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Notations

Dr(a) : a closed disk centered at a with radius r > 0 in a given normed field.
Dr(a) : an open disk centered at a with radius r > 0 in a given normed field.
S(r) : a circle centered at 0 with radius r > 0 in a given normed field.
OK : D1(0) as a subring of the non-Archimedean field K.
MK : D1(0) as a maximal ideal of OK in the non-Archimedean field K.
N : the set of natural numbers.
Z : the ring of integers.
Z≥0 : the set of non-negative integers.
Q : the field of rational numbers.
R : the field of real numbers.
R≥0 : the set of non-negative real numbers.
R>0 : the set of positive real numbers.
C : the field of complex numbers.
Zp : the ring of p-adic integers.
Qp : the field of p-adic rational numbers.
Cp : the field of p-adic complex numbers.
Fp : the quotient field Z/pZ.
P1(K) : the projective line over the field K.
d|A : the restriction of a metric d to a subset A.
A : the topological closure of a set A.
#(A) : the cardinality of a set A.
ϕn : the n th iterate of a self-mapping ϕ.
Fix(ϕ) : the set of fixed points of a self-mapping ϕ.
Per(ϕ) : the set of all periodic points of a self-mapping ϕ.
deg(ϕ) : the degree of a polynomial map ϕ.
λϕ(a) : the multiplier of a polynomial map ϕ at a.
|K×| : the value group of value field (K, | · |).
π : the canonical projection from a set A to its quotient set A/ ∼ where ∼ is some equivalence
relation.
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Preface

This is a master thesis on non-Archimedean dynamics, which the author studied during his master
program in Nagoya University. The author found J-stable families in p-adic dynamical systems
and calculated the Artin-Mazur zeta functions of rational maps over Cp, motivated by analogous
theorems in complex dynamical systems. The results can be found in 3.2 and 4.3 in this thesis. The
other sections in this thesis are designed to provide basics of non-Archimedean dynamical systems.

Backgrounds of the research We say the pair (X,ϕ) is a dynamical system if X is a topological
space and ϕ is a continuous self-mapping of X. For a given dynamical system (X,ϕ), one of our
goals is to understand the behavior of each point in X by iteration of ϕ. To explain it more precisely,
we shall use the notation

ϕn :=

n times︷ ︸︸ ︷
ϕ ◦ ϕ ◦ · · · ◦ ϕ .

Then, the goal is to understand the set {ϕn(x) | x ∈ X} for each x ∈ X.
One well-studied dynamical system is complex dynamical system, in which we consider the iter-

ation of rational maps over C on the Riemann sphere. The theory of complex dynamics was first
established by P. Fatou and G. Julia in the early 20th century. In the complex dynamical system of
a given rational map, the Fatou set is defined as the largest open set in the Riemann sphere where
small errors remain small under the iterations of the rational map. On the other hand, the Julia set,
which is defined by the compliment of the Fatou set in the Riemann sphere, is the chaotic locus of
the dynamical system. That is, after many iterations, any small error becomes arbitrary big. These
two notions, the Fatou set and the Julia set, are essential in complex dynamical systems.

In this thesis, we focus on non-Archimedean dynamical systems. The theory of non-Archimedean
dynamics is relatively new, and mostly developed in this century. In non-Archimedean dynamical
systems, we consider the projective lines over non-Archimedean fields, especially algebraically closed
complete non-Archimedean fields of characteristic zero, as an analogue of the Riemann sphere, and
the iterations of rational maps over the field. As the Riemann sphere has the chordal metric, the
projective line also has an analogue of the chordal metric. Moreover, we will consider the Fatou set
and the Julia set as we do in complex dynamical systems. However, there are some differences from
complex dynamical systems. For example, unlike the Riemann sphere, the projective line might not
be compact, and is a totally disconnected topological space. In particular, this implies that the Julia
set on the projective line might not be compact unlike the Julia set on the Riemann sphere.

There is a natural question in complex dynamical system: are there any relations of the Julia
sets or the Fatou sets if two maps are close enough? In complex dynamical systems, the following
theorem is well-known. The terminology used in the following theorem can be found in section 1.

Theorem 1. Let d be a natural number with d ≥ 2. Let {fc | c ∈ C} be a family of the maps defined
by

fc : C → C
z 7→ zd + c

with c ∈ C. Suppose that c and c′ in C satisfy

lim
n→∞

fn
c (0) = lim

n→∞
fn
c′(0) = ∞.

Then the dynamical systems (fc|J (fc), fc) and (fc′|J (fc′ )
, fc′) are conjugate.

3



In fact, Theorem 1 can be explained by a theorem which is proved by R. Mañé, P. Sad, and D.
Sullivan [MSS]. Roughly speaking, their theorem states that if two maps are close enough and have
the same number of attracting cycles, then the dynamics on the Julia sets must be topologically the
same. See Theorem 3.1.1 for more precise statement.

In the following theorem, Cp and | · |p stand for a complex p-adic field and p-adic norm on Cp,
respectively.

Theorem 2. Let d be a natural number with d ≥ 2 and p be a prime number which is not divisible
by d. Let {fc | c ∈ Cp} be a family of the maps defined by

fc : Cp → Cp

z 7→ zd + c

with c ∈ Cp. Suppose that c and c′ in Cp satisfy

|c|p > 1, |c− c′|p ≤ |c|1/dp .

Then the dynamical systems (fc|J (fc), fc) and (fc′|J (fc′ )
, fc′) are conjugate.

See Theorem 3.2.1 for more precise statement.

Brief summery of contents In section 1, we will review some basic notations of dynamical
systems.

In section 2, basics of non-Archimedean dynamics will be focused on to understand the main
results. To understand the dynamical systems, we will first prepare some facts of non-Archimedean
analysis. We define the Fatou sets and Julia sets as for complex dynamical systems. In the latter
part of this section, we will consider no wandering domains theorems.

In section 3, we will present the main result, the existence of J-stable families in p-adic dynamical
systems. See Theorem 3.2.1. We also consider an application of the main result of this section.

In section 4, the Artin-Mazur zeta functions will be discussed. In particular, we will focus on
rational maps over C or Cp. We will review a result of A. Hinkkanen on the Artin-Mazur zeta
functions of rational maps over C as a motivation of the author’s main result. After then, we will
prove the parallel result to Hinkkanen’s theorem for rational maps over Cp. See Theorem 4.3.1.

In section 5, we will summarize some facts that are used in this thesis.
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1 Introduction

In this section, we will give the definition and some basics of dynamical systems with some examples.
We will mainly consider the properties of periodic points, which are the points of the space mapped
to itself by some iteration of the map. This section is based on J. Milnor’s textbook [M] and R.
Devaney’s textbook [RD].

1.1 Basics on Dynamical Systems

Definition 1.1.1 (Dynamical System). Let X be a topological space and ϕ be a continuous map
from X to itself. Then, the pair (X,ϕ) is called a dynamical system.

The following example is a typical example of a dynamical system.

Example 1.1.2. Let C be the complex field with the Euclidean metric and define the map

ϕ0 : C → C
z 7→ z2.

Then, (C, ϕ0) is a dynamical system.

To ease notation, for a given dynamical system (X,ϕ), we shall use notation

ϕN :=

N times︷ ︸︸ ︷
ϕ ◦ ϕ · · · ◦ ϕ

to denote the N -fold composition of ϕ with itself.

Definition 1.1.3 (Periodic Point). Let N be a natural number and α be an element in X. Then,
α is called a periodic point of ϕ with period N if

ϕN(α) = α.

In particular, α is called a fixed point of ϕ if α is a periodic point of ϕ with period 1.

We shall use the following notation to denote the set of fixed points, periodic points with period
N ∈ N, and all periodic points, respectively.

Fix (ϕ) := {α ∈ X | ϕ(α) = α},
PerN (ϕ) := {α ∈ X | ϕN(α) = α},

Per(ϕ) :=
∪
N∈N

PerN (ϕ).

Definition 1.1.4. Let (X,ϕ) be a dynamical system and α be a periodic point. A natural number
N is called the prime period of α if

α ∈ PerN(ϕ), α /∈ PerM(ϕ)

for all M ∈ {1, 2, · · · , N − 1}.
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Example 1.1.5. Let (C, ϕ0) be the dynamical system defined as in Example 1.1.2. It is easy to
check that for each N ∈ N,

Fix (ϕ) = {1, 0}, PerN (ϕ) = {0} ∪ {exp 2πi

2N − 1
k | k = 0, 1, · · · , 2N − 2}.

In particular, for each N ∈ N,
#(PerN(ϕ)) = 2N .

Proposition 1.1.6. Let N and M be natural numbers. If M is divisible by N , then

PerN(ϕ) ⊂ PerM(ϕ).

Proof. In the case when
PerN(ϕ) = ∅,

the statement is clear. Let us assume
PerN(ϕ) ̸= ∅.

SinceM is divisible by N , there exists some k in N such thatM = k ·N . Thus, for any x in PerN(ϕ),

ϕM(x) = ϕk·N(x) =

k times︷ ︸︸ ︷
ϕN ◦ ϕN · · · ◦ ϕN(x) = x.

Definition 1.1.7 (Conjugacy). Let (X,ϕ) and (Y, ψ) be dynamical systems. The dynamical systems
(X, ϕ) and (Y, ψ) is called conjugate if there exists some homeomorphism

h : X → Y

such that
ψ ◦ h = h ◦ ϕ.

Moreover, h is called a conjugacy from X to Y between ϕ and ψ.

Example 1.1.8. Set the maps

ψr : C → C
z 7→ r · z2

and

S(r) := {z ∈ C | |z| = r}

for each r > 0.
For any z in S(r), we have

|ψr(z)| = |r · z2| = r · 1

r2
=

1

r
.

This implies that
ψr(S(r−1)) ⊂ S(r−1).
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Claim For any r and R in R>0, the dynamical systems (S(r−1), ψr|S(r−1)) and (S(R−1), ψR|S(R−1))
are conjugate.

Proof. Considering the map

hr,R : S(r) → S(R)

z 7→ r

R
z,

we have that

ψR|S(R−1) ◦ hr,R(z) = ψR(
r

R
z) = R

r2

R2
z2 =

r2

R
z2 =

r

R
rz2 = hr,R(rz

2) = hr,R ◦ ψr|S(r−1)(z).

This implies that for all r and R in R>0, the dynamical systems (S(r), ψr|S(r)) and (S(R), ψR|S(R))
are conjugate.

Proposition 1.1.9. Let (X,ϕ) and (Y, ψ) be dynamical systems. If the dynamical systems (X, ϕ)
and (Y, ψ) are conjugate, then for any N ∈ N

#(PerN(ϕ)) = #(PerN(ψ)).

Proof. Let h be a conjugacy from X to Y between ϕ and ψ. It is sufficient to show that

h(PerN(ϕ)) ⊂ PerN(ψ)

and
h−1(PerN(ψ)) ⊂ PerN(ϕ).

because the cardinality is invariant under the homeomorphism h.
Taking an arbitrary element x in PerN(ϕ), we see that

ψN(h(x)) = h ◦ ϕN ◦ h−1 ◦ h(x) = h ◦ ϕN(x) = h(x).

On the other hand, for any arbitrary element y ∈ PerN(ψ), we have that

ϕN(h−1(y)) = h−1 ◦ ψN ◦ h ◦ h−1(y) = h−1 ◦ ψN(y) = h−1(y).

Corollary 1.1.10. Let (X,ϕ) and (Y, ψ) be dynamical systems. Suppose that (X,ϕ) and (Y, ψ) are
conjugate. Then

#(Per(ϕ)) = #(Per(ψ)).

Applying Proposition 1.1.9 to Example 1.1.8, we have the following example.

Example 1.1.11. Recall the dynamical systems defined in Example 1.1.8. For any arbitrary r in
R>0, the dynamical system (S(r−1), ψr|S(r−1)) is conjugate to (S(1), ψ1|S(1)). By Example 1.1.5, for
all N ∈ N,

#(PerN(ψ1|S(1))) = 2N .

It follows from Proposition 1.1.9 that for all N ∈ N,

#(PerN(ϕr|S(r−1))) = #(PerN(ϕ1|S(1))) = 2N .
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Let us wrap up this section with the following proposition.

Proposition 1.1.12. Let (X,ϕ) and (Y, ψ) be dynamical systems. Suppose that (X,ϕ) and (Y, ψ)
are conjugate and h is a conjugacy from X to Y between ϕ and ψ. If A ⊂ X is a dense subset in
X, then h(A) is dense in Y .

Example 1.1.13. Recall the dynamical systems defined in Example 1.1.8. It is not difficult to show
that

Per(ϕ1|S(1)) = S(1).

By Example 1.1.8 and Proposition 1.1.9, we have that

Per(ϕr|S(r−1)) = S(r−1)

for any r > 0.
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2 Dynamical Systems over Non-Archimedean Fields

2.1 Non-Archimedean Fields and Their Residue Fields

In 2.1, we will review the definition of non-Archimedean fields and their properties. We also see some
examples of non-Archimedean fields, which will be called p-adic fields, with their constructions. One
can find some interesting properties of non-Archimedean fields in this subsection. This subsection is
based on the lecture notes written by A. Baker [AB], N. Koblitz’s textbook [NK], and A. Robert’s
textbook [R].

Definition 2.1.1 (Normed field). Let K be a field. The filed K is called a normed field if there
exists a map

| · | : K → R≥0

satisfying the following properties.

(1) for any k ∈ K, |k| ≥ 0,

(2) for any k ∈ K, |k| = 0 if and only if k = 0,

(3) for the unit 1 ∈ K, |1| = 1,

(4) for any k1 and k2 in K, |k1 + k2| ≤ |k1|+ |k2|.

The map | · | is called a norm over K. Moreover, (K, | · |) is called a normed field if K is a field
and | · | is a norm over K.

Definition 2.1.2 (Multiplicative norm). Let (K, | · |) be a normed field. Then, the norm | · | is called
multiplicative if for any k1 and k2 in K,

|k1k2| = |k1||k2|.

The normed field (K, | · |) is called a multiplicative normed field if | · | is a multiplicative norm over
K.

Example 2.1.3 (The complex field). Let be | · | the Euclidean norm on the complex field C. Then,
(C, | · |) is a multiplicative normed field.

Now we consider a property, which the complex field does not have.

Definition 2.1.4 (Non-Archimedean field). Let (K, | · |) be a normed field. Then, the norm | · | is
called non-Archimedean if it satisfies the following property.

|k1 + k2| ≤ max{|k1|, |k2|}

for all k1 and k2 in K.

The following proposition will be helpful to evaluate inequalities in non-Archimedean fields.

Proposition 2.1.5. Let (K, | · |) be a non-Archimedean field and z and w be arbitrary elements of
K. If |z| < |w|, then

|z + w| = |w|.
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Proof. It is clear from the ultra metric property that

|z + w| ≤ max{|z|, |w|} = |w|.

Assume that |z + w| < |w|. It follows that

|w| = |z + w − z| ≤ max{|z + w|, |z|} < max{|w|, |w|} = |w|.

This is a contradiction. Hence, we have

|z + w| = |w|.

By this property, it is clear that the complex field (C, | · |) with the Euclidean norm is not non-
Archimedean. Moreover, the Euclidean norm over the set Q of the rational numbers is also not
non-Archimedean. Now we give an example of non-Archimedean norm on Q.

Example 2.1.6 (The p-Adic Norm). Let p be a prime number, and define the map | · |p from Q to
R by ∣∣∣m

n

∣∣∣
p
:=

{
p−k (m ̸= 0),

0 (m = 0)

where k is an integer satisfying
m

n
= pk

m′

n′

where m′ and n′ are integers which satisfy that m′ and n′ are not divisible by p. The map | · |p
is a norm on Q and it is called the p-adic norm on Q. Moreover, (Q, | · |p) is a multiplicative
non-Archimedean field.

See [AB, PROPOSITION 2.6] for the reason why | · |p is a multiplicative non-Archimedean norm
on Q.

Definition 2.1.7 (Qp). For a prime number p, (Qp, | · |p) is defined as the pair of the completion of Q
with respect to the p-adic norm on Q and the extended norm of the p-adic norm to the completion.

It is well known that the extended norm is non-Archimedean. The proofs can be found in
[AB, THEOREM2.18]. The extended p-adic norm on Qp is also denoted by the same symbol | · |p
of p-adic norm on Q.

The following proposition will be helpful to understand the structure of Qp.

Proposition 2.1.8. Let p be a prime number. For any x ∈ Qp, there exists some N ∈ Z and
{ai}∞i=N ⊂ {0, 1, · · · , p− 1} such that

x = aNp
N + aN+1p

N+1 + · · · , aN ̸= 0.

The proof of Proposition 2.1.8 can be found in [AB, THEOREM 2.29].

Corollary 2.1.9. Let p be a prime number and n be a natural number. Then,

Dpn(0) = {a−np
−n + a−n+1p

−n+1 + · · · | {ai}∞i=−n ⊂ {0, 1, · · · , p− 1}}.

In particular,
D1(0) = {a0p0 + a1p

1 + · · · | {ai}∞i=0 ⊂ {0, 1, · · · , p− 1}}.
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In the rest of this subsection, we shall use (K, | · |) to denote a multiplicative non-Archimedean
field and we consider the properties.

Proposition 2.1.10 (OK). Let (K, | · |) be a multiplicative non-Archimedean field and set

OK := {z ∈ K | |z| ≤ 1}.

The set OK is a subring of K.

Proof. It is clear that
|0| = 0, |1| = 1.

In particular, 1 ∈ OK . Taking any z andw in OK , we see that

|zw| = |z||w| ≤ 1.

Hence, z · w ∈ OK . Moreover, it follows immediately that

|z + w| ≤ max{|z|, |w|} ≤ 1.

Thus, z + w ∈ OK . Hence, OK is a subring of K.

This is one of the special properties of non-Archimedean fields. One may easily find an example
such that OK is not a subring of K when K is not non-Archimedean.

Example 2.1.11 (p-Adic Integers). Let p be a prime number and use the notation (K, | · |) to denote
(Qp, | · |p). As we saw in Corollary 2.1.9,

OK = D1(0) = {a0p0 + a1p
1 + · · · | {ai}∞i=0 ⊂ {0, 1, · · · , p− 1}}.

By Proposition 2.1.10, the set

{a0p0 + a1p
1 + · · · | {ai}∞i=0 ⊂ {0, 1, · · · , p− 1}}

is a ring. On the other hand, since
1

p
· 1
p
=

1

p2
,

we have that
Dp−1(0) = {a−1p

−1 + a0p
0 + · · · | {ai}∞i=−1 ⊂ {0, 1, · · · , p− 1}}

is not a ring.

Proposition 2.1.12. Let us define a subset of OK as follows.

MK := {z ∈ K | |z| < 1}.

Then, the subset MK is the maximal ideal of OK

Proof. Let us show the following claims.
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Claim 1 The subset MK is an ideal of OK .

Proof of Claim 1. Taking any arbitrary z and w in MK , we see that

|z + w| ≤ max{|z|, |w|} < 1.

