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Program
9 November (Saturday)

14:00–14:50 Lizhen Ji (University of Michigan)
Spines of Teichmuller spaces and symmetric spaces

15:00–15:50 Yoshihiko Shinomiya (Tokyo Institute of Technology)
Periodic points on Veech surfaces

16:00–16:50 Chikako Mese (Johns Hopkins University)
Harmonic maps in rigidity problems

Banquet

10 November (Sunday)

10:00–10:50 Makoto Masumoto (Yamaguchi University)
On the existence of holomorphic mappings of once-holed tori

11:00–11:50 Hideki Miyachi (Osaka University)
Rigidity of isometries on Teichmueller space at infinity

Lunch

14:00–14:50 Hiroshige Shiga (Tokyo Institute of Technology)
On deformations spaces of Kleinian groups

15:00–15:50 Yu Kawakami (Yamaguchi University)
On function-theoretic properties for Gauss maps of several classes of surfaces

16:00–16:50 Yuriko Umemoto (Osaka City University)
Growth rates of cocompact hyperbolic Coxeter groups and 2–Salem numbers

11 November (Monday)

10:00–10:50 Masanori Amano (Tokyo Institute of Technology)
On behavior of pairs of Teichmüller geodesic rays

11:00–11:50 Tanran Zhang (Tohoku University)
Uniformisation and description of a once-punctured annulus

Lunch

14:00–14:50 Ryosuke Mineyama (Osaka University)
Limit sets of Coxeter groups of type (n-1,1)

15:00–15:50 Ken’ichi Ohshika (Osaka University)
Primitive stable closed hyperbolic 3-manifolds
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Abstract

Lizhen Ji (University of Michigan)
Spines of Teichmuller spaces and symmetric spaces
Abstract: Let Tg be the Teichmuller space of a compact surface Sg of genus g, and Modg

the mapping class group of Sg. Then Modg acts properly on Tg, and the quotient Modg Tg

is the moduli space of compact Riemann surfaces of genus g. This action of Modg on Tg is
an analogue of the action of an arithmetic subgroup Γ of a semisimple Lie group G on the
associated symmetric space X = G/K, where K is a maximal compact subgroup of G.

A longstanding open problem concerns spines of Tg, i.e., equivariant deformation re-
tracts of Tg with compact quotient by Modg and of dimension equal to the virtual co-
homological dimension of Modg. Similarly, when Γ is a nonuniform arithmetic subgroup,
existence of spines of X is also open in general.

In this talk, I will describe the history of these problems (for example, Thurston’s at-
tempt) and some recent results on them.

Yoshihiko Shinomiya (Tokyo Institute of Technology)
Periodic points on Veech surfaces
Abstract: We will discuss periodic points on Veech surfaces. A periodic point on a Veech
surface is a point whose orbit under the affine group is finite. It is known that the number
of periodic points on a non-arithmetic Veech surface is finite. We will give upper bounds
of the numbers of periodic points depending only on the types of Veech surfaces and sig-
natures of the Veech groups.

Chikako Mese (Johns Hopkins University)
Harmonic maps in rigidity problems
Abstract: We discuss harmonic maps into non-positively curved metric spaces (NPC
spaces). Of particular interest is the regularity for these maps into special classes of spaces
that include the Euclidean and Hyperbolic buildings and Weil-Petersson completion of Te-
ichmuller space. As an application of the regularity theory, we study rigidity questions.

Makoto Masumoto (Yamaguchi University)
On the existence of holomorphic mappings of once-holed tori
Abstract: We address the existence problem of handle-preserving holomorphic mappings
of once-holed tori into a given Riemann surface of positive genus. The once-holed tori
allowing such mappings form a subset of the Teichmüller space of a once-holed torus. We
are particularly interested in geometric properties of the set.

By a once-holed torus we mean a noncompact Riemann surface of genus one with
exactly one (Kerékjártó-Stöılow) boundary component. For example, the Riemann surface
obtained from a compact Riemann surface of genus one, or a torus, by removing one point
is a once-holed torus, which will be referred to as a once-punctured torus.

Let R be a Riemann surface of positive genus; it may be compact or the genus may be
infinite. A mark of handle of R means an ordered pair χ = {a, b} of simple loops a and b
on R whose intersection number a× b is equal to one. The pair Y = (R,χ) is said to be a
Riemann surface with marked handle. Since the genus of R is positive, the surface has one
or more handles. We choose just one of them and mark it with a pair of simple loops.
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Let Y ′ = (R′, χ′), where χ′ = {a′, b′}, be another Riemann surface with marked handle.
If f : R → R′ is continuous and maps a and b onto loops freely homotopic to a′ and b′

on R′, respectively, then we say that f is a continuous mapping of Y into Y ′ and use the
notation f : Y → Y ′. If f : R → R′ possesses some additional properties, then f : Y → Y ′

is said to have the same properties. For example, if f : R → R′ is conformal, that is, if
f : R → R′ is holomorphic and injective, then f is called a conformal mapping of Y into
Y ′.

A once-holed torus (resp. torus, once-punctured torus) with marked handle is usually
called a marked once-holed torus (resp. marked torus, marked once-punctured torus). Let
T be the set of marked once-holed tori, where two marked once-holed tori are identified
with each other if there is a conformal mapping of one onto the other.

We introduce a global coordinate system on T as follows. For a marked once-holed
torus X = (T, χ), where χ = {a, b}, set Λ(X) = (λ1, λ2, λ3), where λ1, λ2 and λ3 are the
extremal lengths of the free homotopy classes of a, b and ab−1, respectively. Then Λ defines
an injective mapping of T into R3

+, whose image is

Λ(T) = {(ξ1, ξ2, ξ3) ∈ R3
+ | ξ2

1 + ξ2
2 + ξ2

3 − 2(ξ1ξ2 + ξ2ξ3 + ξ3ξ1) + 4 ! 0}.

Identifying T with Λ(T), we consider T as a 3-dimensional real analytic manifold with
boundary. A marked once-holed torus lies on the boundary if and only if it is a marked
once-punctured torus.

As a set, T is the union of the Teichmüller space of a once-punctured torus and the
reduced Teichmüller space of a once-holed torus which is not a once-punctured torus.
The real analytic structure on T is compatible with the real analytic structures on those
Teichmüller spaces. We will call T the Teichmüller space of a once-holed torus.

Now, fix a Riemann surface Y0 with marked handle. We are interested in the set Ta[Y0]
(resp. Tc[Y0]) of marked once-holed tori X ∈ T for which there is a holomorphic (resp.
conformal) mapping of X into Y0. Clearly, Tc[Y0] is nonempty and included in Ta[Y0].

Theorem 1. The sets Ta[Y0] and Tc[Y0] are noncompact closed domains with Lipschitz
boundary.

Our next result is expressed in terms of another global coordinate system on T. Every
marked once-holed torus is realized as a horizontal slit domain of a marked torus. To be
more specific let H denote the upper half-plane. For any τ ∈ H let Gτ be the additive
group generated by 1 and τ , and set Tτ = C/Gτ , which is a torus. The oriented segments
[0, 1] and [0, τ ] are projected onto simple loops aτ and bτ on Tτ , respectively, which make a
mark χτ of handle of Tτ . We set Xτ = (Tτ , χτ ). Let πτ : C → Tτ be the natural projection.
Cutting Tτ along the image πτ ([0, s]) of the segment [0, s], where 0 ! s < 1, we obtain a

once-holed torus T (s)
τ := Tτ \ πτ ([0, s]). It is a horizontal slit domain of the torus Tτ . Note

that T (0)
τ is a once-punctured torus. Choose a mark χ(s)

τ =
{
a(s)

τ , b(s)
τ

}
of handle of T (s)

τ

so that the inclusion mapping T (s)
τ ↪→ Tτ is a conformal mapping of X(s)

τ :=
(
T (s)

τ , χ(s)
τ

)

into Xτ . Then the correspondence (τ, s) %→ X(s)
τ is a homeomorphism of H × [0, 1) onto

T, whose restrictions to H × (0, 1) and to H × {0} are real analytic. Note that 1/ Im τ is

exactly the extremal length of the free homotopy class of a(s)
τ .

Theorem 2a. There is a nonnegative real number λa[Y0] such that
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(ia) if Im τ " 1/λa[Y0], then there are no holomorphic mappings of X(s)
τ into Y0 for any

s ∈ [0, 1), while

(iia) if Im τ < 1/λa[Y0], then there are holomorphic mappings of X(s)
τ into Y0 for some

s ∈ [0, 1),

where 1/0 = +∞.

For the existence of conformal mappings of marked once-holed tori, we have the follow-
ing theorem. It is quite similar to the previous theorem though the sign of equality does
not appear in (ic).

Theorem 2c. There is a positive real number λc[Y0] such that

(ic) if Im τ > 1/λc[Y0], then there are no conformal mappings of X(s)
τ into Y0 for any

s ∈ [0, 1), while

(iic) if Im τ < 1/λc[Y0], then there are conformal mappings of X(s)
τ into Y0 for some

s ∈ [0, 1).

Finally, we evaluate the critical extremal lengths λa[Y0] and λc[Y0]. Let Y0 = (R0, χ0),
where χ0 = {a0, b0}. Let λ[Y0] stand for the extremal length of the free homotopy class of
a0. If R0 is not a torus, then it carries a hyperbolic metric. We denote by l[Y0] the length
of the geodesic freely homotopic to a0, where the curvature is normalized to be −1. If R0

is a torus, then we define l[Y0] = 0.

Theorem 3. It holds that λa[Y0] =
1

π
l[Y0] and λc[Y0] = λ[Y0].

It follows that λa[Y0] < λc[Y0] for any Y0. Also, λa[Y0] is strictly positive unless Y0 is a
marked torus.

Hideki Miyachi (Osaka University)
Rigidity of isometries on Teichmueller space at infinity
Abstract: In this talk, I will give a rigidity result for isometries with respect to the Te-
ichmueller distance on Teichmueller space of Riemann surfaces of analytically finite type.
Indeed, we will provide mappings acting on Teichmueller space which are close to isome-
tries at infinity, and discuss properties of the mappings. If time permits, we will re-prove
Ivanov’s theorem, which says that except for few cases, the isometry group of Teichmuller
space is isomorphic to the extended mapping class group.

Hiroshige Shiga (Tokyo Institute of Technology)
On deformations spaces of Kleinian groups
Abstract: Let G be a non-elementary Kleinian group. We consider the space of quasi-
conformal deformations of G. The space has a natural complex structure and it is finite
dimensional if G is finitely generated. In this talk, we consider complex analytic properties
of the spaces, which are related to some results by Bers, Kra-Maskit and McMullen.
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Yu Kawakami (Yamaguchi University)
On function-theoretic properties for Gauss maps of several classes of surfaces
Abstract: The aim of this talk is to reveal the geometric background of function-theoretic
properties for Gauss maps of several classes of immersed surfaces in space forms (e.g. min-
imal surfaces in the Euclidean 3-space, flat surfaces in the hyperbolic 3-space etc.). For
the purpose, we give an optimal curvature bound for a specified conformal metric on an
open Riemann surface and give some applications.

Yuriko Umemoto (Osaka City University)
Growth rates of cocompact hyperbolic Coxeter groups and 2–Salem numbers
Abstract: The group generated by reflections with respect to facets of a Coxeter polytope
in n–dimensional hyperbolic space Hn is called a hyperboric Coxeter group. By the results
of Cannon, Wagreich and Parry, it is known that the growth rate of a cocompact Coxeter
group in H2 and H3 is a Salem number. On the other hand, Kerada defined a j–Salem
number, which is a generalization of a Salem number. In this talk, I will present that we
realize infinitely many 2–Salem numbers as the growth rates of cocompact Coxeter groups
in H4. Our Coxeter polytopes are constructed by successive gluing of Coxeter polytopes
which we call Coxeter dominoes.

Masanori Amano (Tokyo Institute of Technology)
On behavior of pairs of Teichmüller geodesic rays
Abstruct: In this talk, we obtain the explicit limit value of the Teichmüller distance be-
tween two Teichmüller geodesic rays which are determined by Jenkins-Strebel differentials
having a common end point in the augmented Teichmüller space. Furthermore, we also
obtain a condition under which these two rays are asymptotic. This is the Teichmüller
space varsion of a result of Farb and Masur for the moduli space.

