Non-linearizability of cubic-perturbed analytic germs at irrationally indifferent fixed points

Yûsuke Okuyama*
Department of Mathematics, Graduate School of Science
Kyoto University, Kyoto 606-8502, Japan
E-mail; okuyama@kusm.kyoto-u.ac.jp

September 17, 1999

1991 Mathematics Subject Classification. Primary 58F23, 30C62, 30D05, 39B12

Abstract

In this paper, we consider the non-linearizability of analytic germs with irrationally indifferent fixed points. Assume that an analytic germ f has an irrationally indifferent fixed point at the origin and its multiplier satisfies the Tortrat condition, which is a generalization of the Cremer condition, of degree three. Then a cubic perturbation of f is non-linearizable at the origin if this perturbation is large enough.

1 Introduction

For an analytic germ f at the origin with a fixed point $f(0)=0$, we call $\lambda:=f^{\prime}(0)$ the multiplier of f at the origin. If $\lambda=\exp (2 \pi i \alpha)$ for some $\alpha \in \mathbb{R} \backslash \mathbb{Q}$, the origin is said to be an irrationally indifferent fixed point of f. The linearization problem of f at the origin is whether there exists a holomorphic local change of coordinate $z=h(w)$ with $h(0)=0$ and $h^{\prime}(0) \neq 0$ which conjugates f to the linear map $w \mapsto \lambda w$. If such h exists, f is called (analytically) linearizable at the origin.

In this paper, we consider the non-linearizability of analytic germs at irrationally indifferent fixed points.

[^0]From now on, we always assume $\lambda:=\exp (2 \pi i \alpha)$ for $\alpha \in(\mathbb{R} \backslash \mathbb{Q}) \cap(0,+1)$. For a precise analysis of α, we consider the continued fraction expansion of α :

$$
\alpha=\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots
$$

where the a_{j} is uniquely determined positive integers and also consider the n-th convergent of it:

$$
\frac{p_{n}}{q_{n}}=\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}
$$

where $\left(p_{n}, q_{n}\right)=1$ and $p_{n}, q_{n}>0$. We set for $d \geq 2$,
$\mathcal{R}_{\lambda, d}:=\left\{f\right.$; rational map of degree $d, f(0)=0$ and $\left.f^{\prime}(0)=\lambda\right\}$ and
$\mathcal{P}_{\lambda, d}:=\left\{f \in \mathcal{R}_{\lambda, d} ; f\right.$ is a polynomial $\}$.
Brjuno showed in [2] that if α satisfies the Brjuno condition

$$
\begin{equation*}
\sum_{n} \frac{\log q_{n+1}}{q_{n}}<+\infty \tag{B}
\end{equation*}
$$

then any analytic germ f at the origin with $f(0)=0$ and $f^{\prime}(0)=\lambda$ is linearizable at the origin. We call α satisfying \mathcal{B} a Brjuno number. Conversely, Yoccoz showed in [9] that the quadratic polynomial $Q(z)=\exp (2 \pi i \alpha) z+z^{2}$ is non-linearizable at the origin if α is not a Brjuno number. Therefore Q is linearizable at the origin if and only if α is Brjuno number. However it remains open whether there exists a non-linear rational map linearizable at an irrationally indifferent fixed point with a non-Brjuno multiplier.

On the other hand, there is a well-known sufficient condition to obtain the non-linearizability of any element of $\mathcal{R}_{\lambda, d}$. Under the Cremer condition

$$
\begin{equation*}
\sup _{n} \frac{\log q_{n+1}}{d^{q_{n}}}=+\infty \tag{d}
\end{equation*}
$$

any rational map $f \in \mathcal{R}_{\lambda, d}$ is non-linearizable at the origin (see [3]). Furthermore, Tortrat showed in [8] strictly weaker condition than $\mathbf{C r}_{d}$

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \frac{\log q_{n+1}}{d^{q_{n}}}>0 \tag{d}
\end{equation*}
$$

implies that any polynomial $f \in \mathcal{P}_{\lambda, d}$ is non-linearizable at the origin. However these conditions depend on $d \geq 2$. In fact, $\mathbf{C r}_{d+1}$ (resp. \mathbf{T}_{d+1}) is strictly stronger than $\mathbf{C r}_{d}$ (resp. \mathbf{T}_{d}). Can we obtain a weaker non-linearizability condition independent of d ?

The main theorem in this paper is the following.

Main Theorem. Let $\lambda=\exp (2 \pi i \alpha)$ for $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ and f be an analytic germ with $f(0)=0$ and $f^{\prime}(0)=\lambda$. There exists an absolute constant $c_{1}>0$ such that if α satisfies \mathbf{T}_{3}, then a cubic-perturbation $f(z)+b z^{3}$ of f is nonlinearizable at the origin for any complex number b with $|b|>c_{1} /\left(r_{f}^{2}\right)$. Here $r_{f}>0$ is the radius of univalency of f at the origin, i.e.

$$
r_{f}:=\sup \{r>0 ; f \text { is injective on }|z|<r\} .
$$

In Section 2, we shall prove Main Theorem.

