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Abstract

We show a sufficient condition for the defect δ(0, f) of an analytic
function f(z) = 1+

∑∞
k=1 ckz

nk in the unit disk with Hadamard gaps to
vanish. As a consequence, we find that such f(z) whose characteristic
function is sufficiently large has no finite defective value.

1 Introduction

Let

f(z) = 1 +
∞∑

k=1

ckz
nk (1.1)

be a power series convergent in the open disk {|z| < R} (0 < R ≤ +∞)
with gaps, i.e. the sequence n1 < n2 < · · · < nk < · · · diverges rapidly as
k →∞. The study of value distribution of gap series (1.1) has a long history.
Let f(z) given by (1.1) be an entire function. Fejér ([2]) proved that if {nk}
satisfies ∞∑

k=1

1

nk

< +∞, (1.2)

then the image f(C) equals C. A strictly increasing sequence {nk}∞k=1 of
positive integers with (1.2) is called a Fejér gap sequence. Biernacki ([1])
improved this theorem: f(z) given by (1.1) with Fejèr gaps (1.2) has no
finite Picard exceptional value, i.e. f(z) assumes every finite complex value
a ∈ C infinitely often. Then detailed studies of value distribution of gap
series have been done in terms of Nevanlinna theory.
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According to [6], we introduce the notations of Nevanlinna theory. Let
f(z) given by (1.1) be analytic in {|z| < R} (0 < R ≤ +∞). We define the
characteristic function T (r, f) by

T (r, f) =
1

2π

∫ 2π

0

log+|f(reiθ)|dθ (0 ≤ r < R),

where
log+x = max{log x, 0}.

We define the proximity function m(r, a) = m(r, a, f) by

m(r, a) =
1

2π

∫ 2π

0

log+ 1

|f(reiθ)− a|dθ (0 ≤ r < R, a ∈ C).

If T (r, f) → +∞ as r → R, then the defect δ(a, f) of f(z) at a is defined by

δ(a, f) = lim inf
r→R

m(r, a)

T (r, f)
.

If a ∈ C satisfies δ(a, f) > 0, then a is called a finite defective value of f(z).
Let n(r, a) = n(r, a, f) be the number of a-point of f(z) in the open disk

{|z| < r} counting multiplicity. We define the counting function N(r, a) =
N(r, a, f) by

N(r, a) =

∫ r

0

n(t, a)

t
dt (0 ≤ r < R).

The first main theorem of Nevanlinna states that

T (r, f) = m(r, a) + N(r, a) + O(1),

so that we have

δ(a, f) = 1− lim sup
r→R

N(r, a)

T (r, f)
.

It has to be mentioned particularly that Murai ([12]) showed that an entire
function f(z) given by (1.1) with Fejér gaps (1.2) has no finite defective
value, i.e. the Nevanlinna defect δ(a, f) of f(z) vanishes for arbitrary a ∈ C.
Since there are, of course, many entire functions having finite defective value
whose Taylor expansions are not Fejér gap series (e.g. exp z), the problems
of value distribution of entire functions with gaps were solved in a sence.
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We shall be concerned with only the case where the radius of convergence
of f(z) given by (1.1) equals 1 in the present paper. Unlike the case of
entire functions, no relationship between the value distribution of f(z) in the
unit disk D = {|z| < 1} and Fejér gap conditon (1.2) has been ever known.
However, if {nk}∞k=1 satisfies

nk+1/nk ≥ q (1.3)

for some q > 1, then several results about the value distribution of f(z) have
been established. A sequence {nk}∞k=1 of positive integers satisfying (1.3)
is called an Hadamard gap sequence. It is obvious that an Hadamard gap
sequence is a Fejér gap sequence. The Hadamard gap condition (1.3) was
introduced in [5] and Hadamard there proved that f(z) given by (1.1) with
(1.3) whose convergent radius is 1 has the unit circle {|z| = 1} as its natural
boundary. Fuchs ([3]) proved that if an analytic function f(z) in D given by
(1.1) with Hadamard gaps (1.3) satisfies

lim sup
k→∞

|ck| > 0, (1.4)

then f(z) assumes zero infinitely often in D. Murai ([10]) improved this
theorem: under the same conditions, the Nevanlinna defect δ(0, f) of f(z) at
0 vanishes. More precisely he showed that if (and only if)

∞∑

k=1

|ck|2 = +∞, (1.5)

then the Nevanlinna characteristic function T (r, f) diverges as r → 1 and if
we assume (1.4), then the proximity function m(r, 0) is bounded as r → 1
through a suitable sequence of r. Remark that these results yield that f(z)
given by (1.1) satisfying (1.3) and (1.4) has no finite defective value, that is,
δ(a, f) vanishes for arbitrary a ∈ C. (See Corollary of this paper.)

