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Abstract. For a Riemann surface of in�nite type, the Teichm�uller modular
group does not act properly discontinuously on the Teichm�uller space, in gen-
eral. As an analogy to the theory of Kleinian groups, we divide the Teichm�uller
space into the limit set and the region of discontinuity for the Teichm�uller
modular group, and observe their properties.

1. Introduction

The Teichm�uller modular group Mod(R) for a hyperbolic Riemann surface R
whose Fuchsian model is of the �rst kind is the set of homotopy classes of quasicon-
formal automorphisms of R, and this is a group of biholomorphic automorphisms
of the Teichm�uller space T (R). If R is of analytically �nite type, it is well known
that Mod(R) acts properly discontinuously on T (R). However if R is of in�nite
type, Mod(R) does not act properly discontinuously on T (R), in general. In [4], we
gave a suÆcient condition for the proper discontinuity.

In this paper, we introduce new notions, the limit set and the region of discon-
tinuity for a Teichm�uller modular group. Actually, we de�ne these notions for the
Teichm�uller modular group of a general Riemann surface whose Fuchsian model
is not necessarily of the �rst kind. For this purpose, we consider the reduced Te-
ichm�uller modular group Mod#(R) acting on a reduced Teichm�uller space T#(R),
which will be de�ned in the next section. The limit set �(G) for a subgroup G of

Mod#(R) is the set of points p in T#(R) such that the orbit of p under G is not
discrete, and the region of discontinuity 
(G) is the complement of the limit set.
This is an analogy to the theory of Kleinian groups acting on the Riemann sphere,
and we expect that they satisfy similar properties to that of limit sets and regions
of discontinuity for Kleinian groups. We prove some of them. However it seems
that the essential natures of limit sets and regions of discontinuity for Teichm�uller
modular groups are di�erent from the case of Kleinian groups. For example, the
orbit of a point in a limit set is not dense in the limit set, in general. Hence we
have to devise the proofs.

We say that a subgroup G of Mod#(R) is of the �rst kind if 
(G) = ;, and
otherwise of the second kind. We show suÆcient conditions for Mod#(R) to be of
the �rst kind or of the second kind, and give various examples for each cases.
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2. Preliminaries

We review theories of Teichm�uller spaces and Teichm�uller modular groups (cf.
[5], [7] and [10] ). Throughout this paper, we assume that a Riemann surface
R is hyperbolic. In other words, it is represented by H =� for some torsion-free
Fuchsian group � acting on the upper half-plane H . We also assume that R has
the non-abelian fundamental group. In other words, the Fuchsian group � is non-
elementary. We say that R is of analytically �nite type (g; n) if it is a Riemann
surface of genus g from which n punctures are removed.

Fix a Riemann surface R. For pairs (Si; fi) of Riemann surfaces Si and quasi-
conformal maps fi of R onto Si, we say that (S1; f1) and (S2; f2) are equivalent if
there exists a conformal map h of S1 onto S2 such that f�12 Æ h Æ f1 is homotopic
to the identity by a homotopy that keeps every points of the ideal boundary �xed
throughout. The Teichm�uller space T (R) with the base Riemann surface R is the
set of all the equivalence classes [S; f ] of such pairs (S; f) as above. Further we say
that (S1; f1) and (S2; f2) are weakly equivalent if there exists a conformal map h of
S1 onto S2 such that f�12 Æ h Æ f1 is homotopic to the identity on R. The reduced

Teichm�uller space T#(R) with the base Riemann surface R is the set of all the
weakly equivalence classes [S; f ] of such pairs (S; f) as above.

We say that two quasiconformal automorphisms h1 and h2 of R are equivalent if
h�12 Æ h1 is homotopic to the identity by a homotopy that keeps every points of the
ideal boundary �xed throughout. The Teichm�uller modular groupMod(R) is the set
of all the equivalence classes [h] of quasiconformal automorphisms h of R. Further
we say that two quasiconformal automorphisms h1 and h2 of R are weakly equivalent

if h�12 Æ h1 is homotopic to the identity on R. The reduced Teichm�uller modular

group Mod#(R) is the set of all the weakly equivalence classes [h] of quasiconformal
automorphisms h of R. If R is a Riemann surface whose Fuchsian model is of the
�rst kind, then T#(R) = T (R) and Mod#(R) = Mod(R).