Tanran Zhang (Tohoku University)
Uniformisation and description of a once-punctured annulus
Abstract: The Uniformisation Theorem shows that the universal covering space X̃ of an
arbitrary Riemann surface X is homeomorphic, by a conformal map m, to either the Rie-
mann sphere Ĉ, the complex plane C or the unit disk D. And then the fundamental group
Π1(X) has a representation as a group G of conformal homeomorphisms of m(X̃). This
theorem also indicates that if X̃ is homeomorphic to a proper subset of C with at least
three boundary points, then X̃ is conformally equivalent to a quotient space D/G, where
G is a torsion-free Fuchsian group that acts (discontinuously) on D (or H). The group G is
isomorphic to Π1(X). Hempel and Smith studied the hyperbolic Riemann surface model
of the twice-punctured disk D\{p1, p2} in 1980s. They estimated the hyperbolic density
on it near aone puncture and considered the coalescing of the two punctures. Later on
Beardon gave five different ways to uniformize D\{p1, p2} in 2012. He investigated several
conformal invariants to characterize D\{p1, p2} considering the fundamental domain, sym-
metric collars and extremal length. We extend his work to the once-punctured annulus
A := {z : 1/R < |z| < R}\{a}, R > 1, 1/R < a < R. We provide several parameter pairs
to uniformize and characterize it. The main tools we use are Möbius transformations,
covering space, homotopy classes and elliptic integrals.
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Ryosuke Mineyama (Osaka University)
Limit sets of Coxeter groups of type (n-1,1)
Abstract: Recentry Hohlweg, Labbe, Ripoll introduced a non-linear action of Coxeter
groups to investigate asymptotic behavior of their roots. This turns out to be a discrete
action on a CAT(0) space in the case that associating bilinear form of the Coxeter group
has singnature (n-1,1). I am interested in how geometric aspects of Coxeter groups are
mirrored on their limit sets. In this talk we discuss the existence of Cannon-Thurston maps
from Gromov boundaries of Coxeter groups to their limit sets. If we have the time left,
we observe a relationship between limit sets and sets of accumulation points of roots. This
talk partially based on the joint work with Akihiro Higashitani and Norihiro Nakashima.

Ken’ichi Ohshika (Osaka University)
Primitive stable closed hyperbolic 3-manifolds
Abstract: This is joint work with Cyril Lecuire and Inkang Kim. We show that every
Heegaard splitting with large Hempel distance and bounded combinatorics induces a prim-
itive stable representation of a free group. This implies that every point on the boundary
of the Schottky space can be approximated by unfaithful primitive stable representations
corresponding to closed hyperbolic 3-manifolds.
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The purpose of this talk is to estimate the number of periodic
points on non-arithmetic Veech surfaces.
.
Theorem
..

.

Let (X,u) be a non-arithmetic Veech surface of type (g, n). The
number of periodic points of (X,u) is at most

2−26d10 (λµ)−34
(
1

2
λ6µ6

)22d+3

.

Here, Γ(X,u) is the Veech group of (X,u), d := 3g − 3 + n,
λ := 2 exp(5d/e), and µ := Area (H/Γ(X,u)).

If we have time, we apply this estimation to holomorphic
families of Riemann surfaces induced by Teichmüller curves.
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1. Introduction
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.. Flat surfaces

Let X be a (connected) surface of finite type and C a finite
subset of X. A flat structure u on X is an atlas of X \ C
such that, for coordinate neighborhoods (U, z), (V,w) ∈ u with
U ∩ V $= ∅, the transition function is of the form

w = ±z + c

in z(U ∩ V ) for some c ∈ C.
The pair (X,u) is called a flat surface with singularities at C.

On flat surfaces, we can consider some notations in the
Euclidean geometry: segments, their lengths or directions, area,
etc. A closed θ-geodesic in (X,u) is a closed geodesic in
(X,u) whose direction is θ ∈ [0, π) and which does not contain
singularities.

We assume that the Euclidean area of (X,u) is finite.

4 / 38



.. Examples of flat surfaces

Typical examples of flat surfaces are tori. They have natural flat
structures induced by universal coverings. Tori are flat surfaces
with no singularities. Let us consider the following examples.

ɹ

The surfaces X1 and X2 are of genus 2. We give flat structures
u1 and u2 to X1 and X2 from Euclidean structures on the
regular octagon and the rectangle, respectively. Then, the flat
surface (X1, u1) has only one singularity corresponding to the
vertices of the octagon. The singularities of the flat surface
(X2, u2) are the points corresponding to the vertices of squares.
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.. Affine groups

Let (X,u) be a flat surfaces with singularities at C. An affine
map of (X,u) is a quasiconformal self-map h of X that satisfies
h(C) = C and, for coordinate neighborhoods (U, z), (V,w) ∈ u
with h(U) ⊂ V , the composition w ◦ h ◦ z−1 is of the form

w ◦ h ◦ z−1 = Az + c

in z(U) ⊂ C = R2 for some A ∈ SL(2,R) and c ∈ C.
The affine group Aff+(X,u) is the group of all affine maps of
(X,u).
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.. Veech groups

Take an affine map h of (X,u). For coordinate neighborhoods
(U, z), (V,w) ∈ u with h(U) ⊂ V , the derivative of the
composition w ◦ h ◦ z−1 = Az + c is the matrix A ∈ SL(2,R).
The matrix A does not depend on the choice of coordinate
neighborhoods up to the sign since transition functions of u are
of the form z (→ ±z + c. Thus, we have the homomorphism

D : Aff+(X,u) → PSL(2,R)

which maps each affine map h to its derivative ±A.
The image Γ(X,u) := Im(D) of the homomorphism D is called
the Veech group of (X,u).
.
Theorem (Veech)
..
.The Veech group Γ(X,u) is a Fuchsian group.
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.. Examples of Veech groups

Let (T, uT ) be the torus obtained from an unit square. Then,

the Veech group Γ(T, uT ) is PSL(2,Z) =
〈[

0 −1
1 0

]
,
[

1 1
0 1

]〉
.

We can see the actions of
[

0 −1
1 0

]
and

[
1 1
0 1

]
as follows.

The action of
[

1 1
0 1

]
is the Dehn twist along a horizontal

closed curve of (T, uT ).
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.. Examples of Veech groups

Let (X1, u1) be the flat surface obtained from a regular octagon.

Then, Γ(X1, u1) =
〈[

cosπ/4 − sinπ/4
sinπ/4 cosπ/4

]
,
[

1 2 cotπ/8
0 1

]〉
.

The action of
[

cosπ/4 − sinπ/4
sinπ/4 cosπ/4

]
is a rotation. To see the

action of
[

1 2 cotπ/8
0 1

]
, we cut X1 along the horizontal

segments connecting the singularity. Then, X1 is decomposed
into two cylinders R1 and R2.

The action of
[

1 2 cotπ/8
0 1

]
is the composition of the right

hand Dehn twist along a core curve of R1 and the square of the
right hand Dehn twist along a core curve of R2.
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.. Examples of Veech groups
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.. Jenkins-Strebel direction

As we saw in the previous example, some flat surfaces can be
decomposed into cylinders. A direction θ ∈ [0, π) is said to be a
Jenkins-Strebel direction of a flat surface (X,u) if almost all
points of X lie in closed θ-geodesics.
If θ is a Jenkins-Strebel direction, (X,u) is decomposed into
cylinders foliated by closed θ-geodesics. The cylinders are called
the cylinder decomposition of (X,u) by the direction θ.
The boundaries of these cylinders consist of segments of
direction θ connecting singularities.

The directions θ = 0, π4 and π
2 are Jenkins-Strebel directions.
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.. Arithmeticity of Veech surfaces

A flat surface (X,u) is called a Veech surface if its Veech
group Γ(X,u) is a lattice in PSL(2,R), that is, the orbifold
H/Γ(X,u) has finite area. We classify Veech surfaces by their
Veech groups.

Let Γ1 and Γ2 be Fuchsian groups. The group Γ1 is said to be
commensurable with Γ2 if there exists A ∈ PSL(2,R) such
that AΓ1A−1 ∩ Γ2 is a finite index subgroup of AΓ1A−1 and Γ2.

A Veech surface (X,u) is arithmetic if the Veech group Γ(X,u)
is commensurable with PSL(2,Z), and is non-arithmetic if
Γ(X,u) is not commensurable with PSL(2,Z).
.
Theorem (Gutkin-Judge)
..

.

Let (X,u) be a Veech surface. The Veech surface (X,u) is
arithmetic if and only if (X,u) is obtained by gluing finitely
many copies of a parallelogram by their parallel sides.
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.. Periodic points

We consider periodic points of Veech surfaces (X,u). A point
z ∈ X is called a periodic point of (X,u) if its
Aff+(X,u)-orbit Aff+(X,u){z} is finite. The cardinal of
Aff+(X,u){z} is called the period of z. Denote by P (X,u)
the set of all periodic points of (X,u).
.
Theorem (Gutkin-Hubert-Schmidt)
..

.

If (X,u) is arithmetic, then P (X,u) is dense in X. If (X,u) is
non-arithmetic, then P (X,u) is finite.

Gutkin, Hubert and Schmidt gave upper bounds of the numbers
of periodic points of non-arithmetic Veech surfaces depending
only on parameters of two cylinder decompositions. For
compact non-arithmetic Veech surfaces, Möller gave upper
bounds which depend only on genera.
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2. Main result and proof
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.. Main result

We give upper bounds depending only on types of surfaces and
signatures of Veech groups. The basic idea is due to Gutkin,
Hubert and Schmidt.

Let (X,u) be a non-arithmetic Veech surface of type (g, n). Set
d := 3g − 3 + n, λ := 2 exp(5d/e), and µ := Area (H/Γ(X,u)).
Here,

Area (H/Γ(X,u)) = 2π

(
2p− 2 +

k∑

i=1

(1− 1

νi
)

)
.

if Γ(X,u) is a Fuchs group of signature (p, k : ν1, · · · , νk)
(νi ∈ {2, 3, · · · ,∞}).
.
Theorem (S)
..

.

The number of periodic points of (X,u) is at most

2−26d10 (λµ)−34
(
1

2
λ6µ6

)22d+3

.
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.. Proof

We show that if (X,u) has a point whose period is sufficiently
large, (X,u) is arithmetic.

Let (X,u = {(Uλ, zλ)}) be a Veech surface and A ∈ GL(2,R).
We can define a new flat structure A ◦ u = {(Uλ, A ◦ zλ)}. Then,
Aff+(X,A ◦ u) = Aff+(X,u) as subgroups of Homeo+(X),
P (X,A ◦ u) = P (X,u) and the Veech group Γ(X,A ◦ u)
coincides with AΓ(X,u)A−1.

It is known that the set of Jenkins-Strebel directions of (X,u) is
dense in [0, π). We assume that θ = 0 is a Jenkins-Strebel
direction of (X,u). Veech showed that Γ(X,u) contains an

element of the form
[

1 b
0 1

]
with b > 0. Taking conjugation,

we may assume that Γ(X,u) contains B :=
[

1 1
0 1

]
and it is

primitive.
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.
Theorem (S)
..

.

Let Γ be a lattice Fuchsian group. If Γ contains
[

1 1
0 1

]
as a

primitive element, then there exists
[

a b
c d

]
∈ Γ such that

1 ≤ c < Area(H/Γ).

Choose A0 :=
[

a b
c d

]
∈ Γ(X,u) such that

1 ≤ c < µ = Area(H/Γ(X,u)). Conjugating by
[

1 −a/c
0 1

]
, we

may assume that

A0 =
[

0 −1/c
c d

]
, B0 =

[
1 1
0 1

]
.
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Choose h, hB0 ∈ Aff+(X,u) such that D(h) = A0, D(hB0) = B0.
Let R1, · · · , Rl be the cylinder decomposition of (X,u) by the
direction θ = 0 and C1, · · · , Cl their core curves. The cylinders
h(R1), · · · , h(Rl) are the cylinder decomposition by θ = π

2 .

Fact For a closed curve C of X, let τC be the Dehn twist along
C. There exists α < λ = 2 exp(5d/e) such that

hαB0
= τN1

C1
◦ · · · ◦ τNl

Cl
,

h ◦ hαB0
◦ h−1 = τN1

h(C1)
◦ · · · ◦ τNl

h(Cl)
.

Let Wi, Hi be the circumference and height of Ri, respectively.
We have

Wi/Hi = α/Ni ∈ Q.
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Direction θ = 0, π2 give cylinder decompositions. The affine map
hαB0

is a composition of Dehn twists along Ci’s. The affine map
h ◦ hαB0

◦ h−1 is a composition of Dehn twists along h(Cj)’s.
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Direction θ = 0, π2 give cylinder decompositions. The affine map
hαB0

is a composition of Dehn twists along Ci’s. The affine map
h ◦ hαB0

◦ h−1 is a composition of Dehn twists along h(Ci)’s.
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.
Proposition 1
..

.

