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Program
9 November (Saturday)

14:00-14:50 Lizhen Ji (University of Michigan)
Spines of Teichmuller spaces and symmetric spaces

15:00-15:50 Yoshihiko Shinomiya (Tokyo Institute of Technology)
Periodic points on Veech surfaces

16:00-16:50 Chikako Mese (Johns Hopkins University)

Harmonic maps in rigidity problems

Banquet

10 November (Sunday)

10:00-10:50 Makoto Masumoto (Yamaguchi University)
On the existence of holomorphic mappings of once-holed tori

11:00-11:50 Hideki Miyachi (Osaka University)
Rigidity of isometries on Teichmueller space at infinity

Lunch

14:00-14:50 Hiroshige Shiga (Tokyo Institute of Technology)
On deformations spaces of Kleinian groups

15:00-15:50 Yu Kawakami (Yamaguchi University)
On function-theoretic properties for Gauss maps of several classes of surfaces

16:00-16:50 Yuriko Umemoto (Osaka City University)
Growth rates of cocompact hyperbolic Coxeter groups and 2-Salem numbers

11 November (Monday)

10:00-10:50 Masanori Amano (Tokyo Institute of Technology)
On behavior of pairs of Teichmiiller geodesic rays

11:00-11:50 Tanran Zhang (Tohoku University)
Uniformisation and description of a once-punctured annulus

Lunch

14:00-14:50 Ryosuke Mineyama (Osaka University)
Limit sets of Coxeter groups of type (n-1,1)

15:00-15:50 Ken’ichi Ohshika (Osaka University)
Primitive stable closed hyperbolic 3-manifolds



Abstract

Lizhen Ji (University of Michigan)

Spines of Teichmuller spaces and symmetric spaces

Abstract: Let T, be the Teichmuller space of a compact surface S, of genus g, and Mod,
the mapping class group of S;. Then Mod, acts properly on Tj, and the quotient Mod, T,
is the moduli space of compact Riemann surfaces of genus g. This action of Mod, on T} is
an analogue of the action of an arithmetic subgroup I' of a semisimple Lie group G on the
associated symmetric space X = G/K, where K is a maximal compact subgroup of G.

A longstanding open problem concerns spines of T}, i.e., equivariant deformation re-
tracts of T, with compact quotient by Mod, and of dimension equal to the virtual co-
homological dimension of Mod,. Similarly, when I" is a nonuniform arithmetic subgroup,
existence of spines of X is also open in general.

In this talk, I will describe the history of these problems (for example, Thurston’s at-
tempt) and some recent results on them.

Yoshihiko Shinomiya (Tokyo Institute of Technology)

Periodic points on Veech surfaces

Abstract: We will discuss periodic points on Veech surfaces. A periodic point on a Veech
surface is a point whose orbit under the affine group is finite. It is known that the number
of periodic points on a non-arithmetic Veech surface is finite. We will give upper bounds
of the numbers of periodic points depending only on the types of Veech surfaces and sig-
natures of the Veech groups.

Chikako Mese (Johns Hopkins University)

Harmonic maps in rigidity problems

Abstract: We discuss harmonic maps into non-positively curved metric spaces (NPC
spaces). Of particular interest is the regularity for these maps into special classes of spaces
that include the Euclidean and Hyperbolic buildings and Weil-Petersson completion of Te-
ichmuller space. As an application of the regularity theory, we study rigidity questions.

Makoto Masumoto (Yamaguchi University)

On the existence of holomorphic mappings of once-holed tori

Abstract: We address the existence problem of handle-preserving holomorphic mappings
of once-holed tori into a given Riemann surface of positive genus. The once-holed tori
allowing such mappings form a subset of the Teichmiiller space of a once-holed torus. We
are particularly interested in geometric properties of the set.

By a once-holed torus we mean a noncompact Riemann surface of genus one with
exactly one (Kerékjarto-Stoilow) boundary component. For example, the Riemann surface
obtained from a compact Riemann surface of genus one, or a torus, by removing one point
is a once-holed torus, which will be referred to as a once-punctured torus.

Let R be a Riemann surface of positive genus; it may be compact or the genus may be
infinite. A mark of handle of R means an ordered pair y = {a, b} of simple loops a and b
on R whose intersection number a X b is equal to one. The pair Y = (R, ) is said to be a
Riemann surface with marked handle. Since the genus of R is positive, the surface has one
or more handles. We choose just one of them and mark it with a pair of simple loops.



Let Y’ = (R, X’), where ' = {d/,b'}, be another Riemann surface with marked handle.
If f: R — R'is continuous and maps a and b onto loops freely homotopic to a’ and ¥/
on R’ respectively, then we say that f is a continuous mapping of Y into Y’ and use the
notation f:Y — Y’ If f: R — R’ possesses some additional properties, then f:Y — Y’
is said to have the same properties. For example, if f : R — R’ is conformal, that is, if
f : R — R’ is holomorphic and injective, then f is called a conformal mapping of Y into
Y’

A once-holed torus (resp. torus, once-punctured torus) with marked handle is usually
called a marked once-holed torus (resp. marked torus, marked once-punctured torus). Let
T be the set of marked once-holed tori, where two marked once-holed tori are identified
with each other if there is a conformal mapping of one onto the other.

We introduce a global coordinate system on ¥ as follows. For a marked once-holed
torus X = (T, x), where y = {a,b}, set A(X) = (A1, Aa, A3), where Aj, Ay and A3 are the
extremal lengths of the free homotopy classes of a, b and ab™!, respectively. Then A defines
an injective mapping of ¥ into R? , whose image is

AT) ={(&,6,8) eRY |+ + & — 266 + L&+ &&) +4 S0}

Identifying ¥ with A(%), we consider ¥ as a 3-dimensional real analytic manifold with
boundary. A marked once-holed torus lies on the boundary if and only if it is a marked
once-punctured torus.

As a set, T is the union of the Teichmiiller space of a once-punctured torus and the
reduced Teichmiiller space of a once-holed torus which is not a once-punctured torus.
The real analytic structure on ¥ is compatible with the real analytic structures on those
Teichmiiller spaces. We will call T the Teichmiiller space of a once-holed torus.

Now, fix a Riemann surface Y with marked handle. We are interested in the set T,[Yp]
(resp. T.[Yp]) of marked once-holed tori X € ¥ for which there is a holomorphic (resp.
conformal) mapping of X into Yj. Clearly, T [Yp] is nonempty and included in ¥,[Yy].

THEOREM 1. The sets T,[Yo] and T.[Yo] are noncompact closed domains with Lipschitz
boundary.

Our next result is expressed in terms of another global coordinate system on €. Every
marked once-holed torus is realized as a horizontal slit domain of a marked torus. To be
more specific let H denote the upper half-plane. For any 7 € H let GG, be the additive
group generated by 1 and 7, and set T, = C/G,., which is a torus. The oriented segments
[0,1] and [0, 7] are projected onto simple loops a, and b, on T, respectively, which make a
mark y, of handle of .. We set X, = (T, x,). Let m, : C — T be the natural projection.
Cutting 7’ along the image 7, ([0, s]) of the segment [0, s], where 0 < s < 1, we obtain a
once-holed torus T2 := T, \ 7-(]0, s]). It is a horizontal slit domain of the torus 7. Note

that T'” is a once-punctured torus. Choose a mark y!* = {a&s),bgs)} of handle of T1*

so that the inclusion mapping 7' < T, is a conformal mapping of X' := (TT(S), ng))

into X,. Then the correspondence (7,s) — X% is a homeomorphism of H x [0,1) onto

T, whose restrictions to H x (0,1) and to H x {0} are real analytic. Note that 1/Im7 is

exactly the extremal length of the free homotopy class of a',

THEOREM 2,. There is a nonnegative real number \,[Yo] such that



(ia) of Im7T =2 1/X\,[Y0], then there are no holomorphic mappings of X into Yy for any
s €[0,1), while

(iiy) if Im7 < 1/A.[Yo], then there are holomorphic mappings of X into Yy for some
s€0,1),

where 1/0 = +00.

For the existence of conformal mappings of marked once-holed tori, we have the follow-
ing theorem. It is quite similar to the previous theorem though the sign of equality does
not appear in (i.).

THEOREM 2.. There is a positive real number \.[Yy] such that
(ic) if Im7T > 1/A[Y0], then there are no conformal mappings of X into Y, for any
s €1[0,1), while

(iie) if Im7 < 1/A:[Yo|, then there are conformal mappings of X
s€10,1).

) into Yy for some

Finally, we evaluate the critical extremal lengths \,[Yp] and A.[Yp]. Let Yo = (Ro, xo0),
where xo = {ag, bo}. Let A[Yy] stand for the extremal length of the free homotopy class of
ap. If Ry is not a torus, then it carries a hyperbolic metric. We denote by [[Y] the length
of the geodesic freely homotopic to ag, where the curvature is normalized to be —1. If Ry
is a torus, then we define [[Yy] = 0.

1
THEOREM 3. It holds that A\,[Yo] = —I[Yo] and A\.[Yo] = A\[Yo].
7r
It follows that \,[Yp] < A.[Yp] for any Yp. Also, A,[Yp] is strictly positive unless Yj is a

marked torus.

Hideki Miyachi (Osaka University)

Rigidity of isometries on Teichmueller space at infinity

Abstract: In this talk, T will give a rigidity result for isometries with respect to the Te-
ichmueller distance on Teichmueller space of Riemann surfaces of analytically finite type.
Indeed, we will provide mappings acting on Teichmueller space which are close to isome-
tries at infinity, and discuss properties of the mappings. If time permits, we will re-prove
Ivanov’s theorem, which says that except for few cases, the isometry group of Teichmuller
space is isomorphic to the extended mapping class group.