Now we turn to consider the case where

lim
k→∞

ck = 0. (1.6)

Murai ([11]) also showed that if an analytic function f(z) in D given by (1.1)
with (1.3) and (1.6) is unbounded in D, then f(z) assumes zero infinitely
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often in D. It is well known (Sidon [15]) that such f(z) is unbounded in D
if and only if

∞∑

k=1

|ck| = +∞. (1.7)

Therefore it is natural to ask whether for f(z) given by (1.1) satisfying (1.3),
(1.5) and (1.6), δ(0, f) = 0 holds or not. (Note that the conditions (1.5) and
(1.6) imply (1.7), and the convergent radius of f(z) given by (1.1) satisfying
(1.3), (1.5) and (1.6) must be 1.) We shall study this problem and show a
sufficient condition for δ(0, f) = 0 in the present paper. In particular, our
main theorem and its corollary will show that if the coefficients {ck} of f(z)
satisfy

log K/ log
K∑

k=1

|ck|2 = O(1)

as K →∞, then δ(a, f) = 0 for any a ∈ C.
Here is a brief outline of our proof of this theorem. Main tools for our

proof are the central limit theorem for Hadamard gap series, an analogue
of Poisson-Jensen formula for sectors, BMO norm inequality for Hadamard
gap series and an operator introduced by Littlewood and Offord. First we
construct a sequence {Rl} of radii for the function f(z) such that near Rl we
can estimate the derivative of f(z) and apply the Littlewood-Offord operator.
Next we show that the measure of the set of points θ such that |f(Rle

iθ)|
is smaller than 1 is very small. Note that on the complement of this set
log+1/|f(Rle

iθ)| is zero and this estimate will be proved by using the central
limit theorem. The author wishes to express his thanks to Prof. T. Murai,
who suggested to use the central limit theorem to study the value-distribution
of Hadamard gap series. We represent this set as a finite disjoint union of
closed intervals Ij and consider the sectors whose arcs are Ij. Applying an
analogue of Poisson-Jensen formula for sectors to these, BMO norm inequal-
ity for Hadamard gap series and Littlewood-Offord operator yield that the
average over the interval Ij of log+1/|f(Rle

iθ)| is dominated by T (Rl, f).
Therefore the central limit theorem implies that m(Rl, 0) is of small order of
T (Rl, f) as l →∞. This proves our theorem.

Acknowledgement. The author would like to thank to Professors Tomoki
Kawahira, Takafumi Murai, Junichi Tanaka and Katsutoshi Yamanoi for
their valuable suggestions.
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2 Notation and statement of results

We assume that f(z) given by (1.1) satisfies (1.3), (1.5) and (1.6). Through-
out the present paper ‘const.’ and C(f) denote an absolute positive constant
and a constant depending only on f respectively.

Before stating our theorems, we first show the existence of a certain se-
quence 0 < R1 < R2 < · · · < 1 of radii for the function f(z) = 1 +

∑
ckz

nk .
We shall estimate m(r, 0) on the circle {|z| = Rl}. The following lemma is
an analogue of Lemma 9 in Murai [11].

LEMMA 1. For the sequence {ck} with (1.5) and (1.6), Γ denotes the

set of positive integers k satisfying |cj|n1/2
j ≤ |ck|n1/2

k for any j ≤ k and

|ck|n−1/2
k ≥ |cj|n−1/2

j for any j ≥ k. Then

∑

k∈Γ

|ck| = +∞.

Proof. Note that (1.5) and (1.6) imply

∞∑

k=1

|ck| = +∞.

Since many indices will be used, it is convenient to write c(k) = ck and
n(k) = nk. Let {km}∞m=1 be the strictly increasing sequence of all positive
integers satisfying k1 = 1 and

|c(k)|n(k)1/2 ≤ |c(km)|n(km)1/2

for any k ≤ km. For any k ∈ [km, km+1), we have

|c(km)|n(km)1/2 ≥ |c(k)|n(k)1/2,

so that we obtain

|c(k)| ≤ (n(km)/n(k))1/2|c(km)| ≤ q(km−k)/2|c(km)|.
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Therefore we deduce that

kM−1∑

k=1

|c(k)| =
M−1∑
m=1

km+1−1∑

k=km

|c(k)|

≤
M−1∑
m=1

km+1−1∑

k=km

q(km−k)/2|c(km)|

=
M−1∑
m=1

|c(km)|
km+1−1∑

k=km

q(km−k)/2

≤ 1

1− q−1/2

M−1∑
m=1

|c(km)|

=
q1/2

q1/2 − 1

M−1∑
m=1

|c(km)|.

