
NORM ESTIMATES OF THE PRE-SCHWARZIAN DERIVATIVES FOR
CERTAIN CLASSES OF UNIVALENT FUNCTIONS

YONG CHAN KIM AND TOSHIYUKI SUGAWA

Abstract. We introduce a kind of maximal operator associated with the Schwarz-Pick
lemma. This will lead to a sharp norm estimate of the pre-Schwarzian derivatives of close-
to-convex functions of speci�ed type. We also discuss a relation between the subclasses
of close-to-convex functions and the Hardy spaces.

1. Introduction and definitions

Let A denote the class of functions of the form :

f(z) = z +
1X
n=2

anz
n;

which are analytic in the open unit disk D = fz 2 C : jzj < 1g: Also let S, S� and K
denote the subclasses of A consisting of functions which are univalent, starlike and convex
in D , respectively. For analytic functions g and h in D ; g is said to be subordinate to h
if there exists an analytic function ! such that !(0) = 0, j!(z)j < 1 and g(z) = h(!(z))
for z 2 D . The subordination will be denoted by g � h; or conventionally, g(z) � h(z):
In particular, when h is univalent, g � h if and only if g(0) = h(0) and if g(D ) � h(D ):
Now we introduce the terminology needed in the following. Let M be the class of

zero-free analytic functions ' in D with the normalization condition '(0) = 1: Following
Ma and Minda [8], we de�ne the subclasses S�(') and K(') of A as the sets of functions
f 2 A of the forms

zf 0(z)

f(z)
� '(z);

and

1 +
zf 00(z)

f 0(z)
� '(z);

respectively, for each ' 2 M: By de�nition, it is obvious that f 2 K(') if and only if
zf 0 2 S�('). We note that S�(') � S�( ) and K(') � K( ) for ' �  :
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A typical example for ' is given by

'A;B(z) =
1 + Az

1 +Bz
;(1.1)

where A and B are real numbers satisfying �1 � B < A � 1: Note that the M�obius
transformation 'A;B maps the unit disk onto the disk (or half-plane) with diameter ((1�
A)=(1�B); (1+A)=(1+B)): The corresponding classes K('A;B) and S�('A;B) have been
studied by Janowski [4], [5], and Silverman and Silvia [10]. We note that S� = S�('1;�1)
is the class of starlike functions and K = K('1;�1) is the class of convex functions.

We now introduce a class of analytic functions de�ned in a similar way to that of close-
to-convex functions. For functions ';  2 M; following [6], we denote by C(';  ) the set
of all f in A such that there exists a function h 2 K(') with

f 0

h0
�  :(1.2)

The pre-Schwarzian derivative Tf of a locally univalent analytic function f is de�ned
by

Tf (z) =
f 00(z)

f 0(z)
:

We also de�ne the norm of Tf by

kTfk = sup
z2D

jTf (z)j(1� jzj2):

We note that the set T1 of pre-Schwarzian derivatives Tf of those functions f in S which

extend to quasiconformal automorphisms of the Riemann sphere can be regarded as a
model of the universal Teichm�uller space (cf. [14]) in analogy with the Schwarzians.
The authors deduced various properties (distortion, growth, growth of the coeÆcients

and so on) of functions f 2 A with kTfk � 2� for a �xed number � > 0; and gave
norm estimates for a few classes of univalent functions in [7]. The present article is a
continuation of the work. The goal is to give (possibly sharp) norm estimates of the pre-
Schwarzian derivative for the class C(';  ): To this end, we introduce a maximal operator
on the set C([0; 1)) of continuous functions on the interval [0; 1): For F 2 C([0; 1)); we
set

F̂ (r) = max
0�s�r

K(r; s)jF (s)j; 0 � r < 1;(1.3)

where the \kernel" function K(r; s) is de�ned by

K(r; s) =
s

r
+

r2 � s2

r(1� r2)
=
s(1� r2) + r2 � s2

r(1� r2)
(1.4)

for 0 � s � r < 1 and we call F̂ the maximal function of F: Here, we de�ne K(0; 0) = 1:
Note that the above expression of K(s; r) still makes sense when s > r as far as 0 � r < 1:
For later convenience (cf. Proposition 4.2), we extend K(s; r) in this way.