Hiroshige Shiga (Tokyo Institute of Technology)

On deformations spaces of Kleinian groups

Abstract: Let G be a non-elementary Kleinian group. We consider the space of quasi-
conformal deformations of G. The space has a natural complex structure and it is finite
dimensional if GG is finitely generated. In this talk, we consider complex analytic properties
of the spaces, which are related to some results by Bers, Kra-Maskit and McMullen.



Yu Kawakami (Yamaguchi University)

On function-theoretic properties for Gauss maps of several classes of surfaces
Abstract: The aim of this talk is to reveal the geometric background of function-theoretic
properties for Gauss maps of several classes of immersed surfaces in space forms (e.g. min-
imal surfaces in the Euclidean 3-space, flat surfaces in the hyperbolic 3-space etc.). For
the purpose, we give an optimal curvature bound for a specified conformal metric on an
open Riemann surface and give some applications.

Yuriko Umemoto (Osaka City University)

Growth rates of cocompact hyperbolic Coxeter groups and 2—Salem numbers
Abstract: The group generated by reflections with respect to facets of a Coxeter polytope
in n—dimensional hyperbolic space H" is called a hyperboric Coxeter group. By the results
of Cannon, Wagreich and Parry, it is known that the growth rate of a cocompact Coxeter
group in H? and H? is a Salem number. On the other hand, Kerada defined a j-Salem
number, which is a generalization of a Salem number. In this talk, I will present that we
realize infinitely many 2—-Salem numbers as the growth rates of cocompact Coxeter groups
in H*. Our Coxeter polytopes are constructed by successive gluing of Coxeter polytopes
which we call Coxeter dominoes.

Masanori Amano (Tokyo Institute of Technology)

On behavior of pairs of Teichmiiller geodesic rays

Abstruct: In this talk, we obtain the explicit limit value of the Teichmiiller distance be-
tween two Teichmiiller geodesic rays which are determined by Jenkins-Strebel differentials
having a common end point in the augmented Teichmiiller space. Furthermore, we also
obtain a condition under which these two rays are asymptotic. This is the Teichmiiller
space varsion of a result of Farb and Masur for the moduli space.

Tanran Zhang (Tohoku University)

Uniformisation and description of a once-punctured annulus B
Abstract: The Uniformisation Theorem shows that the universal covering space X of an
arbitrary Riemann surface X is homeomorphic, by a conformal map m, to either the Rie-
mann sphere C, the complex plane C or the unit disk . And then the fundamental group
IT,(X) has a representation as a group G of conformal homeomorphisms of m(X). This
theorem also indicates that if X is homeomorphic to a proper subset of C with at least
three boundary points, then X is conformally equivalent to a quotient space D/G, where
G is a torsion-free Fuchsian group that acts (discontinuously) on D (or H). The group G is
isomorphic to IT;(X). Hempel and Smith studied the hyperbolic Riemann surface model
of the twice-punctured disk D\{py, po} in 1980s. They estimated the hyperbolic density
on it near aone puncture and considered the coalescing of the two punctures. Later on
Beardon gave five different ways to uniformize D\{p;, p2} in 2012. He investigated several
conformal invariants to characterize D\{p1, po} considering the fundamental domain, sym-
metric collars and extremal length. We extend his work to the once-punctured annulus
A:={z:1/R < |z| < R}\{a}, R >1,1/R < a < R. We provide several parameter pairs
to uniformize and characterize it. The main tools we use are Mobius transformations,
covering space, homotopy classes and elliptic integrals.
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Ryosuke Mineyama (Osaka University)

Limit sets of Coxeter groups of type (n-1,1)

Abstract: Recentry Hohlweg, Labbe, Ripoll introduced a non-linear action of Coxeter
groups to investigate asymptotic behavior of their roots. This turns out to be a discrete
action on a CAT(0) space in the case that associating bilinear form of the Coxeter group
has singnature (n-1,1). I am interested in how geometric aspects of Coxeter groups are
mirrored on their limit sets. In this talk we discuss the existence of Cannon-Thurston maps
from Gromov boundaries of Coxeter groups to their limit sets. If we have the time left,
we observe a relationship between limit sets and sets of accumulation points of roots. This
talk partially based on the joint work with Akihiro Higashitani and Norihiro Nakashima.

Ken’ichi Ohshika (Osaka University)

Primitive stable closed hyperbolic 3-manifolds

Abstract: This is joint work with Cyril Lecuire and Inkang Kim. We show that every
Heegaard splitting with large Hempel distance and bounded combinatorics induces a prim-
itive stable representation of a free group. This implies that every point on the boundary
of the Schottky space can be approximated by unfaithful primitive stable representations
corresponding to closed hyperbolic 3-manifolds.
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The purpose of this talk is to estimate the number of periodic
points on non-arithmetic Veech surfaces.

Theorem
Let (X, u) be a non-arithmetic Veech surface of type (g,n). The
number of periodic points of (X, u) is at most

1 22d+3
—26 710 -34 (16 6
27%d () (2)\ ) )
Here, T'(X,u) is the Veech group of (X,u), d:=3g—3+mn,
A:=2exp(bd/e), and p := Area (H/T'(X, u)).

If we have time, we apply this estimation to holomorphic
families of Riemann surfaces induced by Teichmiiller curves.

V]



1. Introduction
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Flat surfaces

Let X be a (connected) surface of finite type and C' a finite
subset of X. A flat structure v on X is an atlas of X \ C
such that, for coordinate neighborhoods (U, z), (V,w) € u with
UNV #0, the transition function is of the form

w==xz+c

in z(UNV) for some ¢ € C.
The pair (X, u) is called a flat surface with singularities at C'.

On flat surfaces, we can consider some notations in the
Euclidean geometry: segments, their lengths or directions, area,
etc. A closed #-geodesic in (X, u) is a closed geodesic in

(X, u) whose direction is 0 € [0, 7) and which does not contain
singularities.

We assume that the Euclidean area of (X, u) is finite.



Examples of flat surfaces

Typical examples of flat surfaces are tori. They have natural flat
structures induced by universal coverings. Tori are flat surfaces
with no singularities. Let us consider the following examples.

X1

The surfaces X1 and X5 are of genus 2. We give flat structures
uq and ug to X7 and Xy from Euclidean structures on the
regular octagon and the rectangle, respectively. Then, the flat
surface (X7, u1) has only one singularity corresponding to the
vertices of the octagon. The singularities of the flat surface
(X2, u9) are the points corresponding to the vertices of squares.



Affine groups

Let (X, u) be a flat surfaces with singularities at C. An affine
map of (X, u) is a quasiconformal self-map h of X that satisfies
h(C) = C and, for coordinate neighborhoods (U, z), (V,w) € u
with h(U) C V, the composition w o h o z~! is of the form

wohoz l=Az+¢

in 2(U) C C = R? for some A € SL(2,R) and ¢ € C.
The affine group Aff™(X,u) is the group of all affine maps of
(X, w).



Veech groups

Take an affine map h of (X, u). For coordinate neighborhoods
(U, z),(V,w) € u with h(U) C V, the derivative of the
composition wo ho z~t = Az + ¢ is the matrix A € SL(2,R).
The matrix A does not depend on the choice of coordinate
neighborhoods up to the sign since transition functions of u are
of the form z — £z + ¢. Thus, we have the homomorphism

D : AffT(X,u) — PSL(2,R)

which maps each affine map h to its derivative +A.
The image I'(X, u) := Im(D) of the homomorphism D is called
the Veech group of (X, u).

Theorem (Veech)

The Veech group I'(X,u) is a Fuchsian group.



Examples of Veech groups

Let (T, ur) be the torus obtained from an unit square. Then,
the Veech group I'(T', ur) is PSL(2,Z) = <[ (1) :)1 }, [ é 1 }>

We can see the actions of [ (1) _01 and [ (1] } ] as follows.

> 0 -1
1 0

AN

Y
AN

Y

The action of {

(1) i ] is the Dehn twist along a horizontal
closed curve of (T, u

7).



Examples of Veech groups

Let (X1, u1) be the flat surface obtained from a regular octagon.

Then, 106, u) = ([ 2/t it ][5 20 ).

The action of { Z?j;ﬁ ;zisn;;f } is a rotation. To see the

. 1 2cotn/8
action of [ 0 Colﬂ/

segments connecting the singularity. Then, X; is decomposed
into two cylinders R; and Rs.

], we cut X7 along the horizontal

1 2cotm/8
0 1

hand Dehn twist along a core curve of Ry and the square of the
right hand Dehn twist along a core curve of Rs.

} is the composition of the right

The action of [



Examples of Veech groups

\L {(1) 2cot17r/8]
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Jenkins-Strebel direction

As we saw in the previous example, some flat surfaces can be
decomposed into cylinders. A direction 0 € [0, 7) is said to be a
Jenkins-Strebel direction of a flat surface (X, u) if almost all
points of X lie in closed #-geodesics.

If 0 is a Jenkins-Strebel direction, (X, u) is decomposed into
cylinders foliated by closed 6-geodesics. The cylinders are called
the cylinder decomposition of (X, u) by the direction 6.
The boundaries of these cylinders consist of segments of
direction € connecting singularities.

.
7

Y
Y
N

N
N

malnhuud
NTESTATE )

ahafuguahdd

i

The directions # = 0, 7 and 7 are Jenkins-Strebel directions.
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decomposed into cylinders. A direction 0 € [0, 7) is said to be a
Jenkins-Strebel direction of a flat surface (X, u) if almost all
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the cylinder decomposition of (X, u) by the direction 6.
The boundaries of these cylinders consist of segments of
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The directions § = 0, 7 and 7 are Jenkins-Strebel directions.



Arithmeticity of Veech surfaces

A flat surface (X, u) is called a Veech surface if its Veech
group I'(X, u) is a lattice in PSL(2,R), that is, the orbifold
H/I'(X, u) has finite area. We classify Veech surfaces by their
Veech groups.