We have

(1) 1 ≤ Ni < (λµ)2 for i ∈ {1, · · · , l},
(2) 0 ≤ i(Ci, h(Cj)) < (λµ)2 for i, j ∈ {1, · · · , l},
(3) cWi/Hj < (λµ)2 if i(Ci, h(Cj)) $= 0.

Set hB := hαB0
, hA := h ◦ hαB0

◦ h−1, B := D(hB), A := D(hA)
and G := 〈hA, hB〉. A point z ∈ X is said to be a B-periodic
point if the cardinal ' 〈hB〉 {z} is finite. The cardinal ' 〈hB〉 {z}
is called the B-period of z. Denote by PB

n the set of points of
X whose B -periods are less than or equal to n. We define
A-periodic points, G-periodic points, their periods, PA

n

and PG
n as well.

Note that periodic points of (X,u) are G-periodic points.
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For B =
[

1 N
0 1

]
, let us consider the set PB

n in torus (T, uT )

case. Let z =
(

x
y

)
∈ T be a B-periodic point of B-period n.

We assume that 0 ≤ x, y < 1. Since Bm
(

x
y

)
=

(
x+mNy

y

)
,

we have

mNy $∈ N for m ∈ {1, · · · , n− 1} and nNy ∈ N.

Thus, Ny = s
n + t for some 1 ≤ s ≤ n− 1 with gcd(s, n) = 1

and t ∈ {0, · · · , N − 1}. This implies that y ∈ Q and the set of
points whose B-periods are n consists of Nφ(n) horizontal
closed curves. Here,

φ(n) = '{s ∈ N : 1 ≤ s ≤ n− 1, gcd(s, n) = 1}

is Euler’s totient function. Setting Φ(n) =
∑n

m=1 φ(m), the set
PB
n consists of NΦ(n) horizontal closed curves.

By the same argument as above, y-coordinate of a B-periodic
point z ∈ Ri satisfies y/Hi ∈ Q.
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.
Lemma 1
..

.

Let β := 1
4 d2(λµ)6. We have

'PG
n ≤ '

(
PA
n ∩ PB

n

)
< βn4.

Proof By definition, PG
n ⊂ PA

n ∩ PB
n . The above observation

gives

'
(
PA
n ∩ PB

n

)
=

∑

1≤i,j≤l

i(Ci, h(Cj))NiΦ(n)NjΦ(n) < βn4. !
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.
Lemma 1
..

.

Let β := 1
4 d2(λµ)6. We have

'PG
n ≤ '

(
PA
n ∩ PB

n

)
< βn4.

Proof By definition, PG
n ⊂ PA

n ∩ PB
n . The above observation

gives

'
(
PA
n ∩ PB

n

)
=

∑

1≤i,j≤l

i(Ci, h(Cj))NiΦ(n)NjΦ(n) < βn4. !

.
Lemma 2
..

.

Let O = G{z} be a finite G-orbit. If 'O ≥ βn4, O contains a
point whose A-period or B-period is greater than n.
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.
Lemma 3
..

.

Let O be a finite G-orbit. Suppose that O contains a point z
whose B-period is greater than 1

2(λµ)
4n2. If z ∈ Ri ∩ h(Rj),

there exists a point w ∈ 〈hB〉 {z} ∩Ri ∩ h(Rj) whose A-period
is greater than or equal to n.

Proof The set PA
n−1 ∩ h(Rj) consists of NiΦ(n− 1) vertical

closed geodesics. Since the distance between z and hB(z) is less
than Wi/

1
2(λµ)

4n2, we have

' (〈hB〉 {z} ∩ h(Rj)) >
1
2(λµ)

4n2Hj/cWi > NiΦ(n− 1).

Thus, we obtain the claim. !
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.
Lemma 4
..

.

Let f(x) = 1
2(λµ)

4x2. Let O be a finite G-orbit. Assume that

'O > β
(
f2d−1(n)

)4
. Each horizontal cylinder Ri contains a

point whose B-period is greater than or equal to n.

Recall that Wi and Hi are the circumference and height of the
horizontal cylinder Ri, respectively. The circumference and
height of the vertical cylinder h(Rj) are cWj and Hj/c.
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.
Lemma 5
..

.

Suppose that Ri ∩ h(Rj) $= ∅. Let L be a connected component
of Ri ∩ h(Rj). If L contains two G-periodic points z and z′ with
〈hB〉 {z} = 〈hB〉 {z′}, then cWi/Hj ∈ Q .
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Proof Let us identify L = (0, Hj/c)× (0, Hi), z =
(

x
y

)
and

z′ =
(

x′

y′

)
. As hkB(z) = z′ for some k, we have y′ = y and

x′ = x+ kαy +NiWi. Since z and z′ are G-periodic points,
y/Hi ∈ Q , cx/Hj , cx′/Hj ∈ Q. Then,

Q 0 c (x′ − x)

Hj
=

(kαy +NiWi)

Hj
=

cWi

Hj

(
kα

y

Hi

Hi

Wi
−Ni

)
.

As Wi/Hi ∈ Q, we obtain the claim. !
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.
Proposition 2
..

.

Let O be a finite G-orbit. If 'O > β
(
f2d−1

(
(λµ)2

))4
, we have

the following :

(1) cWi/Hj ∈ Q if Ri ∩ h(Rj) $= ∅,
(2) Wi/Wi′ ∈ Q for any i, i′ ∈ {1, · · · , l},
(3) Hi/Hi′ ∈ Q for any i, i′ ∈ {1, · · · , l}.

Proof By Lemma 4, every cylinder Ri contains a point zi
whose B-period is greater than (λµ)2. The distance between zi
and hB(zi) is less than Wi/ (λµ)

2. If Ri ∩ h(Rj) $= ∅, each
connected component L is a rectangle with width Hj/c. By
Proposition 1-(3), we have Wi/ (λµ)

2 < Hj/c. Thus, L̄ contains
two point in a the same B-orbit. From Lemma 4, we obtain (1).
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If Ri Ri′ intersect with common h(Rj),

Wi

Wi′
=

cWi

Hj
· Hj

cWi′
∈ Q.

As X is connected, we obtain (2).
The equation

Hi

Hi′
=

Hi

Wi
· Wi

Wi′
· Wi′

Hi′

implies (3). !
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.
Proposition 3
..

.

If the Veech surface (X,u) has a point whose G-period is

greater than β
(
f2d−1

(
(λµ)2

))4
, then (X,u) is arithmetic.

Proof By Proposition 2, replacing u with some flat structure
A ◦ u, we may assume that Wi and Hi are integers and c ∈ Q. If
c = m/n for some n,m ∈ Z>0, then (X,u) is realized by gluing
finitely many squares whose side length is 1/m. By the theorem
of Gutkin-Hubert-Schmidt, (X,u) is arithmetic. !

By Proposition 3, the periods of periodic points of the
non-arithmetic Veech surface (X,u) are at most

β
(
f2d−1

(
(λµ)2

))4
. Applying Lemma 1, the number of

periodic points is at most β5
(
f2d−1

(
(λµ)2

))16
.
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3. Application to Teichmüller curves
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.. Teichmüller curves and Veech surfaces

Hereafter, we assume 3g − 3 + n > 0. A Teichmüller curve
f : C → M(g, n) is a holomorphic local isometry from a
hyperbolic Riemann surface C of finite type into the moduli
space M(g, n) equipped with the Teichmüller distance.
.
Proposition
..

.

Let f : C → M(g, n) be a Teichmüller curve. Given a base
point t0 of C. There exists a Veech surface (X,u) of type (g, n),
a branched covering φ : C → C0 := L/Γ(X,u) and an injective
holomorphic local isometry f0 : C0 → M(g, n) with the
following properties:

(1) f = f0 ◦ φ,

(2) f(t0) = (X,u) as Riemann surfaces,

(3) for each t ∈ C, there exists At ∈ SL(2,R) such that
f(t) = (X,At ◦ u) as Riemann surfaces.
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.. Teichmüller curves and holomorphic families

Let f : C → M(g, n) be a Teichmüller curve. We can construct
a holomorphic family of Riemann surfaces (M,π,C) so that the
fiber Xt over t ∈ C is the Riemann surface f(t).
Let φ : Cφ → C be a finite unbranched holomorphic covering.
Then, f ◦ φ : Cφ → M(g, n) is also a Teichmüller curve. Let
(Mφ, πφ, Cφ) be the holomorphic family corresponding to f ◦ φ.
.
Theorem (S)
..

.

(1) Holomorphic sections of (Mφ, πφ, Cφ) do not intersect each
other. Given a base point t0 ∈ Cφ. Let (X,u) be the Veech
surface corresponding to f ◦ φ(t0). For a holomorphic
section s : Cφ → Mφ, s(t0) is a periodic point of (X,u).

(2) Let d = 3g − 3 + n. Assume that C is of type (p, k). The
number of holomorphic sections of (Mφ, πφ, Cφ) is at most

32π deg(φ)(2p− 2 + k)d2
{
2d+ 3 exp

(
5

e
d

)}
.

This bound tends to infinity as deg(φ) → ∞.
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.. Upper bounds of the numbers of holomorphic sections

Applying the main theorem, we obtain upper bounds of the
numbers of holomorphic sections which depend only on g, n and
the topological type of C.
.
Theorem (S)
..

.

Let f : C → M(g, n) be a Teichmüller curve corresponding to a
non-arithmetic Veech surface (X,u). Assume that C is a
Riemann surface of type (p, k). For any finite unramified
holomorphic covering φ : Cφ → C, the number of holomorphic
sections of (Mφ, πφ, Cφ) is at most

2−26d10 (λµ)−34
(
1

2
λ6µ6

)22d+3

.

Here, d = 3g − 3 + n, λ = 2 exp(5d/e) and µ = 2π(2p− 2 + k) .
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Outline
Motivation and problem

Results
Proof of Theorem 2

.

.
Planar Riemann surfaces

.

General uniformization theorem

.

.

.

. ..

.

.

Every Riemann surface of genus zero is conformally embedded
into the Riemann sphere Ĉ = C ∪ {∞}.

Function theory on Riemann surfaces of genus zero is
essentially part of function theory on plane domains.
The core of the theory of Riemann surfaces should be
occupied by Riemann surfaces of positive genus, or those
with handles.
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Outline
Motivation and problem

Results
Proof of Theorem 2
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.
What are the simplest nonplanar Riemann surfaces?

.

Definition

.

.

.

. ..

.

.

A once-holed torus is an open Riemann surface of genus 1
with exactly one boundary component.

"open" = "noncompact"

Once-holed tori are the simplest
among open Riemann surfaces of positive genus.
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.

.
Are there holomorphic mappings?

Let
R0 be a Riemann surface of positive genus, and
T be a once-holed torus.

.

Naive question

.

.

.

. ..

.

.

Are there "non-degenerate" holomorphic mappings T → R0
or holomorphic mappings T → R0 "preserving handles"?

What does "preserving handles" mean?
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.
Mark of handle

Let R be a Riemann surface of positive genus.

.

Definition

.

.

.

. ..

.

.

A mark of handle of R is an ordered pair χ = {a, b}
of simple loops on R such that a × b = 1.

A mark of handle specifies a handle of R.

a

b

R

Makoto Masumoto Once-Holed Tori



. . . . . .

Outline
Motivation and problem

Results
Proof of Theorem 2

.

.
Riemann surface with marked handle

.

Definition

.

.

.

. ..

.

.

A Riemann surface with marked handle is a pair Y = (R, χ),
where R is a Riemann surface of positive genus and

χ is a mark of handle of R.

Let Yj = (Rj , χj), j = 1, 2, be Riemann surfaces with marked
handle, where χj = {aj , bj}.

.

Definition

.

.

.

. ..

.

.

f : Y1 → Y2: holomorphic (resp. conformal)
⇔ (i) f : R1 → R2: holomorphic (resp. conformal)

(ii) f∗(a1) ∼ a2, f∗(b1) ∼ b2 (∼ means "free homotopy")

conformal = “holomorphic" & “injective"
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.
Problem

Fix a Riemann surface Y0 = (R0, χ0) with marked handle.

R0

.

Problem

.

.

.

. ..

.

.

Determine the set of marked once-holed tori X = (T , χ)
for which there is a holomorphic mapping X → Y0.
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Space of marked once-holed tori

Let T denote the set of marked once-holed tori,
where two marked once-holed tori are identified
if there is a conformal mapping of one onto the other.
As a set, T is the union of
the Teichmüller space of a once-punctured torus
and
the reduced Teichmüller space of a once-holed torus
that is not a once-punctured torus.
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.
Problems (revised)

Let Y0 be a Riemann surface with marked handle.

.

Definition

.

.

.

. ..

.

.

Ta[Y0] = {X ∈ T | ∃ holomorphic mapping X → Y0},
Tc[Y0] = {X ∈ T | ∃ conformal mapping X → Y0}.