Let {kml
}∞l=1 be the strictly increasing subsequence of {km}∞m=1 consisting of

all positive integers satisfying

|c(kml
)|n(kml

)−1/2 ≥ |c(km)|n(km)−1/2

for any km ≥ kml
. It is trivial that

∑
k∈Γ |ck| =

∑∞
l=1 |c(kml

)|. For any
km ∈ (kml

, kml+1
], we have

|c(km)|n(km)−1/2 ≤ |c(kml+1
)|n(kml+1

)−1/2,

so that we obtain

|c(km)| ≤ (n(km)/n(kml+1
))1/2|c(kml+1

)| ≤ q(km−kml+1
)/2|c(kml+1

)|.
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Therefore we deduce that, with m0 = 0,

mL∑
m=1

|c(km)| =
L−1∑

l=0

ml+1∑
m=ml+1

|c(km)|

≤
L−1∑

l=0

ml+1∑
m=ml+1

q(km−kml+1
)/2|c(kml+1

)|

=
L−1∑

l=0

|c(kml+1
)|

ml+1∑
m=ml+1

q(km−kml+1
)/2

≤ 1

1− q−1/2

L∑

l=1

|c(kml
)|

=
q1/2

q1/2 − 1

L∑

l=1

|c(kml
)|.

In the sequel,

∑

k∈Γ

|ck| =
∞∑

l=1

|c(kml
)| ≥ lim

L→∞

(q1/2 − 1

q1/2

)2
k(mL)∑

k=1

|ck| = +∞.

We complete the proof. 2

Here is an example for Lemma 1. Suppose that |ck| = 1/kp (0 < p ≤ 1/2).
Then it is easy to see that, if K is sufficiently large,

|cK | ≥ |ck|

for any k ≥ K and
|ck|n1/2

k ≤ |cK |n1/2
K

for any k ≤ K, so that Γ is the set of positive integers which is obtained by
excluding a finite number of elements from the set of positive integers N.

For the sake of simplicity, we write Γ = {kl}∞l=1 (kl < kl+1). It holds that

|ck|n1/2
k ≤ |ckl

|n1/2
kl

(k ≤ kl),

|ckl
|n−1/2

kl
≥ |ck|n−1/2

k (kl ≤ k).
(2.1)
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Let Rl ∈ (0, 1) be defined by

Rl = 1− 1

nkl

.

As an immediate consequence, we have the following:

LEMMA 2. ∣∣∣ ∂

∂θ
f(Rle

iθ)
∣∣∣ ≤ C(f)|ckl

|nkl
. (2.2)

Proof. We obtain, by (2.1), that

∣∣∣ ∂

∂θ
f(Rle

iθ)
∣∣∣ ≤

∞∑

k=1

|ck|nkR
nk
l

=

kl−1∑

k=1

|ck|nkR
nk
l + |ckl

|nkl
Rnk

l +
∞∑

k=kl+1

|ck|nkR
nk
l

=

kl−1∑

k=1

(|ck|n1/2
k )n

1/2
k Rnk

l + |ckl
|nkl

Rnk
l +

∞∑

k=kl+1

(|ck|n−1/2
k )n

3/2
k Rnk

l

≤ |ckl
|n1/2

kl

kl−1∑

k=1

n
1/2
k + |ckl

|nkl
+ |ckl

|n−1/2
kl

∞∑

k=kl+1

n
3/2
k Rnk

l .

Hadamard gap condition (1.3) implies

|ckl
|n1/2

kl

kl−1∑

k=1

n
1/2
k = |ckl

|nkl

kl−1∑

k=1

( nk

nkl

)1/2

≤ C(f)|ckl
|nkl

and

|ckl
|n−1/2

kl

∞∑

k=kl+1

n
3/2
k Rnk

l = |ckl
|nkl

∞∑

k=kl+1

( nk

nkl

)3/2{(
1− 1

nkl

)nkl
} nk

nkl

≤ |ckl
|nkl

∞∑

k=kl+1

( nk

nkl

)3/2

e
− nk

nkl

≤ |ckl
|nkl

∞∑

k=kl+1

(nkl

nk

)1/2

≤ C(f)|ckl
|nkl

,
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so that we have the required inequality. 2

To estimate

m(Rl, 0) =
1

2π

∫ 2π

0

log+ 1

|f(Rleiθ)|dθ,

we shall use the classical central limit theorem for Hadamard gap series,
due to R. Salem and A. Zygmund ([14]). For any Lebesgue measurable set
E ⊂ [0, 2π), |E| denotes its Lebesgue measure.

LEMMA 3 ([14]). Suppose that f(z) given by (1.1) satisfies (1.3), (1.5)
and (1.6). Then, for any y > 0, we have

1

2π
|{θ ∈ [0, 2π) : |f(reiθ)| ≤ yV (r)}| → 1− e−y2/2 (r → 1),

where

V (r) =
{1

2

(
1 +

∞∑

k=1

|ck|2r2nk

)}1/2

.

This lemma exihibits that the measure of the set

{θ ∈ [0, 2π) : log+1/|f(Rle
iθ)| > 0} = {θ ∈ [0, 2π) : |f(Rle

iθ)| < 1}

is small for all sufficiently large l (for the sake of simplicity, we shall omit the
phrase ‘for all sufficiently large l’).

We write

El = {θ ∈ [0, 2π) : |f(Rle
iθ)| ≤ V (Rl)/ log V (Rl)}.