Let I'y and I'y be Fuchsian groups. The group I'; is said to be
commensurable with I'; if there exists A € PSL(2,R) such
that AT1 A~ N Ty is a finite index subgroup of ATy A~! and T's.

A Veech surface (X, u) is arithmetic if the Veech group I'(X, u)
is commensurable with PSL(2,7Z), and is non-arithmetic if
I'(X, u) is not commensurable with PSL(2,Z).

Theorem (Gutkin-Judge)

Let (X,u) be a Veech surface. The Veech surface (X,u) is
arithmetic if and only if (X, u) is obtained by gluing finitely
many copies of a parallelogram by their parallel sides.



Periodic points

We consider periodic points of Veech surfaces (X, u). A point
z € X is called a periodic point of (X, u) if its

AffT (X, u)-orbit AffT (X, u){z} is finite. The cardinal of
AffT (X, u){z} is called the period of z. Denote by P(X,u)
the set of all periodic points of (X, u).

Theorem (Gutkin-Hubert-Schmidt)

If (X, u) is arithmetic, then P(X,u) is dense in X. If (X, u) is
non-arithmetic, then P(X,u) is finite.

Gutkin, Hubert and Schmidt gave upper bounds of the numbers
of periodic points of non-arithmetic Veech surfaces depending
only on parameters of two cylinder decompositions. For
compact non-arithmetic Veech surfaces, Moller gave upper
bounds which depend only on genera.



2. Main result and proof



Main result

We give upper bounds depending only on types of surfaces and
signatures of Veech groups. The basic idea is due to Gutkin,
Hubert and Schmidt.

Let (X, u) be a non-arithmetic Veech surface of type (g,n). Set
d:=39g—34n, A:=2exp(bd/e), and p:= Area (H/T'(X,u)).
Here,

k
Area (H/T'(X, u)) = 27 <2p —24 Y- j)) .

i=1 !
if I'(X, u) is a Fuchs group of signature (p,k: vy, -+, vg)
(Vi € {2737' o 700})

Theorem (S)

The number of periodic points of (X, u) is at most

22d+3

9726710 () )~ (%)\GMG)



We show that if (X, u) has a point whose period is sufficiently
large, (X, u) is arithmetic.

Let (X,u = {(Ux, 2x)}) be a Veech surface and A € GL(2,R).
We can define a new flat structure Aowu = {(Uy, Ao z))}. Then,
AffT(X, Aowu) = AfT(X,u) as subgroups of Homeo™ (X),
P(X,Aowu)= P(X,u) and the Veech group I'(X, A o u)
coincides with AT'(X,u)A~!.

It is known that the set of Jenkins-Strebel directions of (X, u) is
dense in [0, 7). We assume that § = 0 is a Jenkins-Strebel
direction of (X, u). Veech showed that I'(X, u) contains an

element of the form [ Lo

b } with b > 0. Taking conjugation,

we may assume that I'(X, u) contains B := [ (1) } } and it is

primitive.



Theorem (S)
Let T be a lattice Fuchsian group. If I' contains [ (1) i ] as a

primitive element, then there exists [ Z Z ] € I such that

1 <c¢ < Area(H/T).

Choose A := [ : Z } € I'(X,u) such that

1 <e< p=Area(H/T'(X,u)). Conjugating by { (1) _(i/c }’ we

may assume that

a=[0 )=} 1]
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Choose h, hp, € AffT(X,u) such that D(h) = Ag, D(hp,) = Bo.
Let Ry,---, R; be the cylinder decomposition of (X, u) by the
direction # = 0 and C1, - - - , C} their core curves. The cylinders
h(Ry),--- ,h(R;) are the cylinder decomposition by 6 = 7.

Fact For a closed curve C' of X, let 7¢ be the Dehn twist along
C'. There exists & < A\ = 2exp(5d/e) such that

a P— Nl . e Nl
Bo Tcl © OTC;’
a -1 _ Ny . N,
hohBO oh = They) © ° Th(cy):

Let W;, H; be the circumference and height of R;, respectively.
We have

I/Vz/f]‘Z = OJ/NZ' € Q



Direction 6 = 0, § give cylinder decompositions. The affine map
h, is a composition of Dehn twists along C;’s. The affine map
hohf o h~1 is a composition of Dehn twists along h(C};)’s.

K X
g C, A } (X, u)

R
! c,

i
L pip
) -




Direction 6 = 0, § give cylinder decompositions. The affine map
h, is a composition of Dehn twists along C;’s. The affine map
hohf o h~!is a composition of Dehn twists along h(C;)’s.

R¢$ o, h(@-)% }(x,w

N
N



Proposition 1

We have

(1) 1< N; < (M) forie{1,--- 1},

(2) 0 <i(Ci, h(Cy)) < () for i, € {1, ,1},
(3) Wi/H; < (Mw)? if i(Cy, h(C})) # 0.

Set hp = h%,, ha:=hohg o h=Y, B:= D(hg), A := D(ha)
and G := (ha,hp). A point z € X is said to be a B-periodic
point if the cardinal § (hp) {2} is finite. The cardinal { (hp) {z}
is called the B-period of z. Denote by PP the set of points of
X whose B -periods are less than or equal to n. We define
A-periodic points, G-periodic points, their periods, P
and PS¢ as well.

Note that periodic points of (X, u) are G-periodic points.



ForB:[[l) 1

N . .
}, let us consider the set P2 in torus (T, ur)

case. Let z = ( g ) € T be a B-periodic point of B-period n.
We assume that 0 < z,y < 1. Since B™ ( z ) - ( $+21Ny )7

we have
mNy &N form € {1,--- ,n—1} and nNy € N.

Thus, Ny = 2 +1t for some 1 < s <n — 1 with ged(s,n) =1
and t € {0,--- , N — 1}. This implies that y € Q and the set of
points whose B-periods are n consists of N¢(n) horizontal
closed curves. Here,

p(n)=t{seN:1<s<n-1, ged(s,n) =1}

is Euler’s totient function. Setting ®(n) =Y, _; ¢(m), the set
PB consists of N®(n) horizontal closed curves.

By the same argument as above, y-coordinate of a B-periodic
point z € R; satisfies y/H; € Q.



Lemma 1
Let 8:= 1 d?(Au)®. We have

tPS <t (P2 nPE) < pnt.

Proof By definition, P& ¢ PA N PB. The above observation

gives
f(PANPE) = > i(Ci, h(C)))N;i®(n)N;®(n) < n'. O
1<i,5<1
h(R;) h(R;)
Ri &S .‘I‘,\}Ni@(n)
| |
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Lemma 1
Let 8 := 1 d?(Au)®. We have

tPC <t (P2 PP) < pnt.
Proof By definition, P$ ¢ P2 N PB. The above observation
gives

§ (PPl = > i(Ci,h(Ch))N;®(n)N;®(n) < pn*. O
1<4,5<1

Lemma 2

Let O = G{z} be a finite G-orbit. If 4O > fn*, O contains a
point whose A-period or B-period is greater than n.
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Lemma 3

Let O be a finite G-orbit. Suppose that O contains a point z
whose B-period is greater than 1(Au)*n?. If z € R; N h(R)),
there exists a point w € (hp) {z} NR;N h(R ) whose A-period
is greater than or equal to n.

h(R;)

hg h

RZ‘$ AN $
z w

Hife

Proof The set P2 | N h(R;) consists of N;®(n — 1) vertical
closed geodesics. Since the distance between z and hp(z) is less
than W;/5(Au)?n?, we have

¢ ((hp) {=} N W(Ry)) > 5(Mu)'n Hj /Wi > Ni®(n — 1),

Thus, we obtain the claim. [J




Lemma 4

Let f(z) = $(Au)*z?. Let O be a finite G-orbit. Assume that
10 > B ( f2d_1(n))4. Each horizontal cylinder R; contains a
point whose B-period is greater than or equal to n.

Recall that W; and H; are the circumference and height of the
horizontal cylinder R;, respectively. The circumference and
height of the vertical cylinder h(R;) are cW; and H;/c.
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Lemma 5

Suppose that R; N h(R;) # 0. Let L be a connected component
of R; N h(R;). If L contains two G-periodic points z and 2’ with
(hp) {z} = (hp) {#'}, then ¢W;/H; € Q .
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Proof Let us identify L = (0, H;/c) x (0, H;), z = < ‘Z ) and
2= ( g;: ) As bk (2) = 2’ for some k, we have y' = y and

' =z + kay + N;W;. Since z and 2’ are G-periodic points,
y/H; € Q, cx/Hj, cx’/H; € Q. Then,

Qs c(z' —x) _ (kay + N;W;) _ Wi <I<: y Hi Ni)-
Hj Hj Hj

“H W,

As W;/H; € Q, we obtain the claim. O

---- Hjje-x-.
z 2! \
(Rl S Sebt SN
0,007 % x/



Proposition 2

|

Let O be a finite G-orbit. If 1O > <f2d_1 ((Au)2>> , we have
the following :

(1) cW;/H; € Q if R; N h(R;) # 0,

(2) W;/Wy € Q for any i,i € {1,---,1},

(3) H;/H; € Q for any i,i € {1,---,1}.

Proof By Lemma 4, every cylinder R; contains a point z;
whose B-period is greater than ()\M)Z. The distance between z;
and hp(z) is less than W;/ ()2, If R; N h(R;) # 0, each
connected component L is a rectangle with width H;/c. By
Proposition 1-(3), we have W;/ (Au)? < Hj/c. Thus, L contains
two point in a the same B-orbit. From Lemma 4, we obtain (1).



If R; Ry intersect with common h(R;),

Wi N CVVZ‘ Hj

WZ'/ N Hj CWi/ < Q

As X is connected, we obtain (2).