"a" = "analytic", and "c" = "conformal".

.

Problems (revised)

.

.

.

. ..

.

.

Ta[Y0] =?, Tc[Y0] =?

.

Remark

.

.

.

. ..

.

.

∅ )= Tc[Y0] ⊂ Ta[Y0]
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.
Torus case

.

Example

.

.

.

. ..

.

.

If Y0 is a marked torus, then

Ta[Y0] = T

by the Behnke-Stein theorem, while

Tc[Y0] )= T.
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.
Mapping Λ : T → R3

+

.

Definition

.

.

.

. ..

.

.

For X = (T , χ) ∈ T, χ = {a, b}, define

Λ(X) = (λ1, λ2, λ3),

where λ1, λ2, λ3 are the extremal lengths of the free homotopy
classes of a, b, ab−1, respectively.

Λ defines a mapping of T into R3+, where R+ = [0, +∞).
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.
Global coordinate system on T

.

Proposition

.

.

.

. ..

.

.

The mapping Λ : T → R3+ is injective with image

Λ(T) = {ξ ∈ R3+ | Q(ξ) + 4 ! 0},

where

Q(ξ1, ξ2, ξ3) = ξ21 + ξ22 + ξ23 − 2(ξ1ξ2 + ξ2ξ3 + ξ3ξ1).

Identifying T with Λ(T), we consider T as a 3-dimensional
real analytic manifold with boundary.
The eigenspaces of the coefficient matrix of the quadratic
form Q are the line ξ1 = ξ2 = ξ3 and
the plane ξ1 + ξ2 + ξ3 = 0.
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.
Once-holed torus case

Λ : T → R3+,
Q(ξ1, ξ2, ξ3) = ξ21 + ξ22 + ξ23 − 2(ξ1ξ2 + ξ2ξ3 + ξ3ξ1).

.

Example

.

.

.

. ..

.

.

If Y0 ∈ T, then

Λ(Tc[Y0]) = {ξ ∈ R3+ | Q(ξ − ξ0) ! 0 and Q(ξ) ! Q(ξ0)},

where ξ0 = Λ(Y0).

Λ(Tc[Y0]) is a cone with vertex at ξ0.
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.
First result

Let Y0 be a Riemann surface with marked handle.

.

Theorem 1

.

.

.

. ..

.

.

The sets Ta[Y0] and Tc[Y0] are noncompact closed domains
with Lipschitz boundary, and are retracts of T.

A subset A of a topological space X is called a retract of X
if there is a continuous map r : X → A such that r(a) = a
for any a ∈ A.
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Canonical construction of marked tori

Let H be the upper half plane: H = {τ ∈ C | Im τ > 0}.
For τ ∈ H let
Pτ : the parallelogram with vertices 0, 1, τ + 1, τ ,
Tτ : the torus obtained from Pτ by identifying the opposite sides,
χτ = {aτ , bτ}, where aτ and bτ are the projections

of [0, 1] and [0, τ ].

10

τ

Pτ

aτ

bτ

Tτ
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.
Horizontal slit tori

For τ ∈ H and s ∈ [0, 1) let
T (s)
τ : the once-holed torus obtained from Tτ

by deleting a horizontal segment of length s,
χ(s)
τ : the mark of handle of T (s)

τ
induced by the embedding
T (s)
τ → Tτ .

Pτ

10

τ

s
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.
Another global coordinate system on T

Set X (s)
τ = (T (s)

τ , χ(s)
τ ) for (τ, s) ∈ H × [0, 1).

.

Proposition

.

.

.

. ..

. .

The correspondence (τ, s) ,→ X (s)
τ is a homeomorphism of

H × [0, 1) onto T.

The restrictions of the homeomorphism to H × (0, 1) and
to H × {0} are real-analytic.
The extremal length of the free homotopy class of a(s)

τ is
exactly 1/ Im τ , where χ(s)

τ = {a(s)
τ , b(s)

τ }.
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Second results

.

Theorem 2a

.

.

.

. ..

.

.

There exists λa[Y0] ∈ [0, +∞) such that:
(i) If Im τ " 1/λa[Y0], then X (s)

τ )∈ Ta[Y0] for any s ∈ [0, 1).
(ii) If Im τ < 1/λa[Y0], then X (s)

τ ∈ Ta[Y0] for some s ∈ [0, 1).

If Y0 is a marked torus, then λa[Y0] = 0.

.

Theorem 2c

.

.

.

. ..

.

.

There exists λc[Y0] ∈ (0, +∞) such that:
(i) If Im τ > 1/λc[Y0], then X (s)

τ )∈ Tc[Y0] for any s ∈ [0, 1).
(ii) If Im τ < 1/λc[Y0], then X (s)

τ ∈ Tc[Y0] for some s ∈ [0, 1).

It follows from Ta[Y0] ⊃ Tc[Y0] that λa[Y0] ! λc[Y0].
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.
Third result

Let Y0 = (R0, χ0), where χ0 = {a0, b0}.

.

Notations

.

.

.

. ..

. .

%[Y0]: the length of the hyperbolic geodesic on R0
freely homotopic to a0

If R0 is a torus, then define %[Y0] = 0.
λ[Y0]: the extremal length of the free homotopy class of a0

.

Theorem 3

.

.

.

. ..

.

.

λa[Y0] =
1
π

%[Y0], and λc[Y0] = λ[Y0].
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.
Order

.

Definition (Order)

.

.

.

. ..

.

.

For X ,X ′ ∈ T,

X . X ′ ⇔ ∃ a conformal mapping X → X ′

X . X ′ ⇔ X ∈ Tc[X ′] ⇔ Tc[X ] ⊂ Tc[X ′]

.

Proposition

.

.

.

. ..

.

.

(T, .) is an ordered set.
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.
Which torus accepts a given once-holed torus?

For X ∈ T let M(X) = {τ ∈ H | X ∈ Tc[Xτ ]},
where Xτ = (Tτ , χτ ) (the marked torus of modulus τ ).

.

Proposition (Shiba, 1987)

.

.

.

. ..

.

.

M(X) is a closed disk (or a point) in H. the moduli disk of X
If τb is the bottom point of M(X),
then X = X (s)

τb
for some s.

τb

M(X)
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.
Order-reversing isomorphism

Let D be the set of closed disks in H,
where a singleton is regarded as a closed disk of radius 0.

.

Proposition

.

.

.

. ..

. .

The correspondence X ,→ M(X) defines an order-reversing
isomorphism between the ordered sets (T, .) and (D, ⊂).

For X ,X ′ ∈ T,

X . X ′ ⇔ M(X) ⊃ M(X ′).

For any ∆ ∈ D there is X ∈ T such that M(X) = ∆.
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Essential part of the second result

Let T[Y0] = Ta[Y0] or T[Y0] = Tc[Y0].

.

Theorem 2

.

.

.

. ..

.

.

There exists t0 ∈ [0, +∞) such that:
(i) If Im τ > t0, then X (s)

τ )∈ T[Y0] for any s ∈ [0, 1).
(ii) If Im τ < t0, then X (s)

τ ∈ T[Y0] for some s ∈ [0, 1).

it0
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Proof of Theorem 2

T[Y0] = Ta[Y0] or Tc[Y0]
Set
t0 = sup{Im τ | τ ∈ H and X (s)

τ ∈ T[Y0] for some s}.
If Im τ > t0, then X (s)

τ )∈ T[Y0] for any s.

.

Observation

.

.

.

. ..

.

.

For X ,X ′ ∈ T,

(X . X ′ and X ′ ∈ T[Y0]) ⇒ X ∈ T[Y0]
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If Im τ < t0, then X (s′)
τ ′ ∈ T[Y0]

for some τ ′ and s′ with Im τ ′ > Im τ .
∃∆ ∈ D s.t. ∆ ⊃ M(X (s′)

τ ′ ) and τ is the bottom of ∆.

it0
τ

τ ′

M(X (s′)
τ ′ )

∆

Makoto Masumoto Once-Holed Tori



. . . . . .

Outline
Motivation and problem

Results
Proof of Theorem 2

.

.
Proof of Theorem 2

If Im τ < t0, then X (s′)
τ ′ ∈ T[Y0]

for some τ ′ and s′ with Im τ ′ > Im τ .
∃∆ ∈ D s.t. ∆ ⊃ M(X (s′)

τ ′ ) and τ is the bottom of ∆.
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∃∆ ∈ D s.t. ∆ ⊃ M(X (s′)

τ ′ ) and τ is the bottom of ∆.

it0
τ

τ ′

M(X (s′)
τ ′ )

∆

Makoto Masumoto Once-Holed Tori



. . . . . .

Outline
Motivation and problem

Results
Proof of Theorem 2

.

.
Proof of Theorem 2

∆ = M(X (s)
τ ) for some s.

Then M(X (s)
τ ) ⊃ M(X (s′)

τ ′ ) and hence X (s)
τ . X (s′)

τ ′ .
Since X (s′)

τ ′ ∈ T[Y0], we have X (s)
τ ∈ T[Y0].

τ
τ ′

M(X (s′)
τ ′ )

M(X (s)
τ )
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Concluding Remark

The above reasoning works for any subset T0 of T
with the property described in the observation:
For X ,X ′ ∈ T,

(X . X ′ & X ′ ∈ T0) ⇒ X ∈ T0

.

Example

.

.

.

. ..

.

.

The set of X ∈ T for which there is a holomorphic
mapping f : X → Y0 with supq #f−1(q) ! ν, where ν is
a given positive integer.
The set of X ∈ T for which there is a K -quasiconformal
mapping X → Y0, where K > 1 is fixed.

Makoto Masumoto Once-Holed Tori
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cocompactな双曲Coxeter群のgrowth rateと
2–Salem数

(Growth rates of cocompact hyperbolic Coxeter

groups and 2–Salem numbers)

　「リーマン面・不連続群論」研究集会（大阪大学）
2013年11月10日

梅本　悠莉子
（大阪市立大学大学院理学研究科　後期博士課程３年）1



1. Introduction

Rn,1 := (Rn+1, ◦), x◦y := x1y1+ · · ·+xnyn−xn+1yn+1

Hn := {x = (x1, ..., xn+1) ∈ Rn,1 |x ◦ x = −1, xn+1 > 0}

(Hn, dH) を n次元双曲空間 という。
例　H2

1

0

2



e ∈ Rn,1, e ◦ e = 1, e⊥ := {x ∈ Rn,1 |x ◦ e = 0}
⇒ e⊥ : Rn,1のn次元部分空間 (e⊥ ∩ Hn '= ∅)
H := e⊥ ∩ Hn : Hnの超平面
H− := {x ∈ Hn |x ◦ e ≤ 0} : Hnの半空間

0

1

0

e
e e =1
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P ⊂ Hn が Hnの凸多面体 であるとは、
P =

⋂m
i=1 H−

i 　かつ　(Hnの)内点を持つ　ことをいう。

H2

H1 H3

e1

e2

e3

H2

H1 H3

e1

e2

e3

1. |ei ◦ ej| < 1 ⇔ HiとHjはHn内で交わる
2. |ei ◦ ej| ≥ 1 ⇔ HiとHjはHn内で交わらない
1のとき、cos θij = −ei ◦ ejを満たすθij ∈ [0, π)を、
HiとHjのなすPの面角　という。

4



P =
⋂m

i=1 H−
i ⊂ Hn : Coxeter多面体

(つまり、すべての面角がπ

p
, p ∈ Z≥2 の凸多面体）

Pから定まる鏡映群 (双曲Coxeter群) とは、Pの面を含む超
平面に関する鏡映変換S := {s1, ..., sm}で生成されるHnの等
長変換部分群のことをいう。（ここで、si(x) := x − 2x◦ei

ei◦ei
ei）

Pがcompactなとき、cocompactな群であるという。

H2

H1

H3

e1

e2
e3

π
7

π
3

π
2

7

Coxeter   graph
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(G, S) : 群とその有限生成系
fS(t) :=

∑

k≥0
aktk : (G, S) の growth series　

ak := #{g ∈ G | gのSによる最短表示の長さがk}

τ := lim sup
k→∞

k
√

ak =
1

R
: (G, S) の growth rate

(Rは fS(t)の収束半径)

6



Coxeter群 :

G =< s1, ..., sm | s2i = id, (sisj)
mij = id if i '= j >

mij ∈ Z≥2 ∪ {∞}

Coxeter系 : (G, S)

7



2. Coxeter群のgrowth series

定理 1. [Steinberg 68]

(G, S) : 無限位数 の Coxeter群
(GT, T ) : T ⊂ Sで生成される部分群
fS(t) : (G, S)のgrowth series

fT(t) : (GT, T )のgrowth series

F = {T ⊂ S : GT は 有限位数 の部分群}
このとき，

1

fS(t−1)
=

∑

T∈F

(−1)#T

fT (t)
.

fS(t) は 有理関数 P (t)

Q(t)
の原点におけるベキ級数展開である。

growth rate τ := lim supk→∞ k
√

ak = 1
R は 実代数的整数。

8



定理 2. [Solomon 66]

(G, S) : 有限位数 の Coxeter群
fS(t) : (G, S)のgrowth series

このとき，

fS(t) =
n∏

i=1

[mi + 1].

