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1 Definitions and main theorems

In general, for a possibly incomplete and branched holomorphic covering
7:R— CofC by a simply connected Riemann surface R, we say that a
point v in C is a singular value of the projection 7 if, for every neighborhood
U of «, there exists a connected component V of 71 (U) such that 7 : V- — U
is not a biholomorphic surjection, which is called a singular component of
71 (U). In other words, a point « is not a singular value of 7 if and only
if v is evenly covered by m, i.e., we can find a neighborhood U of «a such
that m maps every connected component of 7='(U) biholomorphically onto
U. The projection 7 is called a Speiser function if it has only a finite number
of singular values.

Next, we say that a possibly incomplete and branched holomorphic cov-
ering 7 : R — C covers a domain D in C almost evenly if there are only a
finite number of points in D which are not evenly covered, and at every such
point «, there is a finite number of singular components of 7—!(B) for every
sufficiently small disk B with center a.

If such a holomorphic covering 7 : R — (@, which covers C almost evenly,
has no algebraic singularities, i.e. branch points, then the projection 7 is a
meromorphic function with a polynomial Schwarzian derivative ([3], and also
see [1]). And similarly, we can see that, when the projection 7 has a finite
number of branch points, 7 has a rational Schwarzian derivative (cf. [2]).
In the case of a holomorphic covering of C which covers C almost evenly,
the author showed in [4] that the projection 7 is a structurally finite entire
function. And we know that f is a sturcturally finite entire function, possibly
postcomposed by a Mobius transformation, if and only if the Schwarzian
derivative S(f) has the form
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with suitable polynomials P and ().

Here recall that, for an entire function f, we can also consider the non-
linearity or the pre-Schwarzian derivative N(f) = f"/f" of f, which deter-
mines the affine structure induced by f.

Example 1 ¢(z) = e* and f(z) = tanz has the same Schwarzian derivative
S(g) = S(f) = —1/2, but N(g) =1 and N(f) = 2f.

Definition 1.1 We say that a possibly incomplete and branched holomor-
phic covering 7w : R — C is structurally finite if it covers C almost evenly and
has oo as a Picard’s exceptional value.

Theorem 1.1 (Structure) A possibly incomplete and branched holomor-
phic covering m : R — C is structurally finite if and only if it s obtained
from a structurally finite entire function C — C by applying the surgeries
attaching C finitely many times.

Here the surgery attaching C to the covering Ty : Ry — C (in the sense
of Schiffer) is the one constructing a new possibly incomplete and branched
holomorphic covering 7 : R — C, from my : Ry — C by taking a simple closed
arc ¢ in C whose interior is in C and disjoint from the set of all singular values
of o, and a lift ¢ of ¢ with respect to m, by connecting C — ¢ and C — ¢
crosswise, and by filling end points if necessary, so that 7y can be extended to
a holomorphic projection 7 from a newly obtained simply connected Riemann
surface R to C.

Proof. First we suppose that the convering 7 : R — C is structurally finite
and show the ”only-if” part.

Deforming 7 : R — C by the surgeries relaxing the relation between
the singurality data as in [4] §5, we may assume that the singularities of
m: R — C are in general position, i.e. every singular value is in C and
corresponds to either a single branch point or a logarithmic singurality of 7.

Actually, first we can approximate the given 7 by a structurally finite
holomorphic covering m : Ry — C whose singularities except for poles are in
general position with respect to the synthetic Teichmiiller topology (which
is defined in the next section). Next, by applying Whitehead surgeries as in
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[4], we can deform 7, : Ry — C to another structurally finite holomorphic
covering my : Ry — C whose singularities are in general position. Here it is
clear that, if we show the assertion for 7y : Ry — @, then we can conclude
that the assertion also holds for the given 7 : R — C.

Now fix a spider at oo (cf. [4] §4), and consider the plates, i.e. lifts of the
complement of all legs of this spider at oo in C (cf. [6]). On every plate II,
a leg ¢ corresponds to two borders of II. If they are the same arc on R, we
say that ¢ has trivial lifts on II. And we say that a leg ¢ is polar if there is a
non-trivial lift of ¢ ending at a pole, which in turn, is called a polar lift of £.

To show the assertion by induction, first suppose that 7 has a single simple
pole. Fix a plate Il having a polar lift ¢y as a border. Then II; is connected
with another plate II; along ¢y. Furthermore since the single pole of f is
simple, there are a finite number of legs /1, -+ , ¢y and plates Iy, -+  [Iyiq
such that €y, ¢1,--+,¢;1 are located in this order, the plates Iy, --- , Iy are
mutually different, [Ty = IIxy;, and II; and II;4; are connected along /;.
Then by applying the positive permutation of spider legs {/;,---, ¢y} just
N —1 times (cf. [4] Definition 7.11), we have a new leg £}, neighboring to ¢,
which also connected TIy and II;. Deforming ¢, U £}, continuously, we have
a compact simple arc C' in C, and R is obtained from a simply connected
Riemann surface R; by the surgery attaching C to the holomorphic covering
R — C along C' in the sense of Schiffer, where 7, is the projection of a
structurally finite holomorphic covering of C by R; induced from 7.