That is, z + w ∈ MK . Moreover, for any k in OK , we have that

|k · z| = |k||z| ≤ |z| < 1.

Thus, k · z ∈ MK .

Claim 2 The subset MK is maximal.

Proof of Claim 2. Let J be an ideal of OK satisfying

MK ⊊ J.

Thus, there exists at least one element a ∈ J −MK . It is clear that |a| = 1. Thus, a must have the
inverse a−1 with |a−1| = 1. Since J is an ideal of OK , we obtain that

1 = a · a−1 ∈ J.

Thus, J must be equal to OK , that is, MK is maximal.

Example 2.1.13. Let p be a prime number and use the notation (K, | · |) to denote (Qp, | · |p). It
follows from Corollary 2.1.9 that

MK = D1(0) = {a1p1 + a2p
2 + · · · | {ai}∞i=1 ⊂ {0, 1, · · · , p− 1}}.

Proposition 2.1.10 and Proposition 2.1.12 imply that the quotient ring OK/MK must be a field.

Definition 2.1.14 (Residue Field). Let (K, | · |) be a multiplicative non-Archimedean field. The
quotient field OK/MK is called the residue field of K.

Example 2.1.15. Let p be a prime number and use the notation (K, | · |) to denote (Qp, | · |p). Then,
one may easily check that

OK/MK = {0, 1, · · · , p− 1} ∼= Fp

where Fp is the quotient field Z/pZ and ∼= is the symbol of the field isomorphism.

Next we consider some topological properties of non-Archimedean fields. We shall use the nota-
tion

Dr(a), Dr(a)

to denote the set {z ∈ K||z− a| ≤ r} and {z ∈ K||z− a| < r} for a in K and r in R>0, respectively.
Note that

Dr(a) ̸= Dr(a)

since Dr(a) is closed with respect to | · |.

Lemma 2.1.16. Let a be an element of K and r be an element of R>0. If b ∈ Dr(a), then

Dr(a) = Dr(b).
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Proof. Let us choose any z ∈ Dr(a). Then, we have that

|z − b| = |z − a+ a− b| ≤ max{|z − a|, |a− b|} ≤ r.

That is,
Dr(a) ⊂ Dr(b).

It is clear that a ∈ Dr(b). Similarly, we can have that

Dr(b) ⊂ Dr(a).

The statement of Lemma 2.1.16 is also true for open disks with the same proof.

Corollary 2.1.17. Let a ∈ K and r ∈ R>0. If b ∈ Dr(a), then we have

Dr(a) = Dr(b).

Now we consider the applications of Lemma 2.1.16 and Corollary 2.1.17 to understand some
topological properties of non-Archimedean fields. To consider the connectivity of non-Archimedean
fields, we give a simple example of Lemma 2.1.16.

Example 2.1.18. It follows from Lemma 2.1.16 that for any z ∈ OK ,

D1(0) = D1(z).

Corollary 2.1.19. Let (K, | · |) be a non-Archimedean field. Then, D1(0) is open with respect to | · |.

Proof. It is clear that D1(0) is a open set with respect to | · |. Let us choose any z ∈ D1(0) and
r ∈ R>0 with |z| = 1 and r < 1. Then, it follows from Example 2.1.19 that

Dr(z) ⊂ Dr(z) ⊂ D1(z) = D1(0).

That is, z is an interior point of D1(0) with respect to | · |.

On the other hand, one can check easily that D1(0) is a closed subset of K with respect to | · |.
Thus, we have the following result.

Theorem 2.1.20 (Disconnectedness). Every non-Archimedean field (K, | · |) is disconnected.

Next we consider another application of Lemma 2.1.16 and Corollary 2.1.17.

Corollary 2.1.21. Let a and b in K and r and s in R>0. If Dr(a) ∩Ds(b) ̸= ∅, then

Dr(a) ⊂ Ds(b) or Dr(a) ⊃ Ds(b).

Proof. We first assume that s ≥ r. It follows from Lemma 2.1.16 that

Dr(a) = Dr(c) ⊂ Ds(c) = Ds(b)

for any c ∈ Dr(a) ∩Ds(b). Thus, we have

Dr(a) ⊂ Ds(b).

Similarly, we can obtain that if s ≤ r, then

Dr(a) ⊃ Ds(b).
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To consider other topological properties of non-Archimedean fields, the following lemma is as
important as Lemma 2.1.16. We will be very helpful to determine whether a given sequence is
Cauchy or not. In the rest of this subsection, we shall use the notations (K, | · |) to denote a
complete multiplicative non-Archimedean field.

Lemma 2.1.22. Let {an}n∈N be a sequence in K. Then, {an}n∈N is a Cauchy sequence if and only
if {an}n∈N satisfies

lim
n→∞

|an+1 − an| = 0.

Proof. Let us begin with the following claim.

Claim If {an}n∈N satisfies limn→∞ |an+1 − an| = 0, then {an}n∈N is a Cauchy sequence.

Proof of Claim. Taking an arbitrary ϵ in R>0, we have N ∈ N such that if n ≥ N then |an+1−an| < ϵ.
Moreover, for all m1 > m2 ≥ N , we have

|am1 − am2| = |am1 − am1−1 + am1−1 − · · ·+ am2+1 − am2 | ≤ max
n=m2,··· ,m1−1

(|an+1 − an|) < ϵ.

This implies that {an}n∈N is a Cauchy sequence.

It is clear that if {an}n∈N is a Cauchy sequence, then {an}n∈N satisfies limn→∞ |an+1−an| = 0.

In particular, Lemma 2.1.22 will be powerful tool to consider the power series over non-Archimedean
fields.

Corollary 2.1.23. Let {an}n∈N be a sequence in K and set the sequence {si}∞i=1 of partial sums

si :=
i∑

n=1

an.

Then, {si}∞i=1 is convergent if
lim
n→∞

|an| = 0.

Example 2.1.24. Let us consider a sequence {pn}n∈N inQp. Since |pn|p =
1

pn
, we have lim

n→∞
|pn|p = 0.

Thus,
∞∑
n=0

pn = 1 + p+ p2 + · · ·

is convergent with respect to | · |p on Qp.

Finally, we consider the value group of non-Archimedean fields. It will be important when we
consider the analysis on non-Archimedean fields.

Definition 2.1.25 (Value Group). Let L be a subset of K. Then, we consider the image

|L| := {|l| ∈ R≥0 | l ∈ L}

of L by the norm | · |. In particular, |K×| is called the value group of (K, | · |) where K× := K −{0}.

One can check that |K×| is a group and has the property

|K×| = |K| − {0}.
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Example 2.1.26. Let p be a prime number and use the notation (K, | · |) to denote (Qp, | · |p). Then,
by Corollary 2.1.9, we obtain that

|Q×
p | = {pn | n ∈ Z}.

Even in the complex field, we can define the value group as above. One can check that the value
group of the complex field is equal to R>0.

Definition 2.1.27 (Rational Disk). Let a be an element of K and r be an element of R>0. Then,
the subset Dr(a) of K is called a rational disk if r ∈ |K×|. The subset Dr(a) is called irrational if it
is not rational.

Definition 2.1.28 (Qalg
p ). For a prime number p, (Qalg

p , | · |p) is defined as the pair of an algebraic
closure of Qp and the extended norm of | · |p on Qp to the algebraic closure.

The fact that Qp is not algebraically closed and the existence of the algebraically closed field
can be found in [AB, EXAMPLE 5.1]. In fact, the p-adic norm over Qp can be extended uniquely
to Qalg

p . We will denote the extended norm | · |p. Moreover, it is well-known that (Qalg
p , | · |p) is a

multiplicative non-Archimedean field.

Example 2.1.29. Let p be a prime number. Then,

|Qalg
p − {0}|p = {pm/n | m ∈ Z, n ∈ Z×}.

The proof can be found in [R, p.129, Proposition]. The value group of Q×
p is not equal to R>0

but is dense in R>0. However, it is well-known that Qalg
p is not complete. Thus we consider the

completion of (Qalg
p , | · |p).

Definition 2.1.30 (Cp). For a prime number p, (Cp, | · |p) is defined as the pair of the completion
of Qalg

p with respect to | · |p on Qalg
p and the extended norm of | · |p on Qalg

p to the completion.

As we have constructed (Qp, | · |p) from (Q, | · |p), we can also extended | · |p over Qalg
p to Cp,

uniquely. We use | · |p to denote the extended norm over Cp.

Theorem 2.1.31. For any prime number p, (Cp, | · |p) is an algebraically closed complete non-
Archimedean field of characteristic zero.

The proof of Theorem 2.1.31 can be found in [R, p. 143, Theorem]. See also [AB, THEOREM
5.17].

Example 2.1.32. Let p be a prime number. Then,

|Qalg
p | = |Cp|.

That is,
|Cp| = {p

m
n | m ∈ Z, n ∈ Z×} ∪ {0}.

In particular, we have
|C×

p | = R≥0.

The proof of Example 2.1.32 may found in [R, p. 138, Proposition 3].
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2.2 Analysis on Non-Archimedean Fields

In 2.2, we will discuss analytic properties on non-Archimedean fields. In particular, we will focus
on some properties of polynomial maps over non-Archimedean fields. This subsection is based on
Silverman’s textbook [S, Section 5.2]. Throughout this subsection, we shall use (K, | · |) to denote
an algebraically closed complete multiplicative non-Archimedean field. We shall use the notation
Poly(K) and deg to denote the set of polynomial maps over K and the degree of a given polynomial
map.

Example 2.2.1. For fixed α ∈ K, we define

Tα(z) := z + α.

It is a polynomial map and deg(Tα) = 1.

Now we consider some properties of polynomial maps.

Proposition 2.2.2. Let f be a polynomial map over K. Then, there exists some {αi}deg(f)i=1 in K
such that

f(αi) = 0, f(z) ̸= 0

for all i ∈ {1, 2, · · · , deg(f)}, and all z ∈ K − {αi}deg(f)i=1 .

The proof is clear since K is an algebraic closed field.

Proposition 2.2.3. Let f and g be polynomial maps over K. Then,

deg(f ◦ g) = deg(f) · deg(g).

The proof can be found in [B, p.32].

Proposition 2.2.4. Let f be a non-constant polynomial map over K. Suppose 0 is not a zero of f .
Then, there exists some r > 0 such that for any z ∈ Dr(0),

|f(z)| = |f(0)|.

Proof. Suppose that the degree of f is N ∈ N. There exists some a0, a1, · · · aN in K such that

f(z) = a0 + a1z + · · ·+ aNz
N , a0 = f(0), aN ̸= 0.

Set

M := max{|aj| | j ∈ {0, 1, · · · , N}}, r := min{1, |a0|
2M

}.

Claim For any z ∈ Dr(0),
|a0| > |a1z + · · ·+ aNz

N |.

Proof of Claim. Since |z| ≤ r ≤ 1 and |aj| ≤M for any j ∈ {0, 1, · · · , N}, we have

|ajzj| ≤M |z|j ≤M |z|.

Moreover, since |z| ≤ |a0|
2M

, we have

M |z| ≤ |a0|
2
.

Thus, we have

|
N∑
i=1

aiz
i| ≤ max{|aizi| | i = 1, 2, · · · , N} ≤ |a0|

2
< |a0|.
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It follows from Proposition 2.1.5 that

|f(z)| = |a0| = |f(0)|

for any z ∈ Dr(0).

In fact, we can say more than this.

Proposition 2.2.5. Let f be a non-constant polynomial map over K and denote it by

f(z) = a0 + a1z + · · ·+ aNz
N

for some {ai}Ni=1 with aN ̸= 0. Then, if j is the minimal number satisfying aj ̸= 0, then there exists
some r > 0 such that

|f(z)| = |aj||z|j

for any z ∈ Dr(0).

The proof of Proposition 2.2.5 is similar to Proposition 2.2.4 so we omit the proof.

Example 2.2.6. Let p be a prime number. Define the map

f(z) := 1 + pz + p2z2 + · · ·+ p100z100 ∈ Poly(Cp).

It follows immediately that for any z ∈ D1(0) and any i ∈ {1, 2, · · · , 100}, we have

|pizi| = p−i|z|i ≤ p−i < 1.

By Proposition 2.1.5, for any z ∈ D1(0), we have

|f(z)| = 1.

Let us consider the formal derivative of the polynomial maps, and the critical points as we do in
the real or complex analysis.

Definition 2.2.7 (Derivative). Let f be a polynomial map over K. Suppose that there exists some
a0, a1, · · · , aN in K such that

f(z) = a0 + a1 + · · ·+ aNz
N , aN ̸= 0.

Then, the derivative f ′ of f is defined by

f ′(z) := a1 + 2a2z + · · ·+NaNz
N−1.

Moreover, a point w ∈ K is called a critical point of f if f ′(w) = 0.

One can check that the formal derivative of the polynomial maps is well-defined as a map from
Poly(K) to itself. Thus, we can consider the N fold derivative of polynomial maps.

Definition 2.2.8. Let f be a polynomial map over K. Then, we define the N-th derivative of f by

f (N) := (f (N−1))′

for any N ∈ N where f (0) := f .

The following corollary follows from Proposition 2.2.5.
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Corollary 2.2.9. Let f be a non-constant polynomial map over K of deg(f) = N . Then, there
exists some j ∈ {1, 2, · · · , N} such that

f (j)(0) ̸= 0, f (i)(0) = 0

for i = 1, 2, · · · j − 1. Moreover, there exists some R > 0 such that

|f(z)− f(0)| = |f (j)(0)||z|j

for any z ∈ DR(0).

Proposition 2.2.10. Let f be a polynomial map with deg(f) = N . Then, for any α ∈ K, there
exists some {bi}Ni=0 ⊂ K such that

f(z) = b0 + b1(z − α) + · · ·+ bN(z − α)N .

The proof is similar to the case of the complex field and we omit it. See also [S, Proposition 5.8
(a)].

Corollary 2.2.11. Let f be a non-constant polynomial map with deg(f) = N , and α be an element
of K. Then, there exists some j ∈ {1, 2, · · · , N} such that

f (j)(α) ̸= 0, f (i)(α) = 0

for i = 1, 2, · · · j − 1. Moreover, there exists some R > 0 such that

|f(z)− f(α)| = |f (j)(α)||z − α|j

for any z ∈ DR(α).

The proof is easily obtained from Corollary 2.2.9 and Proposition 2.2.10.
Now let us consider the continuity of polynomial maps as an application of Corollary 2.2.11.

Corollary 2.2.12. Every polynomial map f is continuous on K with respect to | · |.

Proof. It is clear when f is a constant polynomial so let us suppose that

deg(f) = N ≥ 1.

Let us fix an arbitrary α ∈ K. Then, it follows from Corollary 2.2.11 that there exists some
j = 1, 2, · · · , N and R > 0 such that

f (j)(α) ̸= 0, |f(z)− f(α)| = |f (j)(α)||z − α|j

for any z ∈ DR(α). Taking any ϵ > 0, we set δ := min{r,
j
√
ϵ

j
√

|aj |
} > 0. Then for any z ∈ Dδ(α), we

have
|f(z)− f(α)| = |aj||z|j ≤ ϵ.

Since the formal derivative of a polynomial map is also a polynomial map, we have the following
corollary immediately:
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Corollary 2.2.13. Let f be a polynomial map over K. Then, f ′ is a continuous map on K with
respect to | · |.

Next we consider a theorem, which is an analogy to the Maximum Modulus Principle in complex
analysis. In general, non-Archimedean fields may not be locally compact. Thus, the existence of the
maximum in D1(0) of a continuous map is not guaranteed. However, the following theorem tells us
the existence of the maximum points in D1(0) of a polynomial map over K.

Theorem 2.2.14. Let f be a non-constant polynomial map on D1(0). Assume that for all i ∈ N,
|f (i)(0)|

i · (i− 1) · · · 1
≤ 1, and there exists some j ∈ N such that

|f (j)(0)|
j · (j − 1) · · · 1

= 1. Then, there exists

some z0 ∈ D1(0) such that
|f(z)| ≤ |f(z0)| = 1

for any z ∈ D1(0). Moreover, it follows that

sup{|f(z)| | z ∈ D1(0)} = max{ |f (i)(0)

i · (i− 1) · · · 1
| | i ≥ 0}.

Proof. Let us denote the degree of f by N , and write f as

f(z) :=
N∑
i=0

aiz
i.

Now we consider the induced polynomial map by f from OK/MK to itself by

f ∗(w) :=
N∑
i=0

π(ai)w
i

where π : OK → OK/MK is the canonical projection. Note that it might be π(an) = 0, and f ∗ is
not a zero map since there exists some j ∈ {1, 2, · · · , N} such that

|aj| =
|f (j)(0)

j · (j − 1) · · · 1
= 1 ̸= 0.

Let us consider the zeros of f ∗. Since OK/MK is a field and f ∗ is a polynomial map over OK/MK ,
f ∗ has finitely many zeros in OK/MK .

Claim 1 OK/MK is an algebraically closed field and every algebraically closed field contains
infinitely many elements.

The proof of Claim 1 can be found Proposition 5.1.3 in APPENDIX A.
Moreover, since f ∗ is not a zero map, we can find w0 such that f ∗(w0) ̸= 0. Moreover, since π is

surjective, we can also find z0 satisfying

π(z0) = w0.

Moreover, since |f (i)(0)| ≤ 1 for all i ∈ N, it follows that

|f(z0)| ≤ 1.
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Claim 2 |f(z0)| = 1.

Proof of Claim 2. (By contradiction) Assume that |f(z0)| < 1. That is,

f(z0) =
N∑
i=0

aiz
i
0 ∈ MK .

Thus, it follows that
π(f(z0)) = 0 ∈ OK/MK .

On the other hand, since π is a ring homomorphism, we have

0 = π(f(z0)) = f ∗(w0).

This implies that w0 is a root of f ∗. It is contradiction.

Hence, we have proved our first statement.
Now let us consider our second statement.

Claim 3 max{|ai| | i ≥ 0} ≥ 1.

Proof of Claim 3. We have shown that for any z ∈ D1(0), we have

|f(z)| ≤ |f(z0)| = 1

for some z0 ∈ D1(0). In particular, it follows that

1 = |f(z0)| = |
N∑
i=0

aiz
i
0| ≤ max{|ai||z0|i | i = 1, 2, · · · , N}

≤ max{|ai||1|i | i = 1, 2, · · · , N} = max{|ai| | i = 1, 2, · · · , N}

since
|z0|i ≤ 1

for all i = 0, 1, · · · , N .

Next we show the following claim.

Claim 4 max{|ai| | i ≥ 0} ≤ 1.

Proof of Claim 4. By our assumption, we have

|ai| ≤ 1

for all i = 0, 1, · · · , N . This implies that

max{|ai| | i = 0, 1, · · · , N} ≤ 1.
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In fact, it is not important that the given disk in Theorem 2.2.14 is the closed unit disk.