ここで
n = #S,

[m] := 1 + t + · · · + tm−1,

1 = m1 ≤ m2 ≤ · · · ≤ mn = h − 1 : (G, S)のexponents,

h : Coxeter element sσ(1) · · · sσ(n) の位数.

9



Graph Exponents fS(t)
An≥1 1,2, · · · , n [2,3, · · · , n + 1]
Bn≥2 1,3, · · · ,2n − 1 [2,4, · · · ,2n]
Dn≥4 1,3, · · · ,2n − 3, n − 1 [2,4, · · · ,2n − 2][n]
E6 1,4,5,7,8,11 [2,5,6,8,9,12]
E7 1,5,7,9,11,13,17 [2,6,8,10,12,14,18]
E8 1,7,11,13,17,19,23,29 [2,8,12,14,18,20,24,30]
F4 1,5,7,11 [2,6,8,12]
H3 1,5,9 [2,6,10]
H4 1,11,19,29 [2,12,20,30]

I2(m) 1, m − 1 [2, m]

ここで[m] := 1 + t + · · · + tm−1, [m, n] := [m][n].1
0



双曲Coxeter群のgrowth seriesの計算例

4

4
3

有限位数の部分群 growth series number
B2 × A1 [2,4][2] 2

B2 [2,4] 3
A1 × A1 [2][2] 3

A1 [2] 4

[m] := 1 + t + · · · + tm−1

1
1



fS(t) =
∞∑

k=0
aktk =

(t + 1)2(t3 + t2 + t + 1)

(t − 1)(t2 + t + 1)(t2 + t − 1)

 1.5  1.0  0.5 0.5 1.0

 1.0

 0.5

0.5

1.0

R1

R1 : fS(t)の収束半径

1
2



3. 双曲Coxeter群のgrowth rate の数論的性質

Coxeter多面体 compact non-compact
H2 Salem 数 Pisot 数

(Cannon–Wagreich 92, Parry 93) (Floyd 92)

H3 Salem 数
(Parry 93)

H4 !2–Salem 数となる
無限系列がある(U. 13)

1
3



定義 1. αは Salem数
⇔ αは代数的整数, α > 1, 他の共役根ωは |ω| ≤ 1を満たす,

ωのうち少なくとも一つは |ω| = 1.

定義 2. αは 2-Salem数[Samet 52, Kerada 95]

⇔ αは代数的整数, |α| > 1, 他の共役根βで|β| > 1を満たすも
のがただ一つ, その他の共役根ωはすべて |ω| ≤ 1を満たす, ω

のうち少なくとも一つは |ω| = 1.

!1.0 !0.5 0.5 1.0

!1.0

!0.5

0.5

1.0

!1.0 !0.5 0.5 1.0 1.5 2.0 2.5

!1.0

!0.5

0.5

1.0

1
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例 1 H2のcompactなCoxeter三角形

7

fS(t) =
(t + 1)2(t2 + t + 1)(t6 + t5 + t4 + t3 + t2 + t + 1)

t10 + t9 − t7 − t6 − t5 − t4 − t3 + t + 1
.

例 2 H4のcompactなCoxeter多面体

5
5

5

fS(t) =
(t + 1)4(t2 − t + 1)(t2 + t + 1)(t4 − t3 + t2 − t + 1)(t4 + t3 + t2 + t + 1)

t16 − 4t15 + t14 + t12 + t11 + 2t9 + 2t7 + t5 + t4 + t2 − 4t + 1
.1

5



主結果 [U. 13 (to appear in Algebraic & Geometric Topology)]

T ⊂ H4 : 下のCoxeterグラフで表されるcompactなCox-

eter 多面体 [Vinberg 85, Schlettwein 95]

T(,m,n ⊂ H4 : n + 1個のTをorthogonal facet A で(回、
Bでm回、Cでn − ( − m回貼り合わせてできたcompactな
Coxeter多面体
このとき, n ≡ 1 (mod 3)ならば, T0,n,n, Tn,0,nで定まる
鏡映群の growth rate τ0,n,n, τn,0,n は 2–Salem 数.

5

5

5

5

A

A

B

B

C
5

5 5

5

1
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例　(l, m, n) = (1,2,4)

AB
C

B

B A

A
C

C

C

B
B

B

B

B

A

A A

A A

C

B

B A

A

AB

C

B B
A

A
C

C
B
B

B

A

A A
B

B

A

B B

A C

A

C

A

T(,m,nに関するgrowth function W(,m,n(t)は次で与えられる
（[T. Zehrt–C. Zehrt 12]の系）:

1

W",m,n(t)
=

n + 1

W (t)
+

t − 1

t + 1

(
"

A(t)
+

m

B(t)
+

n − " − m

C(t)

)
.1

7



定理 3. [T. Zehrt–C. Zehrt 12]

P1, P2 ⊂ Hn : 2つのCoxeter 多面体. orthogonal facet F

を持つ.

W1(t), W2(t), F (t) : P1, P2, Fに関するgrowth function

このとき、P1とP2をFで張り合わせることにより得られるCox-

eter多面体から定まる鏡映群のgrowth function W (t)は以
下で与えられる:

1

W (t)
=

1

W1(t)
+

1

W2(t)
+

t − 1

t + 1

1

F (t)
.

P P

F

1 2

1
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実際、W(,m,n(t) =
P(,m,n(t)

Q(,m,n(t)
は、

P(,m,n(t) = (t + 1)4(t2 + 1)(t2 − t + 1)(t2 + t + 1)

(t4 + t3 + t2 + t + 1)(t4 − t3 + t2 − t + 1)

Q(,m,n(t) = t18 − (4n + 6)t17 + (2n − m + 3)t16

− (3n − m + ( + 5)t15 + (5n − 3m + 5)t14

− (n − 4m + 1)t13 + (8n − 4m + ( + 9)t12 + (5m − ()t11

+ (10n − 5m + ( + 11)t10 − (2n − 6m + 2)t9

+ (10n − 5m + ( + 11)t8 + (5m − ()t7

+ (8n − 4m + ( + 9)t6 − (n − 4m + 1)t5 + (5n − 3m + 5)t4

− (3n − m + ( + 5)t3 + (2n − m + 3)t2 − (4n + 6)t + 1.

1
9



主結果の証明
Step 1 : Q(,m,n(t)は、単位円周上に14個の複素根、
正の実軸上に4個の実根を持つことを示す。

!1 1 2 3 4 5

!1.0

!0.5

0.5

1.0

K(,m,n(t) := (t + i)18Q(,m,n

(
t − i

t + i

)

, u := t2 とすると
K(,m,m(u)は正の実根を７個、負の実根を2個持つ。
⇔ Q(,m,n(t) は 単位円周上に14個の根、実軸上に4個の実根
を持つ。（[Kempner 35, T. Zehrt–C. Zehrt 12]の系）

2
0



K(,m,n(u) = 4{(8n+8)u9+(147n+45m+30(+207)u8−
(3068n+360m+160(+3148)u7+(11256n+364m−
184( + 7208)u6 − (10124n − 616m − 480( − 6724)u5 −
(7162n+722m−532(+32018)u4 +(12268n+40m−
96( + 27964)u3 − (4608n − 428m + 120( + 8528)u2 +

(532n− 168m +32( +836)u− (17n− 13m +2( +21)}

u −41 −31 0 1/10 1/3 1/2 1 2 3 9
sign(K(,m,n(u)) − + − + − + − + − +
例えば、

1

4
K(,m,n(0) = −21 − 2( + 13m − 17n

≤ −21 − 2( + 13n − 17n

= −21 − 2( − 4n < 0

2
1



Step 2 : Q0,n,n(t), Qn,0,n(t)のZ上既約性を示す。
1. Q(,m,n(t)は、既約でないならば、二つの偶数次のpalin-

dromic polynomialの積で表される。つまり、
(2次)(16次), (4次)(14次), (6次)(12次), (8次)(10次) の
パターンしかない。
2. Q(,m,n(t)は既約でないと仮定して、矛盾を導く。

2
2



Step 2

2. Q(,m,n(t)は既約でないと仮定して、矛盾を導く。
Q(,m,n(t) = (1 + at + bt2 + at3 + t4)(1 +

∑7
k=1 cktk +

∑6
k=1 c7−ktk+7 + t14), a, b, ck ∈ Z
と仮定。






c1 = −a + (−6 − 4n)
c2 = −ac1 − b + (3 − m + 2n)
c3 = −ac2 − bc1 − a + (−5 − ( + m − 3n)
c4 = −ac3 − bc2 − ac1 − 1 + (5 − 3m + 5n)
c5 = −ac4 − bc3 − ac2 − c1 + (−1 + 4m − n)
c6 = −ac5 − bc4 − ac3 − c2 + (9 + ( − 4m + 8n)
c7 = −ac6 − bc5 − ac4 − c3 + (−( + 5m)
c6 = −ac7 − bc6 − ac5 − c4 + (11 + ( − 5m + 10n)
c5 = −ac6 − bc7 − ac6 − c5 + (−2 + 6m − 2n)

2
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f(,m,n(a, b) := −1− a8− b4−m+ a7(−6−4n)+ b2(1+2m−3n)+
a6(−8+7b+m−2n)+b((+m−n)+n+b3(2−m+2n)+a4(−11−
15b2 +6m−11n+ b(30−5m+10n))+ a(15+2(+2m+ b(−46−
8m−30n)+ b2(−15−3(+3m−9n)+9n+ b3(24+16n))+a2(2+
10b3 − ( + 3m + b2(−24 + 6m − 12n)− 5n + b(9− 12m + 21n)) +
a5(−29− (+m−19n+ b(36+24n))+a3(13−2(+6m+ b2(−60−
40n) + 9n + b(68 + 4( − 4m + 44n))
= 0,

g(,m,n(a, b) := 12+a7(2− b)+2m+ b2(−23−4m−15n)+ b3(−5−
( + m− 3n)+ 8n + b4(6+4n)+ a5(12+6b2 − 2m + b(−18+ m−
2n) + 4n) + a6(12 + b(−6 − 4n) + 8n) + b(15 + 2( + 2m + 9n) +
a3(6 − 10b3 − 8m + b(−35 + 12m − 23n) + 14n + b2(36 − 4m +
8n)) + a(4b4 + 2( + 2m + b(4 − ( + 7m − 11n) + b3(−14 + 3m −
6n)− 2n + b2(10− 10m + 18n)) + a4(34 + 2( − 2m + b(−77− ( +
m−51n)+22n+ b2(30+20n))+a2(−46−8m+ b3(−36−24n)+
b(−7 − 6( + 10m − 3n) − 30n + b2(87 + 3( − 3m + 57n))
= 0.

2
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(a, b) mod 3

(a, b) f0,n,n(a, b) g0,n,n(a, b)
(0,0) −1 不可能
(1,0) 1 − n −(1 + n) 不可能
(−1,0) 0 1 + n n ≡ −1のときのみ可能
(0,1) 1 不可能
(0,−1) n n n ≡ 0のときのみ可能
(1,1) 0 1 + n n ≡ −1のときのみ可能
(−1,1) 0 −n n ≡ 0のときのみ可能
(1,−1) −1 不可能
(−1,−1) 0 n n ≡ 0のときのみ可能

よって、n ≡ 1 (mod 3)のとき、方程式f0,n,n(a, b) = g0,n,n(a, b) =

0を満たす整数の組(a, b)は存在せず、矛盾。

2
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5

5





1 − cos π
5 0 −1

2 0
− cos π

5 1 −1
2 0 −1

2
0 −1

2 1 − cos π
5 0

−1
2 0 − cos π

5 1 −1
2

0 −1
2 0 −1

2 1





∼





λ1 0 0
0 λ2

λ3
λ4 0

0 0 λ5





λ1, ..., λ4 > 0, λ5 < 0 (sigG = (4, 1) とかく)

⇒ H4のCoxeter多面体

2
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Coxeter多面体 P ⊂ H4 の truncation (compact化)

5

5

5

5

v1

v3vv

v2

v5

v4

F1

F2
F3

F4

F5

2
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Introduction

Let X be a Riemann surfaces of type (g, n) with 3g − 3 + n > 0
and T (X) be the Teichmüller space of X.