Similar to the case of T (R), the reduced Teichm�uller space T#(R) is equipped
with the reduced Teichm�uller distance dT (�; �) de�ned by

dT ([S1; f1]; [S2; f2]) =
1

2
inf
f1; f2

logK(f1 Æ f�12 );

where K(�) is the maximal dilatation of a quasiconformal map and the in�mum is
taken over all quasiconformal maps f1 and f2 determining [S1; f1] and [S2; f2] re-
spectively. It is known that, for any quasiconformal map f of R onto S, there exists
a quasiconformal map that has the smallest maximal dilatation in the homotopy
class of f . This is called an extremal quasiconformal map.

The reduced Teichm�uller space T#(R) is a complete metric space with respect

to dT . An element ! = [h] 2 Mod#(R) induces an automorphism of T#(R) by

[S; f ] 7! [S; f Æ h�1]:

This is an isometric automorphism with respect to dT and denoted by !�. Namely,
we have a homomorphism of Mod#(R) to the automorphism group Aut(T#(R))
of T#(R). With a few exceptional surfaces which do not appear in our present

case, the above homomorphism Mod#(R)! Aut(T#(R)) is faithful. This was �rst
proved in [2]. Another proof was given in [3]. Therefore we can identify !� with !
and omit the asterisk hereafter.
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For a non-trivial simple closed curve c on R, we denote the simple closed geodesic
that is homotopic to c by c�. Then for a quasiconformal map f of R, an inequality

K(f)�1`(c�) � `(f(c)�) � K(f)`(c�)

holds, where `(�) is the hyperbolic length of a curve ([12, Lemma 3.1]).

3. The limit set and the region of discontinuity

In this section, as an analogy to the theory of Kleinian groups, we introduce
notions of the limit set and the region of discontinuity for a reduced Teichm�uller
modular group, and investigate these properties. We begin by giving their de�ni-
tions.

De�nition 1. We say that a point p in T#(R) is a limit point for a subgroup G of

Mod#(R) if there exist a point q 2 T#(R) and a sequence f�ng of distinct elements
of G such that limn!1 dT (�n(q); p) = 0. The set of the limit points is called the
limit set of G, and denoted by �(G). The complement T#(R)� �(G) of the limit
set is denoted by 
(G), and called the region of discontinuity of G. Similarly, for a
subgroup G of the ordinary modular group Mod(R), we can de�ne �(G) and 
(G)
in T (R).

For a Riemann surfaceR of analytically �nite type, �(Mod(R)) = �(Mod#(R)) =
;. On the other hand, for a Riemann surface R whose Fuchsian model is of the
second kind, we always have 
(Mod(R)) = ;, since a slight change of the value of a
quasiconformal map on the ideal boundary produces a di�erent element of Mod(R).

This is the reason why we consider the reduced modular group Mod#(R), not the
ordinary modular group Mod(R), for Riemann surfaces R of in�nite type. In the
next section, we exhibit an example of a Riemann surface R which satis�es both
�(Mod#(R)) 6= ; and 
(Mod#(R)) 6= ;.

We investigate certain properties of the limit set and the region of discontinuity.
There are other equivalent de�nitions of the limit set.

Lemma 1. For a subgroup G of Mod#(R), let �0(G) be the set of points p 2
T#(R) such that limn!1 dT (!n(p); q

0) = 0 for a point q0 2 T#(R) and a sequence

f!ng of distinct elements of G, and �00(G) the set of points p 2 T#(R) such that

limn!1 dT (�n(p); p) = 0 for a sequence f�ng of distinct elements of G. Then

�(G) = �0(G) = �00(G).

Proof. For any point p 2 �(G), there exist a point q 2 T#(R) and a sequence f�ng
of distinct elements of G such that limn!1 dT (�n(q); p) = 0. Since the action of

Mod#(R) on T#(R) is isometric, we have

lim
n!1

dT (q; �
�1
n (p)) = lim

n!1
dT (�n(q); p) = 0;

which means that p 2 �0(G).
For any point p 2 �0(G), there exist a point q0 2 T#(R) and a sequence f!ng of

distinct elements of G which satisfy limn!1 dT (!n(p); q
0) = 0. Set �n = !�1n+1 Æ!n.