The set El is represented as a finite disjoint union of closed intervals,

El =
⊔
j

Ij t
⊔

j′
Ij′ ,

where each Ij contains a point z satisfying |f(z)| = 1 and Ij′ does not. We
see, by Lemma 2, that the inequality

min
j
|Ij| ≥ 2π/|ckl

|nkl
> 2π/nkl

(2.3)
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holds.
It is obvious that

m(Rl, 0) =
∑

j

1

2π

∫

Ij

log+ 1

|f(Rleiθ)|dθ,

so that we would like to calculate the ‘localized’ mean value

1

|Ij|
∫

Ij

log+ 1

|f(Rleiθ)|dθ.

In fact, the size of this value determines the defect δ(0, f).
We find, by (2.3), that there exists a positive integer αl satisfying

2π/nkl
≤ 2π/αl ≤ min

j
|Ij| (2.4)

and define the set Al by

Al = {αl ∈ N : 2π/nkl
≤ 2π/αl ≤ min

j
|Ij|}.

For an αl ∈ Al, Cj,l denotes the set

Cj,l = {n ∈ N : Ij ∩ [2(n− 1)π/αl, 2nπ/αl] 6= ∅}. (2.5)

Remark that (2.4) implies
∣∣∣

⋃
n∈Cj,l

[2(n− 1)π/αl, 2nπ/αl]
∣∣∣ ≤ 3|Ij|. (2.6)

We can now state the following propositon, which is interesting in itself.

PROPOSITION 1. Take a positive integer αl ∈ Al. Suppose that n is
a positive integer of Cj,l and S(θ; r1, r2) denotes the segment

S(θ; r1, r2) = {z ∈ D : arg z = θ, r1 ≤ |z| ≤ r2}.
Then we obtain the following inequalities;

αl

2π

∫ 2nπ/αl

2(n−1)π/αl

log+1/|f(Rle
iθ)|dθ

≤const.
αl

4π

∫ (2n+1)π/αl

(2n−3)π/αl

log+|f(Rle
iθ)|dθ

+ const.

∫ Rl

0

∫ (2n+1)π/αl

(2n−3)π/αl

log+|f(reiθ)| α2
l r

αl/2−1dθdr

+ const. min{log 1/|f(z)| : z ∈ S((2n− 1)π/αl; r
1
l , r

2
l )}

(2.7)
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and ∑
n∈Cj,l

∫ (2n+1)π/αl

(2n−3)π/αl

log+|f(Rle
iθ)|dθ ≤ const.|Ij| log V (Rl), (2.8)

where r1
l = 1− 3/αl and r2

l = 1− 2/αl.

We will give a proof of Proposition 1 in the section 3. By this proposition,
we can derive the following Proposition.

PROPOSITION 2. Suppose that there exist infinitely many l ∈ N such
that, for an αl ∈ Al, the inequalities

∫ Rl

0

∫ (2n+1)π/αl

(2n−3)π/αl

log+|f(reiθ)| α2
l r

αl/2−1dθdr ≤ C(f) log V (Rl) (2.9)

and

min{log 1/|f(z)| : z ∈ S((2n− 1)π/αl; r
1
l , r

2
l )} ≤ C(f) log V (Rl) (2.10)

hold for all n ∈ ⋃
j Cj,l. Then δ(0, f) = 0.

Proof. Let l be a positive integer such that, for an αl ∈ Al, the inequalities
(2.9) and (2.10) hold for all n ∈ ⋃

j Cj,l. (2.6), (2.9) and (2.10) imply that

∑
n∈Cj,l

2π

αl

∫ Rl

0

∫ (2n+1)π/αl

(2n−3)π/αl

log+|f(reiθ)| α2
l r

αl/2−1dθdr ≤ C(f)|Ij| log V (Rl)

and
∑

n∈Cj,l

2π

αl

min{log 1/|f(z)| : z ∈ S((2n− 1)π/αl; r
1
l , r

2
l )} ≤ C(f)|Ij| log V (Rl),

so that we have, by (2.7) and (2.8), that

∫

Ij

log+1/|f(Rle
iθ)|dθ ≤

∑
n∈Cj,l

∫ 2nπ/αl

2(n−1)π/αl

log+1/|f(Rle
iθ)|dθ

≤ C(f)|Ij| log V (Rl).

Therefore we obtain that

m(Rl, 0) =
∑

j

1

2π

∫

Ij

log+1/|f(Rle
iθ)|dθ ≤ C(f)|El| log V (Rl). (2.11)
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Lemma 3 yields that, for any ε > 0, the inequality

|El| ≤ 2πε (2.12)

holds. We also know that

T (r, f) ≥ C(f) log V (r) (2.13)

holds for all sufficiently large r ∈ [0, 1) (Murai [10]).
We deduce, by (2.11), (2.12) and (2.13), that

m(Rl, 0)/T (Rl, f) ≤ C(f)ε.