.

Problem

.

.

.

. ..

.

.

Let r(t), r′(t) be Teichmüller geodesic rays on T (X). Two rays
r(t), r′(t) are asymptotic if there is a choice of base points
r(0), r′(0) so that

lim
t→∞

dT (X)(r(t), r
′(t)) = 0.

We want conditions that r(t), r′(t) are asymptotic.
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Introduction

First, we express the main theorem. We will recall the
definitions of terms after.
Let r = r(t), r′ = r′(t) be Jenkins-Strebel rays on T (X) starting
at p = [Y, f ], p′ = [Y ′, f ′] and having unit norm Jenkins-Strebel
differentials q, q′ on Y , Y ′ respectively. We denote by r(∞),
r′(∞) the end points of r, r′ on the augmented Teichmüller
space T̂ (X) respectively.
We suppose that r, r′ are similar, i.e., the Jenkins-Strebel
differentials q, q′ determine annuli which are generated by
homotopy classes of simple closed curves f(γ1), · · · , f(γk),
f ′(γ1), · · · , f ′(γk) respectively, where γ1, · · · , γk are distinct and
non-intersecting simple closed curves on X. Let mj , m′

j be the
corresponding moduli respectively for any j = 1, · · · , k.

3 / 41



. . . . . .

. . . . . . . . . . . . . . . . .

Introduction

. . . . . . . . . . . . . . . . . . . . . . .

Main results References

Introduction

.

Theorem 1 ([Ama13])

.

.

.

. ..

.

.

If r(∞) = r′(∞), then

lim
t→∞

dT (X)(r(t), r
′(t)) =

1

2
log max

j=1,··· ,k

{
m′

j

mj
,
mj

m′
j

}
.

.

Corollary 2 ([Ama13])

.

.

.

. ..

.

.

For any two Jenkins-Strebel rays r, r′, they are asymptotic if
and only if r, r′ are modularly equivalent and r(∞) = r′(∞).

Farb and Masur showed the same result in the moduli space.
[FM10]
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Teichmüller space

Let X be a Riemann surface of type (g, n) with 3g − 3 + n > 0.

.

Definition (Teichmüller spaces)

.

.

.

. ..

.

.

T (X) := {(Y, f) | Y : a Riemann surface, f : X → Y : a
qc-mapping }/ ∼,

(Y1, f1) ∼ (Y2, f2) :⇔ There exists a conformal mapping
h : Y1 → Y2 which is homotopic to f2 ◦ f−1

1 .
We call T (X) the Teichmüller space of X and denote by
[Y, f ] the equivalence class of a pair (Y, f).
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Teichmüller space

.

Definition (The Teichmüller distance)

.

.

.

. ..

.

.

The Teichmüller distance dT (X) is a complete distance on
T (X). This is defined the following formula. For any
p1 = [Y1, f1], p2 = [Y2, f2] ∈ T (X),

dT (X)(p1, p2) :=
1

2
log inf

h
K(h),

where the infimum is taken over all qc-mappings h : Y1 → Y2
homotopic to f2 ◦ f−1

1 and K(h) means the maximal dilatation
of h.
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Quadratic differentials

.

Definition (Quadratic differentials)

.

.

.

. ..

.

.

A holomorphic quadratic differential q on X is represented
locally by q = q(z)dz2 where q(z) is a holomorphic function of
the local coordinate z = x+ iy on X. We allow holomorphic
quadratic differentials to have simple poles at the punctures of
X, then ‖q‖ :=

∫∫
X |q(z)|dxdy < ∞. We call that q is of unit

norm if ‖q‖ = 1.

.

Definition (q-coordinates)

.

.

.

. ..

.

.

A critical point of q )= 0 is a zero of q or a puncture of X. A
q-coordinate ζ on X is a local coordinate on X − {critical
points of q} such that q = dζ2. For any two q-coordinates ζ1, ζ2
in a common neighborhood U , the equation ζ2 = ±ζ1 + c where
c ∈ C holds, because q = dζ21 = dζ22 .
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Quadratic differentials

.

Definition (trajectories)

.

.

.

. ..

.

.

A horizontal trajectory of q is a maximal smooth path
z = γ(t) on X which satisfies q(γ(t))γ̇(t)2 > 0. A critical
trajectory joins critical points of q. Let Γq be the set of all
critical points and critical trajectories of q. For any component
of X − Γq, there are the following two cases.

.

.

.

1 annulus: it is swept out by closed trajectories of q such
that they are homotopic to each other. In this case, we call
the homotopy class of the closed trajectory the core curve
of the annulus.

.

.

.

2 minimal domain: it consists of infinitely many recurrent
trajectories of q.

A quadratic differential q has finitely many critical points, then
q has finitely many these domains.
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Quadratic differentials

If all components of X − Γq are annuli, we call q a
Jenkins-Strebel differential (J-S differential). In this case,
the core curves which are determined by q are distinct and
non-intersecting each other. After this, we treat only J-S
differentials.

.

Definition (moduli of annuli)

.

.

.

. ..

.

.

For any J-S differential q, it generates finitely many annulus
{Aj}j=1,··· ,k. Each annulus is conformally equivalent to the
cylinder Cj which has the circumference aj and the height bj for
any j = 1, · · · , k. We set the modulus of the annulus Aj as

mj =
bj
aj
.
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Teichmüller geodesic rays

.

Definition (Teichmüller geodesic rays)

.

.

.

. ..

.

.

Let p = [Y, f ] ∈ T (X), q be a unit norm quadratic differential
on Y . For any t ∈ [0,∞), we define the qc-mapping gt : Y → Yt
by z = x+ iy *→ zt = e−tx+ iety and set Y0 = Y where z is the
q-coordinate. The mapping r : [0,∞) → T (X) which is defined
by

r(t) := [Yt, gt ◦ f ]
satisfies dT (X)(r(t), r(s)) = |t− s| for any t, s ∈ [0,∞). We call r
the Teichmüller geodesic ray on T (X) starting at p and
having q. If q is J-S, we call r the Jenkins-Strebel ray (J-S
ray).

Now, let r, r′ be two Teichmüller geodesic rays on T (X)
starting at p = [Y, f ], p′ = [Y ′, f ′] and having unit norm J-S
differentials q, q′ respectively.
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Teichmüller geodesic rays

.

Definition (J-S rays are similar)

.

.

.

. ..

.

.

J-S rays r, r′ are called similar if there are distinct and
non-intersecting homotopy classes of simple closed curves
γ1, · · · , γk on X such that q, q′ have the core curves of annulus
whose forms are f(γ1), · · · , f(γk) on Y and f ′(γ1), · · · , f ′(γk)
on Y ′ respectively.

.

Definition (Modularly equivalent)

.

.

.

. ..

.

.

In this situation, the given rays r, r′ are called modularly
equivalent if there is λ > 0 such that m′

j = λmj for any
j = 1, · · · , k.
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Teichmüller geodesic rays

.

Definition (Asymptoticity)

.

.

.

. ..

.

.

We call that r, r′ are asymptotic if there is a choice of initial
points r(0), r′(0) such that dT (X)(r(t), r

′(t)) → 0 as t → ∞, in
other words, for the given rays r(t), r′(t), there is α ∈ R such
that dT (X)(r(t), r

′(t+ α)) → 0 as t → ∞.
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The end point of a J-S ray

.

Definition (Riemann surfaces with nodes)

.

.

.

. ..

.

.

A connected Hausdorff space R is called a Riemann surface
of type (g, n) with nodes if R satisfies the following two
conditions:

.

.
.

1 Any p ∈ R has a neighborhood which is homeomorphic to
the unit disk D or the set
{(z1, z2) ∈ C2 | |z1| < 1, |z2| < 1, z1 · z2 = 0}. (In the latter
case, p is called a node of R. We allow R to have finitely
many nodes.)

.

.

.

2 Any component of R− {nodes of R} is a hyperbolic
Riemann surface, and we get a Riemann surface of type
(g, n) without nodes by opening each node of R.
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The end point of a J-S ray

.

Definition (Augmented Teichmüller spaces)

.

.

.

. ..

.

.

Let X be a Riemann surface of type (g, n) without nodes
which satisfies 3g − 3 + n > 0. We define the augmented
Teichmüller space of X as follows.

T̂ (X) := {(R, f) | R : a Riemann surface of type (g, n) with or
without nodes, f : X → R : a deformation }/ ∼,

where the “deformation” is a mapping such that it contracts
some disjoint loops on X to points (the nodes of R) and is a
homeomorphism except on the loops. (R1, f1) ∼ (R2, f2) :⇔
There is a biholomorphic mapping h : R1 → R2 such that f2 is
homotopic to h ◦ f1.

14 / 41



. . . . . .

. . . . . . . . . . . . . . . . .

Introduction

. . . . . . . . . . . . . . . . . . . . . . .

Main results References

The end point of a J-S ray

A homeomorphism h : R1 → R2 is called biholomorphic if each
restricted mapping of h which maps a component of
R1 − {nodes of R1} onto a component of R2 − {nodes of R2} is
biholomorphic. A topology on T̂ (X) is defined by the following
neighborhoods.

.

Definition (The neighborhood of a point on T̂ (X))

.

.

.

. ..

.

.

For any compact neighborhood V of the set of nodes in R and
any ε > 0, a neighborhood UV,ε of a point [R, f ] is defined by

UV,ε := {[S, g] ∈ T̂ (X) | there is a deformation h : S → R which
is (1 + ε)-quasiconformal on h−1(R− V ) such that f is

homotopic to h ◦ g}.
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The end point of a J-S ray

We consider the end point of a Jenkins-Strebel ray r starting at
r(0) = [Y, f ] and having unit norm J-S differential q. First, we
see that cylinders {Cj(0)}j=1,··· ,k which are determined by
q-coordinates on Y . Each Cj(0) is transformed to Aj(0) which
is the pair of two ring domains {e−mjπ ≤ |z| < 1} with the
gluing, for any j = 1, · · · , k.
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The end point of a J-S ray

The Teichmüller mapping gt : Y → Yt is represent to the form
z = reiθ *→ re

2t
eiθin Al

j(0) for any l = 1, 2. We set the mapping

g∞ : Y → Y∞ which maps Al
j(0) onto D = Al

j(∞) ∪ {pt} by

z = reiθ *→ hj(r)eiθ, where hj : [exp(−mjπ), 1) → [0, 1) is an
arbitrary monotone increasing diffeomorphism.
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The end point of a J-S ray

The Riemann surface with nodes Y∞ is constructed by these
disks {Al

j(∞) ∪ {pt}}l=1,2
j=1,··· ,k with the gluing, and we denote

[Y∞, g∞ ◦ f ] by r(∞).

.

Theorem (cf. [HS07])

.

.

.

. ..

.

.

The Jenkins-Strebel ray r(t) = [Yt, gt ◦ f ] converges to a point
r(∞) = [Y∞, g∞ ◦ f ] in T̂ (X).
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Theorem 1

Let r, r′ be two Jenkins-Strebel rays and we suppose that the
rays are similar. We show the following.

.

Theorem 1 ([Ama13])

.

.

.

. ..

. .

If r(∞) = r′(∞), then

lim
t→∞

dT (X)(r(t), r
′(t)) =

1

2
log max

j=1,··· ,k

{
m′

j

mj
,
mj

m′
j

}
.
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Upper estimate

First, we show that

lim sup
t→∞

dT (X)(r(t), r
′(t)) ≤ 1

2
log max

j=1,··· ,k

{
m′

j

mj
,
mj

m′
j

}
.

.

Lemma

.

.

.

. ..

. .

Let us choose 0 < ε < 1 arbitrary. Then, for any sufficiently
large t, there is a quasiconformal mapping Ft : Yt → Y ′

t which is
homotopic to (g′t ◦ f ′) ◦ (gt ◦ f)−1 such that the inequality

lim
t→∞

K(Ft) < max
j=1,··· ,k

{
m′

j

mj
,
mj

m′
j

}
+ ε holds.

