorem 1.1 (Structure) A possibly incomplete and branched holomor-

phic covering � : R ! Ĉ is structurally �nite if and only if it is obtained

from a structurally �nite entire function C ! C by applying the surgeries

attaching Ĉ �nitely many times.

Here the surgery attaching Ĉ to the covering �0 : R0 ! Ĉ (in the sense

of Schi�er) is the one constructing a new possibly incomplete and branched
holomorphic covering � : R! Ĉ , from �0 : R0 ! Ĉ by taking a simple closed
arc ` in Ĉ whose interior is in C and disjoint from the set of all singular values
of �0, and a lift `0 of ` with respect to �0, by connecting C � `0 and Ĉ � `
crosswise, and by �lling end points if necessary, so that �0 can be extended to
a holomorphic projection � from a newly obtained simply connected Riemann
surface R to Ĉ .

Proof. First we suppose that the convering � : R ! Ĉ is structurally �nite
and show the "only-if" part.

Deforming � : R ! Ĉ by the surgeries relaxing the relation between
the singurality data as in [4] x5, we may assume that the singularities of
� : R ! Ĉ are in general position, i.e. every singular value is in C and
corresponds to either a single branch point or a logarithmic singurality of �.

Actually, �rst we can approximate the given � by a structurally �nite
holomorphic covering �1 : R1 ! Ĉ whose singularities except for poles are in
general position with respect to the synthetic Teichm�uller topology (which
is de�ned in the next section). Next, by applying Whitehead surgeries as in
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[4], we can deform �1 : R1 ! Ĉ to another structurally �nite holomorphic
covering �2 : R2 ! Ĉ whose singularities are in general position. Here it is
clear that, if we show the assertion for �2 : R2 ! Ĉ , then we can conclude
that the assertion also holds for the given � : R! Ĉ .

Now �x a spider at 1 (cf. [4] x4), and consider the plates, i.e. lifts of the
complement of all legs of this spider at 1 in C (cf. [6]). On every plate �,
a leg ` corresponds to two borders of �. If they are the same arc on R, we
say that ` has trivial lifts on �. And we say that a leg ` is polar if there is a
non-trivial lift of ` ending at a pole, which in turn, is called a polar lift of `.

To show the assertion by induction, �rst suppose that � has a single simple
pole. Fix a plate �0 having a polar lift `0 as a border. Then �0 is connected
with another plate �1 along `0. Furthermore since the single pole of f is
simple, there are a �nite number of legs `1; � � � ; `N and plates �2; � � � ;�N+1

such that `0; `1; � � � ; `j+1 are located in this order, the plates �0; � � � ;�N are
mutually di�erent, �0 = �N+1, and �j and �j+1 are connected along `j.
Then by applying the positive permutation of spider legs f`1; � � � ; `Ng just
N�1 times (cf. [4] De�nition 7.11), we have a new leg `�N+1 neighboring to `0
which also connected �0 and �1. Deforming `0 [ `

�
N+1 continuously, we have

a compact simple arc C in C , and R is obtained from a simply connected
Riemann surface R1 by the surgery attaching Ĉ to the holomorphic covering
�1 : R1 ! Ĉ along C in the sense of Schi�er, where �1 is the projection of a
structurally �nite holomorphic covering of C by R1 induced from �.

Next suppose that the assertion holds if the number of poles is not greater
than n (� 1). And consider such a � with n + 1 simple poles. Again, �x a
plate �0 having a polar lift `0 as a border. Then similarly as in the previous
paragraph, we can have a compact simple arc C in C along which suitably
deformed �0 and another such one are connected crosswise. Hence we can
decompose � : R ! Ĉ into two structurally �nite holomorphic covering
�j : Rj ! Ĉ with nj simple poles (j = 1; 2) where nj are non-negative
integers satisfying n1 + n2 = n + 1. Thus if both of nj are positive, then by
the induction we have the assertion for �. If one of nj, say n1, is 0, then
the number of the singularities of �2 is less than that of �. Hence repeating
the above decomposition �nitely many times, we can decompose � into a
�nite number of structurally �nite holomorphic coverings, each of which has
at most n simple poles, and we can complete the proof of the "only-if" part
by induction.

