2013年度
 「リーマン面•不連続群論」研究集会
 大阪大学
 2013年11月9日（土）－11月11日（月）
 プログラム＋アブストラクト＋講演スライド

Program

9 November (Saturday)

14:00-14:50 Lizhen Ji (University of Michigan)
Spines of Teichmuller spaces and symmetric spaces
15:00-15:50 Yoshihiko Shinomiya (Tokyo Institute of Technology)
Periodic points on Veech surfaces
16:00-16:50 Chikako Mese (Johns Hopkins University)
Harmonic maps in rigidity problems
Banquet

10 November (Sunday)

10:00-10:50 Makoto Masumoto (Yamaguchi University)
On the existence of holomorphic mappings of once-holed tori
11:00-11:50 Hideki Miyachi (Osaka University)
Rigidity of isometries on Teichmueller space at infinity
Lunch

14:00-14:50 Hiroshige Shiga (Tokyo Institute of Technology)
On deformations spaces of Kleinian groups

15:00-15:50 Yu Kawakami (Yamaguchi University)
On function-theoretic properties for Gauss maps of several classes of surfaces
16:00-16:50 Yuriko Umemoto (Osaka City University)
Growth rates of cocompact hyperbolic Coxeter groups and 2-Salem numbers

11 November (Monday)

10:00-10:50 Masanori Amano (Tokyo Institute of Technology)
On behavior of pairs of Teichmüller geodesic rays
11:00-11:50 Tanran Zhang (Tohoku University)
Uniformisation and description of a once-punctured annulus
Lunch
14:00-14:50 Ryosuke Mineyama (Osaka University)
Limit sets of Coxeter groups of type ($\mathrm{n}-1,1$)
15:00-15:50 Ken'ichi Ohshika (Osaka University)
Primitive stable closed hyperbolic 3-manifolds

Abstract

Lizhen Ji (University of Michigan)
Spines of Teichmuller spaces and symmetric spaces
Abstract: Let T_{g} be the Teichmuller space of a compact surface S_{g} of genus g, and Mod_{g} the mapping class group of S_{g}. Then Mod_{g} acts properly on T_{g}, and the quotient $\operatorname{Mod}_{g} T_{g}$ is the moduli space of compact Riemann surfaces of genus g. This action of Mod_{g} on T_{g} is an analogue of the action of an arithmetic subgroup Γ of a semisimple Lie group G on the associated symmetric space $X=G / K$, where K is a maximal compact subgroup of G.

A longstanding open problem concerns spines of T_{g}, i.e., equivariant deformation retracts of T_{g} with compact quotient by Mod_{g} and of dimension equal to the virtual cohomological dimension of Mod_{g}. Similarly, when Γ is a nonuniform arithmetic subgroup, existence of spines of X is also open in general.

In this talk, I will describe the history of these problems (for example, Thurston's attempt) and some recent results on them.

Yoshihiko Shinomiya (Tokyo Institute of Technology) Periodic points on Veech surfaces

Abstract: We will discuss periodic points on Veech surfaces. A periodic point on a Veech surface is a point whose orbit under the affine group is finite. It is known that the number of periodic points on a non-arithmetic Veech surface is finite. We will give upper bounds of the numbers of periodic points depending only on the types of Veech surfaces and signatures of the Veech groups.

Chikako Mese (Johns Hopkins University) Harmonic maps in rigidity problems

Abstract: We discuss harmonic maps into non-positively curved metric spaces (NPC spaces). Of particular interest is the regularity for these maps into special classes of spaces that include the Euclidean and Hyperbolic buildings and Weil-Petersson completion of Teichmuller space. As an application of the regularity theory, we study rigidity questions.

Makoto Masumoto (Yamaguchi University)

On the existence of holomorphic mappings of once-holed tori

Abstract: We address the existence problem of handle-preserving holomorphic mappings of once-holed tori into a given Riemann surface of positive genus. The once-holed tori allowing such mappings form a subset of the Teichmüller space of a once-holed torus. We are particularly interested in geometric properties of the set.

By a once-holed torus we mean a noncompact Riemann surface of genus one with exactly one (Kerékjártó-Stoïlow) boundary component. For example, the Riemann surface obtained from a compact Riemann surface of genus one, or a torus, by removing one point is a once-holed torus, which will be referred to as a once-punctured torus.

Let R be a Riemann surface of positive genus; it may be compact or the genus may be infinite. A mark of handle of R means an ordered pair $\chi=\{a, b\}$ of simple loops a and b on R whose intersection number $a \times b$ is equal to one. The pair $Y=(R, \chi)$ is said to be a Riemann surface with marked handle. Since the genus of R is positive, the surface has one or more handles. We choose just one of them and mark it with a pair of simple loops.

Let $Y^{\prime}=\left(R^{\prime}, \chi^{\prime}\right)$, where $\chi^{\prime}=\left\{a^{\prime}, b^{\prime}\right\}$, be another Riemann surface with marked handle. If $f: R \rightarrow R^{\prime}$ is continuous and maps a and b onto loops freely homotopic to a^{\prime} and b^{\prime} on R^{\prime}, respectively, then we say that f is a continuous mapping of Y into Y^{\prime} and use the notation $f: Y \rightarrow Y^{\prime}$. If $f: R \rightarrow R^{\prime}$ possesses some additional properties, then $f: Y \rightarrow Y^{\prime}$ is said to have the same properties. For example, if $f: R \rightarrow R^{\prime}$ is conformal, that is, if $f: R \rightarrow R^{\prime}$ is holomorphic and injective, then f is called a conformal mapping of Y into Y^{\prime}.

A once-holed torus (resp. torus, once-punctured torus) with marked handle is usually called a marked once-holed torus (resp. marked torus, marked once-punctured torus). Let \mathfrak{T} be the set of marked once-holed tori, where two marked once-holed tori are identified with each other if there is a conformal mapping of one onto the other.

We introduce a global coordinate system on \mathfrak{T} as follows. For a marked once-holed torus $X=(T, \chi)$, where $\chi=\{a, b\}$, set $\Lambda(X)=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$, where λ_{1}, λ_{2} and λ_{3} are the extremal lengths of the free homotopy classes of a, b and $a b^{-1}$, respectively. Then Λ defines an injective mapping of \mathfrak{T} into \mathbb{R}_{+}^{3}, whose image is

$$
\Lambda(\mathfrak{T})=\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{R}_{+}^{3} \mid \xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}-2\left(\xi_{1} \xi_{2}+\xi_{2} \xi_{3}+\xi_{3} \xi_{1}\right)+4 \leqq 0\right\}
$$

Identifying \mathfrak{T} with $\Lambda(\mathfrak{T})$, we consider \mathfrak{T} as a 3 -dimensional real analytic manifold with boundary. A marked once-holed torus lies on the boundary if and only if it is a marked once-punctured torus.

As a set, \mathfrak{T} is the union of the Teichmüller space of a once-punctured torus and the reduced Teichmüller space of a once-holed torus which is not a once-punctured torus. The real analytic structure on \mathfrak{T} is compatible with the real analytic structures on those Teichmüller spaces. We will call \mathfrak{T} the Teichmüller space of a once-holed torus.

Now, fix a Riemann surface Y_{0} with marked handle. We are interested in the set $\mathfrak{T}_{a}\left[Y_{0}\right]$ (resp. $\mathfrak{T}_{c}\left[Y_{0}\right]$) of marked once-holed tori $X \in \mathfrak{T}$ for which there is a holomorphic (resp. conformal) mapping of X into Y_{0}. Clearly, $\mathfrak{T}_{c}\left[Y_{0}\right]$ is nonempty and included in $\mathfrak{T}_{a}\left[Y_{0}\right]$.

THEOREM 1. The sets $\mathfrak{T}_{a}\left[Y_{0}\right]$ and $\mathfrak{T}_{c}\left[Y_{0}\right]$ are noncompact closed domains with Lipschitz boundary.

Our next result is expressed in terms of another global coordinate system on \mathfrak{T}. Every marked once-holed torus is realized as a horizontal slit domain of a marked torus. To be more specific let \mathbb{H} denote the upper half-plane. For any $\tau \in \mathbb{H}$ let G_{τ} be the additive group generated by 1 and τ, and set $T_{\tau}=\mathbb{C} / G_{\tau}$, which is a torus. The oriented segments $[0,1]$ and $[0, \tau]$ are projected onto simple loops a_{τ} and b_{τ} on T_{τ}, respectively, which make a mark χ_{τ} of handle of T_{τ}. We set $X_{\tau}=\left(T_{\tau}, \chi_{\tau}\right)$. Let $\pi_{\tau}: \mathbb{C} \rightarrow T_{\tau}$ be the natural projection. Cutting T_{τ} along the image $\pi_{\tau}([0, s])$ of the segment $[0, s]$, where $0 \leqq s<1$, we obtain a once-holed torus $T_{\tau}^{(s)}:=T_{\tau} \backslash \pi_{\tau}([0, s])$. It is a horizontal slit domain of the torus T_{τ}. Note that $T_{\tau}^{(0)}$ is a once-punctured torus. Choose a mark $\chi_{\tau}^{(s)}=\left\{a_{\tau}^{(s)}, b_{\tau}^{(s)}\right\}$ of handle of $T_{\tau}^{(s)}$ so that the inclusion mapping $T_{\tau}^{(s)} \hookrightarrow T_{\tau}$ is a conformal mapping of $X_{\tau}^{(s)}:=\left(T_{\tau}^{(s)}, \chi_{\tau}^{(s)}\right)$ into X_{τ}. Then the correspondence $(\tau, s) \mapsto X_{\tau}^{(s)}$ is a homeomorphism of $\mathbb{H} \times[0,1)$ onto \mathfrak{T}, whose restrictions to $\mathbb{H} \times(0,1)$ and to $\mathbb{H} \times\{0\}$ are real analytic. Note that $1 / \operatorname{Im} \tau$ is exactly the extremal length of the free homotopy class of $a_{\tau}^{(s)}$.

Theorem 2_{a}. There is a nonnegative real number $\lambda_{a}\left[Y_{0}\right]$ such that
(i_{a}) if $\operatorname{Im} \tau \geqq 1 / \lambda_{a}\left[Y_{0}\right]$, then there are no holomorphic mappings of $X_{\tau}^{(s)}$ into Y_{0} for any $s \in[0,1)$, while
(iiia) if $\operatorname{Im} \tau<1 / \lambda_{a}\left[Y_{0}\right]$, then there are holomorphic mappings of $X_{\tau}^{(s)}$ into Y_{0} for some $s \in[0,1)$,
where $1 / 0=+\infty$.
For the existence of conformal mappings of marked once-holed tori, we have the following theorem. It is quite similar to the previous theorem though the sign of equality does not appear in (i_{c}).

Theorem 2_{c}. There is a positive real number $\lambda_{c}\left[Y_{0}\right]$ such that
(i_{c}) if $\operatorname{Im} \tau>1 / \lambda_{c}\left[Y_{0}\right]$, then there are no conformal mappings of $X_{\tau}^{(s)}$ into Y_{0} for any $s \in[0,1)$, while
(ii i_{c} if $\operatorname{Im} \tau<1 / \lambda_{c}\left[Y_{0}\right]$, then there are conformal mappings of $X_{\tau}^{(s)}$ into Y_{0} for some $s \in[0,1)$.

Finally, we evaluate the critical extremal lengths $\lambda_{a}\left[Y_{0}\right]$ and $\lambda_{c}\left[Y_{0}\right]$. Let $Y_{0}=\left(R_{0}, \chi_{0}\right)$, where $\chi_{0}=\left\{a_{0}, b_{0}\right\}$. Let $\lambda\left[Y_{0}\right]$ stand for the extremal length of the free homotopy class of a_{0}. If R_{0} is not a torus, then it carries a hyperbolic metric. We denote by $l\left[Y_{0}\right]$ the length of the geodesic freely homotopic to a_{0}, where the curvature is normalized to be -1 . If R_{0} is a torus, then we define $l\left[Y_{0}\right]=0$.

Theorem 3. It holds that $\lambda_{a}\left[Y_{0}\right]=\frac{1}{\pi} l\left[Y_{0}\right]$ and $\lambda_{c}\left[Y_{0}\right]=\lambda\left[Y_{0}\right]$.
It follows that $\lambda_{a}\left[Y_{0}\right]<\lambda_{c}\left[Y_{0}\right]$ for any Y_{0}. Also, $\lambda_{a}\left[Y_{0}\right]$ is strictly positive unless Y_{0} is a marked torus.

Hideki Miyachi (Osaka University)

Rigidity of isometries on Teichmueller space at infinity

Abstract: In this talk, I will give a rigidity result for isometries with respect to the Teichmueller distance on Teichmueller space of Riemann surfaces of analytically finite type. Indeed, we will provide mappings acting on Teichmueller space which are close to isometries at infinity, and discuss properties of the mappings. If time permits, we will re-prove Ivanov's theorem, which says that except for few cases, the isometry group of Teichmuller space is isomorphic to the extended mapping class group.

Hiroshige Shiga (Tokyo Institute of Technology)

On deformations spaces of Kleinian groups
Abstract: Let G be a non-elementary Kleinian group. We consider the space of quasiconformal deformations of G. The space has a natural complex structure and it is finite dimensional if G is finitely generated. In this talk, we consider complex analytic properties of the spaces, which are related to some results by Bers, Kra-Maskit and McMullen.

Yu Kawakami (Yamaguchi University)

On function-theoretic properties for Gauss maps of several classes of surfaces
Abstract: The aim of this talk is to reveal the geometric background of function-theoretic properties for Gauss maps of several classes of immersed surfaces in space forms (e.g. minimal surfaces in the Euclidean 3 -space, flat surfaces in the hyperbolic 3 -space etc.). For the purpose, we give an optimal curvature bound for a specified conformal metric on an open Riemann surface and give some applications.

Yuriko Umemoto (Osaka City University)

Growth rates of cocompact hyperbolic Coxeter groups and 2-Salem numbers
Abstract: The group generated by reflections with respect to facets of a Coxeter polytope in n-dimensional hyperbolic space \mathbb{H}^{n} is called a hyperboric Coxeter group. By the results of Cannon, Wagreich and Parry, it is known that the growth rate of a cocompact Coxeter group in \mathbb{H}^{2} and \mathbb{H}^{3} is a Salem number. On the other hand, Kerada defined a j-Salem number, which is a generalization of a Salem number. In this talk, I will present that we realize infinitely many 2 -Salem numbers as the growth rates of cocompact Coxeter groups in \mathbb{H}^{4}. Our Coxeter polytopes are constructed by successive gluing of Coxeter polytopes which we call Coxeter dominoes.

Masanori Amano (Tokyo Institute of Technology)

On behavior of pairs of Teichmüller geodesic rays

Abstruct: In this talk, we obtain the explicit limit value of the Teichmüller distance between two Teichmüller geodesic rays which are determined by Jenkins-Strebel differentials having a common end point in the augmented Teichmüller space. Furthermore, we also obtain a condition under which these two rays are asymptotic. This is the Teichmüller space varsion of a result of Farb and Masur for the moduli space.

Tanran Zhang (Tohoku University)
 Uniformisation and description of a once-punctured annulus

Abstract: The Uniformisation Theorem shows that the universal covering space \widetilde{X} of an arbitrary Riemann surface X is homeomorphic, by a conformal map \mathfrak{m}, to either the Riemann sphere $\hat{\mathbb{C}}$, the complex plane \mathbb{C} or the unit disk \mathbb{D}. And then the fundamental group $\Pi_{1}(X)$ has a representation as a group G of conformal homeomorphisms of $\mathfrak{m}(\widetilde{X})$. This theorem also indicates that if \widetilde{X} is homeomorphic to a proper subset of \mathbb{C} with at least three boundary points, then \widetilde{X} is conformally equivalent to a quotient space \mathbb{D} / G, where G is a torsion-free Fuchsian group that acts (discontinuously) on \mathbb{D} (or \mathbb{H}). The group G is isomorphic to $\Pi_{1}(X)$. Hempel and Smith studied the hyperbolic Riemann surface model of the twice-punctured disk $\mathbb{D} \backslash\left\{p_{1}, p_{2}\right\}$ in 1980s. They estimated the hyperbolic density on it near aone puncture and considered the coalescing of the two punctures. Later on Beardon gave five different ways to uniformize $\mathbb{D} \backslash\left\{p_{1}, p_{2}\right\}$ in 2012. He investigated several conformal invariants to characterize $\mathbb{D} \backslash\left\{p_{1}, p_{2}\right\}$ considering the fundamental domain, symmetric collars and extremal length. We extend his work to the once-punctured annulus $A:=\{z: 1 / R<|z|<R\} \backslash\{a\}, R>1,1 / R<a<R$. We provide several parameter pairs to uniformize and characterize it. The main tools we use are Möbius transformations, covering space, homotopy classes and elliptic integrals.

References

1. A.F. Beardon, On the geometry of discrete groups, Graduate Texts in Mathematics, no. 91, Springer-Verlag, 1983.
2. A.F. Beardon, The uniformisation of a twice-punctured disc, Comput. Methods Funct. Theory 12 (2012), no. 2, 585-596.
3. J.A. Hempel and S.J. Smith, Uniformization of the twice-punctured disc - problems of confluence, Bull. Australian Math. Soc. 39 (1989), 369-387.

Ryosuke Mineyama (Osaka University)
Limit sets of Coxeter groups of type ($\mathrm{n}-1,1$)
Abstract: Recentry Hohlweg, Labbe, Ripoll introduced a non-linear action of Coxeter groups to investigate asymptotic behavior of their roots. This turns out to be a discrete action on a CAT(0) space in the case that associating bilinear form of the Coxeter group has singnature ($\mathrm{n}-1,1$). I am interested in how geometric aspects of Coxeter groups are mirrored on their limit sets. In this talk we discuss the existence of Cannon-Thurston maps from Gromov boundaries of Coxeter groups to their limit sets. If we have the time left, we observe a relationship between limit sets and sets of accumulation points of roots. This talk partially based on the joint work with Akihiro Higashitani and Norihiro Nakashima.

Ken’ichi Ohshika (Osaka University) Primitive stable closed hyperbolic 3-manifolds

Abstract: This is joint work with Cyril Lecuire and Inkang Kim. We show that every Heegaard splitting with large Hempel distance and bounded combinatorics induces a primitive stable representation of a free group. This implies that every point on the boundary of the Schottky space can be approximated by unfaithful primitive stable representations corresponding to closed hyperbolic 3 -manifolds.

Periodic points on Veech surfaces

Yoshihiko Shinomiya

Tokyo Institute of Technology
November 9, 2013

The purpose of this talk is to estimate the number of periodic points on non-arithmetic Veech surfaces.

Theorem

Let (X, u) be a non-arithmetic Veech surface of type (g, n). The number of periodic points of (X, u) is at most

$$
2^{-26} d^{10}(\lambda \mu)^{-34}\left(\frac{1}{2} \lambda^{6} \mu^{6}\right)^{2^{2 d+3}}
$$

Here, $\Gamma(X, u)$ is the Veech group of $(X, u), d:=3 g-3+n$, $\lambda:=2 \exp (5 d / e)$, and $\mu:=\operatorname{Area}(\mathbb{H} / \Gamma(X, u))$.