The equation
H; H; W; Wy
Hy W; Wy Hy

implies (3). O



Proposition 3
If the Veech surface (X, u) has a point whose G-period is
4
greater than (f2d_1 <()\,u)2)) , then (X, u) is arithmetic.

Proof By Proposition 2, replacing u with some flat structure

A ou, we may assume that W; and H; are integers and ¢ € Q. If
¢ =m/n for some n,m € Z~g, then (X, u) is realized by gluing
finitely many squares whose side length is 1/m. By the theorem
of Gutkin-Hubert-Schmidt, (X, u) is arithmetic. [J

By Proposition 3, the periods of periodic points of the
non-arithmetic Veech surface (X, u) are at most

4
3 (de—l (0\“)2)) . Applying Lemma 1, the number of

periodic points is at most 3° (de_l <()\u)2>>16.
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3. Application to Teichmiiller curves



Teichmiller curves and Veech surfaces

Hereafter, we assume 3g — 3 4+ n > 0. A Teichmiiller curve
f:C — M(g,n) is a holomorphic local isometry from a
hyperbolic Riemann surface C' of finite type into the moduli
space M(g,n) equipped with the Teichmiiller distance.

Proposition

Let f: C — M(g,n) be a Teichmiiller curve. Given a base
point tg of C. There exists a Veech surface (X, u) of type (g,n),
a branched covering ¢ : C' — Cj := L/I'(X, u) and an injective
holomorphic local isometry fo : Co — M(g,n) with the
following properties:

(1) f=fooo,
(2) f(to) = (X,u) as Riemann surfaces,

(3) for each t € C, there exists A; € SL(2,R) such that
f(t) = (X, A o u) as Riemann surfaces.



Teichmiiller curves and holomorphic families

Let f: C — M(g,n) be a Teichmiiller curve. We can construct
a holomorphic family of Riemann surfaces (M, 7, C) so that the
fiber X; over ¢t € C' is the Riemann surface f(t).

Let ¢ : Cy — C be a finite unbranched holomorphic covering.
Then, fo¢:Cy — M(g,n) is also a Teichmiiller curve. Let
(Mg, 74, Cy) be the holomorphic family corresponding to f o ¢.

Theorem (S)

(1) Holomorphic sections of (Mg, 74, Cy) do not intersect each
other. Given a base point tg € Cy. Let (X, u) be the Veech
surface corresponding to f o ¢(tg). For a holomorphic
section s : Cyp — My, s(tg) is a periodic point of (X, u).

(2) Let d=3g — 3+ n. Assume that C is of type (p, k). The
number of holomorphic sections of (Mg, g, Cy) is at most

327 deg(¢)(2p — 2 + k)d> {Qd + 3exp (5d> } .

(&

This bound tends to infinity as deg(¢) — oo.



Upper bounds of the numbers of holomorphic sections

Applying the main theorem, we obtain upper bounds of the
numbers of holomorphic sections which depend only on g, n and
the topological type of C.

Theorem (S)

Let f: C — M(g,n) be a Teichmiiller curve corresponding to a
non-arithmetic Veech surface (X,u). Assume that C is a
Riemann surface of type (p, k). For any finite unramified
holomorphic covering ¢ : Cy — C, the number of holomorphic
sections of (Mg, g, Cy) is at most

22d+3

_ _ 1
2 26d10 ()\,LL) 34 (5)\6/1/6)

Here, d =39 —3+mn, A =2exp(5d/e) and p =21(2p — 2+ k) .
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Motivation and problem

Planar Riemann surfaces

General uniformization theorem
Every Riemann surface of genus zero is conformally embedded
into the Riemann sphere C = C U {oo}.

@ Function theory on Riemann surfaces of genus zero is
essentially part of function theory on plane domains.

@ The core of the theory of Riemann surfaces should be
occupied by Riemann surfaces of positive genus, or those
with handles.

Makoto Masumoto Once-Holed Tori



Motivation and problem

What are the simplest nonplanar Riemann surfaces?

Definition
A once-holed torus is an open Riemann surface of genus 1
with exactly one boundary component.

@ "open" = "noncompact"

<

@ Once-holed tori are the simplest
among open Riemann surfaces of positive genus.

Makoto Masumoto Once-Holed Tori



Motivation and problem

Are there holomorphic mappings?

Let
Ry be a Riemann surface of positive genus, and
T be a once-holed torus.

Naive question

Are there "non-degenerate" holomorphic mappings T — Ry
or holomorphic mappings T — Ry "preserving handles"?

@ What does "preserving handles" mean?

Makoto Masumoto Once-Holed Tori



Motivation and problem

Mark of handle

Let R be a Riemann surface of positive genus.
Definition

A mark of handle of R is an ordered pair x = {a, b}
of simple loops on R suchthata x b = 1.

@ A mark of handle specifies a handle of R.

Makoto Masumoto Once-Holed Tori



Motivation and problem

Riemann surface with marked handle

Definition
A Riemann surface with marked handle is a pair Y = (R, x),

where R is a Riemann surface of positive genus and
x is a mark of handle of R.

Let ¥; = (Rj, x;), j = 1,2, be Riemann surfaces with marked
handle, where x; = {a;, bj}.

Definition

f : Y1 — Ya: holomorphic (resp. conformal)
< (i) f : Ry — Ry: holomorphic (resp. conformal)
(i) fo(a1) ~ az, f.(b1) ~ ba (~ means "free homotopy")

@ conformal = “holomorphic" & “injective"



Motivation and problem

Problem

Fix a Riemann surface Yy = (Ro, xo0) with marked handle.

Problem

Determine the set of marked once-holed tori X = (T, x)
for which there is a holomorphic mapping X — Yp.

Makoto Masumoto Once-Holed Tori



Motivation and problem

Space of marked once-holed tori

@ Let T denote the set of marked once-holed tori,
where two marked once-holed tori are identified
if there is a conformal mapping of one onto the other.
@ As a set, T is the union of
the Teichmiiller space of a once-punctured torus

and
the reduced Teichmuiller space of a once-holed torus
that is not a once-punctured torus.

Makoto Masumoto Once-Holed Tori



Motivation and problem

Problems (revised)

@ Let Yg be a Riemann surface with marked handle.

Definition

Ta[Yo] = {X € T | I holomorphic mapping X — Yo},
Te[Yo] = {X € T | 3 conformal mapping X — Yp}.

@ "a" ="analytic", and "¢" = "conformal".

Problems (revised)
Ta[Yo] =7, Zc[Yo] =7

@ # Tc[Yo] C Fa[Yo]

Makoto Masumoto Once-Holed Tori




Motivation and problem

Torus case

If Yp is a marked torus, then

TaYo] = T

by the Behnke-Stein theorem, while

Te[Yo] # T.

Makoto Masumoto Once-Holed Tori
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Results

Mapping A : T — R3

For X = (T, x) € T, x = {a, b}, define

A(X) = (Ah )\2’ )\S)a

where A1, A2, Az are the extremal lengths of the free homotopy
classes of a, b, ab—1, respectively.

@ A defines a mapping of ¥ into R3, where Ry = [0, +00).

Makoto Masumoto Once-Holed Tori



Results

Global coordinate system on ¥

The mapping N : T — Ri is injective with image
AT) = {¢ € R} | Q(¢) +4 = 0},
where

Q(&1,62,83) = €2 + &2 + &5 — 2(&1&2 + L2635 + &3&1).

@ Identifying T with A(T), we consider T as a 3-dimensional
real analytic manifold with boundary.

@ The eigenspaces of the coefficient matrix of the quadratic
form Q are the line &1 = & = &3 and
the plane &1 + &2 + &3 = 0.

Makoto Masumoto Once-Holed Tori



Results

Once-holed torus case

oN:T RS,
Q(&1,€2,83) = €2 4+ €2 + €2 — 2(&162 + &85 + £361).

If Yo € ¥, then

AN(Zel[Yo]) = {€ € RY | Q(€ — &) < 0and Q(€) < Q()},
where &g = A(Yo).

@ A(%¢[Yo]) is a cone with vertex at &o.

Makoto Masumoto Once-Holed Tori



Results

First result

@ Let Yp be a Riemann surface with marked handle.

The sets T 4| Yo] and T¢[Yo] are noncompact closed domains
with Lipschitz boundary, and are retracts of X.

@ A subset A of a topological space X is called a retract of X
if there is a continuous map r : X — Asuchthatr(a) = a
forany a € A.
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Results

Canonical construction of marked tori

Let H be the upper half plane: H = {r € C | ImT > 0}.
For = € H let
P-: the parallelogram with vertices 0, 1, 7 + 1, 7,
T-: the torus obtained from P, by identifying the opposite sides,
x+ = {a-, br}, where a; and b, are the projections
of [0, 1] and [0, 7].
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Results

Horizontal slit tori

For € Hand s € [0,1) let
T(%): the once-holed torus obtained from T,
by deleting a horizontal segment of length s,

x!9): the mark of handle of T(®) -
induced by the embedding
T_,(_S) — T-. s
P
0 1
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Results

Another global coordinate system on ¥

o Set X8 = (T, x9) for (1, s) € H x [0,1).

Proposition

The correspondence (T, s) — X'8) is a homeomorphism of
H x [0,1) ontfo %.

@ The restrictions of the homeomorphism to H x (0, 1) and
to H x {0} are real-analytic.

@ The extremal length of the free homotopy class of a(®) is
exactly 1/ Im 7, where x() = {a(%), b(9)}.
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Results

Second results

Theorem 2,

There exists Aa[ Yo] € [0, +00) such that:

() IFlm 7 > 1/Xa[Yo], then X(9) & X ,[Yo] for any s € [0,1).
(i) Iflm 7 < 1/Xa[Yo], then X9 € X,[Yo] for some s € [0,1).

@ If Yp is a marked torus, then A4[Yp] = 0.