Apart from the obvious subadditivity (F + G)^ � F̂ + Ĝ; the following estimates

constitute basic properties of the operator F 7! F̂ :
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Lemma 1.1. Let F be a continuous function on the interval [0; 1): Then

(1� r2)jF (r)j � (1� r2)F̂ (r) � max
0�s�r

(1� s2)jF (s)j:(1.5)

and, in particular,

sup
0�r<1

(1� r2)F̂ (r) = sup
0�r<1

(1� r2)jF (r)j:(1.6)

We prove this lemma in Section 2. For an analytic function g on D ; we denote by
M̂(r; g) the maximal function of M(r; g) = maxfjg(z)j : jzj = rg: The main result of the
present article is stated as follows.

Theorem 1.2. Let ';  2 M and suppose that ' is univalent and that the image '(D )
is starlike with respect to 1: Then the inequality

kTfk � sup
0�r<1

(1� r2)
�
M̂(r; ('(z)� 1)=z) + M̂(r;  0= )

�
(1.7)

holds for every f 2 C(';  ): Moreover, the inequality is sharp if the inequalies����'(z)� 1

z

���� � '("jzj)� 1

"jzj and j 0(z)= (z)j �  0("jzj)= ("jzj)(1.8)

hold simultaneously for all z 2 D ; where " is a unimodular constant.

Though it is generally diÆcult to compute the right-hand side in (1.7), simpler estimates
can be deduced from Theorem 1.2. For instance, with the aid of (1.6), taking supremum
term by term, we obtain the following corollary.

Corollary 1.3. Under the same hypothesis as in Theorem 1.2, the inequality

kTfk � sup
jzj<1

(1� jzj2)
����'(z)� 1

z

����+ sup
jzj<1

(1� jzj2)
���� 0(z) (z)

����
holds for every f 2 C(';  ):
We will prove Theorem 1.2 in Section 3. In Section 4, we make some attempts to

compute the right-hand side of (1.7) when ' and  are of the form 'A;B: More speci�c
examples of computation will be given in Section 5. We also provide inclusion relations
between the class C(';  ) and the Hardy spaces in the �nal section.
Finally, we mention a couple of related results. S. Yamashita [13] investigated the norm

of pre-Schwarzian derivatives of Gelfer-starlike, -convex, and -close-to-convex functions
(see also [12] for Gelfer functions). Recently, Y. Okuyama [9] gave a sharp norm estimate
for the class of �-spirallike functions.

2. An extremal problem and the associated maximal operator

As a preparation of the proof of our main theorem, we introduce an extremal problem
and deduce fundamental properties of the adapted maximal operator de�ned by (1.3).
We �rst consider the extremal problem: for a given pair of points z0; w0 with jw0j �

jz0j < 1; �nd the maximum of values j!0(z0)j or, more precisely, the region of values
!0(z0); for holomorphic mappings ! : D ! D with !(0) = 0 and !(z0) = w0: A complete
solution to this problem was given by J. Dieudonn�e in 1931. The following is known as
Dieudonn�e's Lemma (see [3, p.198]).
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Lemma 2.1 (Dieudonn�e). Let F be the family of analytic functions ! on the unit disk

with j!j < 1; !(0) = 0 and !(z0) = w0; where z0 and w0 are points in D with jw0j �
jz0j 6= 0: Then the set f!0(z0) : ! 2 Fg is the closed disk centered at w0=z0 with radius

(jz0j2� jw0j2)=jz0j(1� jz0j2): Furthermore, if !0(z0) lies on the boundary of the disk, then

! has the form

!(z) = z
� z�z0
1��z0z

+ w0

z0

1 + � �w0

�z0
z�z0
1��z0z

(2.1)

for a constant � with j�j = 1:

In particular, we obtain the sharp inequality

j!0(z0)j �
����w0

z0

����+ jz0j2 � jw0j2
jz0j(1� jz0j2) = K(jz0j; jw0j)(2.2)

for such a function !; where the function K(r; s) is given by (1.4). In this way, our kernel
function K(r; s) connects with the above extremal problem. Note that equality holds in
(2.2) if and only if � = w0jz0j2=jw0jz20 :
Here is a good point to give a proof of the basic lemma given in Introduction.

Proof of Lemma 1.1. First, by the identity

r(1� s2)� �s(1� r2) + r2 � s2
�
= (r � s)(1� r)(1� s);

we obtain the following estimate of the kernel K(r; s) given in (1.4):

K(r; s) � 1� s2

1� r2
(2.3)

for 0 � s � r < 1: Therefore, the right-hand inequality in (1.5) follows. The left-hand
one is obvious because K(r; r) = 1: The relation in (1.6) is an immediate consequence of
(1.5).