If we have time, we apply this estimation to holomorphic families of Riemann surfaces induced by Teichmüller curves.

1. Introduction

Let X be a (connected) surface of finite type and C a finite subset of X. A flat structure u on X is an atlas of $X \backslash C$ such that, for coordinate neighborhoods $(U, z),(V, w) \in u$ with $U \cap V \neq \emptyset$, the transition function is of the form

$$
w= \pm z+c
$$

in $z(U \cap V)$ for some $c \in \mathbb{C}$.
The pair (X, u) is called a flat surface with singularities at C.
On flat surfaces, we can consider some notations in the Euclidean geometry: segments, their lengths or directions, area, etc. A closed θ-geodesic in (X, u) is a closed geodesic in (X, u) whose direction is $\theta \in[0, \pi)$ and which does not contain singularities.

We assume that the Euclidean area of (X, u) is finite.

Examples of flat surfaces

Typical examples of flat surfaces are tori. They have natural flat structures induced by universal coverings. Tori are flat surfaces with no singularities. Let us consider the following examples.

The surfaces X_{1} and X_{2} are of genus 2. We give flat structures u_{1} and u_{2} to X_{1} and X_{2} from Euclidean structures on the regular octagon and the rectangle, respectively. Then, the flat surface (X_{1}, u_{1}) has only one singularity corresponding to the vertices of the octagon. The singularities of the flat surface $\left(X_{2}, u_{2}\right)$ are the points corresponding to the vertices of squares.

Affine groups

Let (X, u) be a flat surfaces with singularities at C. An affine map of (X, u) is a quasiconformal self-map h of X that satisfies $h(C)=C$ and, for coordinate neighborhoods $(U, z),(V, w) \in u$ with $h(U) \subset V$, the composition $w \circ h \circ z^{-1}$ is of the form

$$
w \circ h \circ z^{-1}=A z+c
$$

in $z(U) \subset \mathbb{C}=\mathbb{R}^{2}$ for some $A \in \mathrm{SL}(2, \mathbb{R})$ and $c \in \mathbb{C}$.
The affine group $\mathrm{Aff}^{+}(X, u)$ is the group of all affine maps of (X, u).

Veech groups

Take an affine map h of (X, u). For coordinate neighborhoods $(U, z),(V, w) \in u$ with $h(U) \subset V$, the derivative of the composition $w \circ h \circ z^{-1}=A z+c$ is the matrix $A \in \operatorname{SL}(2, \mathbb{R})$. The matrix A does not depend on the choice of coordinate neighborhoods up to the sign since transition functions of u are of the form $z \mapsto \pm z+c$. Thus, we have the homomorphism

$$
D: \operatorname{Aff}^{+}(X, u) \rightarrow \operatorname{PSL}(2, \mathbb{R})
$$

which maps each affine map h to its derivative $\pm A$.
The image $\Gamma(X, u):=\operatorname{Im}(D)$ of the homomorphism D is called the Veech group of (X, u).

Theorem (Veech)
The Veech group $\Gamma(X, u)$ is a Fuchsian group.

Let $\left(T, u_{T}\right)$ be the torus obtained from an unit square. Then, the Veech group $\Gamma\left(T, u_{T}\right)$ is $\operatorname{PSL}(2, \mathbb{Z})=\left\langle\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right\rangle$. We can see the actions of $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ as follows.

The action of $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is the Dehn twist along a horizontal closed curve of $\left(T, u_{T}\right)$.

Examples of Veech groups

Let $\left(X_{1}, u_{1}\right)$ be the flat surface obtained from a regular octagon. Then, $\Gamma\left(X_{1}, u_{1}\right)=\left\langle\left[\begin{array}{cc}\cos \pi / 4 & -\sin \pi / 4 \\ \sin \pi / 4 & \cos \pi / 4\end{array}\right],\left[\begin{array}{cc}1 & 2 \cot \pi / 8 \\ 0 & 1\end{array}\right]\right\rangle$.

The action of $\left[\begin{array}{cc}\cos \pi / 4 & -\sin \pi / 4 \\ \sin \pi / 4 & \cos \pi / 4\end{array}\right]$ is a rotation. To see the action of $\left[\begin{array}{cc}1 & 2 \cot \pi / 8 \\ 0 & 1\end{array}\right]$, we cut X_{1} along the horizontal segments connecting the singularity. Then, X_{1} is decomposed into two cylinders R_{1} and R_{2}.

The action of $\left[\begin{array}{cc}1 & 2 \cot \pi / 8 \\ 0 & 1\end{array}\right]$ is the composition of the right hand Dehn twist along a core curve of R_{1} and the square of the right hand Dehn twist along a core curve of R_{2}.

As we saw in the previous example, some flat surfaces can be decomposed into cylinders. A direction $\theta \in[0, \pi)$ is said to be a Jenkins-Strebel direction of a flat surface (X, u) if almost all points of X lie in closed θ-geodesics.
If θ is a Jenkins-Strebel direction, (X, u) is decomposed into cylinders foliated by closed θ-geodesics. The cylinders are called the cylinder decomposition of (X, u) by the direction θ. The boundaries of these cylinders consist of segments of direction θ connecting singularities.

The directions $\theta=0, \frac{\pi}{4}$ and $\frac{\pi}{2}$ are Jenkins-Strebel directions.

As we saw in the previous example, some flat surfaces can be decomposed into cylinders. A direction $\theta \in[0, \pi)$ is said to be a Jenkins-Strebel direction of a flat surface (X, u) if almost all points of X lie in closed θ-geodesics.
If θ is a Jenkins-Strebel direction, (X, u) is decomposed into cylinders foliated by closed θ-geodesics. The cylinders are called the cylinder decomposition of (X, u) by the direction θ. The boundaries of these cylinders consist of segments of direction θ connecting singularities.

The directions $\theta=0, \frac{\pi}{4}$ and $\frac{\pi}{2}$ are Jenkins-Strebel directions.

As we saw in the previous example, some flat surfaces can be decomposed into cylinders. A direction $\theta \in[0, \pi)$ is said to be a Jenkins-Strebel direction of a flat surface (X, u) if almost all points of X lie in closed θ-geodesics.
If θ is a Jenkins-Strebel direction, (X, u) is decomposed into cylinders foliated by closed θ-geodesics. The cylinders are called the cylinder decomposition of (X, u) by the direction θ. The boundaries of these cylinders consist of segments of direction θ connecting singularities.

The directions $\theta=0, \frac{\pi}{4}$ and $\frac{\pi}{2}$ are Jenkins-Strebel directions.

Arithmeticity of Veech surfaces

A flat surface (X, u) is called a Veech surface if its Veech group $\Gamma(X, u)$ is a lattice in $\operatorname{PSL}(2, \mathbb{R})$, that is, the orbifold $\mathbb{H} / \Gamma(X, u)$ has finite area. We classify Veech surfaces by their Veech groups.

Let Γ_{1} and Γ_{2} be Fuchsian groups. The group Γ_{1} is said to be commensurable with Γ_{2} if there exists $A \in \operatorname{PSL}(2, \mathbb{R})$ such that $A \Gamma_{1} A^{-1} \cap \Gamma_{2}$ is a finite index subgroup of $A \Gamma_{1} A^{-1}$ and Γ_{2}.

A Veech surface (X, u) is arithmetic if the Veech group $\Gamma(X, u)$ is commensurable with $\operatorname{PSL}(2, \mathbb{Z})$, and is non-arithmetic if $\Gamma(X, u)$ is not commensurable with $\operatorname{PSL}(2, \mathbb{Z})$.

Theorem (Gutkin-Judge)

Let (X, u) be a Veech surface. The Veech surface (X, u) is arithmetic if and only if (X, u) is obtained by gluing finitely many copies of a parallelogram by their parallel sides.

We consider periodic points of Veech surfaces (X, u). A point $z \in X$ is called a periodic point of (X, u) if its $\operatorname{Aff}^{+}(X, u)$-orbit $\mathrm{Aff}^{+}(X, u)\{z\}$ is finite. The cardinal of $\operatorname{Aff}^{+}(X, u)\{z\}$ is called the period of z. Denote by $P(X, u)$ the set of all periodic points of (X, u).

Theorem (Gutkin-Hubert-Schmidt)

If (X, u) is arithmetic, then $P(X, u)$ is dense in X. If (X, u) is non-arithmetic, then $P(X, u)$ is finite.

Gutkin, Hubert and Schmidt gave upper bounds of the numbers of periodic points of non-arithmetic Veech surfaces depending only on parameters of two cylinder decompositions. For compact non-arithmetic Veech surfaces, Möller gave upper bounds which depend only on genera.
2. Main result and proof

We give upper bounds depending only on types of surfaces and signatures of Veech groups. The basic idea is due to Gutkin, Hubert and Schmidt.

Let (X, u) be a non-arithmetic Veech surface of type (g, n). Set $d:=3 g-3+n, \lambda:=2 \exp (5 d / e)$, and $\mu:=$ Area $(\mathbb{H} / \Gamma(X, u))$. Here,

$$
\operatorname{Area}(\mathbb{H} / \Gamma(X, u))=2 \pi\left(2 p-2+\sum_{i=1}^{k}\left(1-\frac{1}{\nu_{i}}\right)\right)
$$

if $\Gamma(X, u)$ is a Fuchs group of signature $\left(p, k: \nu_{1}, \cdots, \nu_{k}\right)$ $\left(\nu_{i} \in\{2,3, \cdots, \infty\}\right)$.

Theorem (S)

The number of periodic points of (X, u) is at most

$$
2^{-26} d^{10}(\lambda \mu)^{-34}\left(\frac{1}{2} \lambda^{6} \mu^{6}\right)^{2^{2 d+3}}
$$

We show that if (X, u) has a point whose period is sufficiently large, (X, u) is arithmetic.

Let $\left(X, u=\left\{\left(U_{\lambda}, z_{\lambda}\right)\right\}\right)$ be a Veech surface and $A \in \mathrm{GL}(2, \mathbb{R})$. We can define a new flat structure $A \circ u=\left\{\left(U_{\lambda}, A \circ z_{\lambda}\right)\right\}$. Then, $\mathrm{Aff}^{+}(X, A \circ u)=\mathrm{Aff}^{+}(X, u)$ as subgroups of $\mathrm{Homeo}^{+}(X)$, $P(X, A \circ u)=P(X, u)$ and the Veech group $\Gamma(X, A \circ u)$ coincides with $A \Gamma(X, u) A^{-1}$.

It is known that the set of Jenkins-Strebel directions of (X, u) is dense in $[0, \pi)$. We assume that $\theta=0$ is a Jenkins-Strebel direction of (X, u). Veech showed that $\Gamma(X, u)$ contains an element of the form $\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right]$ with $b>0$. Taking conjugation, we may assume that $\Gamma(X, u)$ contains $B:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and it is primitive.

Theorem (S)

Let Γ be a lattice Fuchsian group. If Γ contains $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ as a primitive element, then there exists $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma$ such that

$$
1 \leq c<\operatorname{Area}(\mathbb{H} / \Gamma)
$$

Choose $A_{0}:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma(X, u)$ such that $1 \leq c<\mu=\operatorname{Area}(\mathbb{H} / \Gamma(X, u))$. Conjugating by $\left[\begin{array}{cc}1 & -a / c \\ 0 & 1\end{array}\right]$, we may assume that

$$
A_{0}=\left[\begin{array}{cc}
0 & -1 / c \\
c & d
\end{array}\right], B_{0}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] .
$$

Choose $h, h_{B_{0}} \in \operatorname{Aff}^{+}(X, u)$ such that $D(h)=A_{0}, D\left(h_{B_{0}}\right)=B_{0}$. Let R_{1}, \cdots, R_{l} be the cylinder decomposition of (X, u) by the direction $\theta=0$ and C_{1}, \cdots, C_{l} their core curves. The cylinders $h\left(R_{1}\right), \cdots, h\left(R_{l}\right)$ are the cylinder decomposition by $\theta=\frac{\pi}{2}$.

Fact For a closed curve C of X, let τ_{C} be the Dehn twist along C. There exists $\alpha<\lambda=2 \exp (5 d / e)$ such that

$$
\begin{aligned}
h_{B_{0}}^{\alpha} & =\tau_{C_{1}}^{N_{1}} \circ \cdots \circ \tau_{C_{l}}^{N_{l}}, \\
h \circ h_{B_{0}}^{\alpha} \circ h^{-1} & =\tau_{h\left(C_{1}\right)}^{N_{1}} \circ \cdots \circ \tau_{h\left(C_{l}\right)}^{N_{l}} .
\end{aligned}
$$

Let W_{i}, H_{i} be the circumference and height of R_{i}, respectively. We have

$$
W_{i} / H_{i}=\alpha / N_{i} \in \mathbb{Q}
$$

Direction $\theta=0, \frac{\pi}{2}$ give cylinder decompositions. The affine map $h_{B_{0}}^{\alpha}$ is a composition of Dehn twists along C_{i} 's. The affine map $h \circ h_{B_{0}}^{\alpha} \circ h^{-1}$ is a composition of Dehn twists along $h\left(C_{j}\right)$'s.

Direction $\theta=0, \frac{\pi}{2}$ give cylinder decompositions. The affine map $h_{B_{0}}^{\alpha}$ is a composition of Dehn twists along C_{i} 's. The affine map $h \circ h_{B_{0}}^{\alpha} \circ h^{-1}$ is a composition of Dehn twists along $h\left(C_{i}\right)$'s.

Proposition 1

We have
(1) $1 \leq N_{i}<(\lambda \mu)^{2}$ for $i \in\{1, \cdots, l\}$,
(2) $0 \leq i\left(C_{i}, h\left(C_{j}\right)\right)<(\lambda \mu)^{2}$ for $i, j \in\{1, \cdots, l\}$,
(3) $c W_{i} / H_{j}<(\lambda \mu)^{2}$ if $i\left(C_{i}, h\left(C_{j}\right)\right) \neq 0$.

Set $h_{B}:=h_{B_{0}}^{\alpha}, h_{A}:=h \circ h_{B_{0}}^{\alpha} \circ h^{-1}, B:=D\left(h_{B}\right), A:=D\left(h_{A}\right)$ and $G:=\left\langle h_{A}, h_{B}\right\rangle$. A point $z \in X$ is said to be a B-periodic point if the cardinal $\sharp\left\langle h_{B}\right\rangle\{z\}$ is finite. The cardinal $\sharp\left\langle h_{B}\right\rangle\{z\}$ is called the B-period of z. Denote by P_{n}^{B} the set of points of X whose B-periods are less than or equal to n. We define A-periodic points, G-periodic points, their periods, P_{n}^{A} and P_{n}^{G} as well.
Note that periodic points of (X, u) are G-periodic points.

For $B=\left[\begin{array}{cc}1 & N \\ 0 & 1\end{array}\right]$, let us consider the set P_{n}^{B} in torus $\left(T, u_{T}\right)$ case. Let $z=\binom{x}{y} \in T$ be a B-periodic point of B-period n. We assume that $0 \leq x, y<1$. Since $B^{m}\binom{x}{y}=\binom{x+m N y}{y}$, we have

$$
m N y \notin \mathbb{N} \text { for } m \in\{1, \cdots, n-1\} \text { and } n N y \in \mathbb{N} .
$$

Thus, $N y=\frac{s}{n}+t$ for some $1 \leq s \leq n-1$ with $\operatorname{gcd}(s, n)=1$ and $t \in\{0, \cdots, N-1\}$. This implies that $y \in \mathbb{Q}$ and the set of points whose B-periods are n consists of $N \phi(n)$ horizontal closed curves. Here,

$$
\phi(n)=\sharp\{s \in \mathbb{N}: 1 \leq s \leq n-1, \operatorname{gcd}(s, n)=1\}
$$

is Euler's totient function. Setting $\Phi(n)=\sum_{m=1}^{n} \phi(m)$, the set P_{n}^{B} consists of $N \Phi(n)$ horizontal closed curves.
By the same argument as above, y-coordinate of a B-periodic point $z \in R_{i}$ satisfies $y / H_{i} \in \mathbb{Q}$.

Lemma 1

Let $\beta:=\frac{1}{4} d^{2}(\lambda \mu)^{6}$. We have

$$
\sharp P_{n}^{G} \leq \sharp\left(P_{n}^{A} \cap P_{n}^{B}\right)<\beta n^{4} .
$$

Proof By definition, $P_{n}^{G} \subset P_{n}^{A} \cap P_{n}^{B}$. The above observation gives

$$
\sharp\left(P_{n}^{A} \cap P_{n}^{B}\right)=\sum_{1 \leq i, j \leq l} i\left(C_{i}, h\left(C_{j}\right)\right) N_{i} \Phi(n) N_{j} \Phi(n)<\beta n^{4} . \square
$$

Lemma 1

Let $\beta:=\frac{1}{4} d^{2}(\lambda \mu)^{6}$. We have

$$
\sharp P_{n}^{G} \leq \sharp\left(P_{n}^{A} \cap P_{n}^{B}\right)<\beta n^{4} .
$$

Proof By definition, $P_{n}^{G} \subset P_{n}^{A} \cap P_{n}^{B}$. The above observation gives

$$
\sharp\left(P_{n}^{A} \cap P_{n}^{B}\right)=\sum_{1 \leq i, j \leq l} i\left(C_{i}, h\left(C_{j}\right)\right) N_{i} \Phi(n) N_{j} \Phi(n)<\beta n^{4} . \square
$$

Lemma 2

Let $\mathcal{O}=G\{z\}$ be a finite G-orbit. If $\sharp \mathcal{O} \geq \beta n^{4}, \mathcal{O}$ contains a point whose A-period or B-period is greater than n.

Lemma 3

Let \mathcal{O} be a finite G-orbit. Suppose that \mathcal{O} contains a point z whose B-period is greater than $\frac{1}{2}(\lambda \mu)^{4} n^{2}$. If $z \in R_{i} \cap h\left(R_{j}\right)$, there exists a point $w \in\left\langle h_{B}\right\rangle\{z\} \cap R_{i} \cap h\left(R_{j}\right)$ whose A-period is greater than or equal to n.

Proof The set $P_{n-1}^{A} \cap h\left(R_{j}\right)$ consists of $N_{i} \Phi(n-1)$ vertical closed geodesics. Since the distance between z and $h_{B}(z)$ is less than $W_{i} / \frac{1}{2}(\lambda \mu)^{4} n^{2}$, we have

$$
\sharp\left(\left\langle h_{B}\right\rangle\{z\} \cap h\left(R_{j}\right)\right)>\frac{1}{2}(\lambda \mu)^{4} n^{2} H_{j} / c W_{i}>N_{i} \Phi(n-1) .
$$

Thus, we obtain the claim. \square

Lemma 4

Let $f(x)=\frac{1}{2}(\lambda \mu)^{4} x^{2}$. Let \mathcal{O} be a finite G-orbit. Assume that $\sharp \mathcal{O}>\beta\left(f^{2 d-1}(n)\right)^{4}$. Each horizontal cylinder R_{i} contains a point whose B-period is greater than or equal to n.