Therefore we have

lim inf
l→∞

m(Rl, 0)

T (Rl, f)
≤ C(f)ε,

which proves our proposition. 2

Fortunately, Hadamard gap condition (1.3) gives a certain upper bound
for min{log 1/|f(z)| : z ∈ S((2n−1)π/αl; r

1
l , r

2
l )}, which we shall show below.

PROPOSITION 3. Suppose that αl = nkl
. Then there exists an

absolute positive constant l0 such that, for l ≥ l0,

min{log 1/|f(z)| : z ∈ S((2n− 1)π/αl; r
1
l , r

2
l )} ≤ log+1/|ckl

|+ C(f) (2.14)

holds for all n ∈ ⋃
j Cj,l.

We will give a proof of Proposition 3 in the section 4. By this proposition,
we can derive the following theorem.

THEOREM. Suppose that f(z) given by (1.1) satisfies (1.3), (1.6) and

log K/ log
K∑

k=1

|ck|2 = O(1) (2.15)

as K →∞. Then δ(0, f) = 0.
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Proof. We shall show that there exist infinitely many l ∈ N such that
(2.9) and (2.10) of Proposition 2 hold for all n ∈ ⋃

j Cj,l with αl = nkl
. Note

that

∞∑

k=1

|ck|Rnk
l =

kl∑

k=1

|ck|Rnk
l +

∞∑

k=kl+1

|ck|n−1/2
k n

1/2
k Rnk

l

≤
kl∑

k=1

|ck|+
∞∑

k=kl+1

|ckl
|n−1/2

kl
n

1/2
k Rnk

l

=

kl∑

k=1

|ck|+ |ckl
|

∞∑

k=kl+1

( nk

nkl

)1/2{(
1− 1

nkl

)nkl
} nk

nkl

≤
kl∑

k=1

|ck|+ |ckl
|

∞∑

k=kl+1

( nk

nkl

)1/2

exp
(
− nk

nkl

)

≤
kl∑

k=1

|ck|+ C(f).

(2.16)

It holds similarly that

V (Rl)
2 ≤

kl∑

k=1

|ck|2 + C(f). (2.17)

(2.15) and (2.17) yield that

log kl

log V (Rl)
=

log kl

log
∑kl

k=1 |ck|2
log

∑kl

k=1 |ck|2
log V (Rl)

= O(1)

as l →∞, so that we have

log V (Rl) ≥ C(f) log kl. (2.18)

We obtain, by (2.16), that

log
∞∑

k=1

|ck|Rnk
l ≤ log kl + C(f),
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so that we have, by (2.18),

∫ Rl

0

∫ (2n+1)π/αl

(2n−3)π/αl

log+|f(reiθ)| α2
l r

αl/2−1dθdr

≤
∫ Rl

0

∫ (2n+1)π/αl

(2n−3)π/αl

log(1 +
∞∑

k=1

|ck|Rnk
l ) α2

l r
αl/2−1dθdr

≤(log kl + C(f))

∫ Rl

0

∫ (2n+1)π/αl

(2n−3)π/αl

α2
l r

αl/2−1dθdr

≤C(f) log V (Rl).

By Lemma 1, we find that there exist infinitely many l ∈ N such that

|ckl
| ≥ 1/k2

l . (2.19)

Let l be a positive integer satisfying (2.19) and l ≥ l0, where l0 is an absolute
positive constant defined in the proof of Proposition 3. Then we deduce, by
(2.18), that

min{log 1/|f(z)| : z ∈ S((2n− 1)π/αl; r
1
l , r

2
l )} ≤ log+1/|ckl

|+ C(f)

≤ 2 log kl + C(f)

≤ C(f) log V (Rl).

By Proposition 2, we complete the proof. 2

We apply our theorem to an example. Suppose that |ck| = 1/kp (0 < p <
1/2). It is easy to see that these ck satisfy the conditions of Theorem. In
this situation, we have

T (Rl) ≥ const. log V (Rl) ≥ C(f) log kl,

∫ Rl

0

∫ (2n+1)π/αl

(2n−3)π/αl

log+|f(reiθ)| αl
2rαl/2−1dθdr

≤ log
(
1 +

∞∑

k=1

|ck|Rnk
l

) ∫ Rl

0

∫ (2n+1)π/αl

(2n−3)π/αl

αl
2rαl/2−1dθdr

≤ C(f) log kl

and
log+1/|ckl

|+ C(f) ≤ p log kl + C(f) ≤ C(f) log kl.
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Therefore we deduce, by our theorem, that δ(0, f) = 0.

COROLLARY. Suppose that f(z) given by (1.1) satisfies (1.3), (1.6)
and (2.15). Then f(z) has no finite defective value.

Proof. Let a ∈ C. We define fa(z) by

fa(z) =

{
(f(z)− a)/c1z

n1 if a = 1

(f(z)− a)/(1− a) otherwise.

