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abstract:

Finitely constructable entire functions are called structurally finite.
Structurally finite entire functions have many nice properties. In this
note, we define a new kind of the deformation space of a general
entire function, and discuss about completeness and stability of such
deformation spaces in case of structurally finite entire functions.

1 Deformation spaces

The dynamic Teichmüller space of a holomorphic endomorphism (see [7], [8])
is rather tight to discribe variations of singular affine structures on C. So
we relax the connection between the domain and the target, and introduce
a different kind of topology to the space of singular affine structures.

Definition 1.1 Let f be a non-affine entire function. Then the full defor-
mation set FD(f) of f is the set of all entire functions g such that there is
a quasiconformal self-map φ of C satisfiying the qc-L∞ condition:

‖f − g ◦ φ‖∞ = sup
C

|f − g ◦ φ| <∞.

Here we may assume that such a φ as above is always normalized, that
is, fixes 0 and 1. Here the following lemma is clear.

Lemma 1.2 If g ∈ FD(f), then f ∈ FD(g).
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Definition 1.3 For any two function f1, f2 in FD(f), we set

d(f1, f2) = inf
(
logK(φ1 ◦ φ−1

2 ) + ‖f1 ◦ φ1 − f2 ◦ φ2‖∞
)
,

where the infimum is taken over all normalized quasiconformal automor-
phisms φ1, φ2 of C satisfying the qc-L∞ conditions between f and f1, f2,
respectively.

Lemma 1.4 The psuedo-distance d is a distance, and FD(f) with this dis-
tance is a complete metric space.

Proof. If d(f1, f2) = 0, then there are sequences {φj,n} (j = 1, 2) such that

logK(φ1,n ◦ φ−1
2,n) + ‖f1 ◦ φ1,n − f2 ◦ φ2,n‖∞ → 0

as n,m → ∞. Then since {φ1,n ◦ φ−1
2,n} is a normal family, they converge to

the identity. Moreover, since

‖f1 ◦ φ1,n ◦ φ−1
2,n − f2‖∞ → 0,

we conclude that f1 and f2 coincide with each other. Thus, d is a distance.
Next, to show completeness, let {fn} be an arbitrary Cauchy sequence.

Then, there is a sequence of normalized quasiconformal φn such that

logK(φn ◦ φ−1
m ) + ‖fn ◦ φn − fm ◦ φm‖∞ → 0

as n,m → ∞. Fix such a sequence {φn}. Then a standard argument shows
that, taking a subsequence if necessary, we may assume the existence of a
normalized quasiconformal automorphism φ∞ such that φn converge to φ∞
locally uniformly and satisfy

logK(φ∞ ◦ φ−1
n ) → 0.

In particular, fn are locally uniformly bounded because of the qc-L∞

condition between f1 and fn, and hence we may assume that fn converge
locally uniformly to some non-constant entire function f∞. Moreover, the
above condition implies that

‖fn ◦ φn − f∞ ◦ φ∞‖∞ → 0,

since fn ◦ φn(z)− fm ◦φm(z) tends to fn ◦ φn(z)− f∞ ◦φ∞(z) as m→ ∞ for
every z ∈ C. Thus fn converge to f∞ in FD(f).
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Definition 1.5 We call this distance the synthetic Teichmüller distance on
FD(f). The space FD(f) equipped with this synthetic Teichmüller distance
is called the full synthetic deformation space of f and written as FSD(f).

In this paper, we discuss about the full synthetic deformation spaces. But,
to discuss some kind of stability, we also consider several other deformation
spaces.

In the sequel, we consider only such an f that the singular values of f
have a finite number of accumulating points.

Also, we call a point not virtually evenly covered a singular value of
the covering. Here for such a function f as above, we say that a point
α is virtually evenly covered if α is not a critical value and if there is a
neighborhood U and a simple path L from the boundary of U to α such
that every component D of f−1(U − L) is relatively compact and f is a
biholomorphic map of D onto U − L.

Recall that, if f belongs to the Speiser class, then singular values of the
covering are nothing but singular values, i.e. values not evenly covered by f .