Corollary 2.2.15 (The Maximal Modulus Principle). Let Dr(a) be a rational closed disk and f be
a holomorphic map on Dr(a). Then, there exists a z0 ∈ Dr(a) such that for all z ∈ Dr(a),

|f(z)| ≤ |f(z0)|.

Moreover, we have that

sup{|f(z)| | z ∈ Dr(a)} = max{ |f (i)(a)

i · (i− 1) · · · 1
ri | i ≥ 0}.

The proof can be found in [S, Theorem 5.13 (a)]. Before moving on to the next property of
polynomial maps, let us clarify the significance of the assumption that K is an algebraically closed
field by the following example:

Example 2.2.16. Let p be a prime number, and consider the map defined by F (z) := zp − z ∈
Poly(z). Then, it follows from Theorem 5.1.2 that for all z ∈ D1(0),

|F (z)|p ≤
1

p
.

On the other hand, we have that
max{|1|p, | − 1|p} = 1.

Next we will consider the theorem, which is an analogue of the Minimal Modulus Principle in
complex analysis.

Theorem 2.2.17. Let f be a polynomial map over K. If f has no zeros in D1(0), then |f(z)| must
be constant on D1(0).

Proof. Without loss of generality, we may assume that f is monic. Let us denote f by

f(z) := a0 + a1z + · · ·+ zN

for some {ai}N−1
i=0 ⊂ K. Then, we have

Claim 1 |a0| > |ai| for all i = 1, 2, · · · , N .

Proof of Claim 1. Let us denote the zeros of f by

α1, α2, · · · , αN .

That is, we may write f by

f(z) = (z − α1)(z − α2) · · · (z − αN).

It follows from Vieta’s formula that

a0 = (−1)Nα1 · · ·αN , aN−i =
∑

1≤k1<k2···<ki≤N

(−1)iαk1 · · ·αki

for all i = 1, 2, · · · , N . It follows from the multiplicativity of | · | that

|ai| ≤ max{|αk1αk2 · · ·αkN−i
|}

for any i = 1, 2, · · · , N . Since we assumed |αi| > 1 for all i = 1, 2, · · · , N , we have

|a0| = |α1 · · ·αN | > max{|αk1 · · ·αkN−i
|} ≥ |ai|.

for all i = 1, 2, · · · , N .
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Claim 2 For all z ∈ D1(0), |f(z)| = |a0|.

Proof of Claim 2. It follows from Claim 1 that

|ai||z|i ≤ |ai| < |a0|

for all z ∈ D1(0), i = 1, 2, · · · , N . Thus, it follows from Proposition 2.1.5 that

|f(z)| = |a0|

for all z ∈ D1(0).

In fact, it is also not essential that the given disk is the closed unit disk.

Corollary 2.2.18 (the Minimal Modulus Principle). Let Dr(a) be a rational closed disk and f be a
non-constant polynomial map over K. If f has no zeros in Dr(a), then |f(z)| must be constant on
Dr(a).

Proof. Let us consider the map

Ta : K → K

z 7→ cz + a

where c ∈ K satisfies |c| = r, and a ∈ K. Moreover, we define

g := f ◦ Ta.

It is clear that g is a polynomial map over K. Furthermore, we have the following claim.

Claim g has no zeros in D1(0).

Proof of Claim. (By contradiction) Let us assume that there exists some α ∈ D1(0) such that

g(α) = 0.

This implies immediately that

0 = g(α) = f ◦ Ta(α) = f(cα + a).

However, it is clear that
cα + a ∈ Dr(a).

Thus, it is contradiction to our assumption.

Now we apply Theorem 2.2.17 to g. Then, we have |g(z)| is constant on D1(0). That is, there
exists some C ∈ K× such that

|g(w)| = |f ◦ Ta(w)| = C

for all w ∈ D1(0). Since Ta is bijective between D1(0) and Dr(a), we have for all z ∈ Dr(a), there
exists w ∈ D1(0) such that

|f(z)| = |g(w)| = C.
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Let us finish this subsection with an application of the Maximum Modulus Principle. Let us
begin with an interesting topological property.

Proposition 2.2.19. Let f be a polynomial map over K with f(0) = 0. Then,

f(D1(0)) = Ds(0)

where s := sup{|f(z)| | z ∈ D1(0)}. Moreover, we have

|f ′(0)| ≤ s.

The proof can be found in [S, Proposition 5.16(b)].
The following corollary implies us that we do not have to assume that 0 is a fixed point of the

polynomial map.

Corollary 2.2.20. Let f be a polynomial map over K and Dr(a) be a rational closed disk. Then

f(Dr(a)) = Ds(f(a))

where s := sup |f(z)| | z ∈ Dr(a). Moreover,

|f ′(a)| ≤ s

r
.

Proof. Suppose that deg(f) = N and define

f1 : K → K, f2 : K → K

z 7→ cz + a, z 7→ z − f(a)

where c ∈ K satisfies |c| = r. Note that the existence of c is guaranteed by r ∈ |K×|. Now we set

g := f2 ◦ f ◦ f1.

Then, it is clear that g ∈ Poly(K) and deg(g) = N .

Claim 0 is a fixed point of g. Moreover, we have

s = sup{|f(z)| | z ∈ Dr(a)} = sup{|g(z)| | z ∈ D1(0)}.

Proof of Claim. It follows immediately that

g(0) = f2 ◦ f ◦ f1(0) = f2 ◦ f(a) = 0.

On the other hand, it follows from Corollary 2.2.18 that

sup{|f(z)| | z ∈ Dr(a)} = max{ |f (i)(a)|
i · (i− 1) · · · 1

|r|i | i ≥ 0},

sup{|g(z)| | z ∈ D1(0)} = max{ |g(i)(0)|
i · (i− 1) · · · 1

|1|i | i ≥ 0}.

It follows from the chain rule that

|g(i)(0)| = |f (i)(a)||c|i.

This implies that
sup{|f(z)| | z ∈ Dr(a)} = sup{|g(z)| | z ∈ D1(0)}.
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It follows that

f2 ◦ f(Dr(a)) = f2 ◦ f ◦ f1(D1(0)) = g(D1(0)) = Ds(0).

Since f2 is bijective, we have

f(Dr(a)) = f−1
2 (Ds(0)) = Ds(f(a)).

Furthermore, it follows from the chain rule that

|1 · f ′(a) · c| = |(f2 ◦ f ◦ f1)′(0)| = |g′(0)| ≤ s.

Thus,

|ϕ′(a)| ≤ s

r
.

The following corollary follows immediately from Corollary 2.2.20.

Corollary 2.2.21. Let (K, | · |) be an algebraically closed complete multiplicative non-Archimedean
field and Dr(a) be rational. If f is a polynomial map over K, then f is an open map.

2.3 The Projective Line and Its Topology

In 2.3, we will discuss the projective line and the chordal metric of non-Archimedean fields, which
is another metric on the non-Archimedean field (K, | · |), analog to the Riemann sphere and its
chordal metric in complex dynamics. See [B, p. 28] for the Riemann sphere and its choral metric.
Moreover, we will see some topological properties of the projective line and the chordal metric of
non-Archimedean fields. This subsection is based on Silverman’s textbook [S, Section 2.1].

Definition 2.3.1 (The Projective Line). Let (K, | · |) be a multiplicative normed field. Then, the
projective line over K is defined by

P1(K) := (K ×K)×/ ∼

where (K ×K)× = K ×K − {(0, 0)}, and (X,Y ) ∼ (X ′, Y ′) if there exists some k ∈ K× such that
X = kX ′ and Y = kY ′.

We denote an element, of which the representative element is (X, Y ) by [X,Y ].
By considering the inclusion map

ι : K → P1(K)

z 7→ [z, 1],

it is clear that the original field K is naturally included in the projective line P1(K).

Proposition 2.3.2. Let (K, | · |) be a non-Archimedean multiplicative field. Then,

P1(K) = {[z, 1] | z ∈ K} ∪ {[1, 0]}.
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Proof. It is sufficient to show that for any

[X, Y ] ∈ P1(K)− {[1, 0]},

we have
[X,Y ] ∈ {[X, 1] | X ∈ K}.

If Y = 0, we have [X, 0] = [1, 0]. This implies that

[X,Y ] = [Y −1X, 1] ∈ {[X, 1] | X ∈ K}.

The projective line P1(K) has a natural decomposition P1(K) = K∪{∞} where ∞ is an element
which is not contained in K and corresponding to [1, 0] ∈ P1(K).

Definition 2.3.3 (The Chordal Metric). Let (K, | · |) be a non-Archimedean field and P1(K) be the
projective line over K. Then, we define the chordal metric on P1(K) by

ρ([X, Y ], [X ′, Y ′]) :=
|XY ′ −X ′Y |

max{|X|, |Y |} ·max{|X ′|, |Y ′|}

for all [X, Y ], [X ′, Y ′] ∈ P1(K).

One can check that this metric is well-defined and some interesting properties such as the non-
Archimedean property. See [S, Proposition 2.4]. Let us see some other properties of the chordal
metric. Let us begin with the following proposition.

Proposition 2.3.4. Let (K, | · |) be a non-Archimedean multiplicative field. Then, we have

P1(K) = {[X, 1] | |X| ≤ 1} ∪ {[1, Y ] | |Y | ≤ 1}.

Moreover, ({[X, 1]| | X ∈ K}, ρ) is isometric to (OK , | · |).

Proof. For any [X, Y ] ∈ P1(K), we have either |X| ≤ |Y | or |X| ≥ |Y |. Let us assume that |X| ≤ |Y |.
Then, we have

[X, Y ] = [XY −1, 1], |X||Y −1| ≤ 1.

This implies that
[X,Y ] ∈ {[X, 1] | |X| ≤ 1}.

If |X| ≥ |Y |, then we have that

[X, Y ] = [1, X−1Y ], |X−1||Y | ≤ 1.

This implies that
[X, Y ] ∈ {[1, Y ] | |Y | ≤ 1}.

Thus, we have complete the proof of the first statement.
Let us choose arbitrary two elements [X1, 1], [X2, 1] ∈ {[X, 1] | |X| ≤ 1}. Then, we have

ρ([X1, 1], [X2, 1]) =
|X11−X21|

max{|X1|, 1}max{|X2|, 1}
= |X1 −X2|.
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The following proposition follows easily.

Proposition 2.3.5. {Dr(a) | a ∈ K, r > 0} ∪ {P1(K) − Ds(b) | b ∈ K, s > 0} is a family of open
sets and forms an open base of (P1(K), ρK).

Each polynomial map over K induces a well-defined map on P1(K) as follows.

Proposition 2.3.6. Let K be a field and f be a polynomial map over K. Then, the map

f([X, Y ]) :=

{
[f(X/Y ), 1] (Y ̸= 0),

[1, 0] (Y = 0).

is well-defined on P1(K).

Let us close this subsection with a property of polynomial maps with respect to ρ.

Theorem 2.3.7. Let (K, | · |) be an algebraically closed complete non-Archimedean field and f be a
polynomial map over K. Then, there exists some C > 0 such that

ρ(f([X, Y ]), f([X ′, Y ′])) ≤ Cρ([X,Y ], [X ′, Y ′])

for any [X,Y ], [X ′, Y ′] ∈ P1(K).

The proof can be found in [S, Theorem 2.14].

2.4 Dynamics of Polynomial Maps of Degree One

In 2.4, we will consider the dynamics of polynomial maps, whose the degree is one, over non-
Archimedean fields. We mainly consider an analogue of the Classification Theorem of Mobius Trans-
formation in complex dynamical systems. This subsection is based on the lecture notes written by
Tomoki Kawahira. Let us fix an algebraically closed complete non-Archimedean field (K, | · |) of
characteristic zero. To ease notation, we shall use

Poly1(K) := {f ∈ Poly(K) | deg(f) = 1}

to denote the set of polynomial maps of the degree 1. One may easily check that Poly1(K) is a group
with respect to the composition ◦ of maps.

Example 2.4.1. Let p be a prime number, and a ∈ C×
p satisfy |a|p ̸= 1. Considering

f : Cp → Cp

z 7→ az,

we easily see that
Pern(f) = {0}.

Moreover, one can show that

lim
n→∞

f(z) =

{
0 (|a|p < 1),

∞ (|a|p > 1)

for all z ∈ C×
p .
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Example 2.4.2. Let us consider the dynamical systems (Cp, ϕ1,b) where ϕ1,b(z) = z+ b and b ∈ C×
p .

Then, it easily follows that
ϕn
1,b(z) = z + nb

for any z ∈ Cp. In particular, we have

|ϕpi

1,b(z)− z| = |z + pib− z| ≤ |pi||b| → 0 (i→ ∞)

for any z ∈ Cp. On the other hand, we have

|ϕ(p−1)i

1,b (z)− z| = |z + (p− 1)ib− z| = |b| ̸= 0

for any i ∈ N since b is not zero.

In fact, it is sufficient to consider just two cases to understand the dynamics of the polynomial
maps of degree 1 by the following theorem.

Theorem 2.4.3. If f ∈ Poly1(K), then there exists some g ∈ Poly1(K) and λ ∈ K× such that

λz = g−1 ◦ f ◦ g(z),

or
z + 1 = g−1 ◦ f ◦ g(z).

Proof. We assume that ϕ ̸= IdK since the case when ϕ = IdK is clear. Since K is algebraically
closed and f is a polynomial map with deg(f) = 1, f has at most one fixed point in K.

Case 1: One Fixed Point We first assume there exists only one fixed point α ∈ K. Then, we
consider

g(z) := z − α.

Note that the inverse map, g−1, of g maps 0 to α. Now we consider

f g(z) := g ◦ f ◦ g−1(z).

Then, it follows that

Claim 1 f g ∈ Poly1(K) . Moreover, f g(0) = 0.

Proof of Claim 1. It is clear that f g ∈ Poly1(K) since f and g ∈ Poly1(K) and deg(f ◦ g) =
deg(f) · deg(g) by Proposition 2.2.3. Moreover, it follows immediately that

f g(0) = g ◦ f ◦ g−1(0) = g ◦ f(α) = g(α) = 0.

Hence, it follows immediately that

f g(z) = g ◦ f ◦ g−1(z) = λz

for some λ ∈ K×.
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Case 2: No Fixed Points Let us assume that f has no fixed points in K. Then, it is not difficult
to check that

f(z) = z + c

for some c ∈ K×.

Claim 2 There exists some g ∈ Poly1(K) such that

g ◦ f ◦ g−1(z) = z + 1.

Proof of Claim 2. Let us consider

g(z) :=
1

c
z.

One may easily check that
g−1(z) = cz.

It easy to check that
g ◦ f ◦ g−1(z) = g ◦ f(cz) = g(c(z + 1)) = z + 1.

In the rest of this subsection, we will focus on the invariance of ρK under some maps. Let us
define

T : K ×K ×K → K

(z, a, c) 7→ az + c,

and denote
Ta,c(z) := T (z, a, c).

Proposition 2.4.4. For any a, c ∈ OK with |a| = 1, we have

ρK(Ta,c([X, Y ]), Ta,c([X
′, Y ′])) = ρK([X, Y ], [X ′, Y ′])

for any [X,Y ], [X ′, Y ′] ∈ P1(K).

Proof. One may easily check that

Ta,c([X, Y ]) = [aX + cY, Y ]

for any [X,Y ] ∈ P1(K). On the other hand, we have

|aX + cY | ≤ max{|aX|, |cY |} ≤ max{|X|, |Y |},
|X| = |aX| = |aX + cY − cY | ≤ max{|aX + cY |, |cY |} ≤ max{|aX + cY |, |Y |}

for any [X,Y ] ∈ P1(K). This implies that

max{|X|, |Y |} = max{|aX + cY |, |Y |}
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Thus, it follows that

ρK(Ta,c([X, Y ]), Ta,c([X
′, Y ′])) = ρK([X + cY, Y ], [X ′ + cY ′, Y ′])

=
|(X + cY )Y ′ − Y (X ′ + cY ′)|

max{|X + cY |, |Y |}max{|X ′ + cY ′|, |Y ′|}

=
|XY ′ − Y X ′|

max{|X|, |Y |}max{|X ′|, |Y ′|}
= ρK([X,Y ], [X ′, Y ′]).

Definition 2.4.5. We define

S : P1(K) → P1(K)

[X, Y ] 7→ [Y,X].

Then, we have the following proposition.

Proposition 2.4.6. For any [X, Y ], [X ′, Y ′] ∈ P1(K),

ρK(S([X,Y ]), S([X ′, Y ′])) = ρK([X,Y ], [X ′, Y ′]).

The proof is straightforward and we omit it.

2.5 The Fatou Set and the Julia Set

In 2.5, we will define the Fatou set and the Julia set on non-Archimedean fields and see some
properties of them, which are similar to the properties of the complex dynamical systems. See [B,
Definition 3.1.3] for the complex cases. As an important example, we will see a dynamical system,
which has an empty Julia Set. This subsection is based on J. Silverman’s textbook [S, Section 5.4].
Let us begin with the definitions of the equicontinuity and uniform Lipschitzness in metric spaces.

Definition 2.5.1 (Equicontinuity). Let (X, d) be a metric space, and U be an open set of X, and
Φ be a collection of maps from X to itself. Then, we say Φ is equicontinuous on U if for any ϵ > 0
and x ∈ U , there exists δ > 0 such that if d(x, y) < δ, then d(ϕ(x), ϕ(y)) < ϵ for any ϕ ∈ Φ.

Definition 2.5.2 (Uniform Lipschitzness). Let (X, d) be a metric space, and U be an open set of
X, and Φ be a collection of maps from X to itself. Then, we say Φ is uniformly Lipschitz on U if
there exists C > 0 such that for any x, y ∈ U

d(ϕ(x), ϕ(y)) ≤ Cd(x, y).

The next proposition shows us a relation between the above two definitions.

Proposition 2.5.3. Let (X, d) be a metric space, U be an open set and Φ be a collection of maps
from X to itself. If Φ is uniformly Lipschitz on U , then Φ is equicontinuous on U .

The proof may follow immediately and we omit it.
Now let us focus on the projective lines over non-Archimedean fields and their chordal metrics

and consider the dynamical systems of them. We first define the Fatou set and the Julia set as
follows.
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Definition 2.5.4 (The Fatou Set and The Julia set). Let (K, | · |) be a non-Archimedean field and
ϕ be a map from P1(K) to itself. We define the Fatou set F(ϕ) of ϕ as the maximal open set on
which the a family of iteration {ϕn}n∈N of ϕ is equicontinuous, and the Julia set J (ϕ) of ϕ as the
complement of the Fatou set of ϕ of P1(K).

Note that it is clear from the definition that the Fatou set is always open and the Julia set is
closed.

Example 2.5.5. Let us consider a map f(z) := z2 ∈ C2[z]. Then, we have that

D1(0) ⊂ F(f).