It is obvious that fa(z) satisfies Hadamard gap condition (1.3) and fa(0) = 1.
The coefficients of fa(z) satisfy (1.5), (1.6) and (2.15). Therefore our theorem
implies δ(0, fa) = 0, which yields δ(a, f) = 0. 2

3 Proof of Proposition 1

Our proof of Proposition 1 will be based on an extension of Poisson-Jensen
formula, due to W. H. J. Fuchs ([4]) and V. P. Petrenko ([13]):

LEMMA 4. Suppose that g(z) is analytic in the closed sector

{z ∈ C : | arg z| ≤ π/α, |z| ≤ R} (α > 1).

Let t ∈ (0, R) be a point on the real axis, where g(t) 6= 0. For z 6= t, 1/t,
define

Φ(R, t, z) = log
∣∣∣ R2 − tz

R(z − t)

∣∣∣− log
R2 + t|z|
R(|z|+ t)

.

If we write

I1 = I1(R, t, α) =

∫ R

0

(∫ π/α

−π/α

log |g(reiθ)|dθ
)
K1(R, r, t, α)dr,

I2 = I2(R, t, α) =

∫ π/α

−π/α

log |g(Reiθ)|K2(R, θ, t, α)dθ,

where

K1(R, r, t, α) =
α2

2π

rα−1tα(R2α − t2α)(R2α − r2α)

(rα + tα)2(R2α + rαtα)2 ,

K2(R, θ, t, α) =
α

π

Rαtα(Rα − tα)(1 + cos αθ)

(Rα + tα)(R2α + t2α − 2Rαtα cos αθ)
,
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then
log |g(t)| = I1 + I2 −

∑
ai

Φ(Rα, tα, ai
α), (3.1)

where the summation is taken over the zeros {ai} of g which lie in the interior
of the sector.

Proof of Proposition 1. We put fn(z) = f(ei2(n−1)/αlz). Let tn be a
maximal point of log 1/|fn(t)| in S(0; r1

l , r
2
l ). We now apply the above formula

for the sector {z ∈ C : | arg z| ≤ 2π/αl, |z| ≤ Rl}. Elementary calculus gives
us K1 ≥ 0, K2 ≥ 0 and Φ ≥ 0, so that we deduce, by (3.1), that

log |fn(tn)| ≤
∫ Rl

0

(∫ 2π/αl

−2π/αl

log+|fn(reiθ)|dθ
)
K1(Rl, r, tn, αl/2)dr

+

∫ 2π/αl

−2π/αl

log+|fn(Rle
iθ)|K2(Rl, θ, tn, αl/2)dθ

−
∫ 2π/αl

−2π/αl

log+1/|fn(Rle
iθ)|K2(Rl, θ, tn, αl/2)dθ

≤
∫ Rl

0

(∫ 2π/αl

−2π/αl

log+|fn(reiθ)|dθ
)
K1(Rl, r, tn, αl/2)dr

+

∫ 2π/αl

−2π/αl

log+|fn(Rle
iθ)|K2(Rl, θ, tn, αl/2)dθ

−
∫ π/αl

−π/αl

log+1/|fn(Rle
iθ)|K2(Rl, θ, tn, αl/2)dθ.

It is easy to see that

K1(Rl, r, tn, αl/2) ≤ const. αl
2rαl/2−1,

K2(Rl, θ, tn, αl/2) ≤ const.
αl

4π
,

and
min{K2(Rl, θ, tn, αl/2) : θ ∈ [−π/αl, π/αl]} ≥ const.

αl

2π
,

16



so that we obtain

αl

2π

∫ π/αl

−π/αl

log+1/|fn(Rle
iθ)|dθ

≤const.
αl

4π

∫ 2π/αl

−2π/αl

log+|fn(Rle
iθ)|dθ

+ const.

∫ Rl

0

∫ π/αl

−π/αl

log+|fn(reiθ)| αl
2rαl/2−1dθdr

+ min{log 1/|fn(z)| : z ∈ S(0; r1
l , r

2
l )},

which is equivalent to (2.7).
We proceed to show (2.8). We write Ij = [θ−j , θ+

j ], θj = (θ+
j + θ−j )/2 and

let Ĩj be the set

Ĩj = {θ ∈ [0, 2π) : |θ − θj| < 2|Ij|}. (3.2)

Then we deduce, by (2.4), (2.5) and (3.2), that

∑
n∈Cj,l

∫ (2n+1)π/αl

(2n−3)π/αl

log+|f(Rle
iθ)|dθ ≤ 2

∫

Ĩj

log+|f(Rle
iθ)|dθ.

Since log x is a convex function, we have, by Jensen’s inequality, that

1

|Ĩj|

∫

Ĩj

log+|f(Rle
iθ)|dθ ≤ 1

|Ĩj|

∫

Ĩj

log(1 + |f(Rle
iθ)|)dθ

≤ log
{ 1

|Ĩj|

∫

Ĩj

1 + |f(Rle
iθ)|dθ

}
.