Then limn!1 dT (�n(p); p) = 0. If f�ng contains in�nitely many distinct elements,
then this means that p 2 �00(G). If f�ng consists of �nitely many elements, then
there exists an element � such that �n = � for in�nitely many n and �(p) = p. We
see that � is of in�nite order. Indeed, suppose that � is of �nite order k � 1. Since
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!n+1 = !n Æ ��1, we have !n+k = !n Æ ��k = !n. This contradicts that all !n are
distinct. Hence � is of in�nite order. Thus �n(p) = p implies that p 2 �00(G).

Obviously �00(G) � �(G).

First, we show basic properties of the limit set.

Lemma 2. For a subgroup G of Mod#(R), the limit set �(G) is G-invariant and
closed.

Proof. We may assume that �(G) 6= ;. Let p 2 �(G) and � 2 G. Since p is a
limit point, there exists a sequence f�ng of distinct elements of G which satis�es
limn!1 dT (�n(p); p) = 0 by Lemma 1. Since � is an isometry, limn!1 dT (� Æ
�n(p); �(p)) = 0. Setting !n = � Æ �n, we have limn!1 dT (!n(p); �(p)) = 0.
Thus �(p) 2 �(G) by Lemma 1, and hence �(�(G)) � �(G). Similarly we have
��1(�(G)) � �(G). Thus �(�(G)) = �(G), which means that �(G) is G-invariant.

Let fpng be a sequence of points in �(G) that converges to a point p 2 T#(R).
For each pn 2 �(G), we can take a sequence f�n;ig1i=1 of distinct elements of G such
that limi!1 dT (�n;i(pn); pn) = 0. For each n, choose i(n) so that dT (�n;i(n)(pn); pn) �
1=n and that all �n;i(n) are distinct. Since � is an isometry, we have

dT (�n;i(n)(p); p) � dT (�n;i(n)(p); �n;i(n)(pn))

+ dT (�n;i(n)(pn); pn) + dT (pn; p)

� 2dT (p; pn) + 1=n:

Then limn!1 dT (�n;i(n)(p); p) = 0. Hence p 2 �(G), which means that �(G) is
closed.

We classify the limit points for a subgroupG of Mod#(R) into three types �0(G),
�11(G) and �21(G) according to their stabilizer.

De�nition 2. In a subgroup G of Mod#(R), the stabilizer of a point p 2 T#(R)
is de�ned by StabG(p) = f� 2 G j �(p) = pg.

We de�ne �0(G) as the set of points p 2 �(G) such that there exists a sequence
f�ng of distinct elements of G that satis�es limn!1 dT (�n(p); p) = 0 and that
�n(p) 6= p for all n, and �1(G) as the set of points p 2 �(G) such that StabG(p)
consists of in�nitely many elements. Furthermore we divide �1(G) into two disjoint
subsets �11(G) and �21(G). The �11(G) is the set of points p 2 �1(G) such that
there exists an element in StabG(p) that is of in�nite order, and the �21(G) is the
set of points p 2 �1(G) such that all elements in StabG(p) are of �nite order.

It might be the case that �0(G) \ �1(G) 6= ;.
Lemma 3. The sets �0(G), �

1
1(G) and �21(G) are G-invariant.

Proof. Let p 2 �0(G). We can take a sequence f�ng1n=1 of distinct elements of
G so that limn!1 dT (�n(p); p) = 0 and �n(p) 6= p for all n. For any � 2 G,
we have limn!1 dT (� Æ �n(p); �(p)) = 0 and � Æ �n(p) 6= �(p), which means that
�(p) 2 �0(G). Similarly, we have ��1(p) 2 �0(G). Thus �0(G) is G-invariant.

The fact that StabG(�(p)) = �ÆStabG(p)Æ��1 implies that the sets �11(G) and
�21(G) are G-invariant.

We exhibit examples of limit points in �0(Mod#(R)).
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Example 1. Set

R = C �
1[
n=1

[
m2Z

nm
n
+ (2n+ 1)

p�1
o
:

By Example 2 in [4], we see that the base point [R; id] belongs to �0(Mod#(R)).