Indeed, by Proposition 2.3.5, D1(0) is an open subset on P1(K). Moreover, one may easily check
that

ρ2(f([z, 1]), f([w, 1])) = ρ2([z
2, 1], [w2, 1]) =

|z2 − w2|2
max{|z2|2, |1|2}max{|w2|2, |1|2}

= |z2 − w2|2 = |z + w|2 · |z − w|2 ≤ |z − w|2 = ρ2([z, 1], [w, 1])

for any z, w ∈ D1(0). It follows immediately that for any n ∈ N

ρ2([f
n(z), 1], [fn(w), 1]) ≤ ρ2([z, 1], [w, 1]).

That is, Φ := {fn}n∈N is uniformly Lipschitz on D1(0). By Proposition 2.5.3, we have D1(0) ⊂ F(f).

Let us close this subsection with some properties of the Fatou set and the Julia set. Let us fix
an algebraic closed complete field (K, | · |) of characteristic zero.

Proposition 2.5.6 (Complete Invariance). Let f be a polynomial map over K. Then,

f(F(f)) = F(f), f(J (f)) = J (f).

Proposition 2.5.7. Let f be a polynomial map over K. Then,

F(fn) = F(f), J (fn) = J (f)

for all n ∈ N.
The proofs are the same as those in complex dynamical system. See [S, Proposition 5.18].

Proposition 2.5.8. Let f be a polynomial map over K and S be a map defined as in Proposition
2.4.5. Then,

F(S ◦ f ◦ S−1) = S(F(f)), J (S ◦ f ◦ S−1) = S(J (f)).

It follows immediately from Proposition 2.4.6.

Example 2.5.9 (No Julia Set ). Let us consider f(z) := z2 ∈ C2[z]. Then, we have shown that

D1(0) ⊂ F(f).

On the other hand, one may easily check that

S(P1(C2)−D1(0)) = D1(0), S ◦ f ◦ S−1([X, Y ]) := [X2, Y 2].

Similarly, we can have D1(0) ⊂ F(S ◦ f ◦ S−1). By Proposition 2.5.8, we have

D1(0) ⊂ S(F(f)).

Since S ◦ S = IdP1(C2), we have

P1(C2)−D1(0) ⊂ F(f).

To sum up, we have
P1(C2) ⊂ F(f).
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2.6 Multiplier

In 2.6, we will consider the multiplier which is an analogue of the multiplier in complex dynamical
systems. After defining the multiplier, we will consider some properties of it. In particular, we
will see the relation with the Fatou set and the Julia set. This subsection is based on Silverman’s
textbook [S, Section 5.4].

Definition 2.6.1 (Multiplier). Let (K, | · |) be a non-Archimedean field, f be a polynomial map
over K with deg(f) ≥ 2, and α ∈ P1(K) be a periodic point with prime period N . The multiplier
λf (α) of f at α is defined by

λf (α) :=

{
(fN)′(α) (α ̸= ∞),

0 (α = ∞).

One can check that the definition of the multiplier is well-defined. Using the multiplier, we
classify periodic points of non-Archimedean dynamical systems.

Definition 2.6.2 (Classification of Periodic Points). Let (K, | · |) be a non-Archimedean field, ϕ be
a polynomial map over K, and α ∈ P1(K) be a periodic point of f with period N . Then, we call α

an attracting periodic point if |λϕ(a)| < 1,

a repelling periodic point if |λϕ(a)| > 1,

a neutral periodic point if |λϕ(a)| = 1.

Example 2.6.3. Let us consider f(z) := z2 on C3. Then, one may easily check that

Fix (f) = {0, 1,∞}.

Then, 0 is an attracting fixed point. Indeed, it is easy to check that λf (0) = 0. Moreover, ∞ is
also an attracting fixed point since λf (∞) = 0. On the other hand, 1 is a neutral fixed point since
|λf (1)|3 = |2|3 = 1.

Let us wrap up this subsection with some propositions. Let (K, | · |) be an algebraically closed
complete non-Archimedean field of characteristic zero, and f be a polynomial map over K with
deg(f) ≥ 2.

Proposition 2.6.4. The non-repelling periodic points are in the Fatou set.

Proof. Let α ∈ P1(K) be a non-repelling periodic point. We will prove this statement in three steps
for two distinct cases.

Case 1: λf (α) ̸= 0.

Then, by Corollary 2.2.11, there exists some 1 ≥ R > 0 such that

|f(z)− f(w)| = |f ′(α)||z − w|

for any z, w ∈ DR(α).

Step 1: α ∈ Fix (f), and |α| ≤ 1.
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Since |α| ≤ 1 and α ∈ Fix (f), we have

|f(z)| = |f(z)− f(α) + f(α)| ≤ max{|f ′(α)||z − α|, |α|} ≤ 1

for any z ∈ DR(α). This implies that

ρK(f([z, 1]), f([w, 1])) = ρK([f(z), 1], [f(w), 1]) =
|f(z)− f(w)|

max{|f(z)|, 1}max{|f(w)|, 1}

= |f ′(α)| |z − w|
max{|z|, 1}max{|w|, 1}

≤ ρK([z, 1], [w, 1])

for any z, w ∈ DR(α). It is not difficult to show that for any n ∈ N and z, w ∈ DR(α),

ρK(f
n([z, 1]), fn([w, 1])) ≤ ρK([z, 1], [w, 1]).

This implies that {ϕi
f}i∈N is uniformly Lipschitz on DR(α).

Step 2: α ∈ Fix (f), and |α| > 1.

Since
|α| > 1 ≥ |f ′(α)||z − α| = |f(z)− f(α)|

for all z ∈ DR(α), we have

|f(z)| = |f(z)− f(α) + f(α)| = max{|f(z)− f(α)|, |f(α)|} = |α|

for all z ∈ DR(α). Moreover, since
|α| > 1 ≥ |z − α|

for all z ∈ DR(α), we have

|z| = |z − α + α| = max{|z − α|, |α|} = |α|

for all z ∈ DR(α). Thus, it follows that

ρK(f([z, 1]), f([w, 1])) =
|f(z)− f(w)|

max{|f(z)|, 1}max{|f(w)|, 1}
=

|f(z)− f(w)|
max{|α|, 1}max{|α|, 1}

= |f ′(α)| |z − w|
max{|z|, 1}max{|w|, 1}

≤ ρK([z, 1], [w, 1])

for all z, w ∈ DR(α). It is not difficult to show that for any n ∈ N and z, w ∈ DR(α),

ρK(f
n([z, 1]), fn([w, 1])) ≤ ρK([z, 1], [w, 1]).

This implies that {ϕi
f}i∈N is uniformly Lipschitz on DR(α).

Step 3: α ∈ Per(f)− Fix (f).

Suppose that α is a periodic point of f with period N ∈ N. Then, by Step 1 and 2 and Proposition
2.5.7, we conclude

32



α ∈ F(fN) = F(f).

Case 2: λf (α) = 0.

Let us prove it in the two steps.

Step 1: α ∈ K.

The proof proceeds in the same way as that of Case 1 since there exists some 1 ≥ R > 0 such
that

|f(z)− f(w)| ≤ |z − w|

for all z, w ∈ DR(α) so we omit the details. See [S, Proposition 5.20].

Step 2: α = ∞.

Suppose that
f(z) := a0 + a1z + · · ·+ aNz

N ∈ Poly(K)

where {ai}Ni=0 ⊂ K and aN ̸= 0.
Then, one can check that

S ◦ ϕf ◦ S−1[X,Y ] = [XN , aNY
N + aN−1Y

N−1X + · · ·+ a0X
N ] (X ̸= 0).

Considering
g(z) := aN + aN−1z + · · ·+ a0z

N ∈ Poly(K),

it is clear that there exists some r > 0 such that

g(z) ̸= 0

for all z ∈ Dr(0). It follows from Corollary 2.2.18 that there exists some c > 0 such that for all
z ∈ Dr(0),

|g(z)| = c.

Now we set C :=
rN

c
> 0 and R := min{1, C−1, r} > 0. Then, one may show that

|zNg(w)− wNg(z)|
|g(w)||g(z)|

≤ |z − w|

for all z, w ∈ DR(0). See [S, Proposition 5.8, Proposition 5.10]. Hence, we have

ρK(S ◦ f ◦ S−1[z, 1], S ◦ f ◦ S−1[w, 1]) = ρK([z
N , g(z)], [wN , g(w)])

=
|zNg(w)− wNg(z)|

max{|zN |, |g(z)|}max{|w|N , |g(w)|}

≤ |z − w|
max{|zN |, 1}max{|w|N , 1}

=
|z − w|

max{|z|, 1}max{|w|, 1}
= ρK([z, 1], [w, 1]).
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It is easy to check that for all n ∈ N,

ρK(S ◦ f ◦ S−1[z, 1], S ◦ f ◦ S−1[w, 1]) ≤ ρK([z, 1], [w, 1]).

Thus, {S ◦ f i ◦ S−1}i∈N is uniformly continuous on DR(0). It follows from Proposition 2.5.8 that
∞ ∈ F(ϕf ).

In particular, we have the following corollary.

Corollary 2.6.5. Let f be a polynomial map over K with deg(f) ≥ 2. Then, the Fatou set F(f) is
not empty-set.

Proof. f has a non-repelling fixed point at ∞. Moreover, by Proposition 2.6.4, ∞ ∈ F(ϕf ).

Similarly, one can check the following proposition. See also [S, Proposition 5.20 (b)].

Proposition 2.6.6. Let f be a polynomial map over K. Then, the repelling periodic points of f are
in the Julia set.

2.7 Montel’s Theorems

In 2.7, we will see an analogue of Montel’s theorem of complex analysis for non-Archimedean fields.
See [B, Theorem 3.3.4] or [M, Theorem 3.7] for Montel’s Theorem in complex analysis. L-C. Hsia,
who proved the theorem initially, has shown that it holds for a collection of rational maps over K in
his paper [H, MAIN THEOREM] and considers the relation between repelling periodic points and
Julia set of non-Archimedean fields as Fatou and Julia do in the complex dynamical systems. We
will see it in 2.10 as an application of Montel’s theorem for non-Archimedean fields. This subsection
is based on L-C. Hsia’s paper [H] and J. Silverman’s textbook [S, Section 5.6].

Let us fix an algebraically closed complete non-Archimedean field (K, | · |) of characteristic zero
throughout this subsection. Let us begin with a simple example.

Example 2.7.1. Suppose that F ⊂ Poly(K) is a collection of polynomial maps over K such that

f(D1(0)) ⊂ D1(0)

for any f ∈ F . Then, for each f ∈ F ,

|f(z)− f(w)| = |z − w| · |f ′(0) + f (2)(0)(z + w) + · · ·+
f (N)(0)(zN−1 + zN−2w + · · ·+ wN−1)| ≤ |z − w|

for any z and w ∈ D1(0) where N is the degree of f . Moreover, since |f(z)| ≤ 1 for any z ∈ D1(0),
we have that

ρK(f([z, 1]), f([w, 1])) =
|f(z)− f(w)|

max{|f(z)|, 1}max{|f(w)|, 1}
≤ |z − w|

max{|f(z)|, 1}max{|f(w)|, 1}

= |z − w| = |z − w|
max{|z|, 1}max{|w|, 1}

= ρK([z, 1], [w, 1])

for any z, w ∈ D1(0) and f ∈ F . This implies that F is uniformly Lipschitz on D1(0).
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Theorem 2.7.2. Let F be a collection of polynomial maps over K. Suppose that there exists at least
one element α ∈ K such that ∪

f∈F

f(D1(0)) ∩ {α} = ∅.

Then, F is uniformly Lipschitz on D1(0) with respect to the chordal metric ρK.

Proof. Let us consider the following two cases.

Case 1: The omitted point α is zero.

Let us fix any f ∈ F . Then, it follows immediately that f has no zeros in D1(0). Thus, by
Theorem 2.2.17, for any z ∈ D1(0),

|f(z)| = |f(0)|.
On the other hand, it is easy to check from the proof of Theorem 2.2.17 that

|f(z)− f(w)| = |z − w| · |f ′(0) + f (2)(0)(z + w) + · · ·+
f (N)(0)(zN−1 + zN−2w + · · ·+ wN−1)| ≤ |f(0)||z − w|

for any z and w ∈ D1(0) where N is the degree of f . Let us dentate |f(0)| by C. It follows that

ρK(f([z, 1]), f([w, 1])) ≤
C|z − w|

max{1, |f(z)|}max{1, |f(w)|}
=

C|z − w|
max{1, C}max{1, C}

for any z, w ∈ D1(0).
Now we first assume that C ≤ 1. Then, we immediately have that

ρK(f([z, 1]), f([w, 1])) ≤
C|z − w|

max{1, |f(z)|}max{1, |f(w)|}
=

C|z − w|
max{1, C}max{1, C}

≤ 1 · |z − w| = |z − w|
max{|z|, 1},max{|w|, 1}

= ρK([z, 1], [w, 1])

for any z, w ∈ D1(0).
Next we assumed that C > 1. Then, we also have that

ρK(f([z, 1]), f([w, 1])) ≤
C|z − w|

max{1, |f(z)|}max{1, |f(w)|}
=

C|z − w|
max{1, C}max{1, C}

=
C · |z − w|
C · C

=
ρK([z, 1], [w, 1])

C
≤ ρK([z, 1], [w, 1])

for any z, w ∈ D1(0).
Since we choose an arbitrary f ∈ F , this implies that F is uniformly Lipschitz on D1(0).

Case 2: The omitted point α is not 0.

Now we consider

Tα : P1(K) → P1(K)

[X, Y ] 7→ [X − αY, Y ]

and define
Fα := {Tα ◦ f | f ∈ F}.

Then we show that
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Claim 1 Fα is uniformly Lipschitz on D1(0).

Proof of Claim 1. For any f ∈ F , it follows easily that

Tα ◦ f([z, 1]) ̸= 0.

It follows from Case 1 that Fα is uniformly Lipschitz on D1(0).

Claim 2 F is also uniformly Lipschitz on D1(0).

Proof of Claim 2. It follows from Claim 1 that there exists some C > 0 such that

ρK(Tα ◦ f([z, 1]), Tα ◦ f([w, 1])) ≤ CρK([z, 1], [w, 1])

for all z, w ∈ D1(0). Since Tα is bijective, it follows from Theorem 2.3.7 that there exists some
C ′ > 0 such that

ρK(f([z, 1]), f([w, 1])) ≤ ρK(T
−1
α ◦ Tα ◦ f([z, 1]), T−1

α ◦ Tα ◦ f([w, 1]))
≤ C ′ρK(Tα ◦ f([z, 1]), Tα ◦ f([w, 1])) ≤ C ′CρK([z, 1], [w, 1])

for any z, w ∈ D1(0) and f ∈ F .

As an application of Theorem 2.7.2, Montel’s theorem in non-Archimedean fields can be obtained.

Corollary 2.7.3 (Montel’s theorem). Let Dr(a) be a rational closed disk, and F be a collection of
polynomial maps over K. Suppose that there exists at least one element α ∈ K such that∪

f∈F

f(Dr(a)) ∩ {α} = ∅.

Then F is uniformly Lipschitz on Dr(a) with respect to the chordal metric ρK.

Proof. Let us consider

T : K → K

z 7→ c · z + a

where c ∈ K satisfies |c| = r. It is clear that T is bijective from D1(0) to Dr(a). Considering

F := {f ◦ T | f ∈ F},

we obtain the following claim.
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Claim F ⊂ Poly(K). Moreover, F is uniformly Lipschitz on D1(0).

Proof of Claim 1. The first statement is clear since T is a polynomial map over K. To show the
second statement, we show that ∪

f∈F

f ◦ T (D1(0)) ∩ {α} = ∅

by contradiction. Let us assume that there exists some g ∈ F and w ∈ D1(0) such that g(cw+ a) =
g ◦ T (w) = α. Since cw + a ∈ Dr(a), This is a contradiction. The statement can be proved by
Theorem 2.7.2.

Thus, there exists some C > 0 such that

ρK([f([z, 1])], [f([w, 1])]) = ρK([f(z), 1], [f(w), 1])

= ρK([f ◦ T ◦ T−1(z), 1], [f ◦ T ◦ T−1(w), 1])

≤ CρK([T
−1(z), 1], [T−1(w), 1])

for any z, w ∈ Dr(a). On the other hand, by Theorem 2.3.7, there exists some C ′ > 0 such that

ρK([T
−1(z), 1], [T−1(w), 1]) ≤ C ′ρK([z, 1], [w, 1])

for any z, w ∈ Dr(a). This implies that F is uniformly Lipschitz on Dr(a) with respect to ρK .

Motel’s theorem is very helpful to determine if a given open set is in the Fatou as we do in
complex dynamical systems. In the following three subsections, we will see several applications of
Motel’s theorem.

2.8 An Application of Montel’s Theorem I: Properties of the Julia Sets

In 2.8, we will see an application of Hsia’s theorem to non-Archimedean dynamical systems. In
particular, one will notice the statements in this subsection are true for complex dynamical systems.
See [M, Corollary 4.13, Corollary 4.14] for an application of Motel’s theorem to complex dynamical
systems. This subsection is based on L-C. Hsia’s paper [H] and J. Silverman’s textbook [S, Section
5.6]. Let (K, | · |) be a non-Archimedean field and f be a polynomial map over K with deg(f) ≥ 2.

Proposition 2.8.1. Suppose that J (ϕf ) ̸= ∅. Then, the backward orbit of any point of the Julia set
is dense in the Julia set with respect to ρK. That is,∪

n∈N

f−n({α}) = J (f)

for all α ∈ J (f).

Proof. It follows from Proposition 2.5.6 that for any α ∈ J (f) and any n ∈ N,

f−n(α) ⊂ J (f).

Moreover, since the Julia set is closed, we have that the closure of the backward orbit of any point
of the Julia set is contained in the Julia set.
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Now let us fix an arbitrary element z ∈ J (f). By Corollary 2.7.3, for any closed rational disk
Dr(z), ∪

n∈N

fn(Dr(z)) = K.

On the other hand, by Proposition 2.6.4, we have that

α ∈ J (f) ⊂ K =
∪
n∈N

fn(Dr(z)).

Hence, there exists some N ∈ N such that

α ∈ fN(Dr(z)).

That is,
f−N({α}) ⊂ Dr(z).

Proposition 2.8.2. There are no isolated points in the Julia set.

The proof can be found in [S, Corollary 5.32 (c)].

Corollary 2.8.3. Suppose that J (f) ̸= ∅. Then, the Julia set is uncountable.

Proof. (By contradiction) Assume that the Julia set is countable, or finite. Then, the Julia set can
be written as

J (f) = {xi}i∈N ⊂ K.

Then, since the Julia set has no isolated points, we have

Xi = J (f)

where Xi = J (f) − {xi} for all i ∈ N with respect to ρK . Since the Julia set is a closed subset
of P1(K) and P1(K) is a complete metric space, the Julia set is also a complete metric space. See
Proposition 5.2.1. It follows from the Theorem 5.2.2 that∩

i∈N

Xi = J (f).

However, it is easy to check that ∩
i∈N

Xi = ∅.

Thus, the Julia set must be empty. This is a contradiction to our assumption.