Definition 1.6 The set S(f) consisting of all entire functions g such that
there are bijections between critical points counted with their multiplicity, and
between singular values of the covering counted with their coincidence, of g
and f .

Note that, when singular values of the covering are countable in number,
then S(f) has a set of the natural local parameters, which gives a local
injection to C∞.

Definition 1.7 For an entire function f , let Top(f) be the set of all en-
tire functions topologically equivalent to f , and QC(f) the set of all entire
functions quasiconformally equivalent to f .

Here we say that g is topologically (resp., quasiconformally) equivalent
to f if there are self-homeomorphisms (resp., quasiconformal maps) φ and ψ
of C such that g = ψ ◦ f ◦ φ.

Now clearly,
QC(f) ⊂ Top(f) ⊂ S(f).
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2 The case of structurally finite entire func-

tions

To construct entire functions or singular affine structures, we need two kinds
of building blocks; ones are quadratic blocks

az2 + bz + c : C → C (a 6= 0)

and the others are exponential blocks (exp-blocks)

a exp bz + c : C → C (ab 6= 0).

Remark 2.1 The trivial covering structure is given by similarities:

az + b : C → C (a 6= 0).

We call such one a C-block.

Definition 2.2 (Maskit surgery by connecting functions)
Let fj : C → C (j = 1, 2) be two entire functions, and Aj be the set of

singular values of fj. Assume that there is a cross-cut L in C (i.e. the image
L of a continuous proper injection of R into C) such that

1. L ∩ A1 is coincident with L ∩ A2, and is either empty or consists of a
single point z0, which is an isolated point of each Aj,

2. L separates A1 − {z0} from A2 − {z0}, and

3. if L ∩ A1 = L ∩ A2 = {z0}, then {z0} is a critical value of each fj :
for a small disk U with center z0 such that U ∩Aj = {z0}, f−1

j (U) has
a relatively compact component Wj which contains a critical point for
each fj .

Then we say that an entire function f : C → C is constructed from f1
and f2 by a Maskit surgery with respect to L, and to {Wj} when they exist,
if the following assumptions are satisfied: Let Dj be the component of C−L
containing Aj − {z0}. Then there exist

1. components D̃1 and D̃2 of f−1
1 (D2) and f−1

2 (D1), respectively, such that
fj : D̃j → D3−j is biholomorphic and D̃j ∩Wj 6= ∅ if L ∩ Aj are non-
empty,
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2. a cross-cut L̃ in C such that f gives a homeomorphism of L̃ onto L,
and

3. a conformal map φj of C− D̃j onto Uj such that fj = f ◦φj on C− D̃j

for each j, where U1 and U2 are components of C − L̃.

Definition 2.3 We say that an entire function is structurally finite if it is
constructed from a finite number of building blocks by Maskit surgeries.

We say that a structurally finite function is of type (p, q) if it is con-
structed from p quadratic blocks and q exp-blocks.

Remark 2.4 1. Suppose that f is structurally finite, then every g ∈ S(f)
is of the same type as f .

2. Suppose that f belongs to the Speiser class, then

QC(f) = Top(f).

Compare with the Maskit combinations in [6]. Also, note that structural
finiteness is characterized by the following topological condition.

Definition 2.5 We call that a holomorphic endomorphism of C covers C

almost evenly if there are only a finite number of points which are not evenly
covered, and at every such point α, there are only a finite number of com-
ponents of f−1(B) where f is not a homeomorphism onto B for every small
disk B with center α.

Proposition 2.6 (Topological Characterization) Every structurally fi-
nite entire function covers C almost evenly. Conversely, every entire function
which covers C almost evenly is structually finite.