Remark. In view of the Schwarz-Pick lemma: j!0(z)j � (1 � j!(z)j2)=(1 � jzj2) for a
holomorphic function ! : D ! D ; the inequality (2.3) is a natural conclusion.

3. Proof of the main theorem

For ' 2 M; we de�ne the functions h' and k' in A by the relations

zh0'(z)

h'(z)
= '(z) and 1 +

zk00'(z)

k0'(z)
= '(z);(3.1)

namely,

h'(z) = z exp

Z z

0

'(t)� 1

t
dt and k'(z) =

Z z

0

�
exp

Z �

0

'(t)� 1

t
dt

�
d�:(3.2)

For instance, we can compute h'A;B and k'A;B for �1 � B < A � 1 as follows:

h'A;B(z) = zk0'A;B(z) =

(
z(1 +Bz)(A�B)=B (B 6= 0)

zeAz (B = 0);
(3.3)
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and

k'A;B(z) =

8><
>:

1
A
((1 +Bz)A=B � 1) (A 6= 0; B 6= 0)

1
B
log(1 +Bz) (A = 0)

1
A
(eAz � 1) (B = 0):

(3.4)

Under some additional assumptions on '; Ma and Minda showed in [8] that these
functions are extremal in S�(') and K('); respectively, in various aspects. Among them,
they obtain the following lemma. In order to clarify what assumptions are necessary for
'; we will reproduce the proof of it.

Lemma 3.1 (Ma and Minda [8, Theorem 1]). Suppose that a function ' 2 M is univa-

lent and '(D ) is starlike with respect to 1: Then f 0 � k0' holds for every f 2 K('):

Proof. Let g = c log k0'; where c = 1='0(0): Since c('� 1) 2 A is starlike, we can see that
1 + zg0(z)=g00(z) = z'0(z)=('(z) � 1) has positive real part, in other words, g is convex.
By assumption, the relation czf 00=f 0 � c(' � 1) = czk00'=k

0
' = zg0 holds, and hence, one

obtains c log f 0 � g = c log k0'; equivalently, f
0 � k0' by Su�ridge's Theorem [11, Theorem

3]. (Recall that convexity of g was essential in this theorem.)

In general, for f; g 2 A; the condition f 0 � g0 implies the inequality kTfk � kTgk; see
[7]. Hence, we obtain the following as a corollary.

Theorem 3.2. Let ' be as in Lemma 3.1. If f 2 K('), then kTfk � kTk'k holds, where

k' is the function given in (3.2).

We now prove Theorem 1.2. It is convenient below to introduce the class B of analytic
functions ! on the unit disk with j!(z)j � jzj: Let f 2 C(';  ): Then, by de�nition, there
is a function h 2 K(') such that f 0=h0 �  : By Lemma 3.1, we see that h0 � k0': Let !1

and !2 be analytic functions in B satisfying h0 = k0'Æ!1 and f
0=h0 =  Æ!2: Conversely, for

any pair of functions !1; !2 2 B; the function f is uniquely determined so that the above
relations hold. We occasionally write f = f [!1; !2]: By taking the logarithmic derivative,
these relations yield

Tf = Th +
 0 Æ !2 � !02
 Æ !2

=
(' Æ !1 � 1)!01

!1
+
 0 Æ !2 � !02
 Æ !2

= !01 � � Æ !1 + !02 �	 Æ !2;

where we have set �(z) = ('(z) � 1)=z and 	(z) =  0(z)= (z): Fix a point z0 2 D

with r = jz0j > 0: For any pair of points w1; w2 with rj = jwjj � r; consider functions
!1; !2 2 B with !j(z0) = wj for j = 1; 2: By (2.2), we observe that

jTf [!1;!2](z0)j � K(r; r1)j�(w1)j+K(r; r2)j	(w2)j
� K(r; r1)M(r1;�) +K(r; r2)M(r2;	)

� M̂(r;�) + M̂(r;	):

From this inequality, the required one (1.7) follows immediately.
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We next show the sharpness under the additional assumption (1.8). For a given

0 � r < 1; we choose r1; r2 2 [0; r] so that M̂(r;�) = K(r; r1)M(r;�) and M̂(r;	) =
K(r; r2)M(r;	) hold. For each j = 1; 2; let !j be the function of the form (2.1) with
w0 = "rj and � = "jz0j2=z20 : Then equality holds at each step of the above estimation.
Hence,

max
f