2.9 An Application of Montel’s Theorems II: The Fatou Set of Quadratic
Maps

In 2.9, we will see another application of Montel’s theorem to non-Archimedean dynamical systems.
We will try to understand the dynamic systems generated by quadratic polynomial maps over Cp. A
few results in this subsection are some of the original results of the author. See Proposition 2.9.2 to
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Proposition 2.9.5. Throughout this subsection, we fix a prime number p and focus on the dynamics
of the quadratic maps

f : Cp × Cp → Cp

(z, c) 7→ z2 + c.

To ease notation, we shall use the notation fc(z) := f(z, c). As we have seen in Example 2.5.9, it is
possible to have empty Julia sets in non-Archimedean dynamical systems. In fact, one of interesting
results of this subsection is that there are many non-Archimedean dynamical systems with no Julia
sets.

Theorem 2.9.1. Let f be a polynomial map over Cp with deg(f) ≥ 2. Suppose that S ⊂ K satisfies
that

S ̸= ∅, f−1(S) ⊂ S, S = S

where S is the topological closure of S with respect to ρp. Then, J (f) ⊂ S.

Proof. It is clear if J (f) = ∅. Let us assume that J (f) ̸= ∅, and set U := K − S. It follows
immediately that

f(U) ⊂ U, U ⊂ K: open,

which gives
fn(U) ⊂ U

for any n ∈ N. Moreover, since S is non-empty, there exists some α ∈ S ⊂ K such that∪
n∈N

fn(U) ∩ {α} = ∅.

By Montel’s theorem and Proposition 2.3.5, we obtain that U ⊂ F(f). Thus, J (f) ⊂ S.

Using this theorem, we analyse the dynamics of (P1(Cp), fc).

Proposition 2.9.2. If |c|p ≤ 1, then J (fc) = ∅.

Proof. We will show the following claims.

Claim 1 J (fc) ⊂ D1(0).

Proof of Claim 1. One may easily check that

fc(P1(Cp)−D1(0)) ⊂ P1(Cp)−D1(0),

which gives us
f−1
c (D1(0)) ⊂ D1(0).

Moreover, it is clear that D1(0) is non-empty and closed. Thus, by Theorem 2.9.1, we have J (fc) ⊂
D1(0).
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Claim 2 fc(D1(0)) ⊂ D1(0).

Proof of Claim 2. Since |c|p ≤ 1, it follows that for any z ∈ D1(0)

|fc(z)|p = |z2 + c|p ≤ max{|z|2p, |c|p} ≤ 1.

One may inductively show from Claim 2 that for any n ∈ N

fn
c (D1(0)) ⊂ D1(0).

Thus, by Montel’s theorem, D1(0) ⊂ F(fc).

In fact, we can say more than this. Let us begin with the following lemma.

Lemma 2.9.3. Let g be a non-constant monic polynomial over Cp. Suppose that |g(i)(0)|p ≤ 1 for
all i ∈ N. Then, all roots of g must be in D1(0).

See Proposition 5.1.4 for the proof of Lemma 2.9.3.
Now we can show the following proposition.

Proposition 2.9.4. Let g be a non-constant monic polynomial over Cp. Suppose that |g(i)(0)|p ≤ 1
for all i ∈ N. Then, J (g) = ∅.

The proof is easily obtained from Corollary 2.7.3 or Example 2.7.1 and we omit it.

Proposition 2.9.5. Suppose that p ̸= 2 and |c|p > 1. Then J (fc) ̸= ∅. Moreover, J (fc) ⊂ S(|c|
1
2
p ).

Proof. Since Cp is an algebraically closed field and deg(fc) = 2, there exists {α, β} ⊂ K such that

fc(α) = α, fc(β) = β.

Note that α may coincidence β.

Claim 1 The elements α, β are repelling fixed points.

Proof of Claim 1. Let us first assume that |α|p < |c|1/2p . It follows that

|α|2p < |c|p, |α|p < |c|1/2p < |c|p.

Thus, it follows from Proposition 2.1.5 that

|α2 − α + c|p = |c|p > 0.

This is a contradiction to α2 − α + c = 0.
Next we assume that |α|p > |c|1/2p . It follows that

|α|2p > |c|p, |α|2p > |α|p.

Thus, it follows from Proposition 2.1.5 that

|α2 − α + c|p = |α|2p > 0

because c ̸= 0 means that α ̸= 0. This is also a contradiction to α2 − α + c = 0.
Furthermore, we easily check that

|f ′
c(α)|p = |2|p|α|p = |c|1/2p > 1.

This implies that α is a repelling fixed point of fc. One can check that the proof proceeds in the
same way for β.
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By Proposition 2.6.6, α, β ∈ J (fc). In particular, this implies that J (fc) ̸= ∅. Next, we show
the following claim.

Claim 2 For any z ∈ S(|c|1/2p ), f−1
c ({z}) is in S(|c|

1
2
p ).

The proof proceeds in the same way as that of Claim 1 so we omit it. On the other hand, it is
clear that S(|c|1/2p ) is non-empty and backward invariant under ϕf . Thus, by Proposition 2.9.1, we
have

J (fc) ⊂ S(|c|1/2p ).

2.10 An Application of Montel’s Theorem III: The Julia Set and Peri-
odic Points

In 2.10, we will see the relationship between the Julia set and the repelling periodic points of rational
maps as another application of Hsia’s theorem to non-Archimedean dynamical systems. We will omit
the proof of the main theorem in this subsection, but we will see some examples related to the main
theorem. This subsection is based on L-C. Hsia’s paper [H] and J. Silverman’s textbook [S, Section
5.7].

Let us begin with a motivation of this subsection. The following theorem was proved by G. Julia
and P. Fatou.

Theorem 2.10.1. Let f be a rational map over C with deg(f) ≥ 2. Then, the set of the repelling
periodic points of f is dense in the Julia set of f .

One can find the proof in [M, Theorem 14.1] or [B, Theorem 6.9.2]. The analogue of Theorem
2.10.1 in non-Archimedean dynamics was conjectured by L-C. Hsia in his paper [H, CONJECTURE
4.3]. Let (K, | · |) be an algebraically closed complete non-Archimedean field of characteristic zero.

Conjecture 2.10.2. Let f be a rational map over Cp with deg(f) ≥ 2. Then, the set of the repelling
periodic points of f is dense in the Julia set of f .

It is still an open problem in non-Archimedean dynamical systems. However, Hsia has succeed
to prove a close statement.

Theorem 2.10.3. Let f be a rational map over K with deg(f) ≥ 2. Then,

J (f) ⊂ Per(f ).

We will omit the proof. See [S, Theorem 5.37] or [H, THEOREM 3.1] for the proof of Theorem
2.10.3. Now we consider the reasons why we cannot extend Theorem 2.10.3 as in complex dynamics.
One of reasons is the number of non-repelling periodic points. In complex dynamics, the number of
the non-repelling periodic points in the Fatou set is finite. See [M, Corollary 10.16]. If the number
of the non-repelling periodic points in the Fatou set is finite, we can easily prove Conjecture 2.10.2.
However, although the number of the super-attracting periodic points, which is attracting periodic
points with multiplier 0, is finite in non-Archimedean dynamical systems, it is possible to have
attracting periodic points.
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Example 2.10.4 (Only Attracting Periodic Points). Let p be a prime number, and consider

f : Cp → Cp

z 7→ zp.

Then, it is easy to check that
#(PerN (f

N)) = pN + 1

for any N ∈ N. This implies that
#(Per(f)) = ∞.

Moreover, one may prove that
Per(f) ⊂ D1(0) ∪ {∞}.

This implies that for any α ∈ Per(f)−{∞}, there exists some smallestM ∈ N such that fM(α) = α,
and, by the chain rule, we have

λf (α) = |(fM)′(α)|p = |pαp−1
1 |p|pαp−1

2 |p · · · |pαp−1
M |p ≤

1

pM
< 1

where αi := f i(α) for i = 1, 2, · · · ,M . Moreover, it follows from Definition 2.6.1 that ∞ is an
attracting fixed point. Thus, we conclude that all periodic points of ϕf are attracting periodic
points. One can check that

λf (0) = λf (∞) = 0, λf (α) ̸= 0

for all a in Per(f)− {0,∞}.

Let us wrap up this subsection with a theorem proven by J. Bezivin in [JB, THÈORÉM 3], which
almost gives the answer to Conjecture 2.10.2.

Theorem 2.10.5. Let f be a rational map over C with deg(f) ≥ 2. Suppose that there exists at
least one repelling periodic point of f . Then, the set of the repelling periodic points of f is dense in
the Julia set of f .

2.11 Disk Components over Non-Archimedean Fields

In 2.11, we will define new domains, which will be called disk components, and see some properties
of it. This subsection is based on Silverman’s textbook [S, Section 5.8] and [RB01].

Let (K, | · |) be an algebraically closed complete non-Archimedean field of characteristic zero
throughout this subsection.

Let us define disk component, which is an analogue of path-connected component of the complex
dynamics.

Definition 2.11.1 (Disk Component). Let X be a topological space, D be a collection of subsets
of X, and U be a non-empty open set of X. Then, V ⊂ U is called a disk component of U with
respect to D if V is a non-empty open subset of U and satisfy that for any v1, v2 ∈ V , there exist
some N ∈ N and a sequence {Di}Ni=1 in D in V such that

v1 ∈ D1, v2 ∈ DN , Di ∩Di+1 ̸= ∅

for any i ∈ {1, 2, · · · , N}.
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Example 2.11.2. Let us consider C with the Euclidean topology. Then, Dr(a) is a disk component
of C for all a ∈ C and r > 0. On the other hand, (Dr(a)−Dr1(a))∪Dr2(a) is not a disk component
of C for all a ∈ C and r > r1 > r2 > 0.

One may notice that the following proposition is true.

Proposition 2.11.3. Let U be a non-empty open subset of C. Then, U is a path-connected compo-
nent if and only if U is a disk-connected component.

The proof follows easily and we omit it.

Example 2.11.4 (Non-Archimedean Case). Let p be a prime number and Let us consider (Cp, | · |p).
Then, Dr(a) and Dr(a) are disk components of Cp for all a ∈ C and r > 0.

Proposition 2.11.5. Let U be a non-empty open subset of K. If V is a non-empty disk component
of U , then there exists some a ∈ K, and r > 0 such that either

V = K, Dr(a), or Dr(a).

Proof. Let us fix an arbitrary z0 ∈ V and set

r0 := sup{r > 0 | Dr(z0) ⊂ V }.

Note that r0 is well-defined since z0 ∈ V ⊂ U is an interior point. It is clear that if r0 = ∞, then
V = K so we assume that r0 <∞.

Claim Dr0(z0) ⊂ V ⊂ Dr0(z0).

Proof of Claim. We first consider the proof of Dr0(z0) ⊂ V . For any z ∈ Dr0(z0), we have

|z − z0| < r0.

It follows from the construction of r0 that

z ∈ D|z−z0|(z0) ⊂ Dr0(z0) ⊂ V.

Next, we consider the proof of V ⊂ Dr0(z0). For any z ∈ V , there exists some N ∈ N and
{Dri(ai) ⊂ V }Ni=1 such that

z0 ∈ Dr1(a1), z ∈ DrN (aN), Dri(ai) ∩Dri+1
(ai+1) ̸= ∅

for any i = 1, 2, · · · , N − 1. Moreover, by using Corollary 2.1.21 inductively, we have that there
exists some R > 0 such that

DR(z0) =
N∪
i=1

Dri(ai) ⊂ V.

In particular, by the construction of r0, R ≤ r0. Hence, we have

|z − z0| ≤ R ≤ r0.

Now we consider the following two cases.

Case 1: There exists some w0 ∈ V such that |w0 − z0| = r0.

In this case, we have the following claim.
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Claim 2 V = Dr0(z0).

Proof of Claim 2. By Claim 1, it is sufficient to show that

Dr0(z0) ⊂ V.

Let us take an arbitrary z ∈ Dr0(z0). Since w0 ∈ V , it follows from Definition 2.11.1 that there
exists some N ∈ N and {Dri(ai)}Ni=1 in U such that

z0 ∈ Dr1(a1), w0 ∈ DrN (aN), Dri(ai) ∩Dri+1
(ai+1) ̸= ∅

for any i = 1, 2, · · · , N − 1.
Moreover, by using Corollary 2.1.21 inductively, we have that there exists some R′ > 0 such that

DR′(z0) =
N∪
i=1

Dri(ai) ⊂ V.

In particular, by the construction of r0, R
′ ≤ r0. On the other hand,

w0 ∈
N∪
i=1

Dri(ai) = DR′(z0).

implies that r0 = |z0 − w0| ≤ R′. Thus, we have

z ∈ Dr0(z0) = DR(z0) ⊂ V.

Case 2: Every w ∈ V satisfies |z0 − w| ̸= r0.

In this case, we have the following claim.

Claim 3 V = Dr0(z0).

Proof of Claim 3. By Claim 1, it is sufficient to show that

V ⊂ Dr0(z0).

Let us choose any z ∈ V and we show that |z − z0| < r0 by contradiction. By our assumption of
Case 2, we may assume that

|z − z0| > r0.

Then, since V is a disk component of U , there exists some N ∈ N and {Dri(ai)}Ni=1 in V such that

z0 ∈ Dr1(a1), z ∈ DrN (aN), Dri(ai, ri) ∩Dri+1
(ai+1) ̸= ∅

for any i = 1, 2, · · · , N −1. Moreover, by using Corollary 2.1.21 inductively, there exists some R > 0
such that

DR(z0) =
N∪
i=1

Dri(ai) ⊂ V.
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Furthermore, since

z ∈ DrN (aN) ⊂
N∪
i=1

Dri(ai) = DR(z0),

we have
r0 < |z − z0| ≤ R.

This implies that
DR(z0) ⊂ V, and r0 < R.

This is a contradiction to the construction of r0.

Now we consider the set of disk components of P1(K). Let us begin with the definition of the set
of disks on projective lines.

Definition 2.11.6. Let us define the collection of closed disks of P1(K) by

Dclosed := {Dr(a) ⊂ K | a ∈ K, r ∈ R ∩ |K×|} ∪ {P1(K)−Dr(a) | a ∈ K, r ∈ R ∩ |K×|}.

Similarly, we define the collection of open disks of P1(K) by

Dopen := {Dr(a) ⊂ K | a ∈ K, r ∈ R ∩ |K×|} ∪ {P1(K)−Dr(a) | a ∈ K, r ∈ R ∩ |K×|}.

The following proposition gives the shape of disk components of P1(K). The proof is the same
as Proposition 2.11.5 and we omit it. See [S, Proposition 5.45].

Proposition 2.11.7. Let U be an non-empty open set and V be a disk component of U with respect
to Dclosed. Then, V is either

P1(K), P1(K)− {P}, or V ∈ Dclosed ∪ Dopen

where P ∈ P1(K).

2.12 p-adically Hyperbolic Maps

In 2.12, we consider an analogue of hyperbolic maps in complex dynamical systems. In complex
dynamical systems, a rational map ϕ over C is called a hyperbolic map if its Julia set does not
contain any critical points of ϕ. This subsection is based on R. Benedetto’s paper [RB01] and
Silverman’s textbook [S, Section 5.8].

Let (K, | · |) be a finite extension of (Qp, | · |p). Note that (K, | · |) is a locally compact and complete
non-Archimedean fields of characteristic zero.

Definition 2.12.1. Let f be a polynomial map on Cp over K with deg(f) ≥ 2. Then, f is called a
(p-adically) hyperbolic map if there is no critical point in J (f) ⊂ Cp.

One can find the definition of critical points of a given polynomial map in Definition 2.2.7.

Example 2.12.2. Let p be a prime number and let us consider the map

f : Cp → Cp

z 7→ z2 +
1

p
.

It is clear that f ∈ Qp[z]. Moreover, the only critical point of f is 0 ∈ F(f) since

lim
n→∞

fn(0) = ∞ ∈ F(f).

45



Example 2.12.3. Let p be an odd prime number and let us consider the map

F : Cp → Cp

z 7→ zp − zp−1

p
+ 1.

It is clear that F ∈ Qp[z] and 0 is a critical point of F . However, it follows easily that

F (0) = 1, F (1) = 1, F ′(1) = 1, |F ′(1)|p = p > 1.

In particular, this implies that
1 ∈ J (F ), 0 ∈ F−1(J (F )).

By Proposition 2.5.6, we have 0 ∈ J (F ). Thus, F is not a hyperbolic map.

Theorem 2.12.4 (A Equivalent Theorem for Hyperbolic Maps). Let f be a polynomial map over
K with deg(f) ≥ 2. Then, f is a (p-adically) hyperbolic map if and only if for any finite extension
field L of K, there exists some M ∈ N such that

|(fM)(z)| ≥ 2

for all z ∈ J (f) ∩ L.

We omit the proof. It can be found in [RB01, MAIN THEOREM] or [S, Theorem 5.46].

2.13 No Wandering Domains Theorems

In 2.13, we will see two non-Archimedean no wandering domains theorems, which are analogues of
Sullivan’s no wandering domains theorem in complex dynamics, proved by R. Benedetto. One of
them is related to hyperbolic maps, and we will see its proof in this subsection. We will omit the
proof of the other one, but compare with two theorems. This subsection is based on R. Benedetto’s
papers [RB00], [RB01]. Let us begin with a motivation.

Theorem 2.13.1 (Sullivan’s No Wandering Domains Theorems). Let f be a rational map over
C with deg(f) ≥ 2. Then, the Fatou set of f has non-wandering components. That is, for any
component U of the Fatou set of f , there exists some n > m ∈ N such that fn(U) = fm(U).

See [B, Theorem 8.1.2] or [M, Theorem F.1] for the proof of Theorem 2.13.1. The following
conjecture is a natural question in the non-Archimedean fields.

Conjecture 2.13.2. Let p be a prime number and f be a rational map over Cp with deg(f) ≥ 2.
Then, the Fatou set of f has no wandering disk components.

R. Benedetto has proved partly this conjecture in his paper [RB01]. Moreover, he also proved
that this conjecture fails for some polynomial maps over Cp in [THEOREM 1.1][RB02]. We will
consider it in the next subsection.

In this subsection, we will consider Benedetto’s no wandering domains theorem for polynomial
maps. In fact, he proved it for p-adically hyperbolic rational maps. See [RB01, COROLLARY 3.1].
Let (K, | · |) be a finite extension field of (Qp, | · |p). Note that (K, | · |p) is a locally compact and
complete non-Archimedean field of characteristic zero.

Theorem 2.13.3. Let f be a polynomial map over K on Cp with deg(f) ≥ 2. If there are no critical
points in J (f) and J (f) ⊂ D1(0), then F(f) has no wandering disk components.
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Proof. (By contradiction) Let us assume that there exists a wandering domain U ̸= ∅ of F(f).
Without loss of generality, we may assume that

U ⊂ D1(0), fn(U) ⊂ D1(0)

for all n ∈ N. Let us choose any element α1 in U and γ1 > 0 such that

γ1 ∈ |C×
p |p, Dγ1(α1) ⊂ U.