Recall that W_{i} and H_{i} are the circumference and height of the horizontal cylinder R_{i}, respectively. The circumference and height of the vertical cylinder $h\left(R_{j}\right)$ are $c W_{j}$ and H_{j} / c.

Lemma 5

Suppose that $R_{i} \cap h\left(R_{j}\right) \neq \emptyset$. Let L be a connected component of $R_{i} \cap h\left(R_{j}\right)$. If \bar{L} contains two G-periodic points z and z^{\prime} with $\left\langle h_{B}\right\rangle\{z\}=\left\langle h_{B}\right\rangle\left\{z^{\prime}\right\}$, then $c W_{i} / H_{j} \in \mathbb{Q}$.

Proof Let us identify $L=\left(0, H_{j} / c\right) \times\left(0, H_{i}\right), z=\binom{x}{y}$ and $z^{\prime}=\binom{x^{\prime}}{y^{\prime}}$. As $h_{B}^{k}(z)=z^{\prime}$ for some k, we have $y^{\prime}=y$ and $x^{\prime}=x+k \alpha y+N_{i} W_{i}$. Since z and z^{\prime} are G-periodic points, $y / H_{i} \in \mathbb{Q}, c x / H_{j}, c x^{\prime} / H_{j} \in \mathbb{Q}$. Then,

$$
\mathbb{Q} \ni \frac{c\left(x^{\prime}-x\right)}{H_{j}}=\frac{\left(k \alpha y+N_{i} W_{i}\right)}{H_{j}}=\frac{c W_{i}}{H_{j}}\left(k \alpha \frac{y}{H_{i}} \frac{H_{i}}{W_{i}}-N_{i}\right) .
$$

As $W_{i} / H_{i} \in \mathbb{Q}$, we obtain the claim. \square

Proposition 2

Let \mathcal{O} be a finite G-orbit. If $\sharp \mathcal{O}>\beta\left(f^{2 d-1}\left((\lambda \mu)^{2}\right)\right)^{4}$, we have the following :
(1) $c W_{i} / H_{j} \in \mathbb{Q}$ if $R_{i} \cap h\left(R_{j}\right) \neq \emptyset$,
(2) $W_{i} / W_{i^{\prime}} \in \mathbb{Q}$ for any $i, i^{\prime} \in\{1, \cdots, l\}$,
(3) $H_{i} / H_{i^{\prime}} \in \mathbb{Q}$ for any $i, i^{\prime} \in\{1, \cdots, l\}$.

Proof By Lemma 4, every cylinder R_{i} contains a point z_{i} whose B-period is greater than $(\lambda \mu)^{2}$. The distance between z_{i} and $h_{B}\left(z_{i}\right)$ is less than $W_{i} /(\lambda \mu)^{2}$. If $R_{i} \cap h\left(R_{j}\right) \neq \emptyset$, each connected component L is a rectangle with width H_{j} / c. By Proposition 1-(3), we have $W_{i} /(\lambda \mu)^{2}<H_{j} / c$. Thus, \bar{L} contains two point in a the same B-orbit. From Lemma 4, we obtain (1).

If $R_{i} R_{i^{\prime}}$ intersect with common $h\left(R_{j}\right)$,

$$
\frac{W_{i}}{W_{i^{\prime}}}=\frac{c W_{i}}{H_{j}} \cdot \frac{H_{j}}{c W_{i^{\prime}}} \in \mathbb{Q} .
$$

As X is connected, we obtain (2).
The equation

$$
\frac{H_{i}}{H_{i^{\prime}}}=\frac{H_{i}}{W_{i}} \cdot \frac{W_{i}}{W_{i^{\prime}}} \cdot \frac{W_{i^{\prime}}}{H_{i^{\prime}}}
$$

implies (3). \square

Proposition 3

If the Veech surface (X, u) has a point whose G-period is greater than $\beta\left(f^{2 d-1}\left((\lambda \mu)^{2}\right)\right)^{4}$, then (X, u) is arithmetic.

Proof By Proposition 2, replacing u with some flat structure $A \circ u$, we may assume that W_{i} and H_{i} are integers and $c \in \mathbb{Q}$. If $c=m / n$ for some $n, m \in \mathbb{Z}_{>0}$, then (X, u) is realized by gluing finitely many squares whose side length is $1 / \mathrm{m}$. By the theorem of Gutkin-Hubert-Schmidt, (X, u) is arithmetic. \square

By Proposition 3, the periods of periodic points of the non-arithmetic Veech surface (X, u) are at most $\beta\left(f^{2 d-1}\left((\lambda \mu)^{2}\right)\right)^{4}$. Applying Lemma 1, the number of periodic points is at most $\beta^{5}\left(f^{2 d-1}\left((\lambda \mu)^{2}\right)\right)^{16}$.
3. Application to Teichmüller curves

Hereafter, we assume $3 g-3+n>0$. A Teichmüller curve $f: C \rightarrow \mathcal{M}(g, n)$ is a holomorphic local isometry from a hyperbolic Riemann surface C of finite type into the moduli space $\mathcal{M}(g, n)$ equipped with the Teichmüller distance.

Proposition

Let $f: C \rightarrow \mathcal{M}(g, n)$ be a Teichmüller curve. Given a base point t_{0} of C. There exists a Veech surface (X, u) of type (g, n), a branched covering $\phi: C \rightarrow C_{0}:=\mathbb{L} / \Gamma(X, u)$ and an injective holomorphic local isometry $f_{0}: C_{0} \rightarrow \mathcal{M}(g, n)$ with the following properties:
(1) $f=f_{0} \circ \phi$,
(2) $f\left(t_{0}\right)=(X, u)$ as Riemann surfaces,
(3) for each $t \in C$, there exists $A_{t} \in \mathrm{SL}(2, \mathbb{R})$ such that $f(t)=\left(X, A_{t} \circ u\right)$ as Riemann surfaces.

Teichmüller curves and holomorphic families

Let $f: C \rightarrow \mathcal{M}(g, n)$ be a Teichmüller curve. We can construct a holomorphic family of Riemann surfaces (M, π, C) so that the fiber X_{t} over $t \in C$ is the Riemann surface $f(t)$.
Let $\phi: C_{\phi} \rightarrow C$ be a finite unbranched holomorphic covering. Then, $f \circ \phi: C_{\phi} \rightarrow \mathcal{M}(g, n)$ is also a Teichmüller curve. Let $\left(M_{\phi}, \pi_{\phi}, C_{\phi}\right)$ be the holomorphic family corresponding to $f \circ \phi$.

Theorem (S)

(1) Holomorphic sections of $\left(M_{\phi}, \pi_{\phi}, C_{\phi}\right)$ do not intersect each other. Given a base point $t_{0} \in C_{\phi}$. Let (X, u) be the Veech surface corresponding to $f \circ \phi\left(t_{0}\right)$. For a holomorphic section $s: C_{\phi} \rightarrow M_{\phi}, s\left(t_{0}\right)$ is a periodic point of (X, u).
(2) Let $d=3 g-3+n$. Assume that C is of type (p, k). The number of holomorphic sections of $\left(M_{\phi}, \pi_{\phi}, C_{\phi}\right)$ is at most

$$
32 \pi \operatorname{deg}(\phi)(2 p-2+k) d^{2}\left\{2 d+3 \exp \left(\frac{5}{e} d\right)\right\}
$$

This bound tends to infinity as $\operatorname{deg}(\phi) \rightarrow \infty$.

Upper bounds of the numbers of holomorphic sections

Applying the main theorem, we obtain upper bounds of the numbers of holomorphic sections which depend only on g, n and the topological type of C.

Theorem (S)

Let $f: C \rightarrow \mathcal{M}(g, n)$ be a Teichmüller curve corresponding to a non-arithmetic Veech surface (X, u). Assume that C is a Riemann surface of type (p, k). For any finite unramified holomorphic covering $\phi: C_{\phi} \rightarrow C$, the number of holomorphic sections of $\left(M_{\phi}, \pi_{\phi}, C_{\phi}\right)$ is at most

$$
2^{-26} d^{10}(\lambda \mu)^{-34}\left(\frac{1}{2} \lambda^{6} \mu^{6}\right)^{2^{2 d+3}}
$$

Here, $d=3 g-3+n, \lambda=2 \exp (5 d / e)$ and $\mu=2 \pi(2 p-2+k)$.
[GHS03] E. Gutkin, P. Hubert, and T. A. Schmidt.
Affine diffeomorphisms of translation surfaces: periodic points, Fuchsian groups, and arithmeticity.
Ann. Sci. École Norm. Sup. (4), 36(6):847-866, 2003.
[GJ00] E. Gutkin and C. Judge.
Affine mappings of translation surfaces: geometry and arithmetic.
Duke Math. J., 103(2):191-213, 2000.
[Möl06] M. Möller.
Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve.
Invent. Math., 165(3):633-649, 2006.
[Shi13a] Y. Shinomiya.
Veech holomorphic families of Riemann surfaces, holomorphic sections, and Diophantine problems.
Trans. Amer. Math. Soc., to appear.
[Sh13b] Y. Shinomiya.
On holomorphic sections of Veech holomorphic families of Riemann surfaces.
Ann. Acad. Sci. Fenn. Math., to appear.
[Vee89] W. A. Veech.
Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards.
Invent. Math., 97(3):553-583, 1989.

On the Existence of Holomorphic Mappings of Once-Holed Tori

Makoto Masumoto
Department of Mathematics
Yamaguchi University, Japan

November 10, 2013
Riemann Surfaces and Discontinuous Groups 2013
Osaka University, Japan

Outline

(1) Motivation and problem
(2) Results
(3) Proof of Theorem 2

Outline

(3) Proof of Theorem 2

Planar Riemann surfaces

General uniformization theorem

Every Riemann surface of genus zero is conformally embedded into the Riemann sphere $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$.

- Function theory on Riemann surfaces of genus zero is essentially part of function theory on plane domains.
- The core of the theory of Riemann surfaces should be occupied by Riemann surfaces of positive genus, or those with handles.

What are the simplest nonplanar Riemann surfaces?

Definition

A once-holed torus is an open Riemann surface of genus 1 with exactly one boundary component.

- "open" = "noncompact"

- Once-holed tori are the simplest among open Riemann surfaces of positive genus.

Are there holomorphic mappings?

Let
\boldsymbol{R}_{0} be a Riemann surface of positive genus, and
\boldsymbol{T} be a once-holed torus.

Naive question
Are there "non-degenerate" holomorphic mappings $\boldsymbol{T} \rightarrow \boldsymbol{R}_{\mathbf{0}}$ or holomorphic mappings $\boldsymbol{T} \rightarrow \boldsymbol{R}_{\mathbf{0}}$ "preserving handles"?

- What does "preserving handles" mean?

Mark of handle

Let \boldsymbol{R} be a Riemann surface of positive genus.

Definition

A mark of handle of \boldsymbol{R} is an ordered pair $\chi=\{\boldsymbol{a}, \boldsymbol{b}\}$ of simple loops on \boldsymbol{R} such that $\boldsymbol{a} \times \boldsymbol{b}=\mathbf{1}$.

- A mark of handle specifies a handle of \boldsymbol{R}.

Riemann surface with marked handle

Definition

A Riemann surface with marked handle is a pair $Y=(R, \chi)$, where \boldsymbol{R} is a Riemann surface of positive genus and χ is a mark of handle of \boldsymbol{R}.

Let $Y_{j}=\left(R_{j}, \chi_{j}\right), \boldsymbol{j}=\mathbf{1}, \mathbf{2}$, be Riemann surfaces with marked handle, where $\chi_{j}=\left\{a_{j}, b_{j}\right\}$.

Definition
$\boldsymbol{f}: \boldsymbol{Y}_{\mathbf{1}} \rightarrow \boldsymbol{Y}_{\mathbf{2}}$: holomorphic (resp. conformal)
\Leftrightarrow (i) $\boldsymbol{f}: \boldsymbol{R}_{\mathbf{1}} \rightarrow \boldsymbol{R}_{\mathbf{2}}$: holomorphic (resp. conformal)
(ii) $f_{*}\left(a_{1}\right) \sim a_{2}, f_{*}\left(b_{1}\right) \sim b_{2}(\sim$ means "free homotopy")

- conformal = "holomorphic" \& "injective"

Problem

Fix a Riemann surface $Y_{0}=\left(R_{0}, \chi_{0}\right)$ with marked handle.

Problem

Determine the set of marked once-holed tori $\boldsymbol{X}=(\boldsymbol{T}, \chi)$ for which there is a holomorphic mapping $\boldsymbol{X} \rightarrow \boldsymbol{Y}_{\mathbf{0}}$.

Space of marked once-holed tori

- Let \mathfrak{T} denote the set of marked once-holed tori, where two marked once-holed tori are identified if there is a conformal mapping of one onto the other.
- As a set, \mathfrak{T} is the union of the Teichmüller space of a once-punctured torus and
the reduced Teichmüller space of a once-holed torus that is not a once-punctured torus.

Problems (revised)

- Let Y_{0} be a Riemann surface with marked handle.

Definition

$\mathfrak{T}_{a}\left[Y_{0}\right]=\left\{X \in \mathfrak{T} \mid \exists\right.$ holomorphic mapping $\left.X \rightarrow Y_{0}\right\}$,
$\mathfrak{T}_{c}\left[Y_{0}\right]=\left\{X \in \mathfrak{T} \mid \exists\right.$ conformal mapping $\left.X \rightarrow Y_{0}\right\}$.

- "a" = "analytic", and " \boldsymbol{c} " = "conformal".

Problems (revised)

$$
\mathfrak{T}_{a}\left[Y_{0}\right]=?, \quad \mathfrak{T}_{c}\left[Y_{0}\right]=?
$$

Remark

$\varnothing \neq \mathfrak{T}_{c}\left[Y_{0}\right] \subset \mathfrak{T}_{a}\left[Y_{0}\right]$

Torus case

Example

If \boldsymbol{Y}_{0} is a marked torus, then

$$
\mathfrak{T}_{a}\left[Y_{0}\right]=\mathfrak{T}
$$

by the Behnke-Stein theorem, while

$$
\mathfrak{T}_{c}\left[Y_{0}\right] \neq \mathfrak{T} .
$$

Outline

(1) Motivation and problem

(2) Results

(3) Proof of Theorem 2

Mapping $\wedge: \mathfrak{T} \rightarrow \mathbb{R}_{+}^{3}$

Definition

For $\boldsymbol{X}=(\boldsymbol{T}, \chi) \in \mathfrak{T}, \chi=\{\boldsymbol{a}, \boldsymbol{b}\}$, define

$$
\Lambda(X)=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)
$$

where $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are the extremal lengths of the free homotopy classes of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{a} \boldsymbol{b}^{\mathbf{- 1}}$, respectively.

- Λ defines a mapping of \mathfrak{T} into \mathbb{R}_{+}^{3}, where $\mathbb{R}_{+}=[0,+\infty)$.

Global coordinate system on \mathfrak{T}

Proposition

The mapping $\boldsymbol{\wedge}: \mathfrak{T} \rightarrow \mathbb{R}_{+}^{3}$ is injective with image

$$
\wedge(\mathfrak{T})=\left\{\xi \in \mathbb{R}_{+}^{3} \mid Q(\xi)+4 \leqq 0\right\}
$$

where

$$
Q\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}-2\left(\xi_{1} \xi_{2}+\xi_{2} \xi_{3}+\xi_{3} \xi_{1}\right)
$$

- Identifying \mathfrak{T} with $\boldsymbol{\Lambda}(\mathfrak{T})$, we consider \mathfrak{T} as a 3-dimensional real analytic manifold with boundary.
- The eigenspaces of the coefficient matrix of the quadratic form Q are the line $\xi_{1}=\xi_{2}=\xi_{3}$ and the plane $\xi_{1}+\xi_{2}+\xi_{3}=0$.

Once-holed torus case

- $\boldsymbol{\Lambda}: \mathfrak{T} \rightarrow \mathbb{R}_{+}^{\mathbf{3}}$,

$$
Q\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}-2\left(\xi_{1} \xi_{2}+\xi_{2} \xi_{3}+\xi_{3} \xi_{1}\right)
$$

Example

If $\boldsymbol{Y}_{\mathbf{0}} \in \mathfrak{T}$, then

$$
\boldsymbol{\Lambda}\left(\mathfrak{T}_{c}\left[\boldsymbol{Y}_{0}\right]\right)=\left\{\xi \in \mathbb{R}_{+}^{3} \mid \boldsymbol{Q}\left(\xi-\xi_{0}\right) \leqq \mathbf{0} \text { and } \boldsymbol{Q}(\xi) \leqq \boldsymbol{Q}\left(\xi_{0}\right)\right\},
$$

where $\xi_{0}=\Lambda\left(Y_{0}\right)$.

- $\Lambda\left(\mathfrak{T}_{c}\left[Y_{0}\right]\right)$ is a cone with vertex at ξ_{0}.

First result

- Let \boldsymbol{Y}_{0} be a Riemann surface with marked handle.

Theorem 1

The sets $\mathfrak{T}_{a}\left[Y_{0}\right]$ and $\mathfrak{T}_{c}\left[Y_{0}\right]$ are noncompact closed domains with Lipschitz boundary, and are retracts of \mathfrak{T}.

- A subset \boldsymbol{A} of a topological space \boldsymbol{X} is called a retract of \boldsymbol{X} if there is a continuous map $\boldsymbol{r}: \boldsymbol{X} \rightarrow \boldsymbol{A}$ such that $\boldsymbol{r}(\boldsymbol{a})=\boldsymbol{a}$ for any $\boldsymbol{a} \in \boldsymbol{A}$.

Canonical construction of marked tori

Let \mathbb{H} be the upper half plane: $\mathbb{H}=\{\tau \in \mathbb{C} \mid \boldsymbol{\operatorname { l m }} \tau>\mathbf{0}\}$.
For $\tau \in \mathbb{H}$ let
\boldsymbol{P}_{τ} : the parallelogram with vertices $\mathbf{0}, \mathbf{1}, \tau+\mathbf{1}, \tau$,
\boldsymbol{T}_{τ} : the torus obtained from $\boldsymbol{P}_{\boldsymbol{\tau}}$ by identifying the opposite sides,
$\chi_{\tau}=\left\{\boldsymbol{a}_{\tau}, \boldsymbol{b}_{\tau}\right\}$, where \boldsymbol{a}_{τ} and \boldsymbol{b}_{τ} are the projections of $[0,1]$ and $[0, \tau]$.