Proof. The first assertion is clear.
Next, let f be an almost evenly covered entire function. Then we take

a cross-cut L which togather with ∞ is freely homotopic to a simple closed
curve C surrounding a single singular value, with a homotopy keeping the
set of singular values fixing pointwise, in the Riemann sphere Ĉ. Then there
are a finite number of components of f−1(L) which divides the singular affine
structures non-trivially.
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Applying such decompositions (of Klein types) a finitely many times, we
can decompose the given almost evenly covered f into a finite number of
exp-blocks and simple critical blocks

z 7→ a(z − z0)
k + c, (a 6= 0)

with degree k (≥ 2).
Now, let f be such a simple critical block, and L a cross-cut passing

through the critical value c of f . Take a suitable pair of components of
f−1(L − {c}) whose images by f cover L − {c}. Then we can decompose f
into two simple critical blocks with degrees k1 and k2 satisfying k1+k2 = k+1.
Applying such decompositions (of Maskit types) a finite number of times, we
can decompose f into k − 1 quadratic blocks.

Theorem 2.7 (Inclusion Theorem) For a structurally finite entire func-
tion f , the full deformation set FD(f) contains all structurally finite entire
functions of the same type as that of f .

Corollary 2.8 For a structurally finite f ,

S(f) ⊂ FD(f).

The proof of Inclusion Theorem will be given in the final section. Actually,
the proof also implies the following

Corollary 2.9 If a structurally finite f of type (p, q) has p+ q distinct sin-
gular values, then

QC(f) = Top(f) = S(f).

Definition 2.10 We define the set SFp,q (with p+ q ≥ 1) by setting

SFp,q =

{∫ z

0

(cpt
p + · · · + c0)e

aqtq+···+a1tdt+ b

}

with cpaq 6= 0 if q > 0, and we regard that SFp,0 = Polyp+1; the set of all
polynomials of degree exactly p + 1.

Such primitive functions have already appeared as typical examples in
various contexts. See for instance, [1], [2], [3], and [9].

Now the topological characterization shows the following
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Corollary 2.11 Every element of SFp,q is structurally finite and of type
(p, q).

Thus, Inclusion Theorem implies that FD(f) contains SFp,q for every f ∈
SFp,q. In particular, the synthetic Teichmüller distance is finite on SF p,q ×
SFp,q, and we may equip SFp,q with the synthetic Teichmüller topology.

Definition 2.12 For f ∈ SFp,q, we set SD(f) = SFp,q, and equip it with
the sythetic Teichmüller topology, which we call the synthetic deformation
space of f .

Actually, we can show the following

Theorem 2.13 (Representation Theorem) An entire function is struc-
turally finite and of type (p, q) if and only if it belongs to SFp,q.

For a proof, see [14], where the proof relies on the proof of Inclusion
Theorem given here.

Proposition 2.14 For every P ∈ SFp,0 = Polyp+1, SD(P ) = FSD(P ).

Proof. Fix Q ∈ FSD(P ). Then since P is proper, so is Q. Indeed, if there
were a compact ball B such that Q−1(B) is non-compact, then U = (Q ◦
φ)−1(B) would be non-compact, where φ is a quasiconformal map satisfying
the qc-L∞ condition between P and Q. Hence supU |P | should be +∞. But
since supU |P | ≤ ‖P −Q ◦ φ‖ + supB |z| < +∞, this is impossible.

Hence Q is polynomial, and then the degree should be equal to p + 1.

On the other hand, we have

Example 2.15 (Melting of C-decorations)

fj(z) =

(
1 +

z

j

)
ez ∈ SF1,1

converge to g(z) = ez ∈ SF0,1 with respect to the synthetic Teichmüller
topology as j tend to +∞.

Similarly,

gj(z) = e2z +
2

j
ez

are structurally infinite, but converge to g(2z) with respect to the synthetic
Teichmüller topology as j tend to ±∞.
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Thus we can see that, even for an f ∈ SFp,q with q > 0, FD(f) always
so large that it contains structurally infinite functions, and SD(f) is neither
closed nor open in FSD(f), except for the case that p = 0. Hence we
need to consider slightly large complete subspaces. The following kind of
compactness gives such ones, and also shows that SD(f) can be considered
as a stratum of FSD(f).