Since r, r′ are similar, we notice that
(g′t ◦ f ′) ◦ (gt ◦ f)−1(Aj(t)) ∼ A′

j(t) on Y ′
t for any 0 ≤ t ≤ ∞.
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Upper estimate

Proof.
We set Mj =

m′
j

mj
for any j = 1, · · · , k. By r(∞) = r′(∞), there

exists a biholomorphic mapping h : Y∞ → Y ′
∞ such that

h ◦ g∞ ◦ f is homotopic to g′∞ ◦ f ′. We can write

Y∞ =
k⋃

j=1

A1
j (∞) ∪A2

j (∞),

Y ′
∞ =

k⋃

j=1

A
′1
j (∞) ∪A

′2
j (∞),

where Al
j(∞), A

′l
j (∞) are the punctured disks

D∗ = {z ∈ C | 0 < |z| < 1} for any j = 1, · · · , k and l = 1, 2.
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Upper estimate

Now, we fix any j = 1, · · · , k and l = 1, 2. We set
hlj = h|Al

j(∞) : A
l
j(∞) → h(Al

j(∞)) ⊂ Y ′
∞. Since h is a

biholomorphic mapping, then we can set hlj(0) = 0 and
dhl

j(z)

dz

∣∣
z=0

)= 0. We describe

hlj(z) = cljz + clj,2z
2 + · · · = cljz + ψl

j(z) where clj )= 0,

−π < arg c1j ≤ π and −π ≤ arg c2j < π.
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Upper estimate

We set δj(t) = exp(−e2tmjπ), δ′j(t) = exp(−e2tm′
jπ), for any

t ≥ 0. Then δ′j(t) = δj(t)Mj . After this, we assume that

Al
j(t) = D∗ − Dδj(t) = {z ∈ C | δj(t) ≤ |z| < 1} and

A
′l
j (t) = D∗ − Dδ′j(t)

= {z ∈ C | δ′j(t) ≤ |z| < 1} for any t ≥ 0.

The Riemann surfaces Yt, Y ′
t are constructed by the domains

{Al
j(t)}

l=1,2
j=1,··· ,k, {A

′l
j (t)}

l=1,2
j=1,··· ,k with the gluing respectively.

To obtain the mapping Ft : Yt → Y ′
t , for sufficiently large

t, we construct a quasiconformal mapping
F l
j,t : A

l
j(t) → h(Al

j(t)).
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Upper estimate

We consider the following three cases (1), (2) and (3).
(1) In the case of Mj > 1, we take Xj as

Xj <
log ε

Mj+ε−1

logMj
< 0 ⇔ M

Xj

j <
ε

Mj + ε− 1
< 1

⇔
Mj −M

Xj

j

1−M
Xj

j

< Mj + ε.

We take sufficiently large t such that the inequality

δj(t)Mj < |clj |δj(t)
M

Xj
j holds. We set ∆j(t) = δj(t)

M
Xj
j . We

construct F l
j,t by the following:

F l
j,t(z) =






P l
j,t(z) (δj(t) ≤ |z| ≤ ∆j(t)) (i)

Ql
j,t(z) (∆j(t) ≤ |z| ≤ 2∆j(t)) (ii)

hlj(z) (2∆j(t) ≤ |z| < 1) (iii)
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Upper estimate
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Upper estimate

(i) In δj(t) ≤ |z| ≤ ∆j(t), we set

P l
j,t(z) = ∆j(t)

1−Mj

1−M
Xj
j · clj

1

1−M
Xj
j

+ log |z|
log∆j(t)−log δj(t)

· |z|
−

1−Mj

1−M
Xj
j · z

which satisfies P l
j,t(z) = δj(t)Mj−1 · z on |z| = δj(t), P l

j,t(z) = cljz
on |z| = ∆j(t).
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Upper estimate

The mapping P l
j,t is conjugate to a one-to-one affine mapping

by log z. Then, P l
j,t is a qc-mapping, and its dilatation is the

following:

K(P l
j,t) =

∣∣∣∣
log clj

2(M
Xj
j −1) log δj(t)

+ αj

2 + 1

∣∣∣∣+
∣∣∣∣

log clj

2(M
Xj
j −1) log δj(t)

+ αj

2

∣∣∣∣
∣∣∣∣

log clj

2(M
Xj
j −1) log δj(t)

+ αj

2 + 1

∣∣∣∣−
∣∣∣∣

log clj

2(M
Xj
j −1) log δj(t)

+ αj

2

∣∣∣∣
,

where αj = − 1−Mj

1−M
Xj

j

. We see that (M
Xj

j − 1) log δj(t) → +∞

and

K(P l
j,t) →

Mj −M
Xj

j

1−M
Xj

j

< Mj + ε

as t → ∞.
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Upper estimate

(ii) In ∆j(t) ≤ |z| ≤ 2∆j(t), we set

Ql
j,t(z) = cljz + φ∆j(t)(|z|)ψl

j(z),

where φ∆j(t) : [∆j(t), 2∆j(t)] → [0, 1] is defined by

φ∆j(t)(|z|) =
|z|

∆j(t)
− 1.

This function satisfies Ql
j,t(z) = cljz on |z| = ∆j(t),

Ql
j,t(z) = hlj(z) on |z| = 2∆j(t).
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Upper estimate

We consider the partial derivatives of Ql
j,t,

∂z̄Q
l
j,t =

1

2∆j(t)
z

1
2 z̄−

1
2ψl

j(z),

∂zQ
l
j,t = clj +

1

2∆j(t)
z−

1
2 z̄

1
2ψl

j(z) + φ∆(t)(|z|)
dψl

j(z)

dz
.

These partial derivatives are continuous in the domain. There is
C > 0 such that |ψl

j(z)| ≤ C∆j(t)2 for sufficiently large t. We
see that∣∣∣∣

1

2∆j(t)
z

1
2 z̄−

1
2ψl

j(z)

∣∣∣∣ =

∣∣∣∣
1

2∆j(t)
z−

1
2 z̄

1
2ψl

j(z)

∣∣∣∣

=
|ψl

j(z)|
2∆j(t)

≤ C∆j(t)

2
→ 0

as t → ∞. Then, |∂z̄Ql
j,t| → 0, |∂zQl

j,t| → |clj | )= 0 as t → ∞.

For sufficiently large t, JacQl
j,t = |∂zQl

j,t|2 − |∂z̄Ql
j,t|2 )= 0.

Hence, Ql
j,t is a local C1-diffeomorphism.
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Upper estimate

In fact, Ql
j,t is a C1-diffeomorphism. By the derivatives of Ql

j,t,
for sufficiently large t, it is a quasiconformal mapping such that
its dilatation holds K(Ql

j,t) → 1 as t → ∞.

(iii) In 2∆j(t) ≤ |z| < 1, F l
j,t(z) = hlj(z) and K(hlj) = 1.

Therefore, for sufficiently large t, we obtain the quasiconformal
mapping F l

j,t such that

K(F l
j,t) = max{K(P l

j,t),K(Ql
j,t)} →

Mj −M
Xj

j

1−M
Xj

j

< Mj + ε

as t → ∞.
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Upper estimate

(2) In the case of Mj < 1, we take Xj as

Xj >

log Mjε
1

Mj
−1+ε

logMj
> 2 ⇔ M

Xj

j <
Mjε

1
Mj

− 1 + ε
< M2

j

⇔
1−M

Xj

j

Mj −M
Xj

j

<
1

Mj
+ ε.

We take sufficiently large t such that the inequality

δj(t)Mj < |clj |δj(t)
M

Xj
j holds. We also set ∆j(t) = δj(t)

M
Xj
j , and

also construct F l
j,t following.

F l
j,t(z) =






P l
j,t(z) (δj(t) ≤ |z| ≤ ∆j(t))

Ql
j,t(z) (∆j(t) ≤ |z| ≤ 2∆j(t))

hlj(z) (2∆j(t) ≤ |z| < 1)
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Upper estimate

The functions P l
j,t, Q

l
j,t have the same notations as in the case

of (1). The difference is only the dilatation of P l
j,t. In this case,

K(P l
j,t) →

1−M
Xj

j

Mj −M
Xj

j

<
1

Mj
+ ε

as t → ∞. Similarly as in the case of (1), for sufficiently large t,
we obtain the quasiconformal mapping F l

j,t such that

K(F l
j,t) = max{K(P l

j,t),K(Ql
j,t)} →

1−M
Xj

j

Mj −M
Xj

j

<
1

Mj
+ ε

as t → ∞.
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Upper estimate

(3) In the case of Mj = 1, we take sufficiently large t such that

the inequality δj(t) < |clj |δj(t)
1
2 holds and set ∆j(t) = δj(t)

1
2 .

We set

F l
j,t(z) =






P l
j,t(z) = clj

2

(
1− log |z|

log δj(t)

)

z (δj(t) ≤ |z| ≤ ∆j(t))
Ql

j,t(z) (∆j(t) ≤ |z| ≤ 2∆j(t))
hlj(z) (2∆j(t) ≤ |z| < 1)

The function Ql
j,t is constructed similarly as in the case of (1).

In this time, K(P l
j,t) → 1 as t → ∞. The function Ql

j,t also

satisfying K(Ql
j,t) → 1 as t → ∞. Therefore, for sufficiently

large t, K(F l
j,t) = max{K(P l

j,t),K(Ql
j,t)} → 1 as t → ∞.
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Upper estimate

Now, we can construct the quasiconformal mapping
Ft : Yt → Y ′

t by gluing {F l
j,t}

l=1,2
j=1,··· ,k. For any mapping F l

j,t, we
can confirm the following.

.

. .
1 Each hlj is homotopic to (g′t ◦ f ′) ◦ (gt ◦ f)−1 on

{2∆j(t) < |z| < 1}, since the mappings gt, g′t stretch the
ring domains Al

j(0), A
′l
j (0) along radial directions for any

0 ≤ t ≤ ∞.

.

.

.

2 Each Ql
j,t satisfies K(Ql

j,t) → 1 as t → ∞ and the domain
{∆j(t) < |z| < 2∆j(t)} has the constant modulus for any t.
There is not a twist in this domain.

.

.

.

3 Each P l
j,t produces the twist of angle arg clj in the domain

{δj(t) < |z| < ∆j(t)} and satisfies | arg c1j + arg c2j | < 2π,

after the gluing of A1
j (t) and A2

j (t).

Therefore, for sufficiently large t, the mapping Ft do not
happen the Dehn twists on {δj(t) < |z| < 2∆j(t)} and is
homotopic to (g′t ◦ f ′) ◦ (gt ◦ f)−1.

34 / 41



. . . . . .

. . . . . . . . . . . . . . . . .

Introduction

. . . . . . . . . . . . . . . . . . . . . . .

Main results References

Upper estimate

We conclude that

lim
t→∞

K(Ft) = lim
t→∞

max
j=1,··· ,k,l=1,2

K(F l
j,t) < max

j=1,··· ,k

{
Mj ,

1

Mj

}
+ ε.

Therefore, by this lemma, for any sufficiently large t, the
inequality

lim sup
t→∞

dT (X)(r(t), r
′(t)) ≤ lim

t→∞

1

2
logK(Ft) <

1

2
log

(
max

j=1,··· ,k

{
m′

j

mj
,
mj

m′
j

}
+ ε

)

holds. Since ε is arbitrary, we are done.
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Lower estimate

The inequality

lim inf
t→∞

dT (X)(r(t), r
′(t)) ≥ 1

2
log max

j=1,··· ,k

{
m′

j

mj
,
mj

m′
j

}
(1)

is obtained by the result of Walsh [Wal12] and an easy
calculation.

.

Remark

.

.

.

. ..

.

.

In Walsh’s theorem, even if r(∞) )= r′(∞), the same inequality
(1) also holds. Moreover, if r, r′ are not similar, then

lim inf
t→∞

dT (X)(r(t), r
′(t)) = +∞.
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Corollary 2

.

Corollary 2 ([Ama13])

.

.

.

. ..

.

.

For any two Jenkins-Strebel rays r, r′, they are asymptotic if
and only if r, r′ are modularly equivalent and r(∞) = r′(∞).

Proof.
Under the assumption of Theorem 1, if in addition the given
rays r, r′ are modularly equivalent, there is λ > 0 such that
m′

j = λmj for any j = 1, · · · , k. Then, for α = −1
2 log λ,

lim
t→∞

dT (X)(r(t), r
′(t+ α)) =

1

2
log max

j=1··· ,k

{
e2αm′

j

mj
,

mj

e2αm′
j

}

=
1

2
log 1 = 0.

This means that the rays r, r′ are asymptotic.
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Corollary 2

Conversely, if the rays r, r′ are asymptotic, we can assume that
limt→∞ dT (X)(r(t), r

′(t)) = 0 without loss of generality. The
rays are similar and satisfy m′

j = mj for any j = 1, · · · , k by the
previous remark and the inequality (1). Finally, we can obtain
the equation r(∞) = r′(∞). Indeed, for sufficiently large t, r(t)
is contained an arbitrary neighborhood of r′(∞).
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Corollary 2

.

Remark

.

.

.

. ..

.

.

Under the assumption of Theorem 1, the minimum of the limit
value of the distance between the given rays r(t), r′(t) when we
shift the initial points r(0), r′(0) is given by

δ :=
1

2

(
1

2
log max

j=1,··· ,k

m′
j

mj
+

1

2
log max

j=1,··· ,k

mj

m′
j

)
.