2 Proof of Main Theorem

Let S be the set of holomorphic functions univalent on \mathbb{D} with $f(0)=0$ and $\left|f^{\prime}(0)\right|=1$ and let S_{λ} be the set of elements f of S which satisfies $f^{\prime}(0)=\lambda$. We set $\mathbb{D}_{r}:=\{z ;|z|<r\}$ for $r>0$.

For $f \in S$, we define a cubic-perturbation of f :

$$
f_{a, b}(z):=a^{-1} f(a z)+b z^{3}
$$

where $0<|a| \leq 1$ and $b \in \mathbb{C}$. Furthermore we set $W:=\mathbb{D}_{15 / 2}, \widetilde{W}:=$ $\mathbb{D}_{1 / 3} \cap f_{a, b}^{-1}(W)$ and a constant $c_{0}:=225$. Recall that a triplet (\widetilde{U}, U, f) is called a cubic-like map if \widetilde{U} and U are simply connected proper subdomains of $\mathbb{C}, \widetilde{U}$ is relatively compact in U and $f: \widetilde{U} \rightarrow U$ is a proper holomorphic map of degree three.

The following is a special case of Lemma 2.1 in [6].
Lemma 2.1. If $|b| \geq c_{0}$, the triplet $\left(\widetilde{W}, W, f_{a, b}\right)$ is a cubic-like map.
We take a smooth function $\eta: \mathbb{R} \rightarrow[0,1]$ which is identically 1 on $(-\infty, 1 / 3]$ and 0 on $[15 / 2,+\infty)$ and define

$$
\tilde{f}_{a, b}(z):=\eta(|z|) f_{a, b}(z)+(1-\eta(|z|))\left(\lambda z+b z^{3}\right)
$$

for $f \in S_{\lambda}, 0<|a|<2 / 15$ and $|b| \geq c_{0}$. Then $\tilde{f}_{a, b}: \mathbb{C} \rightarrow \mathbb{C}$ is in C^{∞}, coincides with $f_{a, b}$ on $\overline{\mathbb{D}_{1 / 3}}$ and with $\lambda z+b z^{3}$ on $\mathbb{C} \backslash \mathbb{D}_{15 / 2}$. Moreover it converges to $\lambda z+b z^{3}$ in C^{∞}-topology on \mathbb{C} if a tends to 0 , and this convergence is uniform in $f \in S_{\lambda}$ and $|b| \geq c_{0}$.

From now on we assume $|b|=c_{0}$. We can conclude the following.
Lemma 2.2. There exist an $a_{0} \in(0,2 / 15]$ and a continuous function k : $\left[0, a_{0}\right] \rightarrow[0,1)$ with $k(0)=0$ such that for $f \in S_{\lambda},|b|=c_{0}$ and $0<|a|<a_{0}$, the map $\hat{f}_{a, b}$ is a branched covering map of \mathbb{C} of degree three and it satisfies

$$
\left|\frac{\bar{\partial} \tilde{f}_{a, b}(z)}{\partial \tilde{f}_{a, b}(z)}\right| \leq k(|a|) \quad(1 / 3 \leq|z| \leq 15 / 2)
$$

We identify a Beltrami coefficient on an open set U with a function $\mu \in$ $L^{\infty}(U)$ such that $\|\mu\|_{\infty}<1$. For a C^{1}-function $f: U \rightarrow V$ and a Beltrami coefficient μ on V, we define the pullback $f^{*} \mu$ of μ on U by

$$
\left(f^{*} \mu\right)(z)=\frac{\overline{\partial f(z)} \mu(f(z))+\bar{\partial} f(z)}{\overline{\bar{\partial} f(z)} \mu(f(z))+\partial f(z)}
$$

For $f \in S_{\lambda},|b|=c_{0}$ and $0<|a|<a_{0}$, there exists a unique Beltrami coefficient $\mu=\mu_{f, a, b}$ on \mathbb{C} which is invariant under the pullback by $\tilde{f}_{a, b}$ and agrees with $\frac{\bar{\partial} \tilde{f}_{a, b}}{\partial \tilde{f}_{a b}}$ on $1 / 3 \leq|z| \leq 15 / 2$ and is 0 on $(\mathbb{C}-W) \cup \bigcap_{n \geq 0} f_{a, b}^{-n}(\widetilde{W})$. Since $\operatorname{supp} \mu \subset W$ and $\|\mu\|_{\infty} \leq k(a)<1$, by the Ahlfors-Bers theorem [1], there exists a unique quasiconformal homeomorphism $\phi=\phi_{f, a, b}$ of \mathbb{C} onto itself which satisfies the following:
(i) for a.e. $z \in \mathbb{C}, \bar{\partial} \phi(z)=\mu(z) \partial \phi(z)$,
(ii) $\phi(0)=0$ and
(iii) $\phi(z)-z$ is bounded on \mathbb{C}.