Example 2. Set

zn =

(
n+

p�1
j(n)+1 (n 6= 0)

0 (n = 0)

where j(n) is the power of the factor 2 when we decompose jnj to the product of
primes. Set R = C �P1

n=�1fzng. By Example 6 in [4], we see that the base point

[R; id] belongs to �0(Mod#(R)).

We also have an example of a limit point in �11(Mod#(R)).

Example 3. Let R̂ be a compact Riemann surface of genus g � 2, and R a normal
covering surface of R̂ whose covering transformation group is a cyclic group h�i
generated by a conformal automorphism � of R. Then p0 = [R; id] 2 T#(R) and

[�] 2 Mod#(R) satisfy [�](p0) = p0. Hence p0 belongs to �11(Mod#(R)).

We see that if the limit set has an isolated point, the isolated point belongs to
�21(G). However, we do not know whether the limit set has an isolated point.

Theorem 1. For a subgroup G of Mod#(R), the set �(G)��21(G) does not have

an isolated point.

Proof. We will show that, for any point p 2 �(G)��21(G), there exists a sequence
fpng of distinct elements in �(G)� �21(G) such that limn!1 dT (pn; p) = 0.

If p 2 �0(G), then we can take a sequence f�ng1n=1 of distinct elements of G so
that limn!1 dT (�n(p); p) = 0 and �n(p) 6= p for all n. It follows from Lemma 3
that �n(p) belongs to �0(G) for all n.

If p = [S; f ] 2 �11(G), then there exists an element � = [h] 2 StabG(p) such that
all �k are distinct for k 2 N. Since �(p) = p, the quasiconformal automorphism
f Æ h�1 Æ f�1 of S is homotopic to a conformal map  . Note that  does not have
a �xed point in S. Indeed, if  has a �xed point x in S, then x is �xed by in�nitely
many elements  k 2 Aut(S). However it is known that the action of Aut(S) is
properly discontinuous if S has the non-abelian fundamental group ([11, Theorem
X. 48]). Thus we have a contradiction. We consider the quotient S=h i by the

cyclic group h i, and denote it by bS. The Riemann surface bS is also hyperbolic
type.

First, suppose that bS is not of analytically �nite type (0,3). We take a sequence

of quasiconformal maps fcgng of bS which are not homotopic to a conformal map onbS for all n and satisfy limn!1K(cgn) = 1. In particular, a lift fgn of cgn to H is not

the restriction of a conformal map on the limit set �(b�) of the Fuchsian model b�
of bS. Here we note the following lemma.

Lemma 4. ([9, Lemma 2.22]) For a normal subgroup � of a non-elementary Fuch-

sian group b�, we have �(�) = �(b�) if � 6= fidg. Here �(�) means the limit set of

a Fuchsian group.
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Since S is a normal covering surface of bS, Lemma 4 says that the lift fgn is not
the restriction of a conformal map on �(�), either. Here � is the Fuchsian model
of S. Then a lift gn of cgn to S is not homotopic to a conformal map on S, and
pn = [gn(S); gn Æ f ] 2 T#(R) is di�erent from p for each n. We also have

lim
n!1

dT (p; pn) � lim
n!1

logK(gn) = 0:

Since dT (�
k(pn); pn) = logK(gn Æ k Ægn�1) and since gn Æ k Ægn�1 (k = 1; 2; � � � )

are distinct conformal automorphisms of gn(S), we see that pn belongs to �11(G).
Thus fpng is a desired sequence.

If bS is of analytically �nite type (0,3), then we consider h 2i instead of h i.
Then S=h 2i is not of analytically �nite type (0,3), and the same proof can be
applied.

Corollary 1. For a subgroup G of Mod#(R) such that �(G)��21(G) is not empty,

the limit set �(G) is an uncountable set.

Proof. By Theorem 1, the closure �(G)� �21(G) of �(G) � �21(G) is a perfect
closed set. In a complete metric space, every non-empty perfect closed set is an

uncountable set (Cantor. cf. [6, p.156]). Then �(G)� �21(G) is an uncountable

set. Since �(G)� �21(G) � �(G), the limit set �(G) is also an uncountable set.

Remark 1. The Riemann surfaces R in Examples 1, 2 and 3 satisfy �(Mod#(R))�
�21(Mod#(R)) 6= ;.