There exists A¢[Yo] € (0, +00) such that:
() IFlm 7 > 1/Xc[Yol, then XS & T.[Yo] forany s € [0,1).
(i) Iflm 7 < 1/Xc[Yol, then X9 € [Yo] for some s € [0,1).

@ It follows from T 5[ Yo] D T¢[Yo] that Aa[Yo] < A¢[ Yol
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Results

Third result

@ Let Yy = (Ro, x0), where xo = {ao, bo}.

@ /[Ys]: the length of the hyperbolic geodesic on Ry
freely homotopic to ag
If R is a torus, then define £[Yp] = 0.

@ )\[Yp]: the extremal length of the free homotopy class of ag

Aa[Yo] = :TE[YO], and X¢[Yo] = A[Yo].
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Proof of Theorem 2

Outline
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Proof of Theorem 2

Definition (Order)
For X, X' € €,

X < X’ & 3 aconformal mapping X — X’

0 X <X & X € Te[X'] & Te[X] C Te[X']

Proposition
(¥, <) is an ordered set.

Makoto Masumoto Once-Holed Tori



Proof of Theorem 2

Which torus accepts a given once-holed torus?

ForX e TletM(X) ={r € H| X € T[X:]},
where X; = (T, x-) (the marked torus of modulus 7).

Proposition (Shiba, 1987)

@ M(X) is a closed disk (or a point) in H. the moduli disk of X

@ If Tp is the bottom point of M(X),
then X = X(5) for some s.

M(X)é

Tb
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Proof of Theorem 2

Order-reversing isomorphism

Let ® be the set of closed disks in H,
where a singleton is regarded as a closed disk of radius 0.

Proposition

The correspondence X — M(X) defines an order-reversing
isomorphism between the ordered sets (T, <) and (D, C).

@ For X, X' € ¥,
X < X' < M(X) D> M(X").

@ Forany A € ® thereis X € T such that M(X) = A.
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Proof of Theorem 2

Essential part of the second result

Let T[Yo] = Ta[Yo] or T[Yo] = Te[Yo)-

There exists ty € [0, +00) such that:
(i) Ifim T > &y, then X'®) & X[Yy] forany s € [0,1).
(i) Ifim T < to, then X'S) € Z[Yy] for some s € [0,1).

7 K

it
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Proof of Theorem 2

Proof of Theorem 2

Z[Yo] = Ta[Yo] or Tc[Yo]
@ Set
ty = sup{lm~ | 7 € Hand X'} € T[Y,] for some s}.

@ IflImT > ty, then X(8) & X[Y,] for any s.

Observation
For X, X' € ¥,

(X < X"and X’ € T[Yo]) = X € T[Yo]
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Proof of Theorem 2

Proof of Theorem 2

o lflmr < t,

it

e
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Proof of Theorem 2

Proof of Theorem 2

o Ifimr < 1y, then X&) € (Y]
for some 7/ and s’ withIm 7’ > Im 7.

Lz

e
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Proof of Theorem 2

Proof of Theorem 2

o Ifimr < 1y, then X&) € (Y]
for some 7/ and s’ withIm 7’ > Im 7.

o 3A € D st. A D M(X'$)) and  is the bottom of A.

m(x<)) é

——

FAN T

<z
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Proof of Theorem 2

Proof of Theorem 2

® A = M(X9) for some s.

m(x)) é

——

mx) ¥
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Proof of Theorem 2

Proof of Theorem 2

® A = M(X9) for some s.
o Then M(X(9)) > M(X'$) and hence X(8) < X
o Since X5 € T[¥y], we have X9 € Z[Yo].

"

<z

——

mx) ¥
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Proof of Theorem 2

Concluding Remark

@ The above reasoning works for any subset ¥y of ¥
with the property described in the observation:
For X, X' € ¥,

(X=X &X' € %)= X €T

@ The set of X € ¥ for which there is a holomorphic
mapping f : X — Yp with sup, #f1(q) < v, where v is
a given positive integer.

@ The set of X € ¥ for which there is a K-quasiconformal
mapping X — Yp, where K > 1 is fixed.
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2. Coxeter&dgrowth series

EE 1. [Steinberg 68]

(G,S) : ER{IE O Coxeterft

(Gp,T) : T C STHEHRINSTTHE
fqg(t) : (G,S)Dgrowth series

fr(t) . (Gp,T)Dgrowth series
F={TCS : Gpr |\ BB OH7H)

Dt Z,
1 3 (—1)#T
fsY  fox fr(t)
i o (1) g
fo(t) 13 BIEEE @ DRI BT 2 RXRFREIRFTH 5,

growth rate 7 := limsupy_,, &¥ar = % 13 SEARBIEL,



EIE 2. [Solomon 66]
(G,S) : BRI © Coxeterfif
fqg(t) : (G,S)Dgrowth series

Dt E,
n
Fs(t) = ][ mi +11.
i=1
ZZT
n = #5S5,

[m] i=1+4t+ -+ tm 1
l=m1<mo <---<mp=h-1: (G,S) Dexponents,

© h : Coxeter element s,(1y---5,(,) DI
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Io(m) 1,m—1 [2, m]

ZZCm]li=14+t+ -+t L [m,n] ;.= [m][n].
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Coxeter % Mg compact non-compact
H< Salem Pisot %«
(Cannon—Wagreich 92, Parry 93) (Floyd 92)
H> Salem #
(Parry 93)
H* *2 —Salem #& % %
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#l (,m,n) = (1,2,4)

Ty.m.n \CBI9 % growth function Wy, ,(¢) 13X TH A 540 %
([T. Zehrt—C. Zehrt 12] D %)
1 n+1 t-—1 ( 14 m n—~0—m

= + — —+——+
Wﬁ,m,n(t) W (¢) t+1

A(t)  B(t) C(t)
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EIE 3.[T. Zehrt—C. Zehrt 12]

Py, P>, C H" : 250 Coxeter %[if&. orthogonal facet F
R,

W1(t), Wo(t), F(t) : Py, Py, FIZE9 % growth function
ZDEE,  PIEP,ZFTERDGLESZEICEDESNS Cox-
eter ZHEN S E X SHEMREED growth function W (t) [
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Pﬁ,m,n(t) 13
Qﬁ,m,n(t)
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Introduction

Let X be a Riemann surfaces of type (g,n) with 3¢ —34+n >0
and T'(X) be the Teichmiiller space of X.

Problem

Let r(t), '(t) be Teichmiiller geodesic rays on T'(X). Two rays
r(t), r'(t) are asymptotic if there is a choice of base points
r(0), /(0) so that

lim dpx)(r(t),r'(t)) = 0.

t—o00

We want conditions that r(t), r/(t) are asymptotic.
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Introduction

First, we express the main theorem. We will recall the
definitions of terms after.

Let r = r(t), ' = r'(t) be Jenkins-Strebel rays on T'(X) starting
at p=1[Y, f], p’ = [Y’, f'] and having unit norm Jenkins-Strebel
differentials ¢, ¢' on Y, Y’ respectively. We denote by r(c0),
r’'(00) the end points of r, ' on the augmented Teichmiiller
space T'(X) respectively.

We suppose that r, v’ are similar, i.e., the Jenkins-Strebel
differentials ¢, ¢’ determine annuli which are generated by
homotopy classes of simple closed curves f(y1),---, f(7k),
(), -, f'(yk) respectively, where 71, - - - , v are distinct and
non-intersecting simple closed curves on X. Let mj, mg be the
corresponding moduli respectively for any 7 =1,--- , k.
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Theorem 1 ([Amal3])
If 7(c0) = 7/(00), then

. / 1 Tn9 m;
Ma (@i ()] = 7 o swims & — o e

Corollary 2 ([Amal3])

For any two Jenkins-Strebel rays r, 1/, they are asymptotic if
and only if 7, 7’ are modularly equivalent and r(0c0) = /(o).

Farb and Masur showed the same result in the moduli space.
[FM10]
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Teichmiiller space

Let X be a Riemann surface of type (g,n) with 3¢ —3 4+ n > 0.

Definition (Teichmiiller spaces)

T(X):={(,f) | Y : a Riemann surface, f: X - Y : a
qe-mapping }/ ~,

(Y1, f1) ~ (Ya, f2) :< There exists a conformal mapping
h:Y; — Ya which is homotopic to fo o fi .

We call T'(X) the Teichmiiller space of X and denote by
[Y, f] the equivalence class of a pair (Y, f).
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Teichmiiller space

Definition (The Teichmiiller distance)

The Teichmiiller distance dr(y) is a complete distance on
T(X). This is defined the following formula. For any
p1 =Y, fil,p2 = [Y2, fo] € T(X),

1.
dT(X)(phpQ) = 3 log 1%fK(h),

where the infimum is taken over all qc-mappings h : Y7 — Y5
homotopic to fa o f{ ! and K (h) means the maximal dilatation
of h.
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Quadratic differentials

Definition (Quadratic differentials)

A holomorphic quadratic differential ¢ on X is represented
locally by ¢ = q(2)dz? where ¢(z) is a holomorphic function of
the local coordinate z = x 4+ 1y on X. We allow holomorphic
quadratic differentials to have simple poles at the punctures of
X, then [|q|| := [[y lq(z)|dzdy < co. We call that ¢ is of unit
norm if ||¢|| = 1.

Definition (g-coordinates)

A critical point of ¢ = 0 is a zero of ¢ or a puncture of X. A
g-coordinate ¢ on X is a local coordinate on X — {critical
points of ¢} such that ¢ = d¢2. For any two g-coordinates (1, (o
in a common neighborhood U, the equation (5 = £(; + ¢ where
c € C holds, because q = d(? = d(3.