Theorem 2.16 (Compactness Theorem) Suppose that f ∈ SFp,q with
q > 0, and let {fj} be a seqeunce in SD(f) converging to some g in FSD(f).
Then g is structurally finite, and of type (p′, q) with p′ ≤ p.

In particular,
SF≤p,q = ∪p′≤p SFp′,q

with the synthetic Teichmüller topology is a complete metric space, and hence
a completion of SD(f).

Proof. Let S = {α1, · · · , αm} be a finite set of distinct singular values of g,
and let r be the minimum among all the distances between distinct points
in S. Fix an ε > 0 smaller than r/8 and, by considering sufficiently large j
only, we may assume

‖g − fj ◦ φj‖∞ < ε

for every j with a suitable normalized quasiconformal map φj.
Now let D` be the disk with center α` and radius r/4, i.e. the r/4-

neighborhood of α`. Then g−1(D`) has a component where g is not biholo-
morphic. Let V be such a component. If V is relatively compact, then φj(V )
is also relatively compact. Set aV = g−1(α`) ∩ V . Then the winding number
of fj◦φj(∂V ) around fj◦φj(aV ) is equal to that of g(∂V ) around α`. Hence fj

has critical points in φj(V ) and the number counted with their multiplicities
is the same as that of g at aV .

Next, suppose that V is not relatively compact. Since fj ◦ φj(V ) are
bounded and fj are structurally finite, fj should have an asymptotic value
in φj(V ). Thus the number d` of components of g−1(D`) where g is not
biholomorphic is finite, and

m∑
`=1

d` ≤ p+ q.

Since S is arbitrary, this implies that g is structurally finite. In particular,
every asymptotic value of g corresponds to a logarithmic singularity. And it
remains to show that the type of g is (p′, q′) with p′ ≤ p, q′ = q.

Here, we have shown that p′ ≤ p, q′ ≤ q. Also note that, if a point α
satisfies that every component of g−1(D) is relatively compact, where D is
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the r/4-neighborhood of α, there are asymptotic values of no fj in the r/8-
neighborhood D′ of α. Indeed, if some fj has an asymptotic value inD′, then
f−1

j (D′) has a non-compact component V ′. But φj(V
′) should be contained

in g−1(D), which is impossible. Thus, if q ′ < q, then we would have a disk
neighborhood D of an asymptotic value of g such that some component W
of g−1(V ) is simply connected, ∂W is a cross-cut, and φj(W ) contains two
paths determining different asymptotic values of some fj. But then fj can
not be bounded on φj(W ). This contradiction shows that q′ = q.

Now SF≤p,q has another natural topology induced from the coefficents
space of representatives. For instance, we define the line element ds by

ds =

∑p
m=0 |dcm|∑p
m=0 |cm| +

|daq|
|aq| +

q−1∑
n=1

|dan| + |db|

at every

f(z) =

∫ z

0

(cpt
p + · · · + c0)e

aqtq+···+a1tdt+ b

in SF≤p,q. This distance is complete, and we call the induced topology the
coefficient topology on SF≤p,q. Thus Compactness Theorem shows the fol-
lowing

Corollary 2.17 (Equivalence Theorem) The synthetic Teichmüller topol-
ogy is equivalent to the coefficient topology on SFp,q for every p and q.

Finally, we state the following theorem about the size of the Julia set.
Proofs will be given in [15].

Theorem 2.18 For every transcendental structurally finite entire function
f , the Hausdorff dimension of the Julia set of f is two.

Remark 2.19 Compare with a theorem of Stallard ([12] II): For every tran-
scendental entire function with bounded singular values, the Hausdorff di-
mension of J(f) is greater than 1.

3 The case of structurally infinite entire func-

tions

In the case of structurally infinite entire functions, the situation becomes
more complicated. We will show this by several examples.
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First, entire functions in the same full synthetic deformation space are
not necessarily in the same dynamic Teichmüller space. In particular, we can
relax singular orbit relations in a connected component of the full synthetic
deformaiton space.