Next suppose that the assertion holds if the number of poles is not greater
than n (> 1). And consider such a 7 with n + 1 simple poles. Again, fix a
plate Il having a polar lift /3 as a border. Then similarly as in the previous
paragraph, we can have a compact simple arc C' in C along which suitably
deformed II; and another such one are connected crosswise. Hence we can
decompose m : R — C into two structurally finite holomorphic covering
;i Ry — C with n; simple poles (j = 1,2) where n; are non-negative
integers satisfying n; + ny = n + 1. Thus if both of n; are positive, then by
the induction we have the assertion for m. If one of n;, say ny, is 0, then
the number of the singularities of 7, is less than that of 7. Hence repeating
the above decomposition finitely many times, we can decompose 7 into a
finite number of structurally finite holomorphic coverings, each of which has
at most n simple poles, and we can complete the proof of the ”only-if” part
by induction.

Since the 7if” part is clear, we have finished the proof. [



Theorem 1.2 (Representation) The projection of every structurally fi-
nite holomorphic covering m : R — C can be reperesnted as

/Z - P(t) QW qt
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with suitable polynomials P and () satisfying the residue condition:
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for every €. Here m; is the order of the pole b;.

Proof. First by Structure Theorem, we can find a compact set K in C, a
conformal map ¢ of R — K into C such that C — ¢(R — K) is compact, and
a structurally finite entire function g such that # = go® on R — K. Then it
is well-know that ¢ can be extended to a quasiconformal map of R onto C.
In particular, 7 is a meromorphic function on C. Furthermore, since ¢ has a
simple pole at oo, it is easy to see that m and hence also 7’ has a finite order.
The assumption implies that 7’ has only a finite number of zeros and poles
with residue 0, we conclude that 7 has the form as asserted. [

Corollary 1 The projection of a structurally finite holomorphic covering of
C is a meromorphic function on C having a rational non-linearity.

Definition 1.2 We call the projection of a strucutrally finite holomorphic
covering f: C — Ca structurally finite meromorphic function.

If such an f is obtained from a structurally finite entire function of type
(p,q) by the surgeries attaching Cn times, then we say that f is of type

(p,q,n).

Example 2 The function (2*>+1)/z is of type (0,0,1), (2 +1)e*/z and €* /2
are of type (0,1,1), and [~ etzalt/t2 is of type (0,2,1).

Actually, Representation Theorem implies the following



Corollary 2 A meromorphic function f is structurally finite if and only if
the non-linearity N(f) of f has the form
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with a suitable polynomial Q, points {a;}¥_, and {b, }9?:1, and positive integers
{m;}s_,, such that
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satisfies the residue condition.

Finally, as in [5], we can show the following

Corollary 3 The Hausdorff dimension of the Julia set of a transcendental
structurally finite meromorphic function is two.

Proof. Let f be a transcendental structurally finite meromorphic function.
Then exactly as in [5], we can construct a compact subset F., such that the
Hausdorff dimension of E,, is two, and the orbit of every point in F,, is
contained in the set where |f'| > 2 (cf. (4-d) in [5]). Hence E is contained
in the Julia set of f, which implies the assertion. [

2 Several deformation spaces

Let f be a meromorphic function. Then we can consider several deformation
spaces of f.

Definition 2.1 Let f; and f, be meromorphic functions. We say that f;
and f, determine the same covering structure if there are a similarity ¢ and
a Mobius transformation h such that fo = ho f; o g~'. We denote by C; the
covering structure determined by f, and call the set of all covering structures
determined by meromorpihc functions g which are quasiconformally equiva-
lent to f the prime Hurwitz space of f, which is denoted by H#(f). Here we
say that f and g are quasiconformally equivalent if there are quasiconformal
self-maps ¢ and ¢ of C and (@, respectively such that g =1 o f o™l



The prime Hurwitz distance dg+ on H#(f) is defined by setting
dH# (Cfl ) sz) = lgf K(QO),

where the infimum is taken over all quasiconformal maps ¢ of C which satisfy
o fyop~! = f with suitable quasiconformal maps 1) of C. dy# is actually
a distance and complete on H¥ (f).

Definition 2.2 We say that meromorphic functions f; and f, determine the
same isomorphism class if there is a similarity ¢ such that fo = f; o p. We
call the set of all isomorphism classes Z, of meromorphic functions g which
are quasiconformally equivalent to f the Hurwitz space of f, and denote it
by H(f). Here, we distinguish the value co and assume that ¢)(c0) = oo for
every quasiconformal map ¢ appeared in quasiconformal equivalence relation

g=tofop!