7 /41
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Quadratic differentials

Definition (trajectories)

A horizontal trajectory of ¢ is a maximal smooth path

z = v(t) on X which satisfies ¢(v(¢))75(t)?> > 0. A critical
trajectory joins critical points of ¢q. Let I'y be the set of all
critical points and critical trajectories of ¢g. For any component
of X —TI'y, there are the following two cases.

@ annulus: it is swept out by closed trajectories of ¢ such
that they are homotopic to each other. In this case, we call
the homotopy class of the closed trajectory the core curve
of the annulus.

© minimal domain: it consists of infinitely many recurrent
trajectories of q.

A quadratic differential ¢ has finitely many critical points, then
q has finitely many these domains.
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Quadratic differentials

If all components of X —I'y are annuli, we call ¢ a
Jenkins-Strebel differential (J-S differential). In this case,
the core curves which are determined by ¢ are distinct and
non-intersecting each other. After this, we treat only J-S
differentials.

SB—-mE

Definition (moduli of annuli)

For any J-S differential g, it generates finitely many annulus
{A;}j=1.. k. Each annulus is conformally equivalent to the
cylinder C; which has the circumference a; and the height b; for
any j = 1,--- ,k. We set the modulus of the annulus A4; as

bj
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Teichmiiller geodesic rays

Definition (Teichmiiller geodesic rays)

Let p =Y, f] € T(X), q be a unit norm quadratic differential
on Y. For any ¢ € [0,00), we define the qc-mapping ¢; : Y — Y}
by z =z + iy — 2z = e tx +iely and set Yy = Y where z is the
g-coordinate. The mapping 7 : [0,00) — T'(X) which is defined
by

r(t) := Y1, 9¢ 0 f]
satisfies dp(x)(r(t),7(s)) = |t — s| for any ¢, s € [0,00). We call r
the Teichmiiller geodesic ray on 7'(X) starting at p and
having ¢q. If ¢ is J-S, we call r the Jenkins-Strebel ray (J-S

ray).

Now, let r, ' be two Teichmiiller geodesic rays on T(X)
starting at p = [Y, f], p' = [Y’, f] and having unit norm J-S
differentials ¢, ¢’ respectively.
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Teichmiiller geodesic rays

Definition (J-S rays are similar)

J-S rays r, v’ are called similar if there are distinct and
non-intersecting homotopy classes of simple closed curves
Y1, ,7 on X such that ¢, ¢ have the core curves of annulus

whose forms are f(y1), -+, f(y) on Y and f'(v1), -, f' (%)
on Y’ respectively.

Definition (Modularly equivalent)

In this situation, the given rays r, r’ are called modularly
equivalent if there is A > 0 such that m; = Am; for any
=1,k

11 /41
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Teichmiiller geodesic rays

Definition (Asymptoticity)

We call that r, ' are asymptotic if there is a choice of initial
points 7(0), 7'(0) such that dpx)(r(t),r'(t)) — 0 as t — oo, in
other words, for the given rays r(t), r/(t), there is @ € R such
that dp(x)(r(t),r'(t +a)) — 0 as t — oo.
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The end point of a J-S ray

Definition (Riemann surfaces with nodes)

A connected Hausdorff space R is called a Riemann surface
of type (g,n) with nodes if R satisfies the following two
conditions:

@ Any p € R has a neighborhood which is homeomorphic to
the unit disk D or the set
{(21,22) € C? | |21] < 1,|22| < 1,21 - 22 = 0}. (In the latter
case, p is called a node of R. We allow R to have finitely
many nodes.)

@ Any component of R — {nodes of R} is a hyperbolic
Riemann surface, and we get a Riemann surface of type

) without nodes by opening each node of R.

S cRee
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The end point of a J-S ray

Definition (Augmented Teichmiiller spaces)

Let X be a Riemann surface of type (g,n) without nodes
which satisfies 3g — 3 +n > 0. We define the augmented
Teichmiiller space of X as follows.

T(X) :={(R, f) | R: a Riemann surface of type (g,n) with or
without nodes, f: X — R : a deformation }/ ~,

where the “deformation” is a mapping such that it contracts
some disjoint loops on X to points (the nodes of R) and is a
homeomorphism except on the loops. (Ry, f1) ~ (R2, f2) &
There is a biholomorphic mapping h : Ry — Ro such that fs is
homotopic to h o fi.
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The end point of a J-S ray

A homeomorphism h : Ry — Rs is called biholomorphic if each
restricted mapping of A which maps a component of

Ry — {nodes of R;} onto a component of Ry — {nodes of Ry} is
biholomorphic. A topology on T(X ) is defined by the following
neighborhoods.

Definition (The neighborhood of a point on T(X))

For any compact neighborhood V' of the set of nodes in R and
any ¢ > 0, a neighborhood Uy, of a point [R, f] is defined by

Uy, == {[S,g] € T(X) | there is a deformation h : S — R which
is (1 + €)-quasiconformal on h~*(R — V) such that f is
homotopic to ho g}.
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The end point of a J-S ray

We consider the end point of a Jenkins-Strebel ray r starting at
r(0) = [Y, f] and having unit norm J-S differential ¢. First, we
see that cylinders {C}(0)};—1.... » which are determined by
g-coordinates on Y. Each C}(0) is transformed to A;(0) which
is the pair of two ring domains {e™""™ < |z| < 1} with the
gluing, for any j =1,--- k.

SrE

Y / C1(0)  C3(0)

1 @
~
mym e/ mam

A1(0) A2(0)

© ©

—
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The end point of a J-S ray

The Teichmiiller mapping g¢ : Y — Y; is represent to the form
z = ret s r¢” eifin Aé(O) for any [ = 1,2. We set the mapping
Joo 1 Y — Yo, which maps Aé»(O) onto D = Aé-(oo) U {pt} by
z=re" s h;(r)e?, where hj : [exp(—m;7),1) — [0,1) is an
arbitrary monotone increasing diffeomorphism.

Yoo

HORO
OR0
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The end point of a J-S ray

The Riemann surface with nodes Y, is constructed by these

disks {Aé(oo) U {pt}}ézzll2  with the gluing, and we denote

D@nngDO(f]by'r(OO)

Theorem (cf. [HS07])

The Jenkins-Strebel ray r(t) = [Y%, g o f] converges to a point
7(00) = [Yoo, goo © f] in T'(X).

18 /41
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Theorem 1

Let r, ' be two Jenkins-Strebel rays and we suppose that the
rays are similar. We show the following.

Theorem 1 ([Amal3])

If r(oc0) = r'(00), then

t—00 j=1,--k

1 m/. ms
lim dT(X)(r(t),r'(t)) =5 log max { —Z, —f :
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Upper estimate

First, we show that
1 mi m;

li d t),7'(t) < =1 R &
im sup drx) (r(1), /(1)) < 5 Ogjff?-}-{vk{m/ j

Lemma

Let us choose 0 < € < 1 arbitrary. Then, for any sufficiently
large ¢, there is a quasiconformal mapping F; : Y; — Y, which is
homotopic to (g} o f') o (g; o f)~! such that the inequality
/
m’. .
lim K(F;,) < max { —Z, m—f + ¢ holds.

t—o00 g=Lk | My my

Since r, ' are similar, we notice that
(gio f)o(grof) 1(A;(1) ~ A’ (t) on Y/ for any 0 < ¢ < oo.
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Upper estimate

Proof. ,

We set M; = % forany j =1,--- k. By r(00) = 1'(c0), there
exists a biholomorphic mapping h : Yo, — Y. such that

h o gso o f is homotopic to g/ o f'. We can write

UA1 ) U A2(o0),

U Al (00) U A2 (00),

where Aé-(oo), A;-l(oo) are the punctured disks
D*={2€C|0<|z|]<1l}forany j=1,--- ,kand [ =1,2.
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Upper estimate

Now, we fix any j =1,--- ,k and [ = 1,2. We set
hé- = h|A§_(OO) : Az-(oo) — h(Aé-(oo)) C Y.,. Since h is a
biholomorphic mapping, then we can set hé- (0) =0 and

! zZ
dhéz( ) ’Z=0 # 0. We describe

Uiy — I 2 _ 1 ! !
hj(z) = ¢jz + ¢ 02" + -+ = ¢z + Pj(2) where ¢ # 0,
- < argcjl <mand -7 < argcjz < .
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Upper estimate

We set §;(t) = exp(—e? m] 7), 85(t) = exp(—e*'m/), for any

t > 0. Then &}(t) = 0;(t YMi . After this, we assume that
Aé() D* — D5, 1) = {z € C | §;(t) < [2] <1} and

A/l() D* — Dg; ¢ = {2 € C | 0}(t) < |2| < 1} for any t > 0.
The Riemann surfaces Y, Y/ are constructed by the domains
{Aé( )}l 1.2 e {All( )}l 1Y . with the gluing respectively.

To obtaln the mapplng Ft Y; — Y/, for sufficiently large
t, we construct a quasiconformal mapping

FL, : AL(t) = h(AL(D)).
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Upper estimate

We consider the following three cases (1), (2) and (3).
(1) In the case of M; > 1, we take X as

X.<%<O@MXJI<L<1
J logMj J Mj+€—1
M; — M
1— MY

J

We take sufficiently large ¢ such that the 1nequahty

X
§;()Mi < \c§|6 t)™i " holds. We set A;(t) = &;(t)™i . We
construct F]l.,t by the following:

Pii(2)  (8;(t) <zl < A1) (1)
Qh(2) (Aj(t) <z < 2A ;(8) (i)
hhi(z)  (245(t) < 2| < 1) (iii)

F]l',t(z) =
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Upper estimate

ﬁ: )
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Upper estimate

(i) In 9;(t) < |2] < Aj(t), we set
1-M; 1 log |z| 1My

+
X X TlogA;(t)—logd,;(t)
A M J J
Pl(2) = A () M7 LM :
Jit J J

_ <+
1-M. 7
J .

which satisfies P]{t(z) = §;(t)Mi71 . 2 on |2] = §;(t), let(z) = cé.z
on |z| = Aj(t).