Proposition 3.1 Set
f1(z) = sin z

and

f2(z) =
z − c

z
sin z

with a sufficiently small positive c. Then

f2 ∈ FD(f1) − S(f1)

Proof. Critical values of f2 accumulates to ±1, which are the critical values
of f1. Also the critical points of f1 and f2 are asymptotically the same. Hence
we can construct a quasiconformal map φ of C which sends critical points of
f1 to those of f2 and satisfies that

f1 = f2 ◦ φ
outside the preimage of a compact set under f1.

Here note that

g(z) =
sin z

z

and f2 are topologically non-equivalent, for the critical values of g accumulate
to a single point 0. On the other hand, set B = {|z| < 2}, then there is a
conformal map φ such that f2 = g◦φ outside f−1

2 (B), which can be extended
to a homeomorphism of C onto itself. Hence, we can find a homeomorphism
ψ of C such that ‖f2 − g ◦ ψ‖∞ is finite.

Also note that both of f2 and g are bounded on the positive real axis,
but that g has an asymptotic value, while f2 does not.

Proposition 3.2

sin z

z
∈ S(f2) − FD(f2)

⋃
Top(f2).

Proof. The preimages of a point, say z = R with a sufficiently large R, under
f2 have eventually almost periodic real parts and have bounded imaginary
parts. Thus the modulus of any 4 preimages neighboring to each other is
bounded and away from 0. On the other hand, though the preimages of
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z = R under g again have eventually almost periodic real parts, they have
the imaginary parts tending to ±∞, which implies that the moduli of 4
preimages neighboring to each other tends to 0 or +∞ as they tend to ∞.
Thus we conclude that no quasiconformal maps satisfy the qc-L∞ condition
between f2 and g, and hence that g 6∈ FD(f2).

Next, topologically equivalent entire functions are not necessarily in the
same full synthetic deformation space.

Proposition 3.3 Set
h1(z) = z sin z

and

h2(z) =

∫ z

0

t

∞∏
n=1

(
1 − t

rn

)
dt,

where {rn} tend to +∞ so rapidly that |h2(rn)| are strictly increasing and
tend to +∞, and h2 is of order 0.

Then
h2 ∈ Top(h1) − FD(h1)

⋃
QC(h1).

Proof. First suppose that there were a normalized quasiconformal map φ
such that

‖h1 − h2 ◦ φ‖∞ < +∞.

Let {an} and {bn} be the zeros of h1 and h2. Then by the Koebe distortion
theorem, φ−1(bn) should be asymptotically equal to an, for h1 ◦ φ−1(bn) are
bounded. Then, since the order of f1 is one, that of h2 should be positive by
the Hölder continuity of quasiconformal maps. But this is a contradiction.

Next suppose that there were quasiconformal maps φ and ψ such that
h2 = ψ ◦ h1 ◦ φ. Here we may assume that ψ is normalized. Then an should
be equal to φ(bn), which implies again that the order of h2 should be positive.

Proposition 3.4 Set h3(z) = 2h1(z). Then

h3 ∈ QC(h1) − FD(h1)

Proof. Let {αn} and {βn} be the critical values of h1 and h3. Then both of
αn and βn tend to ∞. Also note that, for arbitraliry fixed R, αn for every
sufficiently large n has a neighborhood Un = {|z − αn| < R} such that the
component of h−1

1 (Un) containing the critical point over αn contains no other
critical points. The same assertion holds for h2 and {βn}.
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Suppose that there were a quasiconformal map φ of C such that

M = ‖h1 − h3 ◦ φ‖∞ < +∞.

Then as in the proof of Compactness Theorem, we can see that, for every
sufficiently large n, the (R−M)-neighborhoods of αn contain some βm. This
is impossible.

4 Proof of Inclusion Theorem

To describe the structure of an entire function, we use the following kind of a
configuration graph. (Compare with dessins d’enfents, for instance, in [11].)