Horizontal slit tori

For $\boldsymbol{\tau} \in \mathbb{H}$ and $\boldsymbol{s} \in[0, \mathbf{1})$ let
$\boldsymbol{T}_{\boldsymbol{\tau}}^{(\boldsymbol{s})}$: the once-holed torus obtained from \boldsymbol{T}_{τ} by deleting a horizontal segment of length \boldsymbol{s},
$\chi_{\tau}^{(s)}$: the mark of handle of $\boldsymbol{T}_{\tau}^{(s)}$ induced by the embedding $\boldsymbol{T}_{\boldsymbol{\tau}}^{(\boldsymbol{s})} \rightarrow \boldsymbol{T}_{\tau}$.

Another global coordinate system on \mathfrak{T}

- Set $\boldsymbol{X}_{\tau}^{(s)}=\left(\boldsymbol{T}_{\tau}^{(s)}, \chi_{\tau}^{(s)}\right)$ for $(\tau, \boldsymbol{s}) \in \mathbb{H} \times[\mathbf{0}, \mathbf{1})$.

Proposition

The correspondence $(\tau, \boldsymbol{s}) \mapsto \boldsymbol{X}_{\tau}^{(\mathbf{s})}$ is a homeomorphism of $\mathbb{H} \times[\mathbf{0}, \mathbf{1})$ onto \mathfrak{T}.

- The restrictions of the homeomorphism to $\mathbb{H} \times(\mathbf{0}, \mathbf{1})$ and to $\mathbb{H} \times\{0\}$ are real-analytic.
- The extremal length of the free homotopy class of $\boldsymbol{a}_{\tau}^{(\boldsymbol{s})}$ is exactly $\mathbf{1} / \operatorname{lm} \tau$, where $\chi_{\tau}^{(s)}=\left\{a_{\tau}^{(s)}, b_{\tau}^{(s)}\right\}$.

Second results

Theorem 2a

There exists $\lambda_{a}\left[Y_{0}\right] \in[0,+\infty)$ such that:
(i) If $\operatorname{Im} \tau \geqq 1 / \lambda_{a}\left[Y_{0}\right]$, then $X_{\tau}^{(s)} \notin \mathfrak{T}_{a}\left[Y_{0}\right]$ for any $s \in[0,1)$.
(ii) If $\operatorname{Im} \tau<1 / \lambda_{a}\left[Y_{0}\right]$, then $X_{\tau}^{(s)} \in \mathfrak{T}_{a}\left[Y_{0}\right]$ for some $s \in[0,1)$.

- If Y_{0} is a marked torus, then $\boldsymbol{\lambda}_{a}\left[Y_{0}\right]=0$.

Theorem 2c

There exists $\lambda_{c}\left[Y_{0}\right] \in(0,+\infty)$ such that:
(i) If $\operatorname{Im} \tau>1 / \lambda_{c}\left[Y_{0}\right]$, then $X_{\tau}^{(s)} \notin \mathfrak{T}_{c}\left[Y_{0}\right]$ for any $s \in[0,1)$.
(ii) If $\operatorname{Im} \tau<1 / \lambda_{c}\left[Y_{0}\right]$, then $X_{\tau}^{(s)} \in \mathfrak{T}_{c}\left[Y_{0}\right]$ for some $s \in[0,1)$.

- It follows from $\mathfrak{T}_{a}\left[Y_{0}\right] \supset \mathfrak{T}_{c}\left[Y_{0}\right]$ that $\lambda_{a}\left[Y_{0}\right] \leqq \lambda_{c}\left[Y_{0}\right]$.

Third result

- Let $Y_{0}=\left(R_{0}, \chi_{0}\right)$, where $\chi_{0}=\left\{a_{0}, b_{0}\right\}$.

Notations

- $\ell\left[Y_{0}\right]$: the length of the hyperbolic geodesic on $\boldsymbol{R}_{\mathbf{0}}$ freely homotopic to a_{0}
If \boldsymbol{R}_{0} is a torus, then define $\ell\left[Y_{0}\right]=0$.
- $\lambda\left[Y_{0}\right]$: the extremal length of the free homotopy class of \boldsymbol{a}_{0}

Theorem 3

$$
\lambda_{a}\left[Y_{0}\right]=\frac{1}{\pi} \ell\left[Y_{0}\right] \text {, and } \lambda_{c}\left[Y_{0}\right]=\lambda\left[Y_{0}\right] .
$$

Outline

(1) Motivation and problem

(2) Results
(3) Proof of Theorem 2

Order

Definition (Order)

For $\boldsymbol{X}, \boldsymbol{X}^{\prime} \in \boldsymbol{T}$,

$$
\boldsymbol{X} \preceq \boldsymbol{X}^{\prime} \Leftrightarrow \exists \text { a conformal mapping } \boldsymbol{X} \rightarrow \boldsymbol{X}^{\prime}
$$

- $X \preceq X^{\prime} \Leftrightarrow X \in \mathfrak{T}_{c}\left[X^{\prime}\right] \Leftrightarrow \mathfrak{T}_{c}[X] \subset \mathfrak{T}_{c}\left[X^{\prime}\right]$

Proposition

(\mathfrak{T}, \preceq) is an ordered set.

Which torus accepts a given once-holed torus?

For $\boldsymbol{X} \in \mathfrak{T}$ let $\boldsymbol{M}(\boldsymbol{X})=\left\{\tau \in \mathbb{H} \mid \boldsymbol{X} \in \mathfrak{T}_{c}\left[\boldsymbol{X}_{\tau}\right]\right\}$, where $\boldsymbol{X}_{\tau}=\left(\boldsymbol{T}_{\tau}, \chi_{\tau}\right)$ (the marked torus of modulus $\left.\tau\right)$.

Proposition (Shiba, 1987)

- $\boldsymbol{M}(\boldsymbol{X})$ is a closed disk (or a point) in \mathbb{H}. the moduli disk of \boldsymbol{X}
- If $\tau_{\boldsymbol{b}}$ is the bottom point of $\boldsymbol{M (X)}$, then $\boldsymbol{X}=\boldsymbol{X}_{\tau_{b}}^{(\boldsymbol{s})}$ for some \boldsymbol{s}.

Order-reversing isomorphism

Let \mathfrak{D} be the set of closed disks in \mathbb{H}, where a singleton is regarded as a closed disk of radius $\mathbf{0}$.

Proposition

The correspondence $\boldsymbol{X} \mapsto \boldsymbol{M}(\boldsymbol{X})$ defines an order-reversing isomorphism between the ordered sets (\mathfrak{T}, \preceq) and (\mathfrak{D}, \subset).

- For $\boldsymbol{X}, \boldsymbol{X}^{\prime} \in \boldsymbol{T}$,

$$
X \preceq X^{\prime} \Leftrightarrow M(X) \supset M\left(X^{\prime}\right) .
$$

- For any $\boldsymbol{\Delta} \in \mathfrak{D}$ there is $\boldsymbol{X} \in \mathfrak{T}$ such that $\boldsymbol{M}(\boldsymbol{X})=\boldsymbol{\Delta}$.

Essential part of the second result

$$
\text { Let } \mathfrak{T}\left[Y_{0}\right]=\mathfrak{T}_{a}\left[Y_{0}\right] \text { or } \mathfrak{T}\left[Y_{0}\right]=\mathfrak{T}_{c}\left[Y_{0}\right] .
$$

Theorem 2

There exists $t_{0} \in[0,+\infty)$ such that:
(i) If $\operatorname{lm} \tau>\boldsymbol{t}_{0}$, then $\boldsymbol{X}_{\tau}^{(s)} \notin \mathfrak{T}\left[Y_{0}\right]$ for any $\boldsymbol{s} \in[0,1)$.
(ii) If $\operatorname{Im} \tau<\boldsymbol{t}_{0}$, then $\boldsymbol{X}_{\tau}^{(s)} \in \mathfrak{T}\left[Y_{0}\right]$ for some $\boldsymbol{s} \in[0,1)$.

Proof of Theorem 2

$\mathfrak{T}\left[Y_{0}\right]=\mathfrak{T}_{a}\left[Y_{0}\right]$ or $\mathfrak{T}_{c}\left[Y_{0}\right]$

- Set $t_{0}=\sup \left\{\operatorname{lm} \tau \mid \tau \in \mathbb{H}\right.$ and $X_{\tau}^{(s)} \in \mathfrak{T}\left[Y_{0}\right]$ for some $\left.\boldsymbol{s}\right\}$.
- If $\operatorname{Im} \tau>t_{0}$, then $X_{\tau}^{(s)} \notin \mathfrak{T}\left[Y_{0}\right]$ for any s.

Observation

For $\boldsymbol{X}, \boldsymbol{X}^{\prime} \in \boldsymbol{T}$,

$$
\left(X \preceq X^{\prime} \text { and } X^{\prime} \in \mathfrak{T}\left[Y_{0}\right]\right) \Rightarrow X \in \mathfrak{T}\left[Y_{0}\right]
$$

Proof of Theorem 2

- If $\operatorname{Im} \boldsymbol{\tau}<\boldsymbol{t}_{\mathbf{0}}$, then $X_{\tau^{\prime}}^{\left(s^{\prime}\right)} \in \mathbb{I}\left[Y_{0}\right]$
for some τ^{\prime} and s^{\prime} with $\operatorname{Im} \tau^{\prime}>\operatorname{Im} \tau$.
- $\exists \Delta \in \mathfrak{D}$ s.t. $\Delta \supset M\left(X_{\tau^{\prime}}^{\left(s^{\prime}\right)}\right)$ and τ is the bottom of Δ.

Proof of Theorem 2

- If $\operatorname{Im} \tau<t_{0}$, then $X_{\tau^{\prime}}^{\left(s^{\prime}\right)} \in \mathfrak{T}\left[Y_{0}\right]$ for some τ^{\prime} and \boldsymbol{s}^{\prime} with $\operatorname{Im} \tau^{\prime}>\operatorname{lm} \tau$.
$\exists \Delta \in \mathfrak{D}$ s.t. $\Delta \supset M\left(X_{\tau^{\prime}}^{\left(s^{\prime}\right)}\right)$ and τ is the bottom of Δ.

Proof of Theorem 2

- If $\operatorname{Im} \tau<\boldsymbol{t}_{0}$, then $\boldsymbol{X}_{\tau^{\prime}}^{\left(s^{\prime}\right)} \in \mathfrak{T}\left[Y_{0}\right]$ for some τ^{\prime} and \boldsymbol{s}^{\prime} with $\operatorname{Im} \tau^{\prime}>\operatorname{Im} \tau$.
- $\exists \boldsymbol{\Delta} \in \mathfrak{D}$ s.t. $\boldsymbol{\Delta} \supset \boldsymbol{M}\left(\boldsymbol{X}_{\boldsymbol{\tau}^{\prime}}^{\left(\boldsymbol{s}^{\prime}\right)}\right)$ and $\boldsymbol{\tau}$ is the bottom of $\boldsymbol{\Delta}$.

Proof of Theorem 2

- $\Delta=M\left(X_{\tau}^{(s)}\right)$ for some s.
- Then $M\left(X_{\tau}^{(s)}\right) \supset M\left(X_{\tau^{\prime}}^{\left(s^{\prime}\right)}\right)$
- Since $X_{\tau^{\prime}}^{\left(s^{\prime}\right)} \in \mathscr{T}\left[Y_{0}\right]$, we have $X_{\tau}^{(s)} \in \mathscr{T}\left[Y_{0}\right]$.

Proof of Theorem 2

- $\Delta=M\left(X_{\tau}^{(s)}\right)$ for some s.
- Then $\boldsymbol{M}\left(\boldsymbol{X}_{\tau}^{(s)}\right) \supset \boldsymbol{M}\left(\boldsymbol{X}_{\tau^{\prime}}^{\left(\boldsymbol{s}^{\prime}\right)}\right)$ and hence $\boldsymbol{X}_{\tau}^{(\boldsymbol{s})} \preceq \boldsymbol{X}_{\tau^{\prime}}^{\left(\boldsymbol{s}^{\prime}\right)}$.
- Since $\boldsymbol{X}_{\tau^{\prime}}^{\left(\boldsymbol{s}^{\prime}\right)} \in \mathfrak{T}\left[Y_{0}\right]$, we have $\boldsymbol{X}_{\tau}^{(\boldsymbol{s})} \in \mathfrak{T}\left[Y_{0}\right]$.

Concluding Remark

- The above reasoning works for any subset \mathfrak{T}_{0} of \mathfrak{T} with the property described in the observation: For $\boldsymbol{X}, \boldsymbol{X}^{\prime} \in \mathfrak{T}$,

$$
\left(X \preceq X^{\prime} \& X^{\prime} \in \mathfrak{T}_{0}\right) \Rightarrow X \in \mathfrak{T}_{0}
$$

Example

- The set of $\boldsymbol{X} \in \mathfrak{T}$ for which there is a holomorphic mapping $f: X \rightarrow \boldsymbol{Y}_{0}$ with $\sup _{q} \# \boldsymbol{f}^{-1}(\boldsymbol{q}) \leqq \nu$, where ν is a given positive integer.
- The set of $\boldsymbol{X} \in \mathfrak{T}$ for which there is a \boldsymbol{K}-quasiconformal mapping $X \rightarrow Y_{0}$, where $K>1$ is fixed.

On deformation spaces of Kleinian groups

Nov. 10, 2013
Conference on Riemann surfaces and discontinuous groups

Hiroshige Shiga
Tokyo Institute of Technology
G_{0} ：有限生成－Klein 群
$\Lambda\left(G_{0}\right): G_{0}$ a limit set．$\# \Lambda\left(G_{0}\right)=\infty$ とする
$w: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ qc．Go－equivarint．

$$
\text { i.e. } \forall g \in G_{0} K \dot{Z} L W g w^{-1} \in \operatorname{PSL}(2, \mathbb{C}) \text {. }
$$

$$
w_{1}, w_{2}: \hat{\mathbb{C}} \overrightarrow{d o t} \hat{\mathbb{C}} q c s \text { Go-equiv. }
$$

$$
w_{1} \sim w_{2} \stackrel{d g x}{\Longrightarrow} w_{1} \text { と } w_{2} \text { が同ビiso.をみちび }
$$

く．upt PSL（2，C ）

$$
\begin{aligned}
& D\left(G_{0}\right)=\left\{\left[\omega_{n}\right] \mid w: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}\right. \\
&\left.q_{c} . \text { Goeqiv. }\right\} \\
& \operatorname{Hom}\left(G_{0}, \operatorname{PSL}(2, \mathbb{C})\right) / \sim
\end{aligned}
$$

（Maskit，Kra－Maskit）
$D\left(G_{0}\right)$ は complex manfold，正则 B．

$$
\begin{aligned}
& E \times . \Gamma_{0}=G_{0} \text { Fuchs群. のとき, } \\
& D\left(\Gamma_{0}\right) \cong T\left(\Gamma_{0}\right) \times T\left(\overline{\Gamma_{0}}\right)
\end{aligned}
$$

$\Delta\left(G_{0}\right):$ Go a limit set

$$
\Omega\left(G_{0}\right):=\hat{\mathbb{C}} \backslash \Lambda\left(G_{0}\right) .
$$

Thm（AR1forsの有限性定理）

$$
\Omega\left(G_{0}\right) / G_{0}=B_{1} R_{i}
$$

R_{i} ：有限型（hyperbofe）Reemanm面．

Thm 1

$$
\text { Io: Fuchs群 } \Rightarrow D\left(\Gamma_{0}\right) \text { は } H^{\infty} \text {-古 }
$$

Thm 2
$\Omega(G 0)$ が単連結でない成分を持っていた

$$
\text { とする. } \Rightarrow D\left(G_{0}\right) \text { は } H^{\infty}-\text { 占ではなし) }
$$

Thm 3.
$D\left(G_{0}\right)$ 上 Teichmiller distance e Kobayashi di：
－stanceは等じ．
Cor．Go：as in Thm 2.
$\Rightarrow D\left(G_{0}\right)$ 上 Cavathéodory distance？Kobayastidst．
は異なる。
§ Thm 10 言正明
FACT M：cpx mfd．
$\forall p, q \in M$
Δ 上の着p．distance nolo．

$$
C_{M}(p, q):=\sup \{\rho(f(p), f(q)) \mid f: M \rightarrow \Delta=\{|z|<\mid\}\}
$$

CM が completeならば M は H^{∞}－convex
Ma Carathédory preudo distance．としう．
$\theta(M): M$ 上の hol．functions 全体．
$H^{\infty}(M)$ ：M 上のbounded Rolo．functions 全体． $\theta \subset \theta(M)$ 以平して，M が凸（ θ－convex） $\stackrel{\text { def }}{\Longleftrightarrow} \forall K C C M K$ ふよ ここん $\widehat{K}_{\theta}=\left\{p \in M| | f(p) \mid \leqslant\|f\|_{k, \infty} \quad \forall f \in \theta\right\}$

$$
\begin{aligned}
& \theta=\theta(M) \text { のとさ, } M \text { を正則芕とよぶ。 } \\
& \theta=H^{\infty}(M) \text { のとき } H^{\infty} \text {-convex という. } \\
& O_{1} \subset \theta_{2} \subset \theta(M) \text { のとき. } \\
& \theta_{1} \text {-convex } \Rightarrow \theta_{2} \text { convex. }
\end{aligned}
$$

$$
D \subset \mathbb{C}^{n} \text { (domain) のとき, }
$$

Dが正剔 \Longleftrightarrow Dが domain of holomorphy （Oka）
$\Delta^{*} \subset \mathbb{C}$ 正則凸

$D\left(\Gamma_{0}\right)$ で $C_{D(\Omega)}$ が complete をいえばよい

$$
D\left(\Gamma_{0}\right)=T\left(\Gamma_{0}\right) \times T\left(\bar{\Gamma}_{0}\right)
$$

－$C_{T\left(\Gamma_{0}\right)}$ は complete $\Rightarrow D\left(\Gamma_{0}\right)$ 上も complete．
§ Thm 2 の証明
Thm 2 の証明には次を示す：
$\exists h: \Delta^{*} \rightarrow D\left(\epsilon_{0}\right)$ holo．map．s．t．

$$
z \rightarrow 0 \text { のとき, } h(z) \rightarrow \partial D\left(\xi_{0}\right)
$$

hの構成：世単連結でない成分の存在を

使う。
を Ω_{0} / G_{0} 上 で考える。

$q_{\alpha}: \dot{\alpha} k \rightarrow$（つの R 上のJenkins Strebel 徵分
$\rightarrow \Delta \ni x \longmapsto \lambda \frac{\bar{q}_{\alpha}}{\left|q_{\alpha}\right|}:$ Beltran＇徽分
$\rightarrow \exists \mathrm{H}: \Delta \rightarrow T(R)$ 1－1 holo．isometic

$h: \Delta /\langle\gamma\rangle \rightarrow D\left(G_{0}\right)$ とみなせる．

cocompactな双曲Coxeter群のgrowth rateと 2－Salem数

（Growth rates of cocompact hyperbolic Coxeter groups and 2 －Salem numbers）

「リーマン面•不連続群論」研究集会（大阪大学） 2013年11月10日

梅本 悠莉子
（大阪市立大学大学院理学研究科 後期博士課程 3 年）

1．Introduction

$\mathbb{R}^{n, 1}:=\left(\mathbb{R}^{n+1}, \circ\right), x \circ y:=x_{1} y_{1}+\cdots+x_{n} y_{n}-x_{n+1} y_{n+1}$ $\mathbb{H}^{n}:=\left\{x=\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n, 1} \mid x \circ x=-1, x_{n+1}>0\right\}$ $\left(\mathbb{H}^{n}, d_{\mathbb{H}}\right)$ を n 次元双曲空間 という。