050 Ailt) 5™ = 85(t) Ik (1)
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Upper estimate

The mapping Pj{t is conjugate to a one-to-one affine mapping
by log z. Then, P]l»’t is a qc-mapping, and its dilatation is the

following:
logcé. aj Tla logcé aj
. 2M, 7 ~1)log3;(t) > 2(M; 7 —1)log8;(t) >
K(Pj,t) = ! ] ] K
logc] aj . logc] a;
2M, 7 —1)logd;(t) > 2(M; 7 —1)log&;(t) >
1— M, .
where a; = ————2-. We see that (MX] —1)logd;(t) — +o0
S Ve 7 ’
T
and
M; — M
! J ,
K(Pj’t)—> Y < M;+e
j
as t — o0.
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Upper estimate

(ii) In Aj(t) < |z| < 2A4(t), we set
i(2) = e+ day 0 (12105 (2),
where ¢a (1) 1 [Aj(¢), 24(t)] — [0, 1] is defined by

This function satisfies Q;t(z) = cé-z on |z| = Aj(t),
Qé—jt(z) = hé—(z) on |z| = 2A;(t).

h;({]=] = 24,(t)})

=

Aj(t) 24(t) lch| A (1)

J
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Upper estimate

We consider the partial derivatives of Q"

i
O, — 1 Aty
0:(j0 = ZAj(t)ZQz )
. I 1 _1_1 d’(}[)l(Z)
Q50 =+ 38,7 VD) ean (D=

These partial derivatives are continuous in the domain. There is
C > 0 such that Wé(z)] < CAj(t)? for sufficiently large t. We
see that

L iz dgl(n)] = |t _oizdyl
NI vilz)) = ‘mj(t)z 2245(2)
W ong@)
= wnns 2 Y

as t — oco. Then, |35Q§-7t| — 0, |8ZQ§¢| — |c§\ # 0 as t — oo.
For sufficiently large ¢, Jac Qé,t = |8ZQ§-¢]2 - \85Q27t|2 £ 0.
Hence, Qé‘,t is a local C''-diffeomorphism.
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Upper estimate

In fact, Qit is a C'-diffeomorphism. By the derivatives of Qé‘,t’
for sufficiently large ¢, it is a quasiconformal mapping such that
its dilatation holds K(Qit) — last— oo.

(iii) In 2A,(t) < |2| < 1, Fjlt(z) = hg(z) and K(hé) =1
Therefore, for sufficiently large ¢, we obtain the quasiconformal
mapping F;,t such that

X
K(Fj,t) = maX{K(Pj,t>7K(Qj7t)} — W < Mj + €
T

as t — oo.
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Upper estimate

(2) In the case of M; < 1, we take X; as

log lela-&-s
-——— | .
> —— >2 & MY < H
log M; J vn 1+¢
- 9
M- MM

We take sufficiently large ¢ such that the inequality

X, X
§;(t)Mi < \c§-|6j(t)MJ' " holds. We also set Aj(t) = 6;(t)M ", and
also construct F Jl',t following.

PL() (3(0) < 2] < 8(0)
Fli(z) =4 QL) (850) < |2l < 28,(1)
W) A <12l < 1)
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Upper estimate

The functions Pj "

of (1). The difference is only the dilatation of P]l-’t. In this case,

Qé- , have the same notations as in the case

1
K(P4t)—>79 <—+e
M; — M M;

as t — oo. Similarly as in the case of (1), for sufficiently large t,

we obtain the quasiconformal mapping F Jl-7t such that

X
! ! ! 1 — M; 1
K(Fj;) = max{K (P[), K(Qj;)} & —— - < - +¢

M; — M j

as t — o0.
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Upper estimate

(3) In the case of M; = 1, we take sufficiently large ¢ such that
the inequality 0,(t) < \c§-|6j (t)% holds and set A;(t) = 5j(t)%.
We set

Py = 22 050) 500 < 121 < Ay0)
17l ( ) _ It J J J
@) =1 () (A1) < |2/ < 225())
W (2) (285(t) < 2] < 1)

The function Qé-’t is constructed similarly as in the case of (1).
In this time, K(P]l-,t) — 1 as t — oo. The function Qé-,t also
satisfying K (Qé}t) — 1 as t — co. Therefore, for sufficiently
large t, K(F]lt) = maX{K(P]{J), K(Qét)} —last— oo.
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Upper estimate

Now, we can construct the quamconformal mapping
F; : Yy = Y/ by gluing {F t}l 12 For any mapping Fjlt7
can confirm the following
Q@ Each hg is homotopic to (g, o f/) o (gro f)~!
{2A;(t) < |z| < 1}, since the mappings g, g; stretch the
ring domains Az(O), A;I(O) along radial directions for any
0<t<o00.
@ Each Ql . satisfies (Ql ;) — 1 as t = oo and the domain
{A(t) < |z| <2A;(t)} has the constant modulus for any ¢.
There is not a twist in this domain.

© Each P]l-yt produces the twist of angle arg cé in the domain
{6;(t) <|z] < A;(t)} and satisfies |arg c} + arg cj2| < 2,
after the gluing of A} (t) and A?(t).
Therefore, for sufficiently large t, the mapping F; do not
happen the Dehn twists on {0;(t) < |z| < 2A,(t)} and is
homotopic to (g o f') o (gio f)*
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Upper estimate

We conclude that

1
| . ! o
tlggo K(F,) = tlgglo j:1,{p,%§:1,2K(Fj’t) < jfllf?fk {M]’ M; } +e.

O]
Therefore, by this lemma, for any sufficiently large ¢, the

inequality

. o1
hmsoglp drx)(r(t),r' (1)) < tlggoilog K(F) <

holds. Since ¢ is arbitrary, we are done.
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Main results

Lower estimate

The inequality

—_

' ) m/ m;
hmlnde(X)(r(t),r'(t)) —log maxk{],f} (1)

t—o00 2 mj mj

is obtained by the result of Walsh [Wall2] and an easy
calculation. ]

In Walsh’s theorem, even if r(co) # r/(00), the same inequality
(1) also holds. Moreover, if r, r’ are not similar, then

o o !/ _
htrgérolf drx)(r(t),r'(t)) = +oo.
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Corollary 2

Corollary 2 ([Amal3])

For any two Jenkins-Strebel rays r, r’, they are asymptotic if
and only if r, 7" are modularly equivalent and r(co) = 7/(c0).

Proof.
Under the assumption of Theorem 1, if in addition the given
rays r, ' are modularly equivalent, there is A > 0 such that

m;:)\mj for aDszla"' ak‘ Then’ fora:—%k)g)‘?
20,0,/
1 e"m. my
. / — : -
Jim dpx) (r(8),r(t+ @) = 2logjnﬁ'ka{ m; ’62am;.}
_ ! logl =0
= 5 ogl =U.

This means that the rays r, v’ are asymptotic.
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Corollary 2

Conversely, if the rays r, v’ are asymptotic, we can assume that
limy o0 dpx)(r(t),'(t)) = 0 without loss of generality. The
rays are similar and satisfy mg =m, for any j =1,--- ,k by the
previous remark and the inequality (1). Finally, we can obtain
the equation 7(00) = r/(00). Indeed, for sufficiently large ¢, r(¢)
is contained an arbitrary neighborhood of 7/(c0). O
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Corollary 2

Remark

Under the assumption of Theorem 1, the minimum of the limit
value of the distance between the given rays r(t), r'(t) when we
shift the initial points 7(0), 7/(0) is given by

1/(1 mi 1 m;
d:==|=1 2421 A/
; (2 8, DX s T 2108, m>

We notice that 6 = 0 if and only if r, ' are modularly
equivalent.

By Theorem 1, we see that

1 m/- m;
. / - = 7] 7‘7
Jim dpix) (r(t), (1) = 5 o8 TR { my’ m; }

Y
>,
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Corollary 2

Proof.
The equality holds if we set

m;

max 7

1 g=lekm)

B = Zlog 7
max J

=Lk

and consider the rays r(¢), (¢t + (). In this situation, we
compute that
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Corollary 2

Therefore, we conclude that

lim drx) (r(t), 7' (t + B))

t—o00

1 e’mf
= —log max ———, g
2 j=1,-,k mj - ePmy

L(1, m’+11 m;
= = (0) max — O, max —
2\ 2 80 ey 2 R A

= 0.
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Background

Uniformisation Theorem

The universal covering space X of an arbitrary Riemann surface X is homeomorphic, by a
conformal mapping ¢, to either the Riemann sphere €, the complex plane C or the unit disk D,
and the fundamental group I1,(X) has a representation as a group G of conformal
homeomorphisms of <p(§).

Aims
@ describe the once-punctured annulus in several different ways and give the connections

between them

@ consider the asymptotic behavior when the puncture is tending to the boundaries, or a
boundary is shrinking to a point

nce-punctured annulus November 1 1, 2013 2/



Preliminary

@ For a hyperbolic surface X, we choose the universal covering space X to be the upper
half plane H or the unit disk D.

@ We identify a Mobius transformation

o(z) = — ad—bc=1, a,b,c,d € C,
cz

b
with the 2 X 2 complex matrix i( “ d ) € PSL(2, C) which is also denoted by ¢, and
c

define the trace of ¢ by tr ¢ = +(a + d), so that (tr ¢)* = (a + d)? is a conjugacy invariant.
If ¢ is hyperbolic, the translation length of ¢ is defined by T(¢) = inf g 5u(z, ¢(2)) and it
is known that 2 cosh(T'(¢)/2) = |tr §|.