Lemma 2.3 (cf. [4]). There exists an $A \in \mathbb{C}$ such that $\phi \circ \tilde{f}_{a, b} \circ \phi^{-1}(z)=$ $\lambda z+A z^{2}+b z^{3}$.
Proof. Since $\mu\left(\phi \circ f_{a, b}\right)=\mu(\phi)$, the map $\phi \circ \tilde{f}_{a, b} \circ \phi^{-1}: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic and fixes the origin. Thus it is a branched holomorphic covering map of \mathbb{C} of degree three fixing the origin so we can write $\phi \circ \tilde{f}_{a, b} \circ \phi^{-1}(z)=\lambda^{\prime} z+A z^{2}+$ $b^{\prime} z^{3}$. The multiplier of a fixed point of a holomorphic germ is topologically invariant if its modulus is equal to 1 , so we have $\lambda^{\prime}=\lambda$ (cf. [5], see also [7]). On a neighborhood of the point at infinity, $\phi_{f, a, b}(z)=z+$ (lower terms) and $\tilde{f}_{a, b}(z)=\lambda z+b z^{3}$. On the other hand, $\phi\left(\tilde{f}_{a, b}(z)\right)=\lambda \phi(z)+A(\phi(z))^{2}+$ $b^{\prime}(\phi(z))^{3}$. Thus $\phi\left(\lambda z+b z^{3}\right)-\left(\lambda z+b z^{3}\right)=\left(b^{\prime}-b\right) z^{3}+($ lower terms $)$ when $|z|$ is sufficiently large. Since this quantity remains bounded as $|z| \rightarrow+\infty$ by (iii), it is necessary that $b^{\prime}-b=0$.

We set $c_{1}:=c_{0} /\left(a_{0}^{2}\right)$. The following is equivalent to Main Theorem.
Proposition. Let $\lambda=\exp (2 \pi i \alpha)(\alpha \in \mathbb{R} \backslash \mathbb{Q})$ and $f \in S_{\lambda}$. If $\alpha \in \mathbf{T}_{3}$, then $f_{1, b}$ is non-linearizable at the origin for any $|b|>c_{1}$.
Proof. Noting that $\tilde{f}_{a, b} \equiv f_{a, b}$ on $\mathbb{D}_{1 / 3}$, we can see $f_{a, b}$ is non-linearizable at the origin if and only if the cubic polynomial $\phi \circ \tilde{f}_{a, b} \circ \phi^{-1} \in \mathcal{P}_{\lambda, d}$ is so. If $\alpha \in \mathbf{T}_{3}$, it is non-linearizable by the Tortrat Theorem. On the other hand, $a f_{a, b}(z / a)=f_{1, b /\left(a^{2}\right)}$ and for any $\left|b_{0}\right|>c_{1}$, there exist $a \in\left\{0<|a|<a_{0}\right\}$ and $b \in\left\{|b|=c_{0}\right\}$ such that $b /\left(a^{2}\right)=b_{0}$.

Consequently the proof of Main Theorem is completed.

Acknowledgement

The author would like to express his gratitude to Prof. Masahiko Taniguchi and Prof. Toshiyuki Sugawa for many valuable discussions and advices.

References

[1] Ahlfors L V and Bers L 1960 Riemann's mapping theorem for variable metrics Ann. of Math. 72 385-404.
[2] Brjuno A D 1971 Analytical form of differential equations Trans. Moscow Math. Soc. 25 199-239.
[3] Cremer H 1928 Zum Zentrumproblem Math. Ann. 98 151-163.
[4] Douady A and Hubbard J H 1985 On the dynamics of polynomial like mappings Ann. Sc. E.N.S., ̧ème série 18 287-343.
[5] Naishul V I 1983 Topological invariants of analytic and area preserving mappings and their application to analytic differential equations in \mathbb{C}^{2} and $\mathbb{C P}^{2}$ Trans. Moscow Math. Soc. 42 239-250.
[6] Okuyama Y 1999 Non-Linearizability of Polynomials at Irrationally Indifferent Fixed Points Kodai Math. J. 22 56-65.
[7] Pérez-Marco R 1997 Fixed points and circle maps Acta Math. 179 243294.
[8] Tortrat P 1987 Aspects potentialistes de l'itération des polynomials Séminaire de Théorie du Potentiel, Paris, No. 8, Lecture Note in Math. 1235 195-209.
[9] Yoccoz J-C 1996 Thèorém de Siegel, nombres de Bruno et polynômes quadratiques Astérisque 231 3-88.

[^0]: *Partially supported by JSPS Research Fellowships for Young Scientists