Definition 4.1 (Configuration tree) A configuration tree is a planar tree
with the initial vertex (and hence whose edges have an orientation towards
the initial vertex) and colored as follows:

1. There are two kind of vertices; white ones and black ones.

2. There are three kind of edges; white ones, black ones, and red ones.

3. Every connected component of the set of all white vertices and white
edges is a subtree R with vertices Z, which we call a Z-unit.

4. Every edge outside Z-units is colored black or red, according as the edge
starts from a black vertex or from a white vertex.

Also a configuration tree is associated with the configuration data.

1. The singularity data; the center locus attached to every Z-unit and the
decoration locus attached to every black edge, and

2. a spider at ∞ ([4]), which assigns each distinct singularity datum a
mutually disjoint path to the infinity.

We call a pair of a red edge and the black vertex pointed by it a reduction
pair. And if the red edge in a reduction pair has the opposite orientation
under a change of the initial vertex, we delete the pair, and attach a new
pair to every white vertex from which a black edge starts.

Further, if a white vertex is the initial one, then we may attach a reduction
pair and regard that the newly attached black vertex is the initial one. Thus
we may always assume that the initial vertex is black.
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We say that such a new configuration tree is obtained by a change of
the initial vertex, and that two configuration trees are equivalent, if, after
suitable changes of the initial vertices of both, they are identical including
colors.

Definition 4.2 (Realizability) We say that a configuration tree T is real-
izable (with suitable configuration data) if there is an entire function f which
gives a tree equivalent to T under the following injunctions; a black edge and
its starting black vertex represent a Maskit surgery attaching a quadratic
block, while a red edge and its starting Z-unit represent a Maskit surgery at-
taching an exp-block where corresponding cross-cuts cut no legs of the spider.

We call T a configuration tree of f (with respect to the given configuration
data).

We sometimes say that a black edge and the starting black vertex repre-
sent a C-decoration and the decorated C-block, respectively.

Also note that f may have several non-equivalent configuration tree with
the same configuration data, which represent diferent orders of attaching
blocks.

Definition 4.3 (Core) The core of a configuration tree is the smallest con-
nected closed subtree containing all black vertices and non-white edges. And
we call a tree is virtually compact if the core is compact.

A virtually compact tree is locally finite, and has a finite number of ends.
Moreover, we can easily conclude the following theorem.

Theorem 4.4 Every configuration tree of a structurally finite function is
virtually compact. Conversely, every virtually compact configuration tree is
realizable by a structurally finite entire function.

Definition 4.5 For every vertex v of a configuration tree T with the initial
vertex v0, we write by Age(v) the number of all non-white edges in the simple
path from v to v0, and call it the age of v.

Corollary 4.6 If T is a configuration tree of a structurally finite entire func-
tion, then Age is a bounded function on the set of all vertices in T .

Now suppose that f is a structurally finite entire function of type (p, q).
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Definition 4.7 We say that a structurally finite entire function of type (p, q)
is simple if it has p + q distinct singurality data.

Then by standard arguments, we can show the following

Proposition 4.8 Every structurally finite entire function f can be approxi-
mated in SD(f) by simple functions of the same type.

Hence we may assume without loss of generality, that the given f is sim-
ple. (For existence of simple functions, see [14].) Furthermore, considering a
quasiconformal equivalent of f , we may also assume that all singularity data
are real and positive.

Here and in the sequel, we call an entire function g a quasiconformal
equivalent of f if g is quasiconformally equivalent to f .

Definition 4.9 The standard function fp,q of type (p, q) is a C-block at-
tached p quadratic blocks with decoration loci {1, · · · , p} and q exp-blocks
with center loci {p + 1, · · · , p + q}. Here and in general, if the singularity
data are real, we always consider a canonical spider at ∞ which is a spider
with all legs parallel to the imaginary axis and going down to the real axis.

Next, we consider to deform the given f in SD(f) without changing the
topological type (i.e. to deform f in SD(f) ∩ Top(f)).

Definition 4.10 we say that g is SD(f)-admissible if g is a quasiconformal
equivalent of f and d(g, f) < +∞.

A typical deformation to obtain an SD(f)-admissible function is rear-
rangement of the legs of the spider.