If f is a Speiser function, then we can define the normalized Hurwitz
distance di on H(f) by setting

dH(IfUIb) = lgf K((,O),

where the infimum is taken over all quasiconformal maps ¢ of C satisfying
fi = Yo fyop~! with quasiconformal maps 9 of C normalized as follows: We
prescribe N + 2 points in C and assume that each 1 fixes two of them, where
N is the number of finite singular values of f. dy is actually a distance and
complete on H(f).

Remark We say that f and g are topologically equivalent if there are self-
homeomorphisms ¢ and ¢ of C and C, respectively, such that 1)(c0) = oo
and ¢ = 1o fop ! Let Top(f) be the set of all isomorphism classes
of meromorphic functions topologically equivalent to f. If f is a Speiser
function, we have

Top(f) = H(f)-
Definition 2.3 The full deformation set FD(f) of f is the set of all mero-

morphic functions g on C such that there are quasiconformal maps ¢ of C
which fix 0 and 1, and satisfy the gc-L*® condition:

Dy¢(g;50) = ||f — g0 ¢l (z sup f—go @I) < 00.



For every pair of functions f; and f; in FD(f), we set

d(f1, f2) = inf (logK(sm o, )+ |[fiopr — fa0 902||oo) )

where the infimum is taken over all quasiconformal maps ¢; and ¢, of C
which fix 0 and 1, and satisfy the qc-L> conditions Df(fj; ;) < oo. d
is actually a distance and complete on F'D(f). We call the distance d de-
fined above the synthetic Teichmiiller distance on FD(f). The space FD(f)
equipped with this synthetic Teichmiiller distance is called the full synthetic
deformation space of f and is denoted as FSD(f). (Cf. [4].)

Theorem 2.1 For every structurally finite meromorphic functions f of type
(p,q,n) and with the polar type [n|, the space SF(f) consists of all strucu-
trally finite meromorphic functions of type (p',q,n) with the polar type [n],
where p' = p when ¢ = 0 and p' < p when q¢ > 0, is complete, in the sense
that if f, € SF(f) converge to g € FSD(f) then g € SF(f), with respect to
the synthetic Teichmiller topology.

Here, for a meromorphic function f with n poles counting multiplicities,
we say that [n] = [ny, - ,ng] is the polar type of f if f has k poles which
have orders ny,--- ,n;, where 2521 n; = n.

Proof. First, it is easy to see that every structurally finite meromorphic
functions of type (p', ¢,n) with the polar type [n], where p' = p when ¢ =0
and p’ < p when ¢ > 0, in SF(f).

On the other hand, let g be a meromorphic function belonging to F'SD(f).
Take a quasiconformal map ¢ of C such that Dy(g; ) < 4oc0. Let {b;}¥_, be
the poles of f. And for a sufficiently small € > 0, take a disc D; = {|z —b;| <
e} for every j. (Here, when ¢ = 0, then we regard co also as a pole, and take
one more disc Dy = {|z| > 1/e} N {c0}.)

Now we may assume that f(D;) is disjoint from {|2| < 2D;(g; )}, and
that the winding number of the image f(C;) around 0 is —n;0 for every

j = 1,-+-,k. Then the assumption implies that g(¢(D;)) is disjoint from
{lz| < D¢(g; )} and that the winding number of g(¢(C;)) arround 0 is —n;0
for every k =1,---, k. Thus ¢(Dy) contains no zeros and a pole with order

n; for every j, which implies that the polar type of g is [n].
Thus we have shown the assertion when ¢ = 0. When ¢ > 0, by the same
argument as in the proof of [4] Theorem 2.18, we can show the assertion. m



References

[1] R. L. Devaney and L. Keen, Dynamics of meromorphic maps; maps
with polynomial Schwartian derivatives, Ann. scient. Ec. Norm. Sup.,
22, (1989), 55-79.

2] G. Elfving, Uber eine Klasse von Riemannschen Flichen und ihre Uni-
formisierung, Acta Soc. Sci. Fenn. Nova Ser. A, Tom. II 3, (1934), 60

[3] R. Nevanlinna, Uber Riemannsche Flichen mit endlich vielen Win-
dungspunkten Acta Math. 58, (1932).

[4] M. Taniguchi, Synthetic deformation spaces of an entire function, Con-
temporary Math. 303, (2002), 107-136.

[5] M. Taniguchi, Size of the Julia set of a structurally finite transcendental
entire function Math. Proc. Camb. Phil. Soc. 135, (2003), 181-192.

(6] M. Taniguchi, Covering structure and dynamical structure of a struc-
turally finite entire function, Kodai Math. J., to appear.

Masahiko TANIGUCHI
Department of Mathematics
Kyoto University

Kyoto 606, JAPAN