In the theory of Kleinian groups, it is known that the limit set of a non-
elementary Kleinian group � coincides with the closure of the loxodromic �xed
points of �, and it also coincides with the closure of the set of limit points that
are not �xed by any elements of �. On the analogy of this fact, we propose the
following problems.

Problem 1. For a subgroup G of Mod#(R), the set �0(G) is dense in �(G) �
�21(G). The closure of �1(G) coincides with �(G).

Next, we consider the proper discontinuity of G on the region of discontinuity.

De�nition 3. We say that a subgroup G � Mod#(R) acts on a subregion 
 �
T#(R) properly discontinuously if for any p 2 
, there exists a constant r > 0
such that the set f� 2 G j �(B(p; r)) \ B(p; r) 6= ;g consists of only �nitely many
elements. Here B(p; r) is an open ball centered at p with radius r.

Proposition 1. Let G be a subgroup of Mod#(R). For any point p in T#(R) �
�0(G), there exists a constant r > 0 such that �(B(p; r)) \ B(p; r) = ; for any

� 2 G� StabG(p).

Proof. Suppose that, for any n 2 N, there exists an element �n 2 G � StabG(p)
such that �n(B(p; 1=n)) \ B(p; 1=n) 6= ;. We take a point qn 2 B(p; 1=n) so that
�n(qn) 2 B(p; 1=n). Since �n is an isometry, we have

dT (p; �n(p)) � dT (p; �n(qn)) + dT (�n(qn); �n(p)) � 2=n:

Hence limn!1 dT (p; �n(p)) = 0. If f�ng contains in�nitely many distinct elements,
then p 2 �0(G) since �n(p) 6= p for all n. This contradicts p =2 �0(G). If f�ng
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consists of �nitely many elements, then �n(p) = p for a suÆciently large n. This
contradicts �n =2 StabG(p).

If p 2 
(G), then StabG(p) consists of only �nitely many elements. Thus we
have the following corollary.

Corollary 2. Let G be a subgroup of Mod#(R). Then G acts on 
(G) properly

discontinuously.

Remark 2. In general, for a group consisting of isometric transformations acting
on a complete metric space, the limit set and the region of discontinuity can be
de�ned as in De�nition 1, and they satisfy the same properties as in Lemmas 1, 2,
3 and Proposition 1.

In the last of this section, we propose problems on properties of the limit sets
and the regions of discontinuity.

Problem 2. For a subgroup G of Mod#(R) such that 
(G) is not empty, the limit
set �(G) is nowhere dense in T#(R).

Problem 3. For a subgroup G of Mod#(R) such that 
(G) is not empty, the
region of discontinuity 
(G) is connected.

4. Teichm�uller modular group of the second kind

In this section, we consider suÆcient conditions for Mod#(R) to have a non-
empty region of discontinuity. The conditions are given in terms of hyperbolic
geometry on R.

De�nition 4. For a subgroup G of Mod#(R), we say that G is of the �rst kind if

(G) = ;, and otherwise of the second kind.

De�nition 5. For a constant M > 0, we de�ne RM to be the subset of points
p 2 R such that there exists a non-trivial simple closed curve passing through p
whose hyperbolic length is less than M . The set R� is called the �-thin part of R
if � > 0 is smaller than the Margulis constant. Further, a connected component of
the �-thin part that corresponds to a puncture is called the cusp neighborhood.

The conditions mentioned above are given as follows.

De�nition 6. We say that R satis�es the lower bound condition if there exists a
constant � > 0 such that the �-thin part of R consists only of cusp neighborhoods
and neighborhoods of geodesics which are homotopic to boundary components.
Further we say that R satis�es the upper bound condition if there exist a constant
M > 0 and a connected component R�M of RM such that a homomorphism of
�1(R

�
M ) to �1(R) that is induced by the inclusion map of R�M into R is surjective.

Remark 3. The lower and upper bound conditions are invariant under quasicon-
formal deformations ([4, Lemma 8]). In other words, they are regarded as conditions
for the Teichm�uller space.

The following theorem gives a suÆcient condition on Riemann surfaces R for
Mod#(R) to be of the �rst kind.