Definition 4.11 Let (α,E) be the pair of a singularity datum α and a set
E of singularity data of f such that there are no other singularity data in the
minimal interval I = Iα,E containing α and E, and α is an end point of I.

Then we say that an SD(f)-admissible g is obtained from f by a simple
move of (α,E) if g is a quasiconformal equivalent of f with quasiconformal
maps φ1 and φ2 (i.e. g = φ1 ◦ f ◦ φ2) such that

1. φ1 induces a cyclic permutation of the set {α} ∪ E such that α moves
to the other side of I, and fixes all the other singularity data pointwise,
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2. every leg of the canonical spider to a singurarity datum β is mapped by
φ1 to the leg to φ1(β), except for the leg `α to α, and

3. the image φ1(`α) and the leg to φ1(α) in the canonical spider form a
cross-cut, which separates E from all singularity data other than {α}∪
E.

Now the following proposition implies Inclusion Theorem.

Proposition 4.12 Under the same circumstances as above, the standard
function fp,q of type (p, q) is SD(f)-admissible.

In particular, fp,q is entire, and

d(f, fp,q) < +∞.

This proposition in turn follows from two lemmas below: Rearrangement
Lemma and Reduction Lemma. Here we may assume that the initial vertex
of the configuration tree of f is black.

Lemma 4.13 (Rearrangement Lemma) Suppose that f have a configu-
ration tree Tf with the black initial vertex and with Age ≤ 1. Then the
standard function fp,q of type (p, q) is SD(f)-admissible.

Proof. We may assume, by considering a quasiconformal equivalent of f ,
that f has the configuration tree with the same singularity data as that of
fp,q.

If some k ∈ Z is a center locus and k + 1 is a decoration locus of f , then
by applying the simple move of the pair (k + 1, {k}) we obtain an SD(f)-
admissible g1. But the configuration tree of g1 (with respect to the canonical
spider) has k as a decoration locus and k+1 as the center locus, and Age = 2
for vertices in the corresponding Z-unit W , while Age = 1 for every other
non-initial vertex.

Next, by applying the simple move of the pair (k + 1, {k}) to g1, we
obtain an SD(f)-admissible g2 with the same configuration tree as that of
g1 with respect to the canonical spider. Here, if black edges and Z-units of
the configuration tree are numbered so that the ordered singularity data of
g1 is the identitical bijection from the numbers to the data, then that of g2

is the permutation
(k, k + 1).

Again, by applying the simple move of the pair (k + 1, {k}) to g2, we
obtain an SD(f)-admissible g with the same configuration tree as that of f
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with respect to the canonical spider, and hence Age ≤ 1. But k is now a
decoration locus of g, while k + 1 is a center locus of g.

Repeating such rearrangements, we can conclude that the standard func-
tion fp,q is SD(f)- admissible.

Lemma 4.14 (Reduction Lemma) There is an SD(f)-admissible simple
g having a configuration tree Tg with Age ≤ 1.

To prove this lemma, we assume that

maxAge = M > 1

on the configuration tree of f . Let V = {v1, · · · , vn} be the set of all vertices
with Age = M that are connected directly (i.e. by single non-white edges)
either to the same black vertex v corresponding to a decoration locus α or
to the same Z-unit W with center locus α.

Then v or every w ∈ W have Age = M − 1 > 0, and v or some v0 ∈ W ,
which we call the root of W , is connected directly to some vertex with age
M − 2 (which may be the initial vertex).

Here the following fact is easily seen.

Lemma 4.15 (Commutability Lemma I) Suppose that between two sin-
gularity data α and β there are no other singularity data, and that α and
β, respectively, correspond to a vertex vα in V and to vβ not in V ∪ {v}
or V ∪W . Then we can find an SD(f)-admissible simple g with the same
configuration tree (with respect to the canonical spider) and the same set of
the singularity data as those of f , but data corresponding to vα and vβ are
permuted.

Proof. By by the simple move of the pair (α, {β}) , we obtain a desired g.