Since the "if" part is clear, we have �nished the proof.
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Theorem 1.2 (Representation) The projection of every structurally �-

nite holomorphic covering � : R! Ĉ can be reperesnted asZ z P (t)Qk

j=1 (t� bj)mj+1
eQ(t)dt

with suitable polynomials P and Q satisfying the residue condition:

 
P (z)Q

j 6=` (z � bj)mj+1
eQ(z)

!(m`)

(b`) = 0

for every `. Here mj is the order of the pole bj.

Proof. First by Structure Theorem, we can �nd a compact set K in C , a
conformal map � of R�K into C such that C � �(R�K) is compact, and
a structurally �nite entire function g such that � = g Æ � on R�K. Then it
is well-know that � can be extended to a quasiconformal map of R onto C .
In particular, � is a meromorphic function on C . Furthermore, since � has a
simple pole at1, it is easy to see that � and hence also �0 has a �nite order.
The assumption implies that �0 has only a �nite number of zeros and poles
with residue 0, we conclude that � has the form as asserted.

Corollary 1 The projection of a structurally �nite holomorphic covering of

Ĉ is a meromorphic function on C having a rational non-linearity.

De�nition 1.2 We call the projection of a strucutrally �nite holomorphic
covering f : C ! Ĉ a structurally �nite meromorphic function.

If such an f is obtained from a structurally �nite entire function of type
(p; q) by the surgeries attaching Ĉ n times, then we say that f is of type

(p; q; n).

Example 2 The function (z2+1)=z is of type (0; 0; 1), (z+1)ez=z and ez=z
are of type (0; 1; 1), and

R z
et
2

dt=t2 is of type (0; 2; 1).

Actually, Representation Theorem implies the following
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Corollary 2 A meromorphic function f is structurally �nite if and only if

the non-linearity N(f) of f has the form

mX
i=1

1

z � ai
�

kX
j=1

mj + 1

z � bj
+Q0(z)

with a suitable polynomial Q, points faig
k
i=1 and fbjg

k
j=1, and positive integers

fmjg
k
j=1, such that Qm

i=1 (z � ai)Qk

j=1 (z � bj)mj+1
eQ(z)

satis�es the residue condition.

Finally, as in [5], we can show the following

Corollary 3 The Hausdor� dimension of the Julia set of a transcendental

structurally �nite meromorphic function is two.

Proof. Let f be a transcendental structurally �nite meromorphic function.
Then exactly as in [5], we can construct a compact subset E1 such that the
Hausdor� dimension of E1 is two, and the orbit of every point in E1 is
contained in the set where jf 0j � 2 (cf. (4-d) in [5]). Hence E1 is contained
in the Julia set of f , which implies the assertion.

2 Several deformation spaces

Let f be a meromorphic function. Then we can consider several deformation
spaces of f .

De�nition 2.1 Let f1 and f2 be meromorphic functions. We say that f1
and f2 determine the same covering structure if there are a similarity g and
a M�obius transformation h such that f2 = h Æ f1 Æ g

�1. We denote by Cf the
covering structure determined by f , and call the set of all covering structures
determined by meromorpihc functions g which are quasiconformally equiva-
lent to f the prime Hurwitz space of f , which is denoted by H#(f). Here we
say that f and g are quasiconformally equivalent if there are quasiconformal
self-maps ' and  of C and Ĉ , respectively such that g =  Æ f Æ '�1.
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The prime Hurwitz distance dH# on H#(f) is de�ned by setting

dH#(Cf1 ; Cf2) = inf
'
K(');

where the in�mum is taken over all quasiconformal maps ' of C which satisfy
 Æ f2 Æ'

�1 = f1 with suitable quasiconformal maps  of Ĉ . dH# is actually
a distance and complete on H#(f).