Regard f(Rle
iθ) as a periodic function on R. It is well known (Kochneff-

Sagher-Zhou [8]) that

||f(Rle
iθ)||BMO(R) ≤ C(f)V (Rl),

so that
||1 + |f(Rle

iθ)|||BMO(R) ≤ C(f)V (Rl).

If we assume that

Mj,l =
1

|Ĩj|

∫

Ĩj

1 + |f(Rle
iθ)|dθ > V (Rl)

3

17



holds for infinitely many l, then we obtain, by (3.2),

1

|Ĩj|
|{θ ∈ Ĩj : |(1 + |f(Rle

iθ)|)−Mj,l| > V (Rl)
2}| > |Ij|

|Ĩj|
= 1/4.

On the other hand, the John-Nirenberg inequality ([7]) implies that

1

|Ĩj|
|{θ ∈ Ĩj : |(1 + |f(Rle

iθ)|)−Mj,l| > V (Rl)
2}|

≤const. exp{−const.V (Rl)
2/||1 + |f(Rle

iθ)|||BMO(R)}
≤const. exp{−C(f)V (Rl)}.

These inequalities lead a contradiction, so that we have Mj,l ≤ V (Rl)
3 and

log Mj,l ≤ const.V (Rl). We complete the proof. 2

4 Proof of Proposition 3

We introduce an oprerater D, first appeared in Littlewood-Offord [9]. Sup-
pose that ψ(r) is a real C∞-function on an interval [a, b] (a > 0) and m is a
non-negative integer. Then we define D(m)ψ(r) by

D(m)ψ(r) = rm+1 d

dr

ψ(r)

rm
.

For a finite set of non-negative integers E = {m1,m2, · · · ,mp}, D(E) is
defined by

D(E) = D(m1)D(m2) · · ·D(mp). (4.1)

It is obvious that D(m)D(n)ψ(r) = D(n)D(m)ψ(r), so that (4.1) is well-
defineded.

LEMMA 5 (LEMMA 7 in [9]). Let E = {m1,m2, · · · ,mp} be a
finite set of non-negative integers. If

|D(E)ψ(r)| ≥ M

for all r in [a, b], then there exist p + 2 numbers η satisfying

a = η0 < η1 < · · · < ηp < ηp+1 = b

18



and

|ψ(r)| ≥ M

2p(p−1)/2p!
b−p

(a

b

)m1+···+mp

Ψ(r; η0, · · · , ηp+1),

where Ψ(r; η0, · · · , ηp+1) is the function on [a, b] defined by

Ψ(r; η0, · · · , ηp+1) = min{(r − ηi)
p, (ηi+1 − r)p} (r ∈ [ηi, ηi+1]).

Proof of Proposition 3. Let θk be the argument arg ck in [0, 2π), n0 = 0
and c0 = 1. Then we can write

f(reiθ) =
∞∑

k=0

|ck|eiθkrnkeinkθ.

Taking a θ ∈ [0, 2π) to be fixed, we consider the function ψl(r) = ψl(r, θ)
defined by

ψl(r) = <
[
e−i(θkl

+nkl
θ)

∞∑

k=0

|ck|eiθkrnkeinkθ
]

= <
[kl−1∑

k=0

+|ckl
|rnkl +

∞∑

k=kl+1

]

= <
[kl−1∑

k=0

]
+ |ckl

|rnkl + <
[ ∞∑

k=kl+1

]
.

It is obvious that |ψl(r)| ≤ |f(reiθ)|.
Let E−

l = {n0, · · · , ns+1} and E+
l = {nkl+1, · · · , nkl+t} be the set of non-

negative integers, where

s = min
{

σ ≥ 0 :
1

qσ+1 − 1
≤ 1

108

{ ∞∏
n=1

(
1− 1

qn

)}2}

and
t = min{τ ≥ 1 : xs+τ+3 exp(−2x) ≤ x−(s+1) (x ≥ qτ+1)}.

Note that both s and t are constants depending only on f .
Now we proceed to estimate |D(E−

l ∪E+
l )ψl(r)| (r ∈ [r1

l , r
2
l ]). Let l0 be

defined by
l0 = min{l ∈ N : (1− 3/nkl

)nkl
/3 ≥ 1/3}.

19



Then we obtain, for any l ≥ l0, by (2.1), the following inequalities:

|D(E−
l ∪ E+

l )|ckl
|rnkl |

=|ckl
|(nkl

− n0) · · · (nkl
− ns+1)(nkl+1 − nkl

) · · · (nkl+t − nkl
)rnkl

=|ckl
|ns+2

kl

(
1− n0

nkl

)
· · ·

(
1− ns+1

nkl

)