Thus all the singularity data for V can be gathered near α, and we con-
clude the following

Lemma 4.16 There is an SD(f)-admissible simple f1 with the same con-
figuration tree (with respect to the canonical spider) and the same set of the
singularity data as those of f such that there is an open interval I in R in
which the singularity data are exactly α and those, say {αj}, of V

Here we may assume that αj are increasing, and further that {α, α1, · · · , αn}
equals to {1, · · · , n + 1} with α = n′ + 1 > 1. Then by the simple move of
{1, {2, · · · , n+ 1}}, we have the following
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Lemma 4.17 There is an SD(f)-admissible f2 with the same configuration
tree (with respect to the canonical spider) and the same set of the singularity
data as those of f1 such that the ordered singularity data of f2 corresponding
to V ∪ {v} or V ∪W is the cyclic permutation

(1, · · · , n+ 1)−1

of that of f1.

Repeating such rearrangements, we have an SD(f)-admissible f3 with the
same configuration tree (with respect to the canonical spider) and the same
set of the singularity data as those of f such that the ordered singularity
data of f3 corresponding to V ∪ {v} or V ∪W is the cyclic permutation

(1, · · · , n+ 1)−n′

of that of f1.

Under these circumstances, we divide into two cases.

1) The case that α corresponds to a black vertex v: In this case, by
applying the similar rearrangements which corresponds to the permutation

(1, · · · , n+ 1)−n′−1,

we can obtain an SD(f)-admissible fV with the same set of the singularity
data as that of f , but Age ≤M − 1 on vertices in {v} ∪ V .

2) The case that α corresponds to the root w0: In this case, we need
another index for vj.

First taking another configuration tree of f if necessary, we may assume
that no non-white edges end at w0. Indeed, if there is such a vertex v 0,
we can replace the corresponding edge to one towards the vertex connected
directly with w0. In this new tree, Age(v0) = M − 1.

Then, since the root w0 divides the belonging Z-unit into two connected
components, which in turn divide the set {vj} into two classes V ± = {v±j }m±

j=1

with m+ +m− = n. Here we consider to reduce V ± to the empty sets. We
discuss V + only, for V − can be treated similarly.

Let H(v+
j ) be the number of white edges in the simple path from v+

j to
w0, and call it the height of v+

j . Also note the following

Lemma 4.18 (Commutability Lemma II) Suppose that between two sin-
gularity data α and β there are no other singularity data, and that α and β,
respectively, correspond to vertices u+ in V + and to w which is either in
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V + with H(u+) 6= H(w+) or not in V + ∪W . Then we can find an SD(f)-
admissible simple g with the same configuration tree, the same heights, and
the same set of the singularity data (with respect to the canonical spider) as
those of f , but data corresponding to u+ and w are permuted.

Thus as before we can gather all the singularity data for V + near α. Here
we assume that, by applying the simple move of the pair (α+

m, E ∪ {α}) and
then another simple move of the pair (α, {α+

m}), we can decrease the height
of v+

m+ by 1, where E is the set of the singularity data between α and α+
m.

Also applying suitable simple moves and renumbering V + if necessary, we
may assume that the singularity data {αj} for V + are greater than α and
increasing with respect to j.

Then similarly as in the proof of Rearrangement Lemma, we can decrease
{H(v+

j )} one by one. And finally, we can obtain an SD(f)-admissible g with
the same set of the singularity data {αj}, such that [α, α+

m+] contains no
other singularity data and that H(v+

j ) = 1 for every j. Thus we may assume
that α = 1, and {α+

j } equals to {2, · · · ,m+ + 1}.
Now, by applying the simple move of the pair (1, {2, · · · ,m+ + 1}), we

can obtain an SD(f)-admissible fV with the same singularity data as that
of f , but Age ≤M − 1 on vertices in V +.

Proof of Reduction Lemma. Applying such reductions as above to all
vertices with age M , we can obtain an SD(f)-admissible simple function
with the same set of the singularity data as that of f , but with Age ≤M−1.

Repeating this process a finite number of times, we have the desired g.
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