$e \in \mathbb{R}^{n, 1}, e \circ e=1, \quad e^{\perp}:=\left\{x \in \mathbb{R}^{n, 1} \mid x \circ e=0\right\}$
$\Rightarrow e^{\perp}: \mathbb{R}^{n, 1} の n$ 次元部分空間 $\left(e^{\perp} \cap \mathbb{H}^{n} \neq \emptyset\right)$
$H:=e^{\perp} \cap \mathbb{H}^{n}: \mathbb{H}^{n}$ の超平面
$H^{-}:=\left\{x \in \mathbb{H}^{n} \mid x \circ e \leq 0\right\}: \mathbb{H}^{n}$ の半空間

$P \subset \mathbb{H}^{n}$ が \mathbb{H}^{n} の凸多面体 であるとは，
$P=\cap_{i=1}^{m} H_{i}^{-} \quad$ かつ（ \mathbb{H}^{n} の）内点を持つ ことをいう。

1．$\left|e_{i} \circ e_{j}\right|<1 \Leftrightarrow H_{i}$ と H_{j} は \mathbb{H}^{n} 内で交わる
2．$\left|e_{i} \circ e_{j}\right| \geq 1 \Leftrightarrow H_{i}$ と H_{j} は \mathbb{H}^{n} 内で交わらない
－ 1 のとき， $\cos \theta_{i j}=-e_{i} \circ e_{j}$ を満たす $\theta_{i j} \in[0, \pi)$ を，
H_{i} と H_{j} のなす P の面角 という。
$P=\cap_{i=1}^{m} H_{i}^{-} \subset \mathbb{H}^{n}:$ Coxeter多面体 （つまり，すべての面角が $\frac{\pi}{p}, p \in \mathbb{Z}_{\geq 2}$ の凸多面体） Pから定まる鏡映群（双曲 ${ }^{p}$ Coxeter群）とは，P の面を含む超平面に関する鏡映変換 $S:=\left\{s_{1}, \ldots, s_{m}\right\}$ で生成される \mathbb{H}^{n} の等長変換部分群のことをいう。（ここで，$\left.s_{i}(x):=x-2 \frac{x \circ e_{i}}{e_{i} \circ e_{i}} e_{i}\right)$ Pがcompactなとき，cocompact な群であるという。

Coxeter graph

(G, S) ：群とその有限生成系
$f_{S}(t):=\sum_{k \geq 0} a_{k} t^{k}:(\boldsymbol{G}, \boldsymbol{S})$ の growth series
$a_{k}:=\#\{g \in G \mid g$ の S による最短表示の長さが $k\}$
$\tau:=\limsup _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\frac{1}{R}:(\boldsymbol{G}, \boldsymbol{S})$ の growth rate （ R は $f_{S}(t)$ の収束半径）

Coxeter群:
$G=<s_{1}, \ldots, s_{m} \mid s_{i}^{2}=i d,\left(s_{i} s_{j}\right)^{m_{i j}}=i d$ if $i \neq j>$ $m_{i j} \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$

Coxeter系: (G, S)

2．Coxeter群の growth series

定理1．［Steinberg 68］

(G, S) ：無限位数 の Coxeter群
$\left(G_{T}, T\right): T \subset S$ で生成される部分群
$f_{S}(t):(G, S)$ の growth series
$f_{T}(t):\left(G_{T}, T\right)$ の growth series
$\mathcal{F}=\left\{T \subset S: G_{T}\right.$ は 有限位数 の部分群 $\}$
このとき，

$$
\frac{1}{f_{S}\left(t^{-1}\right)}=\sum_{T \in \mathcal{F}} \frac{(-1)^{\# T}}{f_{T}(t)}
$$

${ }_{\infty} f_{S}(t)$ は 有理関数 $\frac{\boldsymbol{P}(\boldsymbol{t})}{\boldsymbol{Q}(\boldsymbol{t})}$ の原点におけるべキ級数展開である。 growth rate $\tau:=\lim \sup _{k \rightarrow \infty} \sqrt[k]{a_{k}}=\frac{1}{R}$ は 実代数的整数。

定理 2．［Solomon 66］
(G, S) ：有限位数 の Coxeter群
$f_{S}(t):(G, S)$ の growth series
このとき，

$$
f_{S}(t)=\prod_{i=1}^{n}\left[m_{i}+1\right]
$$

ここで
$n=\# S$ ，
$[m]:=1+t+\cdots+t^{m-1}$,
$1=m_{1} \leq m_{2} \leq \cdots \leq m_{n}=h-1:(G, S)$ の exponents，
－h ：Coxeter element $s_{\sigma(1)} \cdots s_{\sigma(n)}$ の位数．

Graph	Exponents	$f_{S}(t)$
$A_{n \geq 1}$	$1,2, \cdots, n$	$[2,3, \cdots, n+1]$
$B_{n \geq 2}$	$1,3, \cdots, 2 n-1$	$[2,4, \cdots, 2 n]$
$D_{n \geq 4}$	$1,3, \cdots, 2 n-3, n-1$	$[2,4, \cdots, 2 n-2][n]$
E_{6}	$1,4,5,7,8,11$	$[2,5,6,8,9,12]$
E_{7}	$1,5,7,9,11,13,17$	$[2,6,8,10,12,14,18]$
E_{8}	$1,7,11,13,17,19,23,29$	$[2,8,12,14,18,20,24,30]$
F_{4}	$1,5,7,11$	$[2,6,8,12]$
H_{3}	$1,5,9$	$[2,6,10]$
H_{4}	$1,11,19,29$	$[2,12,20,30]$
$I_{2}(m)$	$1, m-1$	$[2, m]$

。ここで $[m]:=1+t+\cdots+t^{m-1},[m, n]:=[m][n]$.

双曲 Coxeter群の growth seriesの計算例

11

有限位数の部分群	growth series	number
$B_{2} \times A_{1}$	$[2,4][2]$	2
B_{2}	$[2,4]$	3
$A_{1} \times A_{1}$	$[2][2]$	3
A_{1}	$[2]$	4
$[m]:=1+t+\cdots+t^{m-1}$		

$$
f_{S}(t)=\sum_{k=0}^{\infty} a_{k} t^{k}=\frac{(t+1)^{2}\left(t^{3}+t^{2}+t+1\right)}{(t-1)\left(t^{2}+t+1\right)\left(t^{2}+t-1\right)}
$$

$\stackrel{\text {～}}{\sim} R_{1}: f_{S}(t)$ の収束半径

3．双曲 Coxeter群の growth rate の数論的性質

Coxeter多面体	compact	non－compact
\mathbb{H}^{2}	Salem 数 （Cannon－Wagreich 92，Parry 93）	Pisot 数 （Floyd 92）
\mathbb{H}^{3}	Salem 数 （Parry 93）	
\mathbb{H}^{4}	大2－Salem 数となる無限系列がある（U．13）	

定義 1．α は Salem数

$\Leftrightarrow \alpha$ は代数的整数，$\alpha>1$ ，他の共役根 ω は $|\omega| \leq 1$ を満たす， ω のうち少なくとも一つは $|\omega|=1$ 。
定義 2．α は 2－Salem数［Samet 52，Kerada 95］
$\Leftrightarrow \alpha$ は代数的整数，$|\alpha|>1$ ，他の共役根 β で $|\beta|>1$ を満たすも のがただ一つ，その他の共役根 ω はすべて $|\omega| \leq 1$ を満たす，ω のうち少なくとも一つは $|\omega|=1$ ．

例 $1 \mathbb{H}^{2}$ のcompact な Coxeter三角形

$f_{S}(t)=\frac{(t+1)^{2}\left(t^{2}+t+1\right)\left(t^{6}+t^{5}+t^{4}+t^{3}+t^{2}+t+1\right)}{t^{10}+t^{9}-t^{7}-t^{6}-t^{5}-t^{4}-t^{3}+t+1}$.

例 $2 \mathbb{H}^{4}$ のcompactなCoxeter多面体

$\stackrel{\stackrel{\rightharpoonup}{r}}{ } f_{S}(t)=\frac{(t+1)^{4}\left(t^{2}-t+1\right)\left(t^{2}+t+1\right)\left(t^{4}-t^{3}+t^{2}-t+1\right)\left(t^{4}+t^{3}+t^{2}+t+1\right)}{t^{16}-4 t^{15}+t^{14}+t^{12}+t^{11}+2 t^{9}+2 t^{7}+t^{5}+t^{4}+t^{2}-4 t+1}$ ．

主結果［U． 13 （to appear in Algebraic \＆Geometric Topology）］
$T \subset \mathbb{H}^{4}:$ 下のCoxeterグラフで表されるcompact なCox－ eter 多面体［Vinberg 85，Schlettwein 95］
$T_{\ell, m, n} \subset \mathbb{H}^{4}: n+1$ 個の T をorthogonal facet A で ℓ 回， B で m 回，C で $n-\ell-m$ 回貼り合わせてできたcompact な Coxeter多面体
このとき，$n \equiv 1(\bmod 3)$ ならば，$T_{0, n, n}, T_{n, 0, n}$ で定まる鏡映群の growth rate $\tau_{0, n, n}, \tau_{n, 0, n}$ は $2-$ Salem 数．

例
$(l, m, n)=(1,2,4)$

$T_{\ell, m, n}$ に関するgrowth function $W_{\ell, m, n}(t)$ は次で与えられる
（［T．Zehrt－C．Zehrt 12］の系）：
$\therefore \frac{1}{W_{\ell, m, n}(t)}=\frac{n+1}{W(t)}+\frac{t-1}{t+1}\left(\frac{\ell}{A(t)}+\frac{m}{B(t)}+\frac{n-\ell-m}{C(t)}\right)$ ．

定理 3．［T．Zehrt－C．Zehrt 12］
$P_{1}, P_{2} \subset \mathbb{H}^{n}: 2$ つの Coxeter 多面体．orthogonal facet F を持つ。
$W_{1}(t), W_{2}(t), F(t): P_{1}, P_{2}, F$ に関する growth function このとき，P_{1} と P_{2} を F で張り合わせることにより得られるCox－ eter多面体から定まる鏡映群の growth function $W(t)$ は以下で与えられる：

$$
\frac{1}{W(t)}=\frac{1}{W_{1}(t)}+\frac{1}{W_{2}(t)}+\frac{t-1}{t+1} \frac{1}{F(t)} .
$$

実際，$W_{\ell, m, n}(t)=\frac{P_{\ell, m, n}(t)}{Q_{\ell, m, n}(t)}$ は，

$$
\begin{aligned}
& \quad P_{\ell, m, n}(t)=(t+1)^{4}\left(t^{2}+1\right)\left(t^{2}-t+1\right)\left(t^{2}+t+1\right) \\
& \quad\left(t^{4}+t^{3}+t^{2}+t+1\right)\left(t^{4}-t^{3}+t^{2}-t+1\right) \\
& Q_{\ell, m, n}(t)=t^{18}-(4 n+6) t^{17}+(2 n-m+3) t^{16} \\
& -(3 n-m+\ell+5) t^{15}+(5 n-3 m+5) t^{14} \\
& -(n-4 m+1) t^{13}+(8 n-4 m+\ell+9) t^{12}+(5 m-\ell) t^{11} \\
& +(10 n-5 m+\ell+11) t^{10}-(2 n-6 m+2) t^{9} \\
& +(10 n-5 m+\ell+11) t^{8}+(5 m-\ell) t^{7} \\
& +(8 n-4 m+\ell+9) t^{6}-(n-4 m+1) t^{5}+(5 n-3 m+5) t^{4} \\
& \bullet \quad-(3 n-m+\ell+5) t^{3}+(2 n-m+3) t^{2}-(4 n+6) t+1 .
\end{aligned}
$$

主結果の証明

Step 1：$Q_{\ell, m, n}(t)$ は，単位円周上に14個の複素根，
正の実軸上に4個の実根を持つことを示す。

$K_{\ell, m, n}(t):=(t+i)^{18} Q_{\ell, m, n}\left(\frac{t-i}{t+i}\right), u:=t^{2}$ とすると $K_{\ell, m, m}(u)$ は正の実根を 7 個，負の実根を 2 個持つ。
$\Leftrightarrow Q_{\ell, m, n}(t)$ は 単位円周上に14個の根，実軸上に4個の実根 を持つ。（［Kempner 35，T．Zehrt－C．Zehrt 12］の系）
$K_{\ell, m, n}(u)=4\left\{(8 n+8) u^{9}+(147 n+45 m+30 \ell+207) u^{8}-\right.$ $(3068 n+360 m+160 \ell+3148) u^{7}+(11256 n+364 m-$ $184 \ell+7208) u^{6}-(10124 n-616 m-480 \ell-6724) u^{5}-$ $(7162 n+722 m-532 \ell+32018) u^{4}+(12268 n+40 m-$ $96 \ell+27964) u^{3}-(4608 n-428 m+120 \ell+8528) u^{2}+$ $(532 n-168 m+32 \ell+836) u-(17 n-13 m+2 \ell+21)\}$

u	-41	-31	0	$1 / 10$	$1 / 3$	$1 / 2$	1	2	3	9
$\operatorname{sign}\left(K_{\ell, m, n}(u)\right)$	-	+	-	+	-	+	-	+	-	+

例えば，

$$
\begin{aligned}
\frac{1}{4} K_{\ell, m, n}(0) & =-21-2 \ell+13 m-17 n \\
& \leq-21-2 \ell+13 n-17 n \\
& =-21-2 \ell-4 n<0
\end{aligned}
$$

Step 2：$Q_{0, n, n}(t), Q_{n, 0, n}(t)$ の \mathbb{Z} 上既約性を示す。
1．$Q_{\ell, m, n}(t)$ は，既約でないならば，二つの偶数次の palin－ dromic polynomialの積で表される。つまり， （2次）（16次），（4次）（14次），（6次）（12次），（8次）（10次）の パターンしかない。

2．$Q_{\ell, m, n}(t)$ は既約でないと仮定して，矛盾を導く。

Step 2

2．$Q_{\ell, m, n}(t)$ は既約でないと仮定して，矛盾を導く。
$Q_{\ell, m, n}(t)=\left(1+a t+b t^{2}+a t^{3}+t^{4}\right)\left(1+\sum_{k=1}^{7} c_{k} t^{k}+\right.$ $\left.\sum_{k=1}^{6} c_{7-k} t^{k+7}+t^{14}\right), a, b, c_{k} \in \mathbb{Z}$
と仮定。

$$
\left\{\begin{array}{l}
c_{1}=-a+(-6-4 n) \\
c_{2}=-a c_{1}-b+(3-m+2 n) \\
c_{3}=-a c_{2}-b c_{1}-a+(-5-\ell+m-3 n) \\
c_{4}=-a c_{3}-b c_{2}-a c_{1}-1+(5-3 m+5 n) \\
c_{5}=-a c_{4}-b c_{3}-a c_{2}-c_{1}+(-1+4 m-n) \\
c_{6}=-a c_{5}-b c_{4}-a c_{3}-c_{2}+(9+\ell-4 m+8 n) \\
c_{7}=-a c_{6}-b c_{5}-a c_{4}-c_{3}+(-\ell+5 m) \\
c_{6}=-a c_{7}-b c_{6}-a c_{5}-c_{4}+(11+\ell-5 m+10 n) \\
c_{5}=-a c_{6}-b c_{7}-a c_{6}-c_{5}+(-2+6 m-2 n)
\end{array}\right.
$$

$$
\begin{aligned}
& f_{\ell, m, n}(a, b):=-1-a^{8}-b^{4}-m+a^{7}(-6-4 n)+b^{2}(1+2 m-3 n)+ \\
& a^{6}(-8+7 b+m-2 n)+b(\ell+m-n)+n+b^{3}(2-m+2 n)+a^{4}(-11- \\
& \left.15 b^{2}+6 m-11 n+b(30-5 m+10 n)\right)+a(15+2 \ell+2 m+b(-46- \\
& \left.8 m-30 n)+b^{2}(-15-3 \ell+3 m-9 n)+9 n+b^{3}(24+16 n)\right)+a^{2}(2+ \\
& \left.10 b^{3}-\ell+3 m+b^{2}(-24+6 m-12 n)-5 n+b(9-12 m+21 n)\right)+ \\
& a^{5}(-29-\ell+m-19 n+b(36+24 n))+a^{3}\left(13-2 \ell+6 m+b^{2}(-60-\right. \\
& 40 n)+9 n+b(68+4 \ell-4 m+44 n)) \\
& =0, \\
& g_{\ell, m, n}(a, b):=12+a^{7}(2-b)+2 m+b^{2}(-23-4 m-15 n)+b^{3}(-5- \\
& \ell+m-3 n)+8 n+b^{4}(6+4 n)+a^{5}\left(12+6 b^{2}-2 m+b(-18+m-\right. \\
& 2 n)+4 n)+a^{6}(12+b(-6-4 n)+8 n)+b(15+2 \ell+2 m+9 n)+ \\
& a^{3}\left(6-10 b^{3}-8 m+b(-35+12 m-23 n)+14 n+b^{2}(36-4 m+\right. \\
& 8 n))+a\left(4 b^{4}+2 \ell+2 m+b(4-\ell+7 m-11 n)+b^{3}(-14+3 m-\right. \\
& \left.6 n)-2 n+b^{2}(10-10 m+18 n)\right)+a^{4}(34+2 \ell-2 m+b(-77-\ell+ \\
& \left.m-51 n)+22 n+b^{2}(30+20 n)\right)+a^{2}\left(-46-8 m+b^{3}(-36-24 n)+\right. \\
& \text { } \left.b(-7-6 \ell+10 m-3 n)-30 n+b^{2}(87+3 \ell-3 m+57 n)\right) \\
& \quad=0 .
\end{aligned}
$$

$(a, b) \bmod 3$

(a, b)	$f_{0, n, n}(a, b)$	$g_{0, n, n}(a, b)$	
$(0,0)$	-1		不可能
$(1,0)$	$1-n$	$-(1+n)$	不可能
$(-1,0)$	0	$1+n$	$n \equiv-1$ のときのみ可能
$(0,1)$	1		不可能
$(0,-1)$	n	n	$n \equiv 0$ のときのみ可能
$(1,1)$	0	$1+n$	$n \equiv-1$ のときのみ可能
$(-1,1)$	0	$-n$	$n \equiv 0$ のときのみ可能
$(1,-1)$	-1		不可能
$(-1,-1)$	0	n	$n \equiv 0$ のときのみ可能

よって，$n \equiv 1(\bmod 3)$ のとき，方程式 $f_{0, n, n}(a, b)=g_{0, n, n}(a, b)=$ 0 を満たす整数の組 (a, b) は存在せず，矛盾。

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
1 & -\cos \frac{\pi}{5} & 0 & -\frac{1}{2} & 0 \\
-\cos \frac{\pi}{5} & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\
0 & -\frac{1}{2} & 1 & -\cos \frac{\pi}{5} & 0 \\
-\frac{1}{2} & 0 & -\cos \frac{\pi}{5} & 1 & -\frac{1}{2} \\
0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1
\end{array}\right) \sim\left(\begin{array}{ccccc}
\lambda_{1} & 0 & & & 0 \\
0 & \lambda_{2} & & & \\
& & \lambda_{3} & & \\
0 & & & \lambda_{4} & 0 \\
0 & & & 0 & \lambda_{5}
\end{array}\right) \\
& \lambda_{1}, \ldots, \lambda_{4}>0, \lambda_{5}<0(\operatorname{sig} G=(4,1) \text { とかく) } \\
& \Rightarrow \mathbb{H}^{4} \text { の Coxeter 多面体 }
\end{aligned}
$$

Coxeter多面体 $P \subset \mathbb{H}^{4}$ の truncation（compact化）

On behavior of pairs of Teichmüller geodesic rays

Masanori Amano

Tokyo Institute of Technology
Nov. 11, 2013

Let X be a Riemann surfaces of type (g, n) with $3 g-3+n>0$ and $T(X)$ be the Teichmüller space of X.