Theorem 2. If R does not satisfy the lower bound condition, then Mod#(R) is of

the �rst kind.



8 EGE FUJIKAWA

Proof. Since R does not satisfy the lower bound condition, R has a sequence fcn�g
of distinct non-trivial simple closed geodesics that are not homotopic to boundary
components with `(cn�)! 0 (n!1).

Let [hn] be an element of Mod#(R) that is the Dehn twist along cn for each n.
By the assumption, we can take a representative hn so that limn!1K(hn) = 1.
Indeed, the collar C(cn) of cn is conformally equivalent to an annulus An = fz j
1 < jzj < rng, and we can take rn so that limn!1 rn = 1 by the collar lemma
(cf. [8]). Further we can take hn so that hn is the identity on the complement of

C(cn) and that the restriction of hn to C(cn) is conjugate to a map ~hn : An ! An

de�ned by

~hn(z) = z exp

�
2�i

logjzj
log rn

�
:

Then limn!1K(~hn) = 1. Hence limn!1 dT ([hn](p0); p0) = 0, where p0 = [R; id] is

the base point of T#(R). This means that p0 2 �(Mod#(R)). Further [hn](p0) 6= p0
implies that p0 2 �0(Mod#(R)).

Let f be an arbitrarily quasiconformal map ofR onto S. If f is aK-quasiconformal
map, the geodesic f(cn)� that is homotopic to f(cn) satis�es

K�1`(cn�) � `(f(cn)�) � K `(cn�):

Then S also has the sequence ff(cn)�g of distinct non-trivial simple closed geodesics
with `(f(cn)�) ! 0 (n ! 1), and the quasiconformal map f Æ h�1n Æ f�1 is the
Dehn twist along each f(cn). Hence, for any point p = [S; f ] 2 T#(R), we have

limn!1 dT ([hn](p); p) = 0, which means that p 2 �(Mod#(R)). In fact, T#(R) =

�(Mod#(R)) = �0(Mod#(R)).

In [4], we gave a suÆcient condition on Riemann surfaces R for some subgroup

G of Mod#(R) to satisfy �(G) = ;.
Proposition 2. ([4]) Suppose that R satis�es the lower and upper bound condi-

tions. For a non-trivial simple closed curve c on R, we set

Mod#c (R) = f[f ] 2 Mod#(R) j f(c) is freely homotopic to cg:
Then �(Mod#c (R)) = ;.

Using this result, we have a suÆcient condition on Riemann surfaces R for
Mod#(R) to be of the second kind.

Theorem 3. If R satis�es the lower and upper bound conditions, then Mod#(R)
is of the second kind.

To prove this theorem, we use the following lemma.

Lemma 5. Let R be a Riemann surface satisfying the lower bound condition for a

constant � > 0, and c0 a non-trivial simple closed geodesic on R. Then there exist

a positive constant � < � and a quasiconformal map f of R such that `(f(c0)�) < �
and that `(f(c)�) > � for any other non-trivial simple closed geodesics c 6= c0 on

R.

Proof. We take two adjacent pairs of pants P j (j = 1; 2) with three geodesic

boundaries c0; c
j
1 and cj2 so that the �ve geodesics are mutually disjoint. We �x

j, and denote c1 and c2 instead of cj1 and c
j
2 respectively. Set ai = (1=2)`(ci) and
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bi = dR(ci�1; ci+1) for i = 0; 1; 2 (if i = 0, then we put i� 1 = 2, and if i = 2, then
we put i+ 1 = 0). Here dR(�; �) is the hyperbolic distance on R. Further, set

A0 = arccosh

�
1 + cosh a1 cosha2
sinh a1 sinh a2

�
and � = minf�=2; A0; b1; b2g. We can take a quasiconformal map f on R so that
`(f(c0)�) < � and the restriction of f to the complement of P 1 [P 2 is the identity.
In particular, f(ci) = ci for i = 1; 2, and f(c) = c for any non-trivial simple closed
curve c on R that is not through P j (j = 1; 2). Therefore, from the lower bound
condition, `(f(c)�) > � for such c. Further, for any non-trivial simple closed curve
c through P j , we have `(f(c)�) > �.