× nkl+1 · · ·nkl+t

(
1− nkl

nkl+1

)
· · ·

(
1− nkl

nkl+t

)
rnkl

≥|ckl
|ns+2

kl

{ ∞∏
n=1

(
1− 1

qn

)}
nkl+1 · · ·nkl+t

{ ∞∏
n=1

(
1− 1

qn

)}{(
1− 3

nkl

)nkl
/3}3

≥ 1

27

{ ∞∏
n=1

(
1− 1

qn

)}2

|ckl
|ns+2

kl
nkl+1 · · ·nkl+t,

∣∣∣D(E−
l ∪ E+

l )<
[kl−1∑

k=0

]∣∣∣

≤
kl−1∑

k=s+2

|ck|(nk − n0) · · · (nk − ns+1)(nkl+1 − nk) · · · (nkl+t − nk)

≤nkl+1 · · ·nkl+t

kl−1∑

k=s+2

(|ck|nk)n
s+1
k

≤|ckl
|nkl

nkl+1 · · ·nkl+t

kl−1∑

k=s+2

ns+1
k

=|ckl
|ns+2

kl
nkl+1 · · ·nkl+t

kl−1∑

k=s+2

( nk

nkl

)s+1

≤|ckl
|ns+2

kl
nkl+1 · · ·nkl+t

kl−1∑

k=s+2

q(s+1)(k−kl)

≤ 1

qs+1 − 1
|ckl
|ns+2

kl
nkl+1 · · ·nkl+t

≤ 1

108

{ ∞∏
n=1

(
1− 1

qn

)}2

|ckl
|ns+2

kl
nkl+1 · · ·nkl+t,
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and

∣∣∣D(E−
l ∪ E+

l )<
[ ∞∑

k=kl+1

]∣∣∣

≤
∞∑

k=kl+t+1

|ck|(nk − n0) · · · (nk − ns+1)(nk − nkl+1) · · · (nk − nkl+t)r
nk

≤
∞∑

k=kl+t+1

|ck|ns+t+2
k rnk

=
∞∑

k=kl+t+1

|ck|n−1
k ns+t+3

k rnk

≤|ckl
|n−1

kl

∞∑

k=kl+t+1

ns+t+3
k rnk

=|ckl
|ns+t+2

kl

∞∑

k=kl+t+1

( nk

nkl

)s+t+3

rnk

≤|ckl
|ns+t+2

kl

∞∑

k=kl+t+1

( nk

nkl

)s+t+3{(
1− 2

nkl

)nkl
/2} 2nk

nkl

≤|ckl
|ns+t+2

kl

∞∑

k=kl+t+1

( nk

nkl

)s+t+3

exp
(
−2nk

nkl

)

≤|ckl
|ns+t+2

kl

∞∑

k=kl+t+1

(nkl

nk

)s+1

≤|ckl
|ns+t+2

kl

∞∑

k=kl+t+1

q(kl−k)(s+1)

≤ 1

qs+1 − 1
|ckl
|ns+t+2

kl

≤ 1

108

{ ∞∏
n=1

(
1− 1

qn

)}2

|ckl
|ns+t+2

kl
.

These inequalities yield that

|D(E−
l ∪ E+

l )ψl(r)| ≥ 1

54

{ ∞∏
n=1

(
1− 1

qn

)}2

|ckl
|ns+2

kl
nkl+1 · · ·nkl+t,
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for all r ∈ [r1
l , r

2
l ].

Therefore, by Lemma 5, there exist (s + t + 4)-numbers

r1
l = 1− 3/nkl

= η0 < η1 < · · · < ηs+t+2 < ηs+t+3 = 1− 2/nkl
= r2

l

such that

|ψl(r)| ≥ 1

54

{ ∞∏
n=1

(
1− 1

qn

)}2

|ckl
|ns+2

kl
nkl+1 · · ·nkl+t

× 1

2(s+t+2)(s+t+1)/2(s + t + 2)!
(1− 2/nkl

)−(s+t+2)

×
(1− 3/nkl

1− 2/nkl

)n0+···+ns+1+nkl+1+···+nkl+t

Ψ(r; η0, · · · , ηs+t+3).

Since log+ab ≤ log+a + log+b (a, b > 0), we have

log+1/|ψl(r)| ≤log+1/|ckl
|

+ log+1/ns+2
kl

nkl+1 · · ·nkl+tΨ(r; η0, · · · , ηs+t+3)

+ C(f)

≤log+1/|ckl
|

+ log+1/ns+t+2
kl

Ψ(r; η0, · · · , ηs+t+3)

+ C(f),

so that we obtain

min{log 1/|ψl(r) : r1
l ≤ r ≤ r2

l }

≤ 1

r2
l − r1

l

∫ r2
l

r1
l

log+1/|ψl(r)|dr

≤log+1/|ckl
|

+
1

r2
l − r1

l

∫ r2
l

r1
l

log+1/ns+t+2
kl

Ψ(r; η0, · · · , ηs+t+3)dr

+ C(f)

≤log+1/|ckl
|

+ (s + t + 2)
s+t+2∑

i=1

1

r2
l − r1

l

∫ r2
l

r1
l

log+1/nkl
|r − ηi| dr

+ C(f)

≤log+1/|ckl
|+ C(f).
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This inequality yields (2.14). We complete the proof. 2
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