@ Let Q C CandT be a collection of finite unions of rectifiable curves in Q. All of the
metrics which are conformal with respect to the Euclidean metric can be defined in terms
of a density o(z)|dz| where o(z) is a non-negative Borel measurable function on Q. For
z = x + iy, define L(y, 0) = L 0(2)ldzl, A(Q, 0) = [, 0(2)*dxdy, and
LT, o) = inf,er L(y, 0). Then the extremal length of I in Q is given by

_ LT, 0)
o) = Sl;p AQ.0)

Tanran Zhang (GSIS, Tohoku University) ifor n of a once-punctured annulus November 11, 2013 3/20



Peripheral collars

Let y be a simple closed geodesic on a hyperbolic surface X with hyperbolic length /. A
symmetric collar C(y) on X about y of hyperbolic width w is a doubly connected subdomain of
X containing y defined by C(y) = {x € X : dx(x,y) < w/2}, where dy is the hyperbolic distance
on X. By a universal cover from H to X which lifts y to the imaginary axis, a lift of the

n

symmetric collar C(y) is the rigion in H given by {z : 1 < |z| < k?, 7 —6<argz<73+6}, where

0<6< ’z—r, tan @ = sinhw, and k + k™! = 2 cosh(l/2).

Collar Lemma (e.g. Keen, 1974)

With the same y and 6, b as above, there is a symmetric collar C(y) on X abouty with the
angular width 0 satisfying

tanf = ———.
an P

Ify, and vy, are disjoint closed simple geodesics, the collars C(y,) and C(y,) are disjoint.

To obtain the maximal non-overlapped collar, we can extend one side of a symmetric collar
about v to the boundary, that means, the collar C(y) has a lift in the form

E‘(y) ={z: 1<z <k 5 — 0 < arg z < x} in H. We will refer to the collar Z‘(y) of such form
as a peripheral collar about y with the angular width 6.

Tanran Zhang (GSIS, Tohoku University) ifor n of a once-punctured annulus November 11, 2013 4/20



Two free homotopy classes

Figure: 1
After some rotations and scaler maps, we only need to consider the punctured annulus
A:={z:1/R<|zl<R}\a}, R>1, 1/R<a<R.
We denote B; :={z: |z| = 1/R}, B, := {z: |z] = R}, and let C,, C, be the free homotopy classes
of the circles {z : |z| = r1}, {z : |z| = 2} in A, respectively, where a < r; <R, 1/R < r, <a. So
C, separates By U {a} from B,, C, separates B, U {a} from B;. Let 1, ¥, be the hyperbolic

geodesics in Cy, C;.

Tanran Zhang ( , Tohoku University) ifors once-punctured annulus November 1 1, 2013 5/



Parameter pairs

Figure: 1
The punctured annulus A can be described in the following ways.
@ (k,r): from the generators of the covering group G
(l1, I): the hyperbolic lengths of geodesics y; and y,
(61, 6,): the angular widths of the maximal peripheral collars about y; and y,

(41, A2): the extremal lengths of C; and C,

(R, a): the natural parameter pair

Tanran Zhang ( , Tohoku University) ifor once-punctured annulus November 11, 2013 6/20



Fundamental domain

Lemma

Choose the covering group G of A to act on H. Then there exist two real numbers k and r,
1 < r < k, such that G is generated by a hyperbolic f and a parabolic g, where

= kK 0 1 2r —(r+1)
o ) Tl 2 )

Figure: 2

Tanran Zhang (GSIS, Tohoku University)
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Hyperbolic lengths

In the punctured annulus A, for [}, l,, k and r defined as above, we have

ll _ 1 lz _ 2 r
ZCOSh(Z)_k+k’ 2cosh(2)—r_1(k k).

anran Zhang (GSIS, Tohoku University) ifor a once-punctured annulus November 11, 2013 8/20



The maximal peripheral collars

Theorem

Suppose that 6, and 6, are the angular widths of the maximal peripheral collars about y,, y,.
Then we have

r—1 =1 2r(r+1)-26

0=, costh=—— =T "2 yp
O LT T A TS -G T

=D+ 1+96)
T r+3)6-0+DG@r+1)

§=K +r— VK - 1)K - 1r?)

with k and r being the parameters of the generators of the covering group.

(b) 4

Tanran Zhang (GSIS, Tohoku University)
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Comparison with Collar Lemma

The collar defined by Collar Lemma is the minimum of the maximal peripheral collar
supported by a hyperbolic transformation and it is smaller than the collar given above. We
denote the angular widths of the collars defined by Collar Lemma about the axes of f and fg!

by 6] and ;. Then
2
-1
0 = —.
O8N =

Then 6] < 6, by our theorem. From the symmetry we know 6} < 6, for fe .

Collar Lemma (e.g. Keen, 1974)

With the same y and 0, b as above, there is a symmetric collar C(y) on X about y with the

angular width 0 satisfying

tanf = ———.
an k—k’l

Ify, andy, are disjoint closed simple geodesics, the collars C(y,) and C(y,) are disjoint.
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Comparison of C; and C,

We can compare /; with [, 6; with 6, in terms of r and k. When 1 < r < 3,

-1
L < b, 6; >0, if 1<r< d <k,
—r
3r—1
Iy =h, 6, =0, if1<r<,[r—:k,
3-r
3r—1
L > b, 6, <0, if l<r<k< ; R
—r

when 7 > 3, [, > I, 8, < 6,. This corresponds that tan’ 6; sinh? 15’ =1,i=1,2.

Corollary

In the punctured annulus A = {z : 1/R < |z] < R}\{1}, the two parameters k and r satisty
k* = 3=L and the covering group G of A is generated by

3-r?

3

r—1 2rz —(r+1)
T 8@) = —F——F=
-r

T+ 1D)z-2"

f@)=

where 1 < r < 3 and r is related to R in some unknown way.

Tanran Zhang (GSIS, Tohoku University) ifor n of a once-punctured annulus November 11, 2013
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Hyperbolic lengths

In the punctured annulus A, for [}, l,, k and r defined as above, we have

ll _ 1 lz _ 2 r
ZCOSh(Z)_k+k’ 2cosh(2)—r_1(k k).
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Hyperbolic lengths

In the punctured annulus A, for [}, l,, k and r defined as above, we have

1

ll _ lz _ 2 r
ZCOSh(z)_k+k’ 2cosh(2)—r_1(k k).

The parameters 1y, l,, 6, 6, defined above satisty

sinh % sinh %
cosfy = ——————, cosb, =

7 ° I :
cosh %‘ + cosh cosh 3 + cosh %2

Tanran Zhang ( , Tohoku University) ifor once-punctured annulus November 11, 2013



Elliptic integrals and Jacobian elliptic functions

1
d.
@ Let K(r) = f — =
0 (I =xH)(1 —r2x?)
with 0 < r < 1 be Legendre’s complete elliptic integral of the first kind. The parameter
r € (0, 1) is called the modulus and the complementary modulus of ris ¥’ = V1 — r2, and
denote K’(r) = K(r') = K(V1 — r?). We define the normalized quotient

(=280
KO = 5%

for 0 < r < 1, then u(r) is a strictly decreasing homeomorphism of the interval (0, 1) onto
(0, co) with limit values p(0+) = oo, u(1-) = 0.

dx
V(1 =x)(1 = r2x?)

be the Jacobian elliptic sine function. Two other functions can be then defined by

cen(u, r) = /1 —sn2(u,r), dn(u, r) = /1 — r2sn?(u, r).

-
@ Let sn(u,r) = T where u =f
0
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Extremal lengths

Theorem

In the punctured annulus A, suppose that A, and A, are the extremal lengths of C; and C,.
Select a positive number q such that u(g) = 4logR and let K := K(q), K’ := K’'(g). Then
L= 2r b= 2r
et T upy
where
Vg(dnu; + 1) Vg(dnu, + 1)
pr= g+ dnu, p2= q+dnu,

with 5 2K R

= — logRa, = — log —,

uy p ogra, U p 0og p

and the Jacobian elliptic function dn in p; and p, has the modulus ¢’ = /1 — ¢>.
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Useful lemmas (1)

Lemma 1

For0 < g<1letK := K(g), K’ := K'(q) and select b = exp(—nK’ /(4K)). Then the conformal
mappings w and o defined by

Z+ 4/q
Vaz+1

are both unique up to rotations, where w takes the annulus b < |z| < 1 onto D \ [~ +/q, 4/q], and
o preserves D with (1) = -1, 0(1) = 1, o(—+/q) = 0.

w a
- _
-1 1 -1 1 -1 1

Figure: 5

2iK
w(@) = \/c_]sn(lTLoglé +7Cq), o(z) =
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Useful lemmas (2)

Let C be the family of loops in D separating 0 and p from the unit circle 0D, 0 < p < 1, and C
be the family of loops in D separating the slit (0, p) from dD. Then the extremal lengths of c
and C are

~ 2r
AC)=AC) = —.
(@) =0 )

(b) 7

ang (GSIS, Tohoku University) of a once-punctured annulus November 11, 2013 17/20



Extremal cases

@ Ris fixed. Whena — R, [} — oo, and then k — +oc0.
Whena — 1/R, [, — oo, and then r — 1.
@ ais fixed and R — +co. Then k — r — 1, so that limy_,,; cosh(/;/2) = 1 and
limy ,; cosh(l,/2) = 1.
@ a=1andR — 1. Then A is becoming a punctured domain shown in the figure below,

which is conformally equivalent to an endless punctured stripe in the complex plane. So
k — +ocoand r — 3.

Figure: 8
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Another model

We have a different uniformisation if taking the once-punctured annulus model as
A; = {b? < |zl < 1)\{x}, 0 < b? < x < 1. With the same definitions of A; and A,, when the
puncture x is fixed and b — 0, we have

- z—ﬂ, A — 0.
p(x)

Let C be the family of loops in D separating O and p from the unit circle D, 0 < p < 1. Then

the extremal length of C is
2r

AC) = .
()ll(P)
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