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Abstract

In this paper, we consider the non-linearizability of analytic germs
with irrationally indifferent fixed points. Assume that an analytic
germ f has an irrationally indifferent fixed point at the origin and its
multiplier satisfies the Tortrat condition, which is a generalization of
the Cremer condition, of degree three. Then a cubic perturbation of
f is non-linearizable at the origin if this perturbation is large enough.

1 Introduction

For an analytic germ f at the origin with a fixed point f(0) = 0, we call
A := f'(0) the multiplier of f at the origin. If A = exp(2wia) for some
a € R\ Q, the origin is said to be an irrationally indifferent fixed point
of f. The linearization problem of f at the origin is whether there exists a
holomorphic local change of coordinate z = h(w) with ~A(0) = 0 and A'(0) # 0
which conjugates f to the linear map w — Aw. If such h exists, f is called
(analytically) linearizable at the origin.

In this paper, we consider the non-linearizability of analytic germs at
irrationally indifferent fixed points.
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From now on, we always assume A := exp(2mia) for a € (R\Q)N(0,+1).
For a precise analysis of a, we consider the continued fraction expansion of
a:
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where the a; is uniquely determined positive integers and also consider the
n-th convergent of it:
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where (p,,¢,) =1 and p,,, ¢, > 0. We set for d > 2,
Rx.a := {f; rational map of degree d, f(0) =0 and f'(0) = A} and (1)

Pra :={f € Rya; f is a polynomial}. (2)
Brjuno showed in [2] that if « satisfies the Brjuno condition
log g»,
DRI < oo, (8)

n

then any analytic germ f at the origin with f(0) = 0 and f'(0) = X is lin-
earizable at the origin. We call « satisfying B a Brjuno number. Conversely,
Yoccoz showed in [9] that the quadratic polynomial Q(z) = exp(27ia)z + 22
is non-linearizable at the origin if « is not a Brjuno number. Therefore )
is linearizable at the origin if and only if « is Brjuno number. However it
remains open whether there exists a non-linear rational map linearizable at
an irrationally indifferent fixed point with a non-Brjuno multiplier.

On the other hand, there is a well-known sufficient condition to obtain
the non-linearizability of any element of R 4. Under the Cremer condition

sup —> == = +00, (Cry)

any rational map f € R4 is non-linearizable at the origin (see [3]). Fur-
thermore, Tortrat showed in [8] strictly weaker condition than Cr,

lim sup —log 1 >0 (Taq)
n——+00 din
implies that any polynomial f € P, 4 is non-linearizable at the origin. How-
ever these conditions depend on d > 2. In fact, Cryy; (resp. T4yq) is strictly
stronger than Cry (resp. T,;). Can we obtain a weaker non-linearizability
condition independent of d?
The main theorem in this paper is the following.



Main Theorem. Let A = exp(2mia) for a« € R\ Q and f be an analytic
germ with f(0) = 0 and f'(0) = A. There exists an absolute constant ¢; > 0
such that if a satisfies T3, then a cubic-perturbation f(z) + bz3 of f is non-
linearizable at the origin for any complex number b with [b] > c1/(r}). Here
ry > 0 1s the radius of univalency of f at the origin, i.e.

r¢:=sup{r > 0; f is injective on |z| < r}.

In Section 2, we shall prove Main Theorem.

2 Proof of Main Theorem

Let S be the set of holomorphic functions univalent on ID with f(0) = 0 and
|£/(0)] =1 and let Sy be the set of elements f of S which satisfies f'(0) = A.
We set D, := {z; |2| < r} for > 0.

For f € S, we define a cubic-perturbation of f:

fas(2) == a7 f(az) + b2°
where 0 < |a] < 1 and b € C. Furthermore we set W := ]Dlo/g, W =
Dy/5 N fab( ) and a constant ¢y := 225. Recall that a triplet (U, U, f) is

called a cubic-like map if U and U are simply connected proper subdomains
of C, U is relatively compact in U and f : U — U is a proper holomorphic
map of degree three.