We notice that δ = 0 if and only if r, r′ are modularly
equivalent.

By Theorem 1, we see that

lim
t→∞

dT (X)(r(t), r
′(t)) =

1

2
log max

j=1,··· ,k

{
m′

j

mj
,
mj

m′
j

}

≥ δ.
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Corollary 2

Proof.
The equality holds if we set

β =
1

4
log

max
j=1,··· ,k

mj

m′
j

max
j=1,··· ,k

m′
j

mj

and consider the rays r(t), r′(t+ β). In this situation, we
compute that

max
j=1,··· ,k

e2βm′
j

mj
= max

j=1,··· ,k






√
max

j=1,··· ,k

mj

m′
j

·m′
j

√

max
j=1,··· ,k

m′
j

mj
·mj






=

√

max
j=1,··· ,k

m′
j

mj
·
√

max
j=1,··· ,k

mj

m′
j

= max
j=1,··· ,k

mj

e2βm′
j

.
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Corollary 2

Therefore, we conclude that

lim
t→∞

dT (X)(r(t), r
′(t+ β))

=
1

2
log max

j=1,··· ,k

{
e2βm′

j

mj
,

mj

e2βm′
j

}

=
1

2

(
1

2
log max

j=1,··· ,k

m′
j

mj
+

1

2
log max

j=1,··· ,k

mj

m′
j

)

= δ.
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Background

Uniformisation Theorem

The universal covering space �X of an arbitrary Riemann surface X is homeomorphic, by a
conformal mapping ϕ, to either the Riemann sphere Ĉ, the complex plane C or the unit disk D,
and the fundamental group Π1(X) has a representation as a group G of conformal
homeomorphisms of ϕ(�X).

Aims

describe the once-punctured annulus in several different ways and give the connections

between them

consider the asymptotic behavior when the puncture is tending to the boundaries, or a

boundary is shrinking to a point
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Preliminary

For a hyperbolic surface X, we choose the universal covering space �X to be the upper

half plane H or the unit disk D.

We identify a Möbius transformation

φ(z) =
az + b

cz + d
, ad − bc = 1, a, b, c, d ∈ C,

with the 2 × 2 complex matrix ±



a b

c d


 ∈ PSL(2,C) which is also denoted by φ, and

define the trace of φ by tr φ = ±(a + d), so that (tr φ)2 = (a + d)
2

is a conjugacy invariant.

If φ is hyperbolic, the translation length of φ is defined by T(φ) = infz∈H δH(z, φ(z)) and it

is known that 2 cosh(T(φ)/2) = |tr φ|.
Let Ω ⊆ C and Γ be a collection of finite unions of rectifiable curves in Ω. All of the

metrics which are conformal with respect to the Euclidean metric can be defined in terms

of a density �(z)|dz| where �(z) is a non-negative Borel measurable function on Ω. For

z = x + iy, define L(γ, �) =
�
γ
�(z)|dz|, A(Ω, �) =

�
Ω
�(z)

2
dxdy, and

L(Γ, �) = infγ∈Γ L(γ, �). Then the extremal length of Γ in Ω is given by

λΩ(Γ) = sup
�

L(Γ, �)2

A(Ω, �)
.
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Peripheral collars

Let γ be a simple closed geodesic on a hyperbolic surface X with hyperbolic length l. A

symmetric collar C(γ) on X about γ of hyperbolic width w is a doubly connected subdomain of

X containing γ defined by C(γ) = {x ∈ X : δX(x, γ) < w/2}, where δX is the hyperbolic distance

on X. By a universal cover from H to X which lifts γ to the imaginary axis, a lift of the

symmetric collar C(γ) is the rigion in H given by {z : 1 < |z| < k
2, π

2
− θ < arg z < π

2
+ θ}, where

0 < θ < π
2
, tan θ = sinh w, and k + k

−1 = 2 cosh(l/2).

Collar Lemma (e.g. Keen, 1974)

With the same γ and θ, b as above, there is a symmetric collar C(γ) on X about γ with the
angular width θ satisfying

tan θ =
2

k − k−1
.

If γ1 and γ2 are disjoint closed simple geodesics, the collars C(γ1) and C(γ2) are disjoint.

To obtain the maximal non-overlapped collar, we can extend one side of a symmetric collar

about γ to the boundary, that means, the collar C(γ) has a lift in the form

�C(γ) = {z : 1 < |z| < k
2, π

2
− θ < arg z < π} in H. We will refer to the collar �C(γ) of such form

as a peripheral collar about γ with the angular width θ.
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Two free homotopy classes

Figure: 1

After some rotations and scaler maps, we only need to consider the punctured annulus

A := {z : 1/R < |z| < R}\{a}, R > 1, 1/R < a < R.

We denote B1 := {z : |z| = 1/R}, B2 := {z : |z| = R}, and let C1, C2 be the free homotopy classes

of the circles {z : |z| = r1}, {z : |z| = r2} in A, respectively, where a < r1 < R, 1/R < r2 < a. So

C1 separates B1 ∪ {a} from B2, C2 separates B2 ∪ {a} from B1. Let γ1, γ2 be the hyperbolic

geodesics in C1, C1.
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Parameter pairs

Figure: 1

The punctured annulus A can be described in the following ways.

(k, r): from the generators of the covering group G

(l1, l2): the hyperbolic lengths of geodesics γ1 and γ2

(θ1, θ2): the angular widths of the maximal peripheral collars about γ1 and γ2

(λ1, λ2): the extremal lengths of C1 and C2

(R, a): the natural parameter pair
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Fundamental domain

Lemma

Choose the covering group G of A to act on H. Then there exist two real numbers k and r,
1 < r < k, such that G is generated by a hyperbolic f and a parabolic g, where

f =




k 0

0 k
−1


 , g =

1

r − 1




2r −(r + 1)

r + 1 −2


 .

Figure: 2
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Hyperbolic lengths

Theorem

In the punctured annulus A, for l1, l2, k and r defined as above, we have

2 cosh(
l1

2
) = k +

1

k
, 2 cosh(

l2

2
) =

2

r − 1
(k − r

k
).
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The maximal peripheral collars

Theorem

Suppose that θ1 and θ2 are the angular widths of the maximal peripheral collars about γ1, γ2.
Then we have

cos θ1 =
r − 1

r + 1
, cos θ2 =

t − 1

t + 1
=

2r(r + 1) − 2δ

δ(r + 1) − (r + 1)2
, where

t =
(r − 1)(r + 1 + δ)

(r + 3)δ − (r + 1)(3r + 1)
, δ = k

2 + r −
�

(k2 − 1)(k2 − r2)

with k and r being the parameters of the generators of the covering group.

(a) 3 (b) 4
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Comparison with Collar Lemma

The collar defined by Collar Lemma is the minimum of the maximal peripheral collar

supported by a hyperbolic transformation and it is smaller than the collar given above. We

denote the angular widths of the collars defined by Collar Lemma about the axes of f and fg
−1

by θ�
1

and θ�
2
. Then

cos θ�
1
=

k
2 − 1

k2 + 1
.

Then θ�
1
< θ1 by our theorem. From the symmetry we know θ�

2
< θ2 for fg

−1
.

Collar Lemma (e.g. Keen, 1974)

With the same γ and θ, b as above, there is a symmetric collar C(γ) on X about γ with the
angular width θ satisfying

tan θ =
2

k − k−1
.

If γ1 and γ2 are disjoint closed simple geodesics, the collars C(γ1) and C(γ2) are disjoint.
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Comparison of C1 and C2

We can compare l1 with l2, θ1 with θ2 in terms of r and k. When 1 < r < 3,

l1 < l2, θ1 > θ2, if 1 < r <

�
3r − 1

3 − r
< k,

l1 = l2, θ1 = θ2, if 1 < r <

�
3r − 1

3 − r
= k,

l1 > l2, θ1 < θ2, if 1 < r < k <

�
3r − 1

3 − r
;

when r ≥ 3, l1 > l2, θ1 < θ2. This corresponds that tan
2 θi sinh

2 li

2
= 1, i = 1, 2.

Corollary

In the punctured annulus A = {z : 1/R < |z| < R}\{1}, the two parameters k and r satisfy
k

2 = 3r−1

3−r
, and the covering group G of A is generated by

f (z) =
3r − 1

3 − r
z, g(z) =

2rz − (r + 1)

(r + 1)z − 2
,

where 1 < r < 3 and r is related to R in some unknown way.
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Hyperbolic lengths

Theorem

In the punctured annulus A, for l1, l2, k and r defined as above, we have

2 cosh(
l1

2
) = k +

1

k
, 2 cosh(

l2

2
) =

2

r − 1
(k − r

k
).
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Hyperbolic lengths

Theorem

In the punctured annulus A, for l1, l2, k and r defined as above, we have

2 cosh(
l1

2
) = k +

1

k
, 2 cosh(

l2

2
) =

2

r − 1
(k − r

k
).

Theorem

The parameters l1, l2, θ1, θ2 defined above satisfy

cos θ1 =
sinh

l1

2

cosh
l1

2
+ cosh

l2

2

, cos θ2 =
sinh

l2

2

cosh
l1

2
+ cosh

l2

2

.
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Elliptic integrals and Jacobian elliptic functions

Let K(r) =

�
1

0

dx
�

(1 − x2)(1 − r2x2)

with 0 < r < 1 be Legendre’s complete elliptic integral of the first kind. The parameter

r ∈ (0, 1) is called the modulus and the complementary modulus of r is r
� =
√

1 − r2, and

denote K
�
(r) = K(r

�
) = K(

√
1 − r2). We define the normalized quotient

µ(r) =
π

2

K
�
(r)

K(r)

for 0 < r < 1, then µ(r) is a strictly decreasing homeomorphism of the interval (0, 1) onto

(0,∞) with limit values µ(0+) = ∞, µ(1−) = 0.

Let sn(u, r) = τ where u =

� τ

0

dx
�

(1 − x2)(1 − r2x2)

be the Jacobian elliptic sine function. Two other functions can be then defined by

cn(u, r) =
�

1 − sn2(u, r), dn(u, r) =
�

1 − r2sn2(u, r).
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Extremal lengths

Theorem

In the punctured annulus A, suppose that λ1 and λ2 are the extremal lengths of C1 and C2.
Select a positive number q such that µ(q) = 4 log R and let K := K(q), K� := K

�
(q). Then

λ1 =
2π

µ(p1)
, λ2 =

2π

µ(p2)
,

where

p1 =

√
q(dn u1 + 1)

q + dn u1

, p2 =

√
q(dn u2 + 1)

q + dn u2

with
u1 =

2K
π

log Ra, u2 =
2K
π

log
R

a
,

and the Jacobian elliptic function dn in p1 and p2 has the modulus q
� =
�

1 − q2.
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Useful lemmas (1)

Lemma 1

For 0 < q < 1 let K := K(q), K� := K
�
(q) and select b = exp(−πK�/(4K)). Then the conformal

mappings ω and σ defined by

ω(z) =
√

q sn

�
2iK
π

Log
z

b
+K , q

�
, σ(z) =

z +
√

q

√
qz + 1

are both unique up to rotations, where ω takes the annulus b < |z| < 1 onto D \ [−√q,
√

q], and
σ preserves D with σ(−1) = −1, σ(1) = 1, σ(−√q) = 0.

Figure: 5
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Useful lemmas (2)

Lemma 2

Let �C be the family of loops in D separating 0 and p from the unit circle ∂D, 0 < p < 1, and C
be the family of loops in D separating the slit (0, p) from ∂D. Then the extremal lengths of �C
and C are

λ(�C) = λ(C) =
2π

µ(p)
.

(a) 6 (b) 7
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Extremal cases

R is fixed. When a→ R, l1 → ∞, and then k → +∞.

When a→ 1/R, l2 → ∞, and then r → 1.

a is fixed and R→ +∞. Then k → r → 1, so that limk, r→1 cosh(l1/2) = 1 and

limk, r→1 cosh(l2/2) = 1.

a = 1 and R→ 1. Then A is becoming a punctured domain shown in the figure below,

which is conformally equivalent to an endless punctured stripe in the complex plane. So

k → +∞ and r → 3.

Figure: 8
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Another model

We have a different uniformisation if taking the once-punctured annulus model as

A1 = {b2 < |z| < 1}\{x}, 0 < b
2 < x < 1. With the same definitions of λ1 and λ2, when the

puncture x is fixed and b→ 0, we have

λ1 →
2π

µ(x)
, λ2 → 0.

Lemma 2
�

Let �C be the family of loops in D separating 0 and p from the unit circle ∂D, 0 < p < 1. Then
the extremal length of �C is

λ(�C) =
2π

µ(p)
.
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Thank you for your attention!
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