Setting L := K(α1), it is clear that

α1 ∈ L ∩D1(0), fn(α1) ∈ L ∩D1(0)

for all n ∈ N. Moreover, since f is a p-adically hyperbolic map on K, by Theorem 2.12.4, there
exists some M ∈ N such that

|(fM)′(w)|p ≥ 2

for all w ∈ J (ϕf ) ∩ L. To ease notation, we shall use

g := fM ,

and consider the dynamics of g. It is clear that U is also a wandering domain of g. Now we define
{(αi, γi)}i∈N as

αi := gi−1(α1), Dγi(αi) = gi−1(Dγ1(α1))

for each i ∈ N. It is clear that γi ∈ |C×
p |p for all i ∈ N. Then, since L ∩ OK is compact, this implies

that for any subsequence {αij}j∈N of {αi}i∈N, there exists some β ∈ L ∩ OK such that

lim
j→∞

|αij − β|p = 0.

Moreover, we obtain the following claims.

Claim 1
lim
i→∞

γi = 0.

Proof of Claim 1. (By contradiction) Let us assume that

lim
i→∞

γi ̸= 0.

That is, there are some ϵ > 0 and {γij}j∈N such that

γij ≥ ϵ.

This implies that
∞∪
j=1

Dγij
(αij) ⊂ L ∩D1(0).

On the other hand, since L∩D1(0) is a topological compact space with respect to +, there exists
the Haar Measure µ on L ∩D1(0). See Theorem 5.4.4. Thus, it follows from Theorem 5.4.4 that

µ(Dϵ(0)) > 0, µ(Dϵ(α)) = µ(Dϵ(0))

for all α ∈ L. Since the disks is disjoint, we have that

∞ = ∞ · µ(Dϵ(0)) ≤ µ(
∞∑
j=1

Dγij
(αij)) =

∞∑
j=1

µ(Dγij
(αij)) < µ(L ∩D1(0)) = 1.

This is a contradiction.
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Claim 2 There exists some {αij}j∈N such that |g′(αij)|p < 1 for all j ∈ N.

Proof of Claim 2. It follows from Claim 1 that there exists some subsequence {γij}j∈N of {γi}i∈N
such that for each j ∈ N,

γij+1 < γij .

On the other hand, since
g(Dγi(αi)) = Dγi+1

(αi+1)

for all i ∈ N, it follows from Corollary 2.2.20 that for all i ∈ N,

|g′(αi)|p ≤
γi+1

γi
.

In particular, we have

|g′(αij)|p ≤
γij+1

γij
< 1.

for any {αij}j∈N.

Claim 3 g′ is a continuous map on J (ϕ) with respect to | · |.

The proof is clear so we omit it. See Corollary 2.2.12.
Now we fix the subsequence {αij}j∈N obtained in Claim 2. Since L ∩ D1(0) is compact, there

exists some β ∈ L ∩D1(0) and subsequence {αijk
}k∈N of {αij}j∈N such that

lim
k→∞

|β − αijk
|p = 0.

Claim 4 β ∈ F(ϕg) = F(ϕf ).

Proof of Claim 4. (By contradiction) Let us assume that β /∈ F(g). That is,

β ∈ J (g) = J (g) ∩ L.

It follows from Theorem 2.12.4 that
|g′(β)| ≥ 2.

On the other hand, it follows from Claim 2 that |g′(αij)| < 1 for all j ∈ N. In particular, |g′(αijk
)| < 1

for all k ∈ N. Moreover, since g′ is continuous on J (f) and β ∈ J (f), we have that

|g′(β)| = |g′( lim
k→∞

αijk
)| = lim

k→∞
|g′(αijk

)| ≤ 1.

This is a contradiction.

Now let V be the disk component of F(f) containing β.
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Claim 5 U is a non-wandering disk component of F(f).

Proof of Claim 5. Since
lim
k→∞

|αijk
− β| = 0,

there exists some k0 ∈ N such that for all k ≥ k0, αijk
∈ V . Let us fix two distinct m > n ≥ k0.

Considering
h := gijm−ijn ,

it is clear that
h(αijm

) = αijn
.

This implies that V is equal to the disk component of F(f) containing αim and also to the disk
component of F(f) containing the image of αin by fMijm−Mijn . Hence, U is a non-wandering disk
component of F(f).

This is a contradiction to the assumption that U is a wandering domain of F(f).

One can easily check the following corollary.

Corollary 2.13.4. Let f be a polynomial map over K on Cp with deg(f) ≥ 2. If there are no critical
points in J (f), then F(f) has no wandering disk components.

In fact, R. Benedetto has also proved a stronger ‘no wandering domains theorem’ in his paper
[RB00, THEOREM 1.2]. We will see the statement and compare it with Theorem 2.13.3. To
understand the statement, let us introduce some terminology.

Definition 2.13.5. Let f be a polynomial map over Cp with deg(f) ≥ 2 and P is a point in P1(Cp).
Then, P is called

Julia if P is in the Julia set of f ,

recurrent if P ∈ {fn(P )}n∈N,
wildly critical if there exists some m ∈ N such that for all n ∈ {1, 2, · · · ,m}

f (m)(P ) ̸= 0, f (n)(P ) = 0.

There exists an obvious relation between wildly critical points and critical points.

Proposition 2.13.6. Let f be a polynomial map over Cp with deg(f) ≥ 2 and P is a point in
P1(Cp). If P is wildly critical, then P is critical.

Now let us see the statement of the stronger “no wandering domains theorem”.

Theorem 2.13.7. Let f be a polynomial map over K with deg(f) ≥ 2 on Cp. If f has no wildly
critical recurrent Julia points, then the Fatou set of f has no wandering domains.

Note that the original statement, proved by R. Benedetto, holds not only for polynomial maps
over K, but also for rational maps over K.

Theorem 2.13.7 is stronger that Corollary 2.13.4 but not the same. Indeed, if f has a wildly
critical recurrent Julia point, then this point is also a critical Julia point. This implies that if f
has no critical point Julia point, f has also no wildly critical recurrent Julia point. However, the
converse might be false. See the following example.
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Example 2.13.8. Let p be an odd prime number and let us consider

F : Cp → Cp

z 7→ zp − zp−1

p
+ 1.

As we checked in Example 2.12.3, F is not hyperbolic map. We check that F has no widely critical
recurrent Julia point. We easily obtain that

F ′(z) =
pzp−1 − (p− 1)zp−2

p
= zp−2pz − (p− 1)

p
.

Thus, it follows that

{z ∈ Cp | F ′(z) = 0} = {0, p− 1

p
}.

Now let us show the following claims.

Claim 1 If |z|p > 1, then |F (z)|p > 1.

Proof of Claim 1. It follows immediately that

|z|pp > |z|p−1
p .

Thus, by Proposition 2.1.5, we have that∣∣∣∣zp − zp−1

p

∣∣∣∣
p

= p|z|pp > 1.

This implies that for any |z|p > 1,

|F (z)|p =
∣∣∣∣zp − zp−1

p
+ 1

∣∣∣∣
p

= p|z|pp > 1.

Claim 2 P1(Cp)−D1(0) ⊂ F(F ).

The proof of Claim 2 follows easily from Claim 1 and Theorem 2.7.2 so we omit it.

Claim 3
p− 1

p
∈ F(F ).

Proof of Claim 3. It follows from Proposition 2.1.5 that

|p− 1|p = max{|p|p, |1|p} = 1.

Thus, we have ∣∣∣∣p− 1

p

∣∣∣∣
p

= |1
p
|p = p > 1.

By Claim 2, we have
p− 1

p
∈ F(F ).
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On the other hand, 0 is not recurrent because

0 7→F 1 7→F 1 7→F · · · .

This implies that F has no critical recurrent Julia points, in particular, F has no wildly critical
recurrent Julia points.

2.14 An Example of Wandering Domains

In complex dynamical systems, by Theorem 2.13.1, every polynomial maps has no wandering do-
mains. However, in the non-Archimedean dynamical systems, there exists a polynomial map with
wandering domain. In 2.14, we will see an example of polynomial maps, which have wandering
domains, proposed by R.L.Benedetto [RB02, THEOREM1.1].

Theorem 2.14.1. There exists some rational map over Cp with a wandering domain. More precisely,
there is some a ∈ Cp such that the polynomial map

Fa(z) := (1− a)zp + zp−1

has no critical Julia points but has a wandering disk component.

R. Benedetto proved that Fa has a wandering domain in [RB02, THEOREM 1.1]. It follows from
Corollary 2.13.4 that a ∈ Cp cannot be an element of a finite extension field of Qp. Indeed, if a is in
some finite extension field K of Qp, Fa must be a polynomial map over K. One can check that Fa

is hyperbolic over K.
On the other hand, J. Rivera-Letelier has suggested a question as follows.

Question 2.14.2. Is there any rational map over a finite extension field of Qp on Cp with wandering
domains?

Of course, by Theorem 2.13.4, the rational map cannot be p-adically hyperbolic. This conjecture
is still an open problem in non-Archimedean dynamical systems.
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3 J-Stability in p-adic Dynamics

In this section, we will see the stability of Julia set. In the complex dynamics, Mañé, Sad, and
Sullivan proved a theorem which gives a condition for J-stability of rational maps over C. See
Theorem 3.1.1. The author proved that some simple families of polynomial maps over Cp have J-
stability. The result and proof will be described in 3.2, and a simple application of the main result
will be described in 3.3.

3.1 J-Stability in Complex Dynamics

In 3.1, we will see a motivation for the main result. To ease notation, we shall use the notations
Rad,RadD to denote the set of rational maps over C and the set of rational maps over C of degree
D for some N ∈ N, respectively.

In complex dynamical systems, the following theorem was proved by Mañè, Sad, and Sullivan in
their paper [MSS].

Theorem 3.1.1. Let D be a number which is greater than 2 and f be a rational map of degree D. If
f has a connected neighborhood U ⊂ RatD such that each g ∈ U has the same number of attracting
cycles as f , then for each g ∈ U there exists a unique quasi-conformal conjugacy hg,f : J(g) → J(f)
such that

f ◦ hg,f = hg,f ◦ g.

Now we will consider an analogue of MSS for the p-adic dynamical systems.

3.2 J-Stability in p-adic Dynamics

In this subsection, we consider J-stable families in p-adic dynamics. Let us fix a prime number p
and d ∈ N with p ∤ d. Then, we define

ϕ(·, ·) : Cp × Cp → Cp

(z, c) 7→ zd + c.

To ease notation, we shall use
ϕc(z) := ϕ(z, c) = zd + c.

The main result is as follows.

Theorem 3.2.1. For any c ∈ Cp with |c|p > 1, suppose that c′ ∈ Cp satisfies |c′− c|p ≤ |c|1/dp . Then,
there exists a local isomeric homeomorphism hc,c′ : J (ϕc) → J (ϕc′) such that

ϕc′ ◦ hc,c′ = hc,c′ ◦ ϕc

on J (ϕc).

Let us begin with some key lemmas. Let us fix c ∈ Cp with |c|p > 1 and set λ := |c|(d−1)/d
p .

Lemma 3.2.2. J (ϕc) ̸= ∅ and J (ϕc) has no critical poins. Moreover,

J (ϕc) ⊂ S(|c|1/dp ), ϕ−1
c (S(|c|1/dp )) ⊂ S(|c|1/dp ).

Proof. Let us begin with the following claim.
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Claim 1 There exists some α ∈ K such that

ϕc(α) = α, |ϕ′
c(α)|p > 1.

Proof of Claim 1. Since Cp is algebraically closed, there exists some {αi}di=1 such that

ϕc(α1)− α1 = ϕc(α2)− α2 = · · · = ϕc(αn)− αn = 0.

We will prove that
|α1|p = |α2|p = · · · = |αd|p = |c|1/dp

by contradiction. Let us assume that there exists some |αj| ̸= |c|1/dp . Then, we consider the following
cases.

Case 1: |αj|p < |c|1/dp .

In this case, we have that

|αj|dp < |c|p, |αj|p < |c|
1
d
p < |c|p.

It follows from Proposition 2.1.5 that

|ϕc(αj)− αj|p = |αd
j + c− αj|p = max{|αj|dp, |αj|p, |c|p} = |c|p > 1.

On the other hand, we have that

|ϕc(αj)− αj|p = |0|p = 0.

This is a contradiction. Hence,
|αj|p ≥ |c|1/dp .

Case 2: |αj|p > |c|1/dp .

In this case, since |c|p > 1, we have that

|αj|dp > |c|p, |αj|dp > |α|p.
It follows from Proposition 2.1.5 that

|ϕc(αj)− αj|p = |αd
j + c− αj|p = max{|αj|dp, |αj|p, |c|p} = |αj|dp > 1.

On the other hand, we have that

|ϕc(αj)− αj|p = |0|p = 0.

This is a contradiction. Hence,
|αj|p = |c|1/dp .

Thus, for all i = 1, 2, · · · , d,
|αi|p = |c|1/dp .

In particular, since d ∤ p, we have that for any i = 1, 2, · · · , d,
|ϕ′

c(αi)|p = |d · αd−1
i |p = |d|p|αd−1

i |p = |c|(d−1)/d
p .

This implies that every fixed point of ϕc is repelling.

Thus, ϕc has a repelling fixed point so it follows from Proposition 2.6.6 that

J (ϕc) ̸= ∅.
Next, we see the following claim.
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Claim 2 0 is the only critical point of ϕc.

The proof follows immediately so we omit it. Finally, let us prove the following claim.

Claim 3 ϕ−1
c (S(|c|1/dp )) ⊂ S(|c|1/dp ).

Proof of Claim 3. Let us take an arbitrary w ∈ S(|c|1/dp ). Then, we will show that if z ∈ K satisfies

ϕc(z)− w = 0,

then |z|p = |c|1/dp by contradiction. Let us assume that |z|p ̸= |c|1/dp . Then, we consider the following
cases.

Case 1: |z|p < |c|1/dp .

In this case, we have that
|z|dp < |c|p, |w|p = |c|1/dp < |c|p.

It follows from Proposition 2.1.5 that

|ϕc(z)− w|p = |zd + c− w|p = max{|z|dp, |w|p, |c|p} = |c|p > 1.

On the other hand, we have that
|ϕc(z)− w|p = |0|p = 0.

This is a contradiction. Hence,
|z|p ≥ |c|1/dp .

Case 2: |z|p > |c|1/dp .

In this case, since |c|p > 1, we have that

|z|dp > |c|p > |c|1/dp = |w|p.

It follows from Proposition 2.1.5 that

|ϕc(z)− w|p = |zd + c− w|p = max{|z|dp, |w|p, |c|p} = |z|dp > 1.

On the other hand, we have that
|ϕc(z)− w|p = |0|p = 0.

This is a contradiction. Hence,
|z|p = |c|1/dp .

This implies that
ϕ−1
c (S(|c|1/dp )) ⊂ S(|c|1/dp ).

In particular, it is clear that S(|c|1/dp ) ⊂ K is non-empty closed with respect to ρp so it follows
from Theorem 2.9.1 that

J (ϕc) ⊂ S(|c|1/dp ).
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Lemma 3.2.3. For any r ∈ [0, |c|1/dp ] ∩ |C×
p |p and a ∈ S(|c|

1
d
p ), there exists some {Dr/λ(bi)}di=1 such

that

ϕ−1
c (Dr(a)) =

d⊔
i=1

Dr/λ(bi).

Moreover,
ϕc|Dr/λ(bi) → Dr(a)

is homeomorphic for each i ∈ {1, 2, · · · , d}.

Proof of Lemma 3.2.3. By Lemma 3.2.2, a is not critical point so there exists {bi}di=1 such that for
all i ̸= j = 1, 2, · · · , d,

ϕc(bi) = a, bi ̸= bj.

Now let us fix i ∈ {1, 2, · · · , d}, and show the following claims.

Claim 1 For any k = 2, 3, · · · , d, we have∣∣∣∣∣ϕ(k)
c (bi)

k!

∣∣∣∣∣
p

< |ϕ′
c(bi)|p.

Proof of Claim 1. It follows immediately that for k = 1, 2, · · · , d,

ϕ
(k)
c (bi)

k!
=
d · (d− 1) · · · · · (d− k + 1)

k!
bd−k
i =

(
d

k

)
bd−k
i .

Thus, for every k = 2, 3, · · · , d, we have that∣∣∣∣∣ϕ(k)
c (bi)

k!

∣∣∣∣∣
p

=

∣∣∣∣(dk
)
bd−k
i

∣∣∣∣
p

≤ |bi|d−k
p = |d|p|bi|d−k

p < |d · bd−1
i |p = |ϕ′

c(bi)|p.

Claim 2 For any z, w ∈ D r
λ
(bi),

|ϕc(z)− ϕc(w)|p = λ|z − w|p.

Proof of Claim 2. We can write ϕc as follows.

ϕc(z) = zd + c =
d∑

k=0

ϕ
(k)
c (bi)

k!
(z − bi)

k.

It follows from Claim 1 that for any k = 2, 3, · · · , d,

∣∣∣∣∣ϕ(k)
c (bi)

k!
{(z − bi)

k−1 + (z − bi)
k−2(w − bi) + · · ·+ (w − bi)

k−1}

∣∣∣∣∣
p

< λ|(z − bi)
k−1 + (z − bi)

k−2(w − bi) + · · ·+ (w − bi)
k−1|p

≤ λ
( r
λ

)k−1

≤ λ
rd−1

λ
≤ |c|

d−1
d

p = λ = |ϕ′(bi)|p. (3.1)
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Moreover, we have

|ϕc(z)− ϕc(w)|p =

∣∣∣∣∣
d∑

k=0

ϕ
(k)
c (bi)

k!
(z − bi)

k −
d∑

k=0

ϕ
(k)
c (bi)

k!
(w − bi)

k

∣∣∣∣∣
p

=

∣∣∣∣∣
d∑

k=1

ϕ
(k)
c (bi)

k!
{(z − bi)

k − (w − bi)
k}

∣∣∣∣∣
p

= |z − w|p ·max{|ϕ′
c(bi)|p ,

∣∣∣∣∣ϕ(2)
c (bi)

2!

∣∣∣∣∣
p

|(z − bi) + (w − bi)|p, · · · ,

∣∣∣∣∣ϕ(d)
c (bi)

d!

∣∣∣∣∣
p

·

|(z − bi)
d−1 + (z − bi)

d−2(w − bi) + · · ·+ (w − bi)
d−1|p}.

Thus, it follows from (3.1) and Proposition 2.1.5 that

|ϕc(z)− ϕc(w)|p = |z − w|p ·max{|ϕ′
c(bi)|p ,

∣∣∣∣∣ϕ(2)
c (bi)

2!

∣∣∣∣∣
p

|(z − bi) + (w − bi)|p, · · · ,

∣∣∣∣∣ϕ(d)
c (bi)

d!