Problem

Let $r(t), r^{\prime}(t)$ be Teichmüller geodesic rays on $T(X)$. Two rays $r(t), r^{\prime}(t)$ are asymptotic if there is a choice of base points $r(0), r^{\prime}(0)$ so that

$$
\lim _{t \rightarrow \infty} d_{T(X)}\left(r(t), r^{\prime}(t)\right)=0
$$

We want conditions that $r(t), r^{\prime}(t)$ are asymptotic.

First, we express the main theorem. We will recall the definitions of terms after.
Let $r=r(t), r^{\prime}=r^{\prime}(t)$ be Jenkins-Strebel rays on $T(X)$ starting at $p=[Y, f], p^{\prime}=\left[Y^{\prime}, f^{\prime}\right]$ and having unit norm Jenkins-Strebel differentials q, q^{\prime} on Y, Y^{\prime} respectively. We denote by $r(\infty)$, $r^{\prime}(\infty)$ the end points of r, r^{\prime} on the augmented Teichmüller space $\hat{T}(X)$ respectively.
We suppose that r, r^{\prime} are similar, i.e., the Jenkins-Strebel differentials q, q^{\prime} determine annuli which are generated by homotopy classes of simple closed curves $f\left(\gamma_{1}\right), \cdots, f\left(\gamma_{k}\right)$, $f^{\prime}\left(\gamma_{1}\right), \cdots, f^{\prime}\left(\gamma_{k}\right)$ respectively, where $\gamma_{1}, \cdots, \gamma_{k}$ are distinct and non-intersecting simple closed curves on X. Let m_{j}, m_{j}^{\prime} be the corresponding moduli respectively for any $j=1, \cdots, k$.

Theorem 1 ([Ama13])

If $r(\infty)=r^{\prime}(\infty)$, then

$$
\lim _{t \rightarrow \infty} d_{T(X)}\left(r(t), r^{\prime}(t)\right)=\frac{1}{2} \log \max _{j=1, \cdots, k}\left\{\frac{m_{j}^{\prime}}{m_{j}}, \frac{m_{j}}{m_{j}^{\prime}}\right\}
$$

Corollary 2 ([Ama13])

For any two Jenkins-Strebel rays r, r^{\prime}, they are asymptotic if and only if r, r^{\prime} are modularly equivalent and $r(\infty)=r^{\prime}(\infty)$.

Farb and Masur showed the same result in the moduli space. [FM10]

Let X be a Riemann surface of type (g, n) with $3 g-3+n>0$.

Definition (Teichmüller spaces)

$$
\begin{gathered}
T(X):=\{(Y, f) \mid Y: \text { a Riemann surface, } f: X \rightarrow Y: \text { a } \\
\text { qc-mapping }\} / \sim,
\end{gathered}
$$

$\left(Y_{1}, f_{1}\right) \sim\left(Y_{2}, f_{2}\right): \Leftrightarrow$ There exists a conformal mapping $h: Y_{1} \rightarrow Y_{2}$ which is homotopic to $f_{2} \circ f_{1}^{-1}$.
We call $T(X)$ the Teichmüller space of X and denote by $[Y, f]$ the equivalence class of a pair (Y, f).

Definition (The Teichmüller distance)

The Teichmüller distance $d_{T(X)}$ is a complete distance on $T(X)$. This is defined the following formula. For any $p_{1}=\left[Y_{1}, f_{1}\right], p_{2}=\left[Y_{2}, f_{2}\right] \in T(X)$,

$$
d_{T(X)}\left(p_{1}, p_{2}\right):=\frac{1}{2} \log \inf _{h} K(h),
$$

where the infimum is taken over all qc-mappings $h: Y_{1} \rightarrow Y_{2}$ homotopic to $f_{2} \circ f_{1}^{-1}$ and $K(h)$ means the maximal dilatation of h.

Definition (Quadratic differentials)

A holomorphic quadratic differential q on X is represented locally by $q=q(z) d z^{2}$ where $q(z)$ is a holomorphic function of the local coordinate $z=x+i y$ on X. We allow holomorphic quadratic differentials to have simple poles at the punctures of X, then $\|q\|:=\iint_{X}|q(z)| d x d y<\infty$. We call that q is of unit norm if $\|q\|=1$.

Definition (q-coordinates)

A critical point of $q \neq 0$ is a zero of q or a puncture of X. A q-coordinate ζ on X is a local coordinate on $X-\{$ critical points of $q\}$ such that $q=d \zeta^{2}$. For any two q-coordinates ζ_{1}, ζ_{2} in a common neighborhood U, the equation $\zeta_{2}= \pm \zeta_{1}+c$ where $c \in \mathbb{C}$ holds, because $q=d \zeta_{1}^{2}=d \zeta_{2}^{2}$.

Definition (trajectories)

A horizontal trajectory of q is a maximal smooth path $z=\gamma(t)$ on X which satisfies $q(\gamma(t)) \dot{\gamma}(t)^{2}>0$. A critical trajectory joins critical points of q. Let Γ_{q} be the set of all critical points and critical trajectories of q. For any component of $X-\Gamma_{q}$, there are the following two cases.
(1) annulus: it is swept out by closed trajectories of q such that they are homotopic to each other. In this case, we call the homotopy class of the closed trajectory the core curve of the annulus.
(2) minimal domain: it consists of infinitely many recurrent trajectories of q.

A quadratic differential q has finitely many critical points, then q has finitely many these domains.

Quadratic differentials

If all components of $X-\Gamma_{q}$ are annuli, we call q a Jenkins-Strebel differential (J-S differential). In this case, the core curves which are determined by q are distinct and non-intersecting each other. After this, we treat only J-S differentials.

Definition (moduli of annuli)

For any J-S differential q, it generates finitely many annulus $\left\{A_{j}\right\}_{j=1, \cdots, k}$. Each annulus is conformally equivalent to the cylinder C_{j} which has the circumference a_{j} and the height b_{j} for any $j=1, \cdots, k$. We set the modulus of the annulus A_{j} as $m_{j}=\frac{b_{j}}{a_{j}}$.

Definition (Teichmüller geodesic rays)

Let $p=[Y, f] \in T(X), q$ be a unit norm quadratic differential on Y. For any $t \in[0, \infty)$, we define the qc-mapping $g_{t}: Y \rightarrow Y_{t}$ by $z=x+i y \mapsto z_{t}=e^{-t} x+i e^{t} y$ and set $Y_{0}=Y$ where z is the q-coordinate. The mapping $r:[0, \infty) \rightarrow T(X)$ which is defined by

$$
r(t):=\left[Y_{t}, g_{t} \circ f\right]
$$

satisfies $d_{T(X)}(r(t), r(s))=|t-s|$ for any $t, s \in[0, \infty)$. We call r the Teichmüller geodesic ray on $T(X)$ starting at p and having q. If q is J-S, we call r the Jenkins-Strebel ray (J-S ray).

Now, let r, r^{\prime} be two Teichmüller geodesic rays on $T(X)$ starting at $p=[Y, f], p^{\prime}=\left[Y^{\prime}, f^{\prime}\right]$ and having unit norm J-S differentials q, q^{\prime} respectively.

Definition (J-S rays are similar)

J-S rays r, r^{\prime} are called similar if there are distinct and non-intersecting homotopy classes of simple closed curves $\gamma_{1}, \cdots, \gamma_{k}$ on X such that q, q^{\prime} have the core curves of annulus whose forms are $f\left(\gamma_{1}\right), \cdots, f\left(\gamma_{k}\right)$ on Y and $f^{\prime}\left(\gamma_{1}\right), \cdots, f^{\prime}\left(\gamma_{k}\right)$ on Y^{\prime} respectively.

Definition (Modularly equivalent)

In this situation, the given rays r, r^{\prime} are called modularly equivalent if there is $\lambda>0$ such that $m_{j}^{\prime}=\lambda m_{j}$ for any $j=1, \cdots, k$.

Definition (Asymptoticity)

We call that r, r^{\prime} are asymptotic if there is a choice of initial points $r(0), r^{\prime}(0)$ such that $d_{T(X)}\left(r(t), r^{\prime}(t)\right) \rightarrow 0$ as $t \rightarrow \infty$, in other words, for the given rays $r(t), r^{\prime}(t)$, there is $\alpha \in \mathbb{R}$ such that $d_{T(X)}\left(r(t), r^{\prime}(t+\alpha)\right) \rightarrow 0$ as $t \rightarrow \infty$.

Definition (Riemann surfaces with nodes)

A connected Hausdorff space R is called a Riemann surface of type (g, n) with nodes if R satisfies the following two conditions:
(1) Any $p \in R$ has a neighborhood which is homeomorphic to the unit disk \mathbb{D} or the set
$\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\left|<1,\left|z_{2}\right|<1, z_{1} \cdot z_{2}=0\right\}\right.$. (In the latter case, p is called a node of R. We allow R to have finitely many nodes.)
(2) Any component of $R-\{$ nodes of $R\}$ is a hyperbolic Riemann surface, and we get a Riemann surface of type (g, n) without nodes by opening each node of R.

Definition (Augmented Teichmüller spaces)

Let X be a Riemann surface of type (g, n) without nodes which satisfies $3 g-3+n>0$. We define the augmented Teichmüller space of X as follows.

$$
\begin{aligned}
\hat{T}(X):= & \{(R, f) \mid R: \text { a Riemann surface of type }(g, n) \text { with or } \\
& \text { without nodes, } f: X \rightarrow R: \text { a deformation }\} / \sim,
\end{aligned}
$$

where the "deformation" is a mapping such that it contracts some disjoint loops on X to points (the nodes of R) and is a homeomorphism except on the loops. $\left(R_{1}, f_{1}\right) \sim\left(R_{2}, f_{2}\right): \Leftrightarrow$ There is a biholomorphic mapping $h: R_{1} \rightarrow R_{2}$ such that f_{2} is homotopic to $h \circ f_{1}$.

A homeomorphism $h: R_{1} \rightarrow R_{2}$ is called biholomorphic if each restricted mapping of h which maps a component of $R_{1}-\left\{\right.$ nodes of $\left.R_{1}\right\}$ onto a component of $R_{2}-\left\{\right.$ nodes of $\left.R_{2}\right\}$ is biholomorphic. A topology on $\hat{T}(X)$ is defined by the following neighborhoods.

Definition (The neighborhood of a point on $\hat{T}(X)$)

For any compact neighborhood V of the set of nodes in R and any $\varepsilon>0$, a neighborhood $U_{V, \varepsilon}$ of a point $[R, f]$ is defined by $U_{V, \varepsilon}:=\{[S, g] \in \hat{T}(X) \mid$ there is a deformation $h: S \rightarrow R$ which is $(1+\varepsilon)$-quasiconformal on $h^{-1}(R-V)$ such that f is homotopic to $h \circ g\}$.

We consider the end point of a Jenkins-Strebel ray r starting at $r(0)=[Y, f]$ and having unit norm J-S differential q. First, we see that cylinders $\left\{C_{j}(0)\right\}_{j=1, \cdots, k}$ which are determined by q-coordinates on Y. Each $C_{j}(0)$ is transformed to $A_{j}(0)$ which is the pair of two ring domains $\left\{e^{-m_{j} \pi} \leq|z|<1\right\}$ with the gluing, for any $j=1, \cdots, k$.

The Teichmüller mapping $g_{t}: Y \rightarrow Y_{t}$ is represent to the form $z=r e^{i \theta} \mapsto r^{e^{2 t}} e^{i \theta}$ in $A_{j}^{l}(0)$ for any $l=1,2$. We set the mapping $g_{\infty}: Y \rightarrow Y_{\infty}$ which maps $A_{j}^{l}(0)$ onto $\mathbb{D}=A_{j}^{l}(\infty) \cup\{p t\}$ by $z=r e^{i \theta} \mapsto h_{j}(r) e^{i \theta}$, where $h_{j}:\left[\exp \left(-m_{j} \pi\right), 1\right) \rightarrow[0,1)$ is an arbitrary monotone increasing diffeomorphism.

The Riemann surface with nodes Y_{∞} is constructed by these disks $\left\{A_{j}^{l}(\infty) \cup\{p t\}\right\}_{j=1, \cdots, k}^{l=1,2}$ with the gluing, and we denote $\left[Y_{\infty}, g_{\infty} \circ f\right]$ by $r(\infty)$.

Theorem (cf. [HS07])

The Jenkins-Strebel ray $r(t)=\left[Y_{t}, g_{t} \circ f\right]$ converges to a point $r(\infty)=\left[Y_{\infty}, g_{\infty} \circ f\right]$ in $\hat{T}(X)$.

Let r, r^{\prime} be two Jenkins-Strebel rays and we suppose that the rays are similar. We show the following.

Theorem 1 ([Ama13])

If $r(\infty)=r^{\prime}(\infty)$, then

$$
\lim _{t \rightarrow \infty} d_{T(X)}\left(r(t), r^{\prime}(t)\right)=\frac{1}{2} \log \max _{j=1, \cdots, k}\left\{\frac{m_{j}^{\prime}}{m_{j}}, \frac{m_{j}}{m_{j}^{\prime}}\right\} .
$$

First, we show that

$$
\limsup _{t \rightarrow \infty} d_{T(X)}\left(r(t), r^{\prime}(t)\right) \leq \frac{1}{2} \log \max _{j=1, \cdots, k}\left\{\frac{m_{j}^{\prime}}{m_{j}}, \frac{m_{j}}{m_{j}^{\prime}}\right\}
$$

Lemma

Let us choose $0<\varepsilon<1$ arbitrary. Then, for any sufficiently large t, there is a quasiconformal mapping $F_{t}: Y_{t} \rightarrow Y_{t}^{\prime}$ which is homotopic to $\left(g_{t}^{\prime} \circ f^{\prime}\right) \circ\left(g_{t} \circ f\right)^{-1}$ such that the inequality $\lim _{t \rightarrow \infty} K\left(F_{t}\right)<\max _{j=1, \cdots, k}\left\{\frac{m_{j}^{\prime}}{m_{j}}, \frac{m_{j}}{m_{j}^{\prime}}\right\}+\varepsilon$ holds.

Since r, r^{\prime} are similar, we notice that $\left(g_{t}^{\prime} \circ f^{\prime}\right) \circ\left(g_{t} \circ f\right)^{-1}\left(A_{j}(t)\right) \sim A_{j}^{\prime}(t)$ on Y_{t}^{\prime} for any $0 \leq t \leq \infty$.

Proof.
We set $M_{j}=\frac{m_{j}^{\prime}}{m_{j}}$ for any $j=1, \cdots, k$. By $r(\infty)=r^{\prime}(\infty)$, there exists a biholomorphic mapping $h: Y_{\infty} \rightarrow Y_{\infty}^{\prime}$ such that $h \circ g_{\infty} \circ f$ is homotopic to $g_{\infty}^{\prime} \circ f^{\prime}$. We can write

$$
\begin{aligned}
Y_{\infty} & =\bigcup_{j=1}^{k} \overline{A_{j}^{1}(\infty)} \cup \overline{A_{j}^{2}(\infty)}, \\
Y_{\infty}^{\prime} & =\bigcup_{j=1}^{k} \overline{A_{j}^{\prime 1}(\infty)} \cup \overline{A_{j}^{\prime 2}(\infty)}
\end{aligned}
$$

where $A_{j}^{l}(\infty), A_{j}^{\prime l}(\infty)$ are the punctured disks $\mathbb{D}^{*}=\{z \in \mathbb{C}|0<|z|<1\}$ for any $j=1, \cdots, k$ and $l=1,2$.

Now, we fix any $j=1, \cdots, k$ and $l=1,2$. We set
$h_{j}^{l}=\left.h\right|_{A_{j}^{l}(\infty)}: A_{j}^{l}(\infty) \rightarrow h\left(A_{j}^{l}(\infty)\right) \subset Y_{\infty}^{\prime}$. Since h is a biholomorphic mapping, then we can set $h_{j}^{l}(0)=0$ and $\left.\frac{d h_{j}^{l}(z)}{d z}\right|_{z=0} \neq 0$. We describe
$h_{j}^{l}(z)=c_{j}^{l} z+c_{j, 2}^{l} z^{2}+\cdots=c_{j}^{l} z+\psi_{j}^{l}(z)$ where $c_{j}^{l} \neq 0$,
$-\pi<\arg c_{j}^{1} \leq \pi$ and $-\pi \leq \arg c_{j}^{2}<\pi$.

We set $\delta_{j}(t)=\exp \left(-e^{2 t} m_{j} \pi\right), \delta_{j}^{\prime}(t)=\exp \left(-e^{2 t} m_{j}^{\prime} \pi\right)$, for any $t \geq 0$. Then $\delta_{j}^{\prime}(t)=\delta_{j}(t)^{M_{j}}$. After this, we assume that $A_{j}^{l}(t)=\mathbb{D}^{*}-\mathbb{D}_{\delta_{j}(t)}=\left\{z \in \mathbb{C}\left|\delta_{j}(t) \leq|z|<1\right\}\right.$ and
$A_{j}^{\prime l}(t)=\mathbb{D}^{*}-\mathbb{D}_{\delta_{j}^{\prime}(t)}=\left\{z \in \mathbb{C}\left|\delta_{j}^{\prime}(t) \leq|z|<1\right\}\right.$ for any $t \geq 0$.
The Riemann surfaces Y_{t}, Y_{t}^{\prime} are constructed by the domains $\left\{A_{j}^{l}(t)\right\}_{j=1, \cdots, k}^{l=1,2},\left\{A_{j}^{\prime l}(t)\right\}_{j=1, \cdots, k}^{l=1,2}$ with the gluing respectively. To obtain the mapping $F_{t}: Y_{t} \rightarrow Y_{t}^{\prime}$, for sufficiently large t, we construct a quasiconformal mapping $F_{j, t}^{l}: A_{j}^{l}(t) \rightarrow h\left(A_{j}^{l}(t)\right)$.