The following is a special case of Lemma 2.1 in [6].

Lemma 2.1. If [b| > ¢, the triplet (W, W, fas) ts a cubic-like map.

We take a smooth function n : R — [0,1] which is identically 1 on
(—o00,1/3] and 0 on [15/2,+00) and define

Fap(z) = n(l2]) fap(2) + (1 = n(l2])) (A2 + b27)
for f € Sy, 0 < |a| < 2/15and |b| > ¢p. Then f%b : C — Cisin C*, coincides
with f,; on [Dy/3 and with Az + bz3 on C \D15/2. Moreover it converges to
Az +bz3 in C*-topology on C if a tends to 0, and this convergence is uniform
in f €Sy and |b| > ¢.
From now on we assume |b| = ¢;. We can conclude the following.

Lemma 2.2. There exist an ay € (0,2/15] and a continuous function k :
[0, ap] = [0,1) with k(0) = 0 such that for f € Sy, |b] = cy and 0 < |a] < ay,
the map fop is a branched covering map of C of degree three and it satisfies

5]‘}’],(2)
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< k(la]) (1/3 <|2] < 15/2).




We identify a Beltrami coefficient on an open set U with a function p €
L>=(U) such that ||u|l~ < 1. For a C'-function f: U — V and a Beltrami
coefficient p on V', we define the pullback f*u of pon U by

; Of (2)pu(f(2)) + 9f(2)

(")(z) = === :

Of(2)u(f(2)) + 0f(2)
For f € Sy, [b] = ¢y and 0 < |a|] < aq, there exists a unique Beltrami
coefficient p = ff,ab ON C which is invariant under the pullback by f,; and

agrees with gf;b on 1/3 < |z| <15/2 and is 0 on (C— W)U+, a_g’(W)
a,b — ’

Since supp u C W and ||p]l~ < k(a) < 1, by the Ahlfors-Bers theorem [1],

there exists a unique quasiconformal homeomorphism ¢ = ¢;,; of C onto

itself which satisfies the following:
(i) for a.e.z € C, d¢(2) = u(2)0¢(2),
(ii) ¢(0) =0 and
(iii) ¢(z) — 2z is bounded on C.

Lemma 2.3 (cf. [4]). There exists an A € C such that ¢ o fay 0 ¢ 2(2) =
Az + Az? + b23,

Proof. Since p(¢o fup) = u(¢), the map ¢o fa’boqzﬁ*l : C — C is holomorphic
and fixes the origin. Thus it is a branched holomorphic covering map of C of
degree three fixing the origin so we can write ¢ o fa’b 0p7l(z) = Nz + A% +
b z3. The multiplier of a fixed point of a holomorphic germ is topologically

invariant if its modulus is equal to 1, so we have X' = X (cf. [5], see also
[7])- On a neighborhood of the point at infinity, ¢+45(2) = 2+ (lower terms)
and f,3(2) = Az + b2%. On the other hand, ¢(f,4(2)) = A\é(2) + A(p(2))? +
V(é(2))3. Thus ¢p(Az + b2%) — (A2 + bz3) = (' — b)2® + (lower terms) when
|2| is sufficiently large. Since this quantity remains bounded as |z| — +o0
by (iii), it is necessary that &' — b = 0. O

We set ¢; := ¢y/(a?). The following is equivalent to Main Theorem.

Proposition. Let A = exp(2mia) (« € R\ Q) and f € S\. If a €T3, then
f1 is non-linearizable at the origin for any |b| > cy.

Proof. Noting that f%b = fap on Dy /3, we can see [, is non-linearizable at
the origin if and only if the cubic polynomial ¢ o fa’b ol € Pygisso. If
a €T3, it is non-linearizable by the Tortrat Theorem. On the other hand,
afap(2/a) = fip)(a2) and for any |by| > c1, there exist a € {0 < |a| < ap} and
b € {|b] = co} such that b/(a?) = by. O

Consequently the proof of Main Theorem is completed. O
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