∣∣∣∣∣
p

·

|(z − bi)
d−1 + (z − bi)

d−2(w − bi) + · · ·+ (w − bi)
d−1|p}

= |z − w|p |ϕ′
c(bi)|p = λ|z − w|p.

for any z, w ∈ Dr/λ(bi).

It follows from Theorem 5.4.5 that ϕc is bijective from Dr/λ(bi) to Dr(a).

Claim 3 For any i ̸= j = 1, 2, · · · , d, we have

Dr/λ(bi) ∩Dr/λ(bj) = ∅.

Proof of Claim 3. (By contradiction) Let us assume that there exist two distinct i and j in {1, 2, · · · , d}
such that

Dr/λ(bi) ∩Dr/λ(bj) ̸= ∅.

It follows from Corollary 2.1.21 that

Dr/λ(bi) = Dr/λ(bj).

In particular, this implies that bj ∈ Dr/λ(bi). Moreover, since ϕc is bijective from Dr/λ(bi) to Dr(a),
we have that ϕc(bi) ̸= ϕc(bj). It is a contradiction to the fact that

ϕc(bi) = ϕc(bj) = a.

Since ϕc is a polynomial, it follows from Corollary 2.2.12 and Corollary 2.2.21 that ϕc is homeo-
morphic from Dr/λ(bi) to Dr(a).

Finally, we prove Theorem 3.2.1.
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Proof of Theorem 3.2.1. Let us begin with the construction of sets {Ωn
c }n≥0.

• The Construction of Sets

For every c ∈ Cp with |c|p > 1, we define {Ωn
c }n∈N as follows.

Ω0
c := S(|c|1/dp ),

Ω1
c := ϕ−1

c (Ω0
c),

· · · ,
Ωn

c := ϕ−n
c (Ω0

c),

· · · .

It follows from Lemma 3.2.2 and Proposition 2.5.6 that for any n ∈ N

Ωn
c ⊂ Ωn−1

c , J (ϕc) ⊂ Ωn
c .

Moreover, Setting

Ω∞
c :=

∩
n∈N

Ωn−1
c ,

we obtain that
J (ϕc) ⊂ Ω∞

c .

In particular, by Lemma 3.2.2, we have that Ω∞
c ̸= ∅.

• The Construction of Homeomorphisms

Let us fix c ∈ Cp with |c|p > 1 and choose c′ ∈ Cp satisfying |c− c′|p ≤ |c|1/dp and set

δi :=
|c|1/dp

λi
> 0

for all i ∈ N. Then, we have the following claim.

Claim 1 Ω0
c = Ω0

c′ .

Proof of Claim 1. It follows immediately from Proposition 2.1.5 that

|c|p = |c− c′ + c′|p = max{|c− c′|p, |c′|p} = |c′|p

since |c− c′|p ≤ |c|1/dp < |c|p. Thus, we have that

|c|1/dp = |c′|1dp .

Thus, we define h0 : Ω
0
c → Ω0

c′ as the identity map on Ω0
c . Now we consider the following claim.
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Claim 2 For any z ∈ Ω1
c , there exists a unique w ∈ ϕ−1

c′ ({h0 ◦ ϕc(z)}) such that

|w − z|p ≤ δ1.

Proof of Claim 2. it follows immediately that

|h0 ◦ ϕc(z)− ϕc′(z)|p = |ϕc(z)− ϕc′(z)|p = |c− c′|p ≤ |c|
1
d
p .

This implies that
ϕc′(z) ∈ Dδ0(h0 ◦ ϕc(z)).

It follows from Lemma 3.2.2 that there exists the unique w ∈ ϕ−1
c′ ({h0 ◦ ϕc(z)}) such that

z ∈ ϕ−1
c′ (Dδ0(h0 ◦ ϕc(z))) = Dδ1(w).

We define h1 : Ω
1
c → Ω1

c′ as h1(z) := w. Then, h1 satisfies

|h1(z)− h0(z)|p ≤ δ1, h0 ◦ ϕc(z) = ϕc′ ◦ h1(z)

for all z ∈ Ω1
c . Now let us construct {hi+1}i∈N, inductively. Let us assume that for k ≥ 1, hk have

been already constructed and satisfy

|hk(z)− hk−1(z)|p ≤ δk, hk−1 ◦ ϕc(z) = ϕc′ ◦ hk(z)

for all z ∈ Ωk
c . We have the following claim.

Claim 3 For any z ∈ Ωk+1
c , there exists the unique w ∈ ϕ−1

c′ ({hk+1 ◦ ϕc(z)}) such that

|w − hk(z)|p ≤ δk+1.

Proof of Claim 3. It follows immediately that

|ϕc′ ◦ hk(z)− hk ◦ ϕc(z)|p = |hk−1 ◦ ϕc(z)− hk ◦ ϕc(z)|p ≤ δk.

This implies that
ϕc′(hk(z)) ∈ Dδk(hk ◦ ϕc(z)).

It follows from Lemma 3.2.2 that there exists the unique w ∈ ϕ−1
c′ ({hk ◦ ϕc(z)}) such that

hk(z) ∈ ϕ−1
c′ (Dδk(hk ◦ ϕc(z))) = Dδk+1

(w).

Claim 4 For any k ∈ N, we have

hk−1 ◦ ϕc = ϕc′ ◦ hk on Ωk
c .

This is clear from the construction of {hi}i≥0 so we omit it.
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Claim 5 For any k ∈ N, hk : Ωk
c → Ωk

c′ is a homeomorphism.

Proof of Claim 5. As we constructed {hk : Ωk
c → Ωk

c′}k∈N in Claim 2 and 3, we can also construct
{h̃n : Ωn

c′ → Ωn
c }n∈N satisfying

|h̃k(w)− h̃k−1(w)|p ≤ δ1, h̃k−1 ◦ ϕc(w) = ϕc′ ◦ h̃k(w)

for all w ∈ Ωk
c′ . Moreover, it is easy to check that hk ◦ h̃k = h̃k ◦ hk is equal to the identity map on

Ωn
c′ for all n ∈ N.

Claim 6 There exists a homeomorphism h∞ : Ω∞
c → Ω∞

c′ such that for all z ∈ Ω∞
c

lim
k→∞

|h∞(z)− hk(z)|p = 0.

Proof of Claim 6. It follows from Claim 3 and Lemma 3.2.2 that for any z ∈ Ω∞
c , we have

|hk+1(z)− hk(z)|p ≤ δk+1.

Moreover, since
lim
k→∞

δk+1 = 0,

it follows from Lemma 2.1.22 that there exists some w ∈ Cp such that

lim
k→∞

|w − hk(z)|p = 0.

Setting h∞(z) := w for each z ∈ Ω∞
c , we easily see that h∞ : Ω∞

c → Ω∞
c′ is a continuous map since

{hk}k∈N is uniformly convergence. Similarly, we can find a continuous map h̃∞ : Ω∞
c′ → Ωc such that

for each z ∈ Ω∞
c′ ,

lim
k→∞

|h̃∞(z)− h̃k(z)|p = 0.

Moreover, for any z ∈ Ω∞
c , we have

h̃∞ ◦ h∞(z) = lim
k→∞

h̃k ◦ hk(z) = lim
k→∞

z = z.

Hence, h∞ : Ω∞
c → Ω∞

c′ is a homeomorphism.

• Some Properties of h∞

Claim 7 h∞ is a topological conjugacy between ϕc and ϕc′ on Ω∞
c .

Proof of Claim 7. For any z ∈ Ω∞
c , we have

h∞ ◦ ϕc(z) = lim
k→∞

hk ◦ ϕc(z) = lim
k→∞

ϕc′ ◦ hk+1(z) = ϕc′ ◦ lim
k→∞

hk+1(z) = ϕc′ ◦ h∞(z).
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Claim 8 h∞(J (ϕc)) = J (ϕc′).

Proof of Claim 8. Let α be a repelling fixed point of ϕc. See the proof of Lemma 3.2.2 for the
existence of α. By Lemma 3.2.2 and Clam 7, h∞(α) is a repelling fixed point of ϕc′ . Applying
Proposition 2.8.1, we have that

h∞(J (ϕc)) = h∞(
∪
n∈N

ϕ−n
c ({α})) =

∪
n∈N

h∞ ◦ ϕ−n
c ({α}) =

∪
n∈N

ϕ−n
c′ ({h∞(α)}) = J (ϕc′).

Hence, by considering the restriction of h∞ to J (ϕc) as hc,c′ , it is clear that hc,c′ is a homeomor-
phism and satisfies that

ϕc′ ◦ hc,c′ = hc,c′ ◦ ϕc.

on J (ϕc).
Finally, let us prove hc,c′ is a local isometry.

Claim 9 For any α ∈ J (ϕc) and z, w ∈ D1(α) ∩ J (ϕc) and n ∈ N,

|hn−1(z)− hn−1(w)|p = |hn(z)− hn(w)|p.

The proof follows immediately by induction on n ∈ N.
In particular, this implies that for any α ∈ J (ϕc) and z, w ∈ D1(α) ∩ J (ϕc) and n ∈ N,

|hn(z)− hn(w)|p = |z − w|p.

We obtain that
|h∞(z)− h∞(w)| = lim

n→∞
|hn(z)− hn(w)|p = |z − w|p

for any z, w ∈ D1(α) ∩ J (ϕc).

3.3 An Application of the Main Result

Let us close this section with an application of the main theorem. The following proposition might
be easily derived from [S, Corollary 5.25].

Corollary 3.3.1. Let us fix an odd prime number p and consider the polynomial ϕc(z) := z2 + c
over Cp. If |c+ 1

2p
+ 1

4p2
| ≤ p, then J (ϕ) is compact.
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4 The Artin-Mazur Zeta Functions

In this section, we will see the Artin-Mazur zeta functions of some dynamical systems.

4.1 Definitions of Artin-Mazur Zeta Functions

In 4.1, we give the definition of the Artin-Mazur zeta function of a given dynamical system with
some examples. This subsection is based on M. Artin and B. Mazur’s paper [AM].

Definition 4.1.1. Let us define

exp(T ) :=
∞∑
n=0

1

n!
T n ∈ C[[T ]], log(1 + T ) :=

∞∑
n=1

(−1)n

n
T n ∈ C[[T ]]

as formal power series over C.

The definition of the Artin-Mazur zeta function was introduced by Artin-Mazur [AM, p.84].

Definition 4.1.2 (Artin-Mazur Zeta Function). Let (X, f) be a dynamical system. Assume that
the number Nn of the isolated fixed points of fn for each n ∈ N is finite. The Artin-Mazur zeta
function of f over X is defined by

Zf (T ) = exp(
∞∑
n=1

Nn

n
T n) ∈ C[[T ]]

as a formal power series.

One of the reasons why we consider the Artin-Mazur zeta function is that it is invariant under
conjugacy. That is, if two dynamical systems are conjugate, then the Artin-Mazur zeta functions
must be the same because the number of periodic points for each period is the same. See Proposition
1.1.9.

We will give some examples of the Artin-Mazur zeta functions from complex dynamical systems.
When we consider the Artin-Mazur zeta functions of rational maps over C, it is important to consider
‘parabolic’ periodic points.

Definition 4.1.3 (Parabolic Periodic Point). Let f be a rational map over C and α ∈ C be a fixed
point of f . Then, α is called parabolic if there exists some q ∈ N such that

(f ′(α))q = 1.

Example 4.1.4. Let p be a natural number with p ≥ 2 and let us consider

f : C → C

z 7→ −1 +
√
−3

2
z + zp.

Then, 0 is a fixed point of f . Moreover, we have

f ′(0) · f ′(0) · f ′(0) = (
−1 +

√
−3

2
)3 = 1.

This implies that 0 is a parabolic fixed point of f .
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Example 4.1.5. Let a be a complex number with |a| ̸= 1 and let us define

L : C → C
z 7→ a · z.

One may easily check that the only fixed point of L is 0. Thus, we have

ZL(T ) = exp(
∞∑
n=1

1

n
T n) = exp ◦ log(1− T )−1 =

1

1− T
∈ C(T ).

4.2 The Artin-Mazur Zeta Function of Rational Maps over C
In 4.2, we will focus on the Artin-Mazur zeta functions of complex dynamical systems. In particular,
we give the result, which was proved by by A. Hinkkanen, that the Artin-Mazur zeta functions of
rational maps over C are rational. This subsection is based on A. Hinkkanen’s paper [AH].

Let us begin with the Hinkkanen’s theorem [AH, THEOREM 1]. In the following theorem, we
shall use the notation deg(f) to denote degree of a give rational map f over C.

Theorem 4.2.1. Let f be a rational map over C with deg(f) ≥ 2. Then, we have

Zf (T ) = (1− dT )−1(1− T )−1

N∏
i=1

(1− T piqi)li ∈ C[[T ]]

where N is the number of the distinct parabolic cycles of f and pi, qi, li are natural numbers depending
on the parabolic cycles for each i = 1, 2, · · · , N , and d = deg(f).

In particular, Theorem 4.2.1 implies that if f has a rational map over C with no parabolic cycles
and d := deg(f) ≥ 2, then

Zf (T ) = (1− dT )−1(1− T )−1 ∈ Q(T ).

In the statement, it is not trivial that the number of parabolic cycles of rational maps is finite.
The following theorem is well-known for complex dynamical systems.

Theorem 4.2.2. Suppose that f is a rational map over C and the degree of f is d ∈ N. The number
of non-repelling cycles is less than 2d − 2. In particular, the number of parabolic periodic points is
finite.

See [M, Corollary 10.16] for the proof.

Example 4.2.3. Let us denote the Riemann sphere by Ĉ and consider the map

f : Ĉ → Ĉ
z 7→ z2.

It is easy to check that

Per(f) ⊂ {0} ∪ {∞} ∪ {z ∈ C | |z| = 1}.

It is clear that 0 and ∞ are fixed points. Moreover, we obtain that for any n ∈ N,

fn(z)− z = z2
n − z = z(z2

n−1 − 1), (fn(z)− z)′ = 2nz2
n−1 − 1.

This implies that fn(z)− z ∈ Poly(C) does not have any multiple zeros in {z ∈ C | |z| = 1}. Thus,
we have

Zf (T ) = exp(
2n + 1

n
T n) = exp(

(2T )n

n
) exp(

T n

n
) = (1− 2T )−1(1− T )−1.
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4.3 The Artin-Mazur Zeta Function of Rational Maps over Cp

In 4.3, we will focus on the Artin-Mazur zeta functions of p-adic dynamical systems. In particular,
we will see a result, which is calculated by the author, that the Artin-Mazur zeta functions of rational
maps over Cp are rational. In this subsection, we will consider the dynamics of rational maps over
Cp on P1(Cp), which we did not consider in this thesis. One can find basics of dynamics of rational
maps over Cp in [S, Section 5.2, 5.3].

Let us fix a prime number p and begin with the main result.

Theorem 4.3.1. Let f ∈ Cp(T ) be a rational map with deg(f) ≥ 2. Then, we have

Zf (T ) = (1− dT )−1(1− T )−1

N∏
i=1

(1− T piqi)li

where N is the number of the distinct parabolic cycles of f and pi, qi, li are natural numbers depending
on the parabolic cycles for each i = 1, 2, · · · , N , and d = deg(f).

As we did in the complex case, we have to consider the finiteness of parabolic cycles of rational
maps over Cp. In fact, we have the follows theorem.

Lemma 4.3.2. Let f ∈ Cp(z) be a rational map with deg(f) ≥ 2. Then, the number of parabolic
cycles is finite.

Proof. Let α be a parabolic fixed point of f and λ be the multiplier. Suppose that α ∈ Cp, and λ is
a primitive q th root of unity. By Theorem 5.4.3, there exists some ring isomorphic map

ι : Cp → C.

Let us show the following claim.

Claim 1 µ := ι(λ) is a primitive q th root of unity.

Proof of Claim 1. It follows immediately that

µq = (ι(λ))q = ι(λq) = ι(1) = 1.

Moreover, if there exists a 0 < j < q such that µj = 1, then

1 = µj = ι(λ)j = ι(λj).

Since i is injective, we have λj = 1. It is a contradiction to our assumption that λ is a primitive q
th root of unity.

We denote

f(z) =
f1(z)

f2(z)
, f1(z) = a0 + a1z + · · ·+ aNz

N , f2(z) = b0 + b1z + · · ·+ bMz
M ∈ C[z]

where max{deg(f1), deg(f2)} ≥ 2 and f2(α) ̸= 0.
Consider

g(z) :=
ι(a0) + ι(a1)z + · · ·+ ι(aN)z

N

ι(b0) + ι(b1)z + · · · ι(bM)zM
∈ C(z).
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Claim 2 ι(α) is a fixed point of g, and the multiplier of g at ι(α) is µ.

Proof of Claim 2. It follows immediately that

g(ι(α)) =
ι(f1(α))

ι(f2(α))
= ι(f(α)) = ι(α) = 0.

Moreover, it follows from Claim 1 that

g′(ι(α)) =
ι(f ′

1(α)f2(α))− ι(f1(α)f
′
2(α))

(ι(f2(α)))2
= ι(f ′(α)) = ι(λ) = µ.

The other cases that α = ∞ or α is parabolic periodic can be reduced to this case. Thus, we
have that a parabolic periodic points in Cp corresponds to a parabolic periodic points in C. Thus,
it follows from Theorem 4.2.2 that the number of parabolic periodic points of g is finite. Hence, the
number of parabolic cycles of rational maps over Cp must be finite.

In fact, we can say more than this. The following result was proved by J. Rivera-Letelier in his
paper [RL].

Theorem 4.3.3. Let f be a rational map over Cp with deg(f) ≥ 2. Then, the number of the
super-attracting cycles and the parabolic cycles is less than 2d− 2 where d = deg(f).

The proof is fundamentally the same as the above. See [RL, THÉORÈM 4.1] for the proof.
To prove Theorem 4.3.1, we need to prepare some propositions and lemmas.

Proposition 4.3.4. Let λ ∈ Cp is a primitive q th root of unity. Then, n ∈ N satisfies λn = 1 if
and only if n is divisible by q.

It is clear so we omit it.

Proposition 4.3.5. Let f ∈ Cp(T ) be a rational map with deg(f) ≥ 2 and q be a natural number.
Suppose that 0 is a fixed point of f . Then, there exists some N ≥ 2 and A ∈ C×

p such that

f(z) = λf (0)z + AzN +O(zN+1) (z → 0).

Moreover, for any k ∈ N, we have

fk(z) = λf (0)
kz + Aλf (0)

k−1(1 + λf (0)
N−1 + · · ·+ λf (0)

(k−1)(N−1))zN +O(zN+1) (z → 0).

Proof. To ease notation, we shall use
λ := λf (0)

in this proof. Since f is a rational map and 0 is not pole of f , there exists some r > 0 and
{ai}i∈N ⊂ Cp such that for any z ∈ Dr(0),

f(z) = a1z + a2z
2 + · · · , lim

i→∞
|ai|pri = 0.

In particular, it is clear that
a1 = f ′(0) = λ.