Upper estimate

We consider the following three cases (1), (2) and (3).
(1) In the case of $M_{j}>1$, we take X_{j} as

$$
\begin{aligned}
X_{j}<\frac{\log \frac{\varepsilon}{M_{j}+\varepsilon-1}}{\log M_{j}}<0 & \Leftrightarrow M_{j}^{X_{j}}<\frac{\varepsilon}{M_{j}+\varepsilon-1}<1 \\
& \Leftrightarrow \frac{M_{j}-M_{j}^{X_{j}}}{1-M_{j}^{X_{j}}}<M_{j}+\varepsilon
\end{aligned}
$$

We take sufficiently large t such that the inequality
$\delta_{j}(t)^{M_{j}}<\left|c_{j}^{l}\right| \delta_{j}(t)^{M_{j}^{X_{j}}}$ holds. We set $\Delta_{j}(t)=\delta_{j}(t)^{M_{j}^{X_{j}}}$. We construct $F_{j, t}^{l}$ by the following:

$$
F_{j, t}^{l}(z)= \begin{cases}P_{j, t}^{l}(z) & \left(\delta_{j}(t) \leq|z| \leq \Delta_{j}(t)\right) \tag{i}\\ Q_{j, t}^{l}(z) & \left(\Delta_{j}(t) \leq|z| \leq 2 \Delta_{j}(t)\right) \\ h_{j}^{l}(z) & \left(2 \Delta_{j}(t) \leq|z|<1\right)\end{cases}
$$

(i) $\operatorname{In} \delta_{j}(t) \leq|z| \leq \Delta_{j}(t)$, we set

$$
\left.P_{j, t}^{l}(z)=\Delta_{j}(t)^{\frac{1-M_{j}}{1-M_{j}^{X}}} \cdot c_{j}^{l} \frac{1}{1-M_{j}^{X}}+\frac{\log |z|}{\log \Delta_{j}(t)-\log \delta_{j}(t)}\right) \cdot|z|^{-\frac{1-M_{j}}{1-M_{j}^{X}}} \cdot z
$$

which satisfies $P_{j, t}^{l}(z)=\delta_{j}(t)^{M_{j}-1} \cdot z$ on $|z|=\delta_{j}(t), P_{j, t}^{l}(z)=c_{j}^{l} z$ on $|z|=\Delta_{j}(t)$.

The mapping $P_{j, t}^{l}$ is conjugate to a one-to-one affine mapping by $\log z$. Then, $P_{j, t}^{l}$ is a qc-mapping, and its dilatation is the following:

$$
K\left(P_{j, t}^{l}\right)=\frac{\left|\frac{\log c_{j}^{l}}{2\left(M_{j}^{X_{j}}-1\right) \log \delta_{j}(t)}+\frac{\alpha_{j}}{2}+1\right|+\left|\frac{\log c_{j}^{l}}{2\left(M_{j}^{X_{j}}-1\right) \log \delta_{j}(t)}+\frac{\alpha_{j}}{2}\right|}{\left|\frac{\log c_{j}^{l}}{2\left(M_{j}^{X}-1\right) \log \delta_{j}(t)}+\frac{\alpha_{j}}{2}+1\right|-\left|\frac{\log c_{j}^{l}}{2\left(M_{j}^{X_{j}}-1\right) \log \delta_{j}(t)}+\frac{\alpha_{j}}{2}\right|},
$$

where $\alpha_{j}=-\frac{1-M_{j}}{1-M_{j}^{X_{j}}}$. We see that $\left(M_{j}^{X_{j}}-1\right) \log \delta_{j}(t) \rightarrow+\infty$ and

$$
K\left(P_{j, t}^{l}\right) \rightarrow \frac{M_{j}-M_{j}^{X_{j}}}{1-M_{j}^{X_{j}}}<M_{j}+\varepsilon
$$

as $t \rightarrow \infty$.

Upper estimate

(ii) In $\Delta_{j}(t) \leq|z| \leq 2 \Delta_{j}(t)$, we set

$$
Q_{j, t}^{l}(z)=c_{j}^{l} z+\phi_{\Delta_{j}(t)}(|z|) \psi_{j}^{l}(z)
$$

where $\phi_{\Delta_{j}(t)}:\left[\Delta_{j}(t), 2 \Delta_{j}(t)\right] \rightarrow[0,1]$ is defined by

$$
\phi_{\Delta_{j}(t)}(|z|)=\frac{|z|}{\Delta_{j}(t)}-1
$$

This function satisfies $Q_{j, t}^{l}(z)=c_{j}^{l} z$ on $|z|=\Delta_{j}(t)$,
$Q_{j, t}^{l}(z)=h_{j}^{l}(z)$ on $|z|=2 \Delta_{j}(t)$.

Upper estimate

We consider the partial derivatives of $Q_{j, t}^{l}$,

$$
\begin{gathered}
\partial_{\bar{z}} Q_{j, t}^{l}=\frac{1}{2 \Delta_{j}(t)} z^{\frac{1}{2}} \bar{z}^{-\frac{1}{2}} \psi_{j}^{l}(z) \\
\partial_{z} Q_{j, t}^{l}=c_{j}^{l}+\frac{1}{2 \Delta_{j}(t)} z^{-\frac{1}{2}} \bar{z}^{\frac{1}{2}} \psi_{j}^{l}(z)+\phi_{\Delta(t)}(|z|) \frac{d \psi_{j}^{l}(z)}{d z}
\end{gathered}
$$

These partial derivatives are continuous in the domain. There is $C>0$ such that $\left|\psi_{j}^{l}(z)\right| \leq C \Delta_{j}(t)^{2}$ for sufficiently large t. We see that

$$
\begin{aligned}
\left|\frac{1}{2 \Delta_{j}(t)} z^{\frac{1}{2}} \bar{z}^{-\frac{1}{2}} \psi_{j}^{l}(z)\right| & =\left|\frac{1}{2 \Delta_{j}(t)} z^{-\frac{1}{2}} \bar{z}^{\frac{1}{2}} \psi_{j}^{l}(z)\right| \\
& =\frac{\left|\psi_{j}^{l}(z)\right|}{2 \Delta_{j}(t)} \leq \frac{C \Delta_{j}(t)}{2} \rightarrow 0
\end{aligned}
$$

as $t \rightarrow \infty$. Then, $\left|\partial_{\bar{z}} Q_{j, t}^{l}\right| \rightarrow 0,\left|\partial_{z} Q_{j, t}^{l}\right| \rightarrow\left|c_{j}^{l}\right| \neq 0$ as $t \rightarrow \infty$.
For sufficiently large t, Jac $Q_{j, t}^{l}=\left|\partial_{z} Q_{j, t}^{l}\right|^{2}-\left|\partial_{\bar{z}} Q_{j, t}^{l}\right|^{2} \neq 0$.
Hence, $Q_{j, t}^{l}$ is a local C^{1}-diffeomorphism.

In fact, $Q_{j, t}^{l}$ is a C^{1}-diffeomorphism. By the derivatives of $Q_{j, t}^{l}$, for sufficiently large t, it is a quasiconformal mapping such that its dilatation holds $K\left(Q_{j, t}^{l}\right) \rightarrow 1$ as $t \rightarrow \infty$.
(iii) In $2 \Delta_{j}(t) \leq|z|<1, F_{j, t}^{l}(z)=h_{j}^{l}(z)$ and $K\left(h_{j}^{l}\right)=1$.

Therefore, for sufficiently large t, we obtain the quasiconformal mapping $F_{j, t}^{l}$ such that

$$
K\left(F_{j, t}^{l}\right)=\max \left\{K\left(P_{j, t}^{l}\right), K\left(Q_{j, t}^{l}\right)\right\} \rightarrow \frac{M_{j}-M_{j}^{X_{j}}}{1-M_{j}^{X_{j}}}<M_{j}+\varepsilon
$$

as $t \rightarrow \infty$.

Upper estimate

(2) In the case of $M_{j}<1$, we take X_{j} as

$$
\begin{aligned}
X_{j}>\frac{\log \frac{M_{j} \varepsilon}{\frac{1}{M_{j}}-1+\varepsilon}}{\log M_{j}}>2 & \Leftrightarrow M_{j}^{X_{j}}<\frac{M_{j} \varepsilon}{\frac{1}{M_{j}}-1+\varepsilon}<M_{j}^{2} \\
& \Leftrightarrow \frac{1-M_{j}^{X_{j}}}{M_{j}-M_{j}^{X_{j}}}<\frac{1}{M_{j}}+\varepsilon .
\end{aligned}
$$

We take sufficiently large t such that the inequality $\delta_{j}(t)^{M_{j}}<\left|c_{j}^{l}\right| \delta_{j}(t)^{M_{j}^{X_{j}}}$ holds. We also set $\Delta_{j}(t)=\delta_{j}(t)^{M_{j}^{X_{j}}}$, and also construct $F_{j, t}^{l}$ following.

$$
F_{j, t}^{l}(z)= \begin{cases}P_{j, t}^{l}(z) & \left(\delta_{j}(t) \leq|z| \leq \Delta_{j}(t)\right) \\ Q_{j, t}^{l}(z) & \left(\Delta_{j}(t) \leq|z| \leq 2 \Delta_{j}(t)\right) \\ h_{j}^{l}(z) & \left(2 \Delta_{j}(t) \leq|z|<1\right)\end{cases}
$$

The functions $P_{j, t}^{l}, Q_{j, t}^{l}$ have the same notations as in the case of (1). The difference is only the dilatation of $P_{j, t}^{l}$. In this case,

$$
K\left(P_{j, t}^{l}\right) \rightarrow \frac{1-M_{j}^{X_{j}}}{M_{j}-M_{j}^{X_{j}}}<\frac{1}{M_{j}}+\varepsilon
$$

as $t \rightarrow \infty$. Similarly as in the case of (1), for sufficiently large t, we obtain the quasiconformal mapping $F_{j, t}^{l}$ such that

$$
K\left(F_{j, t}^{l}\right)=\max \left\{K\left(P_{j, t}^{l}\right), K\left(Q_{j, t}^{l}\right)\right\} \rightarrow \frac{1-M_{j}^{X_{j}}}{M_{j}-M_{j}^{X_{j}}}<\frac{1}{M_{j}}+\varepsilon
$$

as $t \rightarrow \infty$.
(3) In the case of $M_{j}=1$, we take sufficiently large t such that the inequality $\delta_{j}(t)<\left|c_{j}^{l}\right| \delta_{j}(t)^{\frac{1}{2}}$ holds and set $\Delta_{j}(t)=\delta_{j}(t)^{\frac{1}{2}}$. We set
$F_{j, t}^{l}(z)= \begin{cases}P_{j, t}^{l}(z)=c_{j}^{l^{2}\left(1-\frac{\log |z|}{\log \delta_{j}(t)}\right)} z & \left(\delta_{j}(t) \leq|z| \leq \Delta_{j}(t)\right) \\ Q_{j, t}^{l}(z) & \left(\Delta_{j}(t) \leq|z| \leq 2 \Delta_{j}(t)\right) \\ h_{j}^{l}(z) & \left(2 \Delta_{j}(t) \leq|z|<1\right)\end{cases}$
The function $Q_{j, t}^{l}$ is constructed similarly as in the case of (1). In this time, $K\left(P_{j, t}^{l}\right) \rightarrow 1$ as $t \rightarrow \infty$. The function $Q_{j, t}^{l}$ also satisfying $K\left(Q_{j, t}^{l}\right) \rightarrow 1$ as $t \rightarrow \infty$. Therefore, for sufficiently large $t, K\left(F_{j, t}^{l}\right)=\max \left\{K\left(P_{j, t}^{l}\right), K\left(Q_{j, t}^{l}\right)\right\} \rightarrow 1$ as $t \rightarrow \infty$.

Upper estimate

Now, we can construct the quasiconformal mapping $F_{t}: Y_{t} \rightarrow Y_{t}^{\prime}$ by gluing $\left\{F_{j, t}^{l}\right\}_{j=1, \cdots, k}^{l=1,2}$. For any mapping $F_{j, t}^{l}$, we can confirm the following.
(1) Each h_{j}^{l} is homotopic to $\left(g_{t}^{\prime} \circ f^{\prime}\right) \circ\left(g_{t} \circ f\right)^{-1}$ on $\left\{2 \Delta_{j}(t)<|z|<1\right\}$, since the mappings g_{t}, g_{t}^{\prime} stretch the ring domains $A_{j}^{l}(0), A_{j}^{l}(0)$ along radial directions for any $0 \leq t \leq \infty$.
(2) Each $Q_{j, t}^{l}$ satisfies $K\left(Q_{j, t}^{l}\right) \rightarrow 1$ as $t \rightarrow \infty$ and the domain $\left\{\Delta_{j}(t)<|z|<2 \Delta_{j}(t)\right\}$ has the constant modulus for any t. There is not a twist in this domain.
(3) Each $P_{j, t}^{l}$ produces the twist of angle $\arg c_{j}^{l}$ in the domain $\left\{\delta_{j}(t)<|z|<\Delta_{j}(t)\right\}$ and satisfies $\left|\arg c_{j}^{1}+\arg c_{j}^{2}\right|<2 \pi$, after the gluing of $A_{j}^{1}(t)$ and $A_{j}^{2}(t)$.
Therefore, for sufficiently large t, the mapping F_{t} do not happen the Dehn twists on $\left\{\delta_{j}(t)<|z|<2 \Delta_{j}(t)\right\}$ and is homotopic to $\left(g_{t}^{\prime} \circ f^{\prime}\right) \circ\left(g_{t} \circ f\right)^{-1}$.

We conclude that

$$
\lim _{t \rightarrow \infty} K\left(F_{t}\right)=\lim _{t \rightarrow \infty} \max _{j=1, \cdots, k, l=1,2} K\left(F_{j, t}^{l}\right)<\max _{j=1, \cdots, k}\left\{M_{j}, \frac{1}{M_{j}}\right\}+\varepsilon
$$

Therefore, by this lemma, for any sufficiently large t, the inequality

$$
\begin{gathered}
\limsup _{t \rightarrow \infty} d_{T(X)}\left(r(t), r^{\prime}(t)\right) \leq \lim _{t \rightarrow \infty} \frac{1}{2} \log K\left(F_{t}\right)< \\
\frac{1}{2} \log \left(\max _{j=1, \cdots, k}\left\{\frac{m_{j}^{\prime}}{m_{j}}, \frac{m_{j}}{m_{j}^{\prime}}\right\}+\varepsilon\right)
\end{gathered}
$$

holds. Since ε is arbitrary, we are done.

The inequality

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} d_{T(X)}\left(r(t), r^{\prime}(t)\right) \geq \frac{1}{2} \log \max _{j=1, \cdots, k}\left\{\frac{m_{j}^{\prime}}{m_{j}}, \frac{m_{j}}{m_{j}^{\prime}}\right\} \tag{1}
\end{equation*}
$$

is obtained by the result of Walsh [Wal12] and an easy calculation.

Remark

In Walsh's theorem, even if $\mathbf{r}(\infty) \neq \mathbf{r}^{\prime}(\infty)$, the same inequality (1) also holds. Moreover, if r, r^{\prime} are not similar, then

$$
\liminf _{t \rightarrow \infty} d_{T(X)}\left(r(t), r^{\prime}(t)\right)=+\infty
$$

Corollary 2

Corollary 2 ([Ama13])

For any two Jenkins-Strebel rays r, r^{\prime}, they are asymptotic if and only if r, r^{\prime} are modularly equivalent and $r(\infty)=r^{\prime}(\infty)$.

Proof.
Under the assumption of Theorem 1, if in addition the given rays r, r^{\prime} are modularly equivalent, there is $\lambda>0$ such that $m_{j}^{\prime}=\lambda m_{j}$ for any $j=1, \cdots, k$. Then, for $\alpha=-\frac{1}{2} \log \lambda$,

$$
\begin{aligned}
\lim _{t \rightarrow \infty} d_{T(X)}\left(r(t), r^{\prime}(t+\alpha)\right) & =\frac{1}{2} \log \max _{j=1 \cdots, k}\left\{\frac{e^{2 \alpha} m_{j}^{\prime}}{m_{j}}, \frac{m_{j}}{e^{2 \alpha} m_{j}^{\prime}}\right\} \\
& =\frac{1}{2} \log 1=0
\end{aligned}
$$

This means that the rays r, r^{\prime} are asymptotic.

Corollary 2

Conversely, if the rays r, r^{\prime} are asymptotic, we can assume that $\lim _{t \rightarrow \infty} d_{T(X)}\left(r(t), r^{\prime}(t)\right)=0$ without loss of generality. The rays are similar and satisfy $m_{j}^{\prime}=m_{j}$ for any $j=1, \cdots, k$ by the previous remark and the inequality (1). Finally, we can obtain the equation $r(\infty)=r^{\prime}(\infty)$. Indeed, for sufficiently large $t, r(t)$ is contained an arbitrary neighborhood of $r^{\prime}(\infty)$.

Corollary 2

Remark

Under the assumption of Theorem 1, the minimum of the limit value of the distance between the given rays $r(t), r^{\prime}(t)$ when we shift the initial points $r(0), r^{\prime}(0)$ is given by

$$
\delta:=\frac{1}{2}\left(\frac{1}{2} \log \max _{j=1, \cdots, k} \frac{m_{j}^{\prime}}{m_{j}}+\frac{1}{2} \log \max _{j=1, \cdots, k} \frac{m_{j}}{m_{j}^{\prime}}\right)
$$

We notice that $\delta=0$ if and only if r, r^{\prime} are modularly equivalent.