De�nition 2.2 We say that meromorphic functions f1 and f2 determine the
same isomorphism class if there is a similarity ' such that f2 = f1 Æ '. We
call the set of all isomorphism classes Ig of meromorphic functions g which
are quasiconformally equivalent to f the Hurwitz space of f , and denote it
by H(f). Here, we distinguish the value 1 and assume that  (1) =1 for
every quasiconformal map  appeared in quasiconformal equivalence relation
g =  Æ f Æ '�1

If f is a Speiser function, then we can de�ne the normalized Hurwitz

distance dH on H(f) by setting

dH(If1 ; If2) = inf
'
K(');

where the in�mum is taken over all quasiconformal maps ' of Ĉ satisfying
f1 =  Æf2 Æ'

�1 with quasiconformal maps  of Ĉ normalized as follows: We
prescribe N +2 points in C and assume that each  �xes two of them, where
N is the number of �nite singular values of f . dH is actually a distance and
complete on H(f).

Remark We say that f and g are topologically equivalent if there are self-
homeomorphisms ' and  of C and Ĉ , respectively, such that  (1) = 1
and g =  Æ f Æ '�1. Let Top(f) be the set of all isomorphism classes
of meromorphic functions topologically equivalent to f . If f is a Speiser
function, we have

Top(f) = H(f):

De�nition 2.3 The full deformation set FD(f) of f is the set of all mero-
morphic functions g on C such that there are quasiconformal maps ' of C
which �x 0 and 1, and satisfy the qc-L1 condition:

Df (g;') = kf � g Æ 'k1

�
= sup

C

jf � g Æ 'j

�
<1:
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For every pair of functions f1 and f2 in FD(f), we set

d(f1; f2) = inf
�
logK('1 Æ '

�1
2 ) + kf1 Æ '1 � f2 Æ '2k1

�
;

where the in�mum is taken over all quasiconformal maps '1 and '2 of C

which �x 0 and 1, and satisfy the qc-L1 conditions Df(fj;'j) < 1. d
is actually a distance and complete on FD(f). We call the distance d de-
�ned above the synthetic Teichm�uller distance on FD(f). The space FD(f)
equipped with this synthetic Teichm�uller distance is called the full synthetic
deformation space of f and is denoted as FSD(f). (Cf. [4].)

Theorem 2.1 For every structurally �nite meromorphic functions f of type

(p; q; n) and with the polar type [n], the space SF (f) consists of all strucu-
trally �nite meromorphic functions of type (p0; q; n) with the polar type [n],
where p0 = p when q = 0 and p0 � p when q > 0, is complete, in the sense

that if fn 2 SF (f) converge to g 2 FSD(f) then g 2 SF (f), with respect to

the synthetic Teichm�uller topology.

Here, for a meromorphic function f with n poles counting multiplicities,
we say that [n] = [n1; � � � ; nk] is the polar type of f if f has k poles which
have orders n1; � � � ; nk, where

Pk

j=1 nj = n.

Proof. First, it is easy to see that every structurally �nite meromorphic
functions of type (p0; q; n) with the polar type [n], where p0 = p when q = 0
and p0 � p when q > 0, in SF (f).

On the other hand, let g be a meromorphic function belonging to FSD(f).
Take a quasiconformal map ' of C such that Df(g;') < +1. Let fbjg

k
j=1 be

the poles of f . And for a suÆciently small � > 0, take a disc Dj = fjz�bjj <
�g for every j. (Here, when q = 0, then we regard 1 also as a pole, and take
one more disc D0 = fjzj > 1=�g \ f1g.)

Now we may assume that f(Dj) is disjoint from fjzj � 2Df(g;')g, and
that the winding number of the image f(Cj) around 0 is �nj，for every
j = 1; � � � ; k. Then the assumption implies that g('(Dj)) is disjoint from
fjzj � Df(g;')g and that the winding number of g('(Cj)) arround 0 is �nj，
for every k = 1; � � � ; k. Thus '(Dk) contains no zeros and a pole with order
nj for every j, which implies that the polar type of g is [n].

Thus we have shown the assertion when q = 0. When q > 0, by the same
argument as in the proof of [4] Theorem 2.18, we can show the assertion.
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