Moreover, since deg(f) ≥ 2, there exists sone j ≥ 2 such that aj ̸= 0. Thus, setting

N := min{n ≥ 2 | an ̸= 0}, A := aN ,
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we have
f(z) = λz + AzN +O(zN+1) (z → 0).

Now let us prove the second statement by an induction on k ∈ N. The case when k = 1 is clear.
Assume that it holds for the case when k = i. Then it follows immediately that

f i+1(z) = f i ◦ f(z) = λif(z) + Aλi−1(1 + λn−1 + · · ·+ λ(i−1)(n−1))f(z)n +O(zn+1)

= λi(λ+ Azn) + Aλi−1(1 + λn−1 + · · ·+ λ(i−1)(n−1))(λz + Azn)n +O(zn+1)

= λi+1z + Aλizn + Aλi−1λn(1 + λn−1 + · · ·+ λ(i−1)(n−1))zn +O(zn+1)

= λi+1z + Aλi(1 + λn−1 + · · ·+ λ(i−1)(n−1) + λi(n−1))zn +O(zn+1) (z → 0).

Thus, the statement holds for every k ∈ N.

Proposition 4.3.6. Let f ∈ Cp(T ) be a rational map with deg(f) ≥ 2 and q be a natural number.
Suppose that 0 is a fixed point of f and λf (α) is a q th root of unity. Then, there exist some B ∈ C×

p

and M ≥ 2 such that
f q(z) = z +BzM +O(zM+1) (z → 0).

Moreover, we have
q |M − 1.

Proof. To ease notation, we shall use
λ := λf (0)

in this proof. It follows from Proposition 4.3.5 that

f q(z) = λqz + Aλq−1(1 + λN−1 + · · ·+ λ(q−1)(N−1))zN +O(zN+1) (z → 0)

for some A ∈ C×
p and N ≥ 2. Thus, it follows from deg(f q) ≥ 2 that there exist some B ∈ C×

p and
M ≥ 2 such that

f q(z) = z +BzM +O(zM+1) (z → 0).

Next, we show the second statement. Suppose that

f(z) = λz + AzN + a1z
N+1 + · · ·+ aM−Nz

M +O(zM+1) (z → 0)

where {ai}M−N
i=1 ⊂ Cp. Then we first have that

f q ◦ f(z) = f(z) +B(f(z))M +O(zM+1) = λz + AzN + a1z
N+1 + · · ·+ aM−Nz

M

+B(λz + AzN + a1z
N+1 + · · ·+ aM−Nz

M)M +O(zM+1)

= λz + AzN + a1z
N+1 + · · ·+ aM−N−1z

M−1 + (aM−N +BλM)zM +O(zM+1) (z → 0).

On the other hand, we obtain that

f ◦ f q(z) = λf q(z) + A(f q(z))N + a1(f
q(z))N+1 + · · ·+ aM−N(f

q(z))M +O(zM+1)

= λ(z +BzM) + A(z +BzM)N + a1(z +BzM)N+1 + · · ·+ aM−N(z +BzM)M +O(zM+1)

= λz + AzN + · · ·+ aM−N−1z
M−1 + (aM−N +Bλ)zM +O(zM+1) (z → 0).

Since there is an obvious functional equation

f q ◦ f = f q+1 = f ◦ f q,
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we have that
aM−N +Bλm = aM−N +Bλ.

It follows from Proposition 4.3.4 that

q |M − 1.

Lemma 4.3.7. Let f be a rational map over Cp with deg(f) ≥ 2. Suppose that α is a periodic point
of f with prime period r. The multiplicity of α of fn·r(z)− z is greater than 1 if and only if λf (α) is
a primitive q th root of unity for some q ∈ N and n is divisible by q. In particular, if the multiplicity
of α of fn·r(z) − z is greater than 1 for some n ∈ N, then α must be parabolic. Moreover, if the
multiplicity of α of fk·r(z)− z is greater than 1, then the multiplicity of α of fk·r·n(z)− z is equal to
the multiplicity of α of fk·r(z)− z for all n ∈ N.

Proof. We consider the following cases.

Case 1: α = 0.

Let us first assume that α = 0. To ease notation, we shall use

λ := λf (0).

Then, it follows from Proposition 4.3.5 that there exists some N ≥ 2 and A ∈ C×
p such that

f r(z) = λz + AzN +O(zN+1) (z → 0).

Suppose that the multiplicity of α of fn·r(z) − z is greater than 1. It follows from Proposition
4.3.5 that

fn·r(z)− z = (λn − 1)z + Aλn−1(1 + λN−1 + · · ·+ λ(n−1)(N−1))zN +O(zN+1) (z → 0).

This implies that
λn − 1 = 0.

That is, λmust be a primitive q th root of unity for some q ∈ N. Moreover, it follows from Proposition
4.3.4 that n must be divisible by q.

Now suppose that λ is a primitive q th root of unity for some q ∈ N and n is divisible by q. Then,
it follows from Proposition 4.3.5 that

fn·r(z)− z = (λn − 1)z + Aλn−1(1 + λN−1 + · · ·+ λ(n−1)(N−1))zN +O(zN+1) (z → 0).

By Proposition 4.3.4, we have

fn·r(z)− z = Aλn−1(1 + λN−1 + · · ·+ λ(n−1)(N−1))zN +O(zN+1) (z → 0).

Since N ≥ 2, this implies that the multiplicity of α of fn·r(z)− z is greater than 1.
Next, we suppose that the multiplicity of α of f r(z)− z is greater than 1. This implies that

fk·r(z) = z + AzN +O(zN+1) (z → 0).
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Then, it follows from Proposition 4.3.5 that

f r·n(z) = z + AzN(1 + 1 + · · ·+ 1) +O(zN+1)

= z + A · n · zN +O(zN+1) (z → 0)

Case 2: α ∈ C×
p .

By considering the conjugation T−1 ◦ f ◦ T by

T : Cp → Cp

z 7→ z − α,

we may reduce the argument to Case 1.

Case 3: α = ∞.

By considering the conjugation T−1 ◦ f ◦ T by

T : Cp → Cp

z 7→ 1

z
,

we may reduce the argument to Case 1.

Now let us show Theorem 4.3.1.

Proof of Theorem 4.3.1. Setting d = deg(f), we have that for any N ∈ N, the number of fixed points
of fN(z)− z is equal to dN + 1, counted with multiplicity.

• The Multiplicity of Each Fixed Point

Let α be an element of P1(Cp). Suppose that there exists some pα ∈ N such that for all 0 < i < pα,

f pα(α) = α, f i(α) ̸= α.

Case 1: λf (α) is a primitive qα th root of unity.

Then
λf (α)

qα = 1, λf (α)
j ̸= 1

for all 0 < j < qα. It is easy to check that

λf (α) = λf (f(α)) = · · · = λf (f
pα−1(α)).

Moreover, it follows from Proposition 4.3.5 and Lemma 4.3.7 that there exists some lα ∈ N such
that fk·pα·qα(z)− z has a root of multiplicity qα · lα at α for any k ∈ N. Thus, fk·pα·qα(z)− z has a
root of multiplicity pα · qα · lα on the cycle {α, f(α), · · · , f pα−1(α)} for any k ∈ N.
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Case 2: λf (α) is not a root of unity.

In this case, it follows from Lemma 4.3.7 that f pα(z)− z has a root of multiplicity 1 at α.

• The Calculation of the Artin-Mazur Zeta Function

By Lemma 4.3.2, there exist finitely many parabolic cycles. That is, there exists some N ∈ N
and {zi}Ni=1 ⊂ P1(Cp) such that

C1 := {z1, f(z1), · · · , f p1−1(z1)},
C2 := {z2, f(z2), · · · , f p2−1(z2)},

· · ·
CN := {zN , f(zN), · · · , f pN−1(zN)},

where pi satisfies
f pi(zi) = zi, f j(zi) ̸= zi (∀j = 1, 2, · · · pi − 1)

for each i = 1, 2, · · ·N , and Ci ∩ Cj = ∅ for each i ̸= j = 1, 2, · · · , N . Since each Ci is a parabolic
cycle, there exists some qi ∈ N such that

λf (zi)
qi = 1, λf (zi)

k ̸= 1

for each 0 < k < qi. It follows from Case 1 that

λf (zi) = λf (f(zi)) = · · · = λf (f
pi−1(zi)).

Moreover, there exists li ∈ N such that fk·pi·qi(z)− z has a root of multiplicity pi · qi · li on the cycle
{zi, f(zi), · · · , f pi−1(zi)} for any k ∈ N. Hence, we obtain the following calculation from Lemma
4.3.7.

∞∑
n=1

Nn

n
T n =

∞∑
n=1

dn + 1

n
T n −

N∑
i=1

∞∑
ki=1

piqili
piqiki

T piqiki

=
∞∑
n=1

dn

n
T n +

∞∑
n=1

1

n
T n −

N∑
i=1

li

∞∑
ki=1

1

ki
T piqiki

= log(1− dT )−1 + log(1− T )−1 +
N∑
i=1

li log(1− T piqi)

= log{(1− dT )−1(1− T )−1

N∏
i=1

(1− T piqi)li}.

This implies that

Zf (T ) = exp(
∞∑
n=1

Nn

n
T n) = (1− dT )−1(1− T )−1

N∏
i=1

(1− T piqi)li .
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5 APPENDIX

In this section, we will give some results from other mathematical fields to help read this thesis.

5.1 APPENDIX A: Some Results from Algebra

Let us fix a prime number p and denote the quotient filed Z/Zp by Fp.

Theorem 5.1.1 (Fermat’s Little Theorem in Fp). Let F be the polynomial map

F : Fp → Fp

z 7→ zp − z.

Then, for any w ∈ Fp, we have
F (w) = 0.

As an application of Theorem 5.1.1, we have the following theorem. Note that Zp is the p-adic
integers defined by {x ∈ Qp | |x|p ≤ 1}.

Theorem 5.1.2. Let F be the polynomial map

F : Zp → Zp

z 7→ zp − z.

Then, for any w ∈ Zp, we have

|F (w)|p ≤
1

p
.

Proof. By Proposition 2.1.8, there exists some {pi}i∈N with pi ∈ {0, 1, ..., p− 1} such that

w = p0 + p1p+ p2p
2 + · · · .

Considering the canonical projection π : Zp → Fp, we see that

π(w) = p0, π(wp) = pp0.

By Theorem 5.1.1, we have

π(F (w)) = π(wp − w) = pp0 − p0 = 0.

This implies that

|F (w)|p ≤
1

p
.

Proposition 5.1.3. If K be an algebraically closed field, then K must be infinite.

Proof. (By contradiction) Assume that K is a finite field. Then, there exist some N ∈ N and {pi}Ni1
such that

{pi}Ni=1 = K.

Considering a monic polynomial

P (z) :=
d∏

i=1

(z − pi) + 1 ∈ Poly(K),

we see that P (z) has no roots in K. This is a contradiction to the fact that K is algebraically
closed.
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For the following proposition, we recall our notation

OK := {z ∈ K | |z| ≤ 1}.

Proposition 5.1.4. Let (K, | · |) be an algebraically closed non-Archimedean field. If P is a non-
constant monic polynomial over OK, the roots must be in OK.

One may use the Newton polygon to prove this proposition. However, an alternative proof by
contradiction is given in this thesis.

Proof. (By contradiction) Let us fix a polynomial

P (z) = a0 + a1z + · · ·+ adz
d ∈ Poly(OK), ad = 1.

SinceK is algebraically closed, the polynomial P must have a root ξ inK. Let us assume that |ξ| > 1.
This implies that |ξ|n > 1 for any n = 1, 2, · · · , d. Moreover, |ξ|n+1 > |ξ|n for all n = 0, 1, · · · , d− 1.
Thus, we obtain that for all n = 0, 1, · · · , d− 1,

|anξn| < |ξd|.

It follows from Proposition 2.1.5 that

|P (ξ)| = |
d∑

i=0

aiξ
i| = |ξ|d > 1.

On the other hand, it is clear that
|P (ξ)| = |0| = 0.

This is a contradiction.

5.2 APPENDIX B: Some Results from Real Analysis

Proposition 5.2.1. Let (X, d) be a complete metric space. If the subset A of X is non-empty and
closed, then (A, d|A) is also a complete metric space where d|A is the restriction of d to A.

Proof. Let {an}n∈N be a Cauchy sequence in A. Since (X, d) is complete, there exists a ∈ X such
that

lim
n→∞

an = a.

However, since A is a closed subset, it follows immediately that a must be in A. This implies that
{an}n∈N is a convergent sequence in A.

Theorem 5.2.2 (Baire Category Theorem). Let (X, d) be a complete metric space. Suppose that
{Xi}i∈N is a sequence of open subsets of X such that Xi = X for all i ∈ N. Then∩

i∈N

Xi = X.

Proof. It is clear that ∩
i∈N

Xi ⊂ X.
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Let us prove that

X ⊂
∩
i∈N

Xi.

Taking an arbitrary x ∈ X and r > 0, we will show that

Dr(x) ∩
∩
i∈N

Xi ̸= ∅.

Since X1 = X, we can take
x1 ∈ Dr(x) ∩X1 ̸= ∅.

Moreover, since Dr(x) ∩X1 ⊂ X is open, there exists some r1 > 0 such that

Dr1(x1) ⊂ Dr(x) ∩X1, r1 ≤
r

2
.

Let us assume that {(xi, ri)}Ni=1, which satisfy

Dri+1
(xi+1) ⊂ Dri(xi) ∩Xi+1, ri+1 ≤

ri
2

for all i ∈ {1, 2, · · · , N − 1}, have already been constructed. Since XN+1 = X, we can also take

xN+1 ∈ DrN (xN) ∩XN+1 ̸= ∅.

Moreover, since DrN (xN) ∩XN+1 ⊂ X is open, there exists some rN+1 > 0 such that

DrN+1
(xN+1) ⊂ DrN (xN) ∩XN+1, rN+1 ≤

rN
2
.

It is clear that for all k ∈ N

rk ≤
r

2k
, Drk+1

(xk+1) ⊂ Drk(xk) ⊂ Dr(x).

In particular, one may easily check that {xi}i∈N is a Cauchy sequence in X. Since X is a complete
metric space, there exists some x∞ ∈ X such that

lim
k→∞

|x∞ − xk| = 0, |x− x∞| < r.

Moreover, for all n ∈ N,
x∞ ∈ Xn.

This implies that

Dr(x) ∩
∩
i∈N

Xi ̸= ∅.

Since x ∈ X and r > 0 are arbitrary, we have

X ⊂
∩
i∈N

Xi.
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5.3 APPENDIX C: Some Results from Complex Analysis

Theorem 5.3.1 (Riemann-Hurwitz Formula). Suppose that f is a polynomial map over C and the
degree of f is D ∈ N. Then, ∑

α∈C

(eα(f)− 1) = D − 1

where eα(f) is the order of f(z)− f(α) at α, that is,

eα(f) := min{n ≥ 0 | f (n)(α) ̸= 0}

where f (n)(α) is a n-th derivative of f at α for each n ∈ N and f (0)(α) = f(α).

The most well-known proof of this theorem may be a topological proof by using Euler’s number.
In this thesis, an algebraic proof is given to use this theorem not only in the complex field, but also
in non-Archimedean fields. One will notice that the proof can be applied to rational maps and that
can be found in [S, Theorem 1.1].

Proof. Let us begin with the following claim.

Claim 1 eα(f
′) = eα(f)− 1.

Proof of Claim 1. Fixing an arbitrary α ∈ C. We shall use notation E to denote eα(f). There exist
some R > 0 and {ai}Di=1 in C such that for all z ∈ DR(α),

f(z) = f(α) + aE(z − α)E + aE+1(z − α)E+1 + · · ·+ aD(z − α)D.

Thus, we have that
f ′(z) = aE · E · (z − α)E−1 + · · ·+DaD(z − α)D−1.

Since the characteristic of C is 0, this implies that eα(f
′) = eα(f)− 1.

Claim 2 eα(f) = 0 if and only if f(α) = 0.

The proof of Claim 2 follows immediately so we omit it. Since C is an algebraically closed field
and deg(f ′) = D − 1, there exist D − 1 zeros of f in C, counted with multiplicity. Thus, we have∑

α∈C

(eα(f)− 1) =
∑
α∈C

eα(f
′) =

∑
α: zeros of f ′

eα(f
′) = deg(f ′) = D − 1.

One may notice that the properties, which have been used in Theorem 5.3.1, are true for Cp. See
Theorem 2.1.31. Hence, we have the following corollary.

Theorem 5.3.2 (Riemann-Hurwitz Formula). Let p be a prime number. Suppose that f is a poly-
nomial map over Cp and the degree of f is D ∈ N. Then,∑

α∈Cp

(eα(f)− 1) = D − 1.
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5.4 APPENDIX D: p-adic Fields

In this subsection, we give some properties of p-adic fields. First of all, we consider a motivation
why we consider the p-adic norm on Q. In fact, we will see that the essential norm on Q is either the
Euclidean norm or the p-adic norm for some prime number p ∈ N. Let us begin with a terminology.

Definition 5.4.1 (Trivial Norm). A norm | · | defined on Q is trivial if it satisfy

|0| = 0, |x| = 1

for all x ∈ Q− {0}.

Theorem 5.4.2 (Ostrowski’s Theorem). Let | · | be a non-trivial multiplicative norm on Q. Then,
| · | is equivalent to the Euclidean norm or the p-adic norm for some prime number p ∈ N where | · |1
is equivalent to | · |2 if there exists some C > 0 such that for all x ∈ Q, we have

|x|1 = |x|C2 .

Secondly, we give a theorem, which tells us the algebraic relationship between C and Cp.

Theorem 5.4.3. Let p be a prime number. There exists some field isomorphic map ι between the
field Cp and the complex field C.

The proof can be found in [R, p.145, Theorem].
Thirdly, let us consider a measure on p-adic fields.

Theorem 5.4.4 (Haar Measure). Let (K, ·) be a compact topological group. Then, there exists a
unique Borel measure µ such that

(1) µ(K) = 1,

(2) If U is non-empty Borel set of K, then µ(U) > 0,

(3) µ is invariant under ·.

This unique measure µ is called the Haar measure on K.

The proof can be found in [JC, CHAPTER VI]. In particular, since Qp or a finite extension field
K of Qp is a locally compact field, the closed unit disk of it must be a compact ring. Moreover, the
closed disk is a topological group with respect to +. Thus, we can find the Haar measure on the
closed unit disk with respect to +.

Finally, we give an equivalent theorem of bijectivity of polynomial maps over Cp.

Theorem 5.4.5. Let p be a prime number and f be a polynomial map over Cp. Suppose that a and
b in Cp satisfy b = f(a). Then f maps the rational closed disk Dr(a) bijectively onto the rational
closed disk Ds(b) if and only if

|f(z)− f(w)|p =
s

r
|z − w|p

for all z, w ∈ Dr(a).

See [RB01] or [S, Exercise 5.4 (c)] for the proof.
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