By Theorem 1, we see that

$$
\begin{aligned}
\lim _{t \rightarrow \infty} d_{T(X)}\left(r(t), r^{\prime}(t)\right) & =\frac{1}{2} \log \max _{j=1, \cdots, k}\left\{\frac{m_{j}^{\prime}}{m_{j}}, \frac{m_{j}}{m_{j}^{\prime}}\right\} \\
& \geq \delta
\end{aligned}
$$

Corollary 2

Proof.
The equality holds if we set

$$
\beta=\frac{1}{4} \log \frac{\max _{j=1, \cdots, k} \frac{m_{j}}{m_{j}^{\prime}}}{\max _{j=1, \cdots, k, k} \frac{m_{j}^{\prime}}{m_{j}}}
$$

and consider the rays $r(t), r^{\prime}(t+\beta)$. In this situation, we compute that

$$
\begin{gathered}
\max _{j=1, \cdots, k} \frac{e^{2 \beta} m_{j}^{\prime}}{m_{j}}=\max _{j=1, \cdots, k}\left\{\frac{\sqrt{\max _{j=1, \cdots, k} \frac{m_{j}}{m_{j}^{\prime}}} \cdot m_{j}^{\prime}}{\sqrt{\max _{j=1, \cdots, k} \frac{m_{j}^{\prime}}{m_{j}}} \cdot m_{j}}\right\}= \\
\sqrt{\max _{j=1, \cdots, k} \frac{m_{j}^{\prime}}{m_{j}}} \cdot \sqrt{\max _{j=1, \cdots, k} \frac{m_{j}}{m_{j}^{\prime}}}=\max _{j=1, \cdots, k} \frac{m_{j}}{e^{2 \beta} m_{j}^{\prime}}
\end{gathered}
$$

Corollary 2

Therefore, we conclude that

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} d_{T(X)}\left(r(t), r^{\prime}(t+\beta)\right) \\
= & \frac{1}{2} \log \max _{j=1, \cdots, k}\left\{\frac{e^{2 \beta} m_{j}^{\prime}}{m_{j}}, \frac{m_{j}}{e^{2 \beta} m_{j}^{\prime}}\right\} \\
= & \frac{1}{2}\left(\frac{1}{2} \log \max _{j=1, \cdots, k} \frac{m_{j}^{\prime}}{m_{j}}+\frac{1}{2} \log \max _{j=1, \cdots, k} \frac{m_{j}}{m_{j}^{\prime}}\right) \\
= & \delta
\end{aligned}
$$

[Ama13] Masanori Amano.
On behavior of pairs of teichmüller geodesic rays. Conformal Geometry and Dynamics, to appear.
[FM10] Benson Farb and Howard Masur. Teichmüller geometry of moduli space, I: distance minimizing rays and the Deligne-Mumford compactification.
J. Differential Geom., 85(2):187-227, 2010.
[HS07] Frank Herrlich and Gabriela Schmithüsen.
On the boundary of Teichmüller disks in Teichmüller and in Schottky space.
In Handbook of Teichmüller theory. Vol. I, volume 11 of IRMA Lect. Math. Theor. Phys., pages 293-349. Eur. Math. Soc., Zürich, 2007.
[Wal12] Cormac Walsh. The asymptotic geometry of the Teichmüller metric. arXiv:1210.5565v1, 2012.

Uniformisation and description of a once-punctured annulus

Tanran Zhang

Graduate School of Information Sciences
Tohoku University

November 11, 2013

Background

Uniformisation Theorem

The universal covering space \widetilde{X} of an arbitrary Riemann surface X is homeomorphic, by a conformal mapping φ, to either the Riemann sphere $\widehat{\mathbb{C}}$, the complex plane \mathbb{C} or the unit disk \mathbb{D}, and the fundamental group $\Pi_{1}(X)$ has a representation as a group G of conformal homeomorphisms of $\varphi(\widetilde{X})$.

Aims

- describe the once-punctured annulus in several different ways and give the connections between them
- consider the asymptotic behavior when the puncture is tending to the boundaries, or a boundary is shrinking to a point

Preliminary

- For a hyperbolic surface X, we choose the universal covering space \widetilde{X} to be the upper half plane \mathbb{H} or the unit disk \mathbb{D}.
- We identify a Möbius transformation

$$
\phi(z)=\frac{a z+b}{c z+d}, \quad a d-b c=1, a, b, c, d \in \mathbb{C}
$$

with the 2×2 complex matrix $\pm\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PSL}(2, \mathbb{C})$ which is also denoted by ϕ, and define the trace of ϕ by $\operatorname{tr} \phi= \pm(a+d)$, so that $(\operatorname{tr} \phi)^{2}=(a+d)^{2}$ is a conjugacy invariant. If ϕ is hyperbolic, the translation length of ϕ is defined by $T(\phi)=\inf _{z \in \mathbb{H}} \delta_{\mathbb{H}}(z, \phi(z))$ and it is known that $2 \cosh (T(\phi) / 2)=|\operatorname{tr} \phi|$.

- Let $\Omega \subseteq \mathbb{C}$ and Γ be a collection of finite unions of rectifiable curves in Ω. All of the metrics which are conformal with respect to the Euclidean metric can be defined in terms of a density $\varrho(z)|d z|$ where $\varrho(z)$ is a non-negative Borel measurable function on Ω. For $z=x+i y$, define $L(\gamma, \varrho)=\int_{\gamma} \varrho(z)|d z|, A(\Omega, \varrho)=\int_{\Omega} \varrho(z)^{2} d x d y$, and $L(\Gamma, \varrho)=\inf _{\gamma \in \Gamma} L(\gamma, \varrho)$. Then the extremal length of Γ in Ω is given by

$$
\lambda_{\Omega}(\Gamma)=\sup _{\varrho} \frac{L(\Gamma, \varrho)^{2}}{A(\Omega, \varrho)}
$$

Peripheral collars

Let γ be a simple closed geodesic on a hyperbolic surface X with hyperbolic length l. A symmetric collar $C(\gamma)$ on X about γ of hyperbolic width w is a doubly connected subdomain of X containing γ defined by $C(\gamma)=\left\{x \in X: \delta_{X}(x, \gamma)<w / 2\right\}$, where δ_{X} is the hyperbolic distance on X. By a universal cover from \mathbb{H} to X which lifts γ to the imaginary axis, a lift of the symmetric collar $C(\gamma)$ is the rigion in \mathbb{H} given by $\left\{z: 1<|z|<k^{2}, \frac{\pi}{2}-\theta<\arg z<\frac{\pi}{2}+\theta\right\}$, where $0<\theta<\frac{\pi}{2}, \tan \theta=\sinh w$, and $k+k^{-1}=2 \cosh (l / 2)$.

Collar Lemma (e.g. Keen, 1974)

With the same γ and θ, b as above, there is a symmetric collar $C(\gamma)$ on X about γ with the angular width θ satisfying

$$
\tan \theta=\frac{2}{k-k^{-1}}
$$

If γ_{1} and γ_{2} are disjoint closed simple geodesics, the collars $C\left(\gamma_{1}\right)$ and $C\left(\gamma_{2}\right)$ are disjoint.

To obtain the maximal non-overlapped collar, we can extend one side of a symmetric collar about γ to the boundary, that means, the collar $C(\gamma)$ has a lift in the form $\widetilde{C}(\gamma)=\left\{z: 1<|z|<k^{2}, \frac{\pi}{2}-\theta<\arg z<\pi\right\}$ in \mathbb{H}. We will refer to the collar $\widetilde{C}(\gamma)$ of such form as a peripheral collar about γ with the angular width θ.

Two free homotopy classes

Figure: 1
After some rotations and scaler maps, we only need to consider the punctured annulus

$$
A:=\{z: 1 / R<|z|<R\} \backslash\{a\}, R>1,1 / R<a<R .
$$

We denote $B_{1}:=\{z:|z|=1 / R\}, B_{2}:=\{z:|z|=R\}$, and let C_{1}, C_{2} be the free homotopy classes of the circles $\left\{z:|z|=r_{1}\right\},\left\{z:|z|=r_{2}\right\}$ in A, respectively, where $a<r_{1}<R, 1 / R<r_{2}<a$. So C_{1} separates $B_{1} \cup\{a\}$ from B_{2}, C_{2} separates $B_{2} \cup\{a\}$ from B_{1}. Let γ_{1}, γ_{2} be the hyperbolic geodesics in C_{1}, C_{1}.

Parameter pairs

Figure: 1
The punctured annulus A can be described in the following ways.

- (k, r) : from the generators of the covering group G
- $\left(l_{1}, l_{2}\right)$: the hyperbolic lengths of geodesics γ_{1} and γ_{2}
- $\left(\theta_{1}, \theta_{2}\right)$: the angular widths of the maximal peripheral collars about γ_{1} and γ_{2}
- $\left(\lambda_{1}, \lambda_{2}\right)$: the extremal lengths of C_{1} and C_{2}
- (R, a) : the natural parameter pair

Fundamental domain

Lemma

Choose the covering group G of A to act on \mathbb{H}. Then there exist two real numbers k and r, $1<r<k$, such that G is generated by a hyperbolic f and a parabolic g, where

$$
f=\left(\begin{array}{cc}
k & 0 \\
0 & k^{-1}
\end{array}\right), \quad g=\frac{1}{r-1}\left(\begin{array}{cc}
2 r & -(r+1) \\
r+1 & -2
\end{array}\right) .
$$

Figure: 2

Hyperbolic lengths

Theorem

In the punctured annulus A, for l_{1}, l_{2}, k and r defined as above, we have

$$
2 \cosh \left(\frac{l_{1}}{2}\right)=k+\frac{1}{k}, \quad 2 \cosh \left(\frac{l_{2}}{2}\right)=\frac{2}{r-1}\left(k-\frac{r}{k}\right) .
$$

The maximal peripheral collars

Theorem

Suppose that θ_{1} and θ_{2} are the angular widths of the maximal peripheral collars about γ_{1}, γ_{2}.
Then we have

$$
\begin{aligned}
& \cos \theta_{1}=\frac{r-1}{r+1}, \quad \cos \theta_{2}=\frac{t-1}{t+1}=\frac{2 r(r+1)-2 \delta}{\delta(r+1)-(r+1)^{2}}, \text { where } \\
& t=\frac{(r-1)(r+1+\delta)}{(r+3) \delta-(r+1)(3 r+1)}, \quad \delta=k^{2}+r-\sqrt{\left(k^{2}-1\right)\left(k^{2}-r^{2}\right)}
\end{aligned}
$$

with k and r being the parameters of the generators of the covering group.

(a) 3

(b) 4

Comparison with Collar Lemma

The collar defined by Collar Lemma is the minimum of the maximal peripheral collar supported by a hyperbolic transformation and it is smaller than the collar given above. We denote the angular widths of the collars defined by Collar Lemma about the axes of f and $f g^{-1}$ by θ_{1}^{\prime} and θ_{2}^{\prime}. Then

$$
\cos \theta_{1}^{\prime}=\frac{k^{2}-1}{k^{2}+1}
$$

Then $\theta_{1}^{\prime}<\theta_{1}$ by our theorem. From the symmetry we know $\theta_{2}^{\prime}<\theta_{2}$ for $f g^{-1}$.

Collar Lemma (e.g. Keen, 1974)

With the same γ and θ, b as above, there is a symmetric collar $C(\gamma)$ on X about γ with the angular width θ satisfying

$$
\tan \theta=\frac{2}{k-k^{-1}}
$$

If γ_{1} and γ_{2} are disjoint closed simple geodesics, the collars $C\left(\gamma_{1}\right)$ and $C\left(\gamma_{2}\right)$ are disjoint.

Comparison of C_{1} and C_{2}

We can compare l_{1} with l_{2}, θ_{1} with θ_{2} in terms of r and k. When $1<r<3$,

$$
\begin{array}{ll}
l_{1}<l_{2}, \theta_{1}>\theta_{2}, & \text { if } 1<r<\sqrt{\frac{3 r-1}{3-r}}<k, \\
l_{1}=l_{2}, \theta_{1}=\theta_{2}, & \text { if } 1<r<\sqrt{\frac{3 r-1}{3-r}}=k, \\
l_{1}>l_{2}, \theta_{1}<\theta_{2}, & \text { if } 1<r<k<\sqrt{\frac{3 r-1}{3-r}} ;
\end{array}
$$

when $r \geq 3, l_{1}>l_{2}, \theta_{1}<\theta_{2}$. This corresponds that $\tan ^{2} \theta_{i} \sinh ^{2} \frac{l_{i}}{2}=1, i=1,2$.

Corollary

In the punctured annulus $A=\{z: 1 / R<|z|<R\} \backslash\{1\}$, the two parameters k and r satisfy $k^{2}=\frac{3 r-1}{3-r}$, and the covering group G of A is generated by

$$
f(z)=\frac{3 r-1}{3-r} z, \quad g(z)=\frac{2 r z-(r+1)}{(r+1) z-2},
$$

where $1<r<3$ and r is related to R in some unknown way.

Hyperbolic lengths

Theorem

In the punctured annulus A, for l_{1}, l_{2}, k and r defined as above, we have

$$
2 \cosh \left(\frac{l_{1}}{2}\right)=k+\frac{1}{k}, \quad 2 \cosh \left(\frac{l_{2}}{2}\right)=\frac{2}{r-1}\left(k-\frac{r}{k}\right) .
$$

Hyperbolic lengths

Theorem

In the punctured annulus A, for l_{1}, l_{2}, k and r defined as above, we have

$$
2 \cosh \left(\frac{l_{1}}{2}\right)=k+\frac{1}{k}, \quad 2 \cosh \left(\frac{l_{2}}{2}\right)=\frac{2}{r-1}\left(k-\frac{r}{k}\right) .
$$

Theorem

The parameters $l_{1}, l_{2}, \theta_{1}, \theta_{2}$ defined above satisfy

$$
\cos \theta_{1}=\frac{\sinh \frac{l_{1}}{2}}{\cosh \frac{l_{1}}{2}+\cosh \frac{l_{2}}{2}}, \quad \cos \theta_{2}=\frac{\sinh \frac{l_{2}}{2}}{\cosh \frac{l_{1}}{2}+\cosh \frac{l_{2}}{2}} .
$$

Elliptic integrals and Jacobian elliptic functions

- Let

$$
K(r)=\int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-r^{2} x^{2}\right)}}
$$

with $0<r<1$ be Legendre's complete elliptic integral of the first kind. The parameter $r \in(0,1)$ is called the modulus and the complementary modulus of r is $r^{\prime}=\sqrt{1-r^{2}}$, and denote $K^{\prime}(r)=K\left(r^{\prime}\right)=K\left(\sqrt{1-r^{2}}\right)$. We define the normalized quotient

$$
\mu(r)=\frac{\pi}{2} \frac{K^{\prime}(r)}{K(r)}
$$

for $0<r<1$, then $\mu(r)$ is a strictly decreasing homeomorphism of the interval $(0,1)$ onto $(0, \infty)$ with limit values $\mu(0+)=\infty, \mu(1-)=0$.

- Let

$$
\operatorname{sn}(u, r)=\tau \text { where } u=\int_{0}^{\tau} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-r^{2} x^{2}\right)}}
$$

be the Jacobian elliptic sine function. Two other functions can be then defined by $\mathrm{cn}(u, r)=\sqrt{1-\mathrm{sn}^{2}(u, r)}, \operatorname{dn}(u, r)=\sqrt{1-r^{2} \mathrm{sn}^{2}(u, r)}$.

Extremal lengths

Theorem

In the punctured annulus A, suppose that λ_{1} and λ_{2} are the extremal lengths of C_{1} and C_{2}. Select a positive number q such that $\mu(q)=4 \log R$ and let $\mathcal{K}:=K(q), \mathcal{K}^{\prime}:=K^{\prime}(q)$. Then

$$
\lambda_{1}=\frac{2 \pi}{\mu\left(p_{1}\right)}, \quad \lambda_{2}=\frac{2 \pi}{\mu\left(p_{2}\right)},
$$

where

$$
p_{1}=\frac{\sqrt{q}\left(\operatorname{dn} u_{1}+1\right)}{q+\operatorname{dn} u_{1}}, \quad p_{2}=\frac{\sqrt{q}\left(\operatorname{dn} u_{2}+1\right)}{q+\operatorname{dn} u_{2}}
$$

with

$$
u_{1}=\frac{2 \mathcal{K}}{\pi} \log R a, \quad u_{2}=\frac{2 \mathcal{K}}{\pi} \log \frac{R}{a},
$$

and the Jacobian elliptic function dn in p_{1} and p_{2} has the modulus $q^{\prime}=\sqrt{1-q^{2}}$.

Useful lemmas (1)

Lemma 1

For $0<q<1$ let $\mathcal{K}:=K(q), \mathcal{K}^{\prime}:=K^{\prime}(q)$ and select $b=\exp \left(-\pi \mathcal{K}^{\prime} /(4 \mathcal{K})\right)$. Then the conformal mappings ω and σ defined by

$$
\omega(z)=\sqrt{q} \operatorname{sn}\left(\frac{2 i \mathcal{K}}{\pi} \log \frac{z}{b}+\mathcal{K}, q\right), \quad \sigma(z)=\frac{z+\sqrt{q}}{\sqrt{q} z+1}
$$

are both unique up to rotations, where ω takes the annulus $b<|z|<1$ onto $\mathbb{D} \backslash[-\sqrt{q}, \sqrt{q}]$, and σ preserves \mathbb{D} with $\sigma(-1)=-1, \sigma(1)=1, \sigma(-\sqrt{q})=0$.

Figure: 5

Useful lemmas (2)

Lemma 2

Let \widetilde{C} be the family of loops in \mathbb{D} separating 0 and p from the unit circle $\partial \mathbb{D}, 0<p<1$, and C be the family of loops in \mathbb{D} separating the slit $(0, p)$ from $\partial \mathbb{D}$. Then the extremal lengths of \widetilde{C} and C are

$$
\lambda(\widetilde{C})=\lambda(C)=\frac{2 \pi}{\mu(p)}
$$

(a) 6

(b) 7

Extremal cases

- R is fixed. When $a \rightarrow R, l_{1} \rightarrow \infty$, and then $k \rightarrow+\infty$.

When $a \rightarrow 1 / R, l_{2} \rightarrow \infty$, and then $r \rightarrow 1$.

- a is fixed and $R \rightarrow+\infty$. Then $k \rightarrow r \rightarrow 1$, so that $\lim _{k, r \rightarrow 1} \cosh \left(l_{1} / 2\right)=1$ and $\lim _{k, r \rightarrow 1} \cosh \left(l_{2} / 2\right)=1$.
- $a=1$ and $R \rightarrow 1$. Then A is becoming a punctured domain shown in the figure below, which is conformally equivalent to an endless punctured stripe in the complex plane. So $k \rightarrow+\infty$ and $r \rightarrow 3$.

Figure: 8

Another model

We have a different uniformisation if taking the once-punctured annulus model as $A_{1}=\left\{b^{2}<|z|<1\right\} \backslash\{x\}, 0<b^{2}<x<1$. With the same definitions of λ_{1} and λ_{2}, when the puncture x is fixed and $b \rightarrow 0$, we have

$$
\lambda_{1} \rightarrow \frac{2 \pi}{\mu(x)}, \quad \lambda_{2} \rightarrow 0
$$

Lemma 2'

Let \widetilde{C} be the family of loops in \mathbb{D} separating 0 and p from the unit circle $\partial \mathbb{D}, 0<p<1$. Then the extremal length of \widetilde{C} is

$$
\lambda(\widetilde{C})=\frac{2 \pi}{\mu(p)}
$$

Reference

- G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, Wiley, New York, 1997.
- A. F. Beardon, The uniformisation of a twice-punctured disc, Comput. Methods Funct. Theory 12 (2012), no. 2, 585-596.
- L. Keen and N. Lakic, Hyperbolic geometry from a local viewpoint, London Mathematical Society Student Texts, no. 68, Cambridge University Press, Cambridge, 2007.
- R. Nevanlinna, Analytic functions, Springer-Verlag, Berlin, 1970.
- M. Ohtsuka, Dirichlet problems, extremal length and prime ends, Van Nostrand, New York, 1970.

Thank you for your attention!