Indeed, set a0i = (1=2)`(f(ci)�) and b0i = df(R)(f(ci�1)�; f(ci+1)�) for i = 0; 1; 2
(if i = 0, then we put i�1 = 2, and if i = 2, then we put i+1 = 0). Here df(R)(�; �)
is the hyperbolic distance on f(R). Then a0i = ai for i = 1; 2. For any non-trivial
simple closed curve c through P j , we have `(f(c)�) > b0i for some i = 0; 1; 2. By
the formula for a right-angled hexagon ([1, Theorem 7.19.2]), we have

cosh b
(0)
i =

cosha
(0)
i + cosha

(0)
i�1 cosha

(0)
i+1

sinha
(0)
i�1 sinh a

(0)
i+1

:

Hence b00 > A0. Since a00 < a0, we see that b0i > bi for i = 1; 2. Then, for any
non-trivial simple closed curve c through P j , we have `(f(c)�) > minfA0; b1; b2g.
Hence `(f(c)�) > �.

Proof of Theorem 3: Let f be a quasiconformal map on R obtained by Lemma
5. Setting S = f(R), we will show that the point p = [S; f ] 2 T#(R) belongs to


(Mod#(R)). Suppose that p 2 �(Mod#(R)). Then there exists distinct elements

[hn] in Mod#(R) such that [hn](p)! p (n!1). Let gn be an extremal quasicon-
formal automorphism of S in the homotopy class of f Æh�1n Æf�1. Then K(gn)! 1.
Letting � be a constant in Lemma 5, we may assume that K(gn) < �=`(f(c0)�) for
all n. Then the geodesic gn(f(c0))� satis�es `(gn(f(c0))�) � K(gn)`(f(c0)�) < �.
By Lemma 5, f(c0)� is the only geodesic on S whose length is less than �. Thus

gn(f(c0)) is homotopic to f(c0), which implies that [hn] 2 Mod#c0(R). However this
contradicts Proposition 2.

The following proposition gives examples of Riemann surfaces that satisfy the
lower and upper bound conditions.

Proposition 3. Let R̂ be an analytically �nite Riemann surface, and R a normal

covering surface of R̂ which is not a universal cover. Then R satis�es the lower

and upper bound conditions.

Proof. The lower bound condition is clearly satis�ed. We set R̂�� = R̂� R̂�, where

R̂� is the �-thin part of R̂. The lift R0 of R̂�� to R is connected and a homomorphism
of �1(R0) to �1(R) which is induced by the inclusion map of R0 into R is surjective.
We will show that R0 � RM for some M > 0. Then the upper bound condition is
satis�ed for the constantM . Since R is a normal covering surface of R̂ which is not
a universal cover, we can take a non-trivial simple closed geodesic ĉ� on R̂ so that
the lifts of ĉ� to R are non-trivial closed geodesics. For an arbitrary point p 2 R0,
let p̂ be the projection of p. We connect p̂ and ĉ� by the shortest geodesic ^̀. Since

R̂�� is compact, there exists a constant M1 such that the hyperbolic length of ^̀ is
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less than M1 for all p̂ 2 R̂��. Hence there exists a non-trivial simple closed curve
ĉp through p̂ whose hyperbolic length is less than M = 2M1 +M2, where M2 is
the hyperbolic length of ĉ�. Considering the lift cp of ĉp which is through p, we
conclude that p 2 RM .

By Theorem 3 and Proposition 3, we have the following.

Corollary 3. Let R̂ be an analytically �nite Riemann surface, and R a normal

covering surface of R̂ which is not a universal cover. Then Mod#(R) is of the

second kind.

Example 4. Let R be a Riemann surface as in Example 3. Then the base point
[R; id] belongs to �11(Mod#(R)). On the other hand, Mod#(R) is of the second

kind by Corollary 3. Thus both �(Mod#(R)) 6= ; and 
(Mod#(R)) 6= ; are
satis�ed.

We conjecture that the suÆcient condition for Mod#(R) to be of the second
kind can be weakened as follows. A partial solution will be given in the author's
forthcoming paper.

Conjecture. If R satis�es the lower bound condition, then Mod#(R) is of the

second kind. That is, considering Theorem 2, we conjecture that Mod#(R) is of
the second kind if and only if R satis�es the lower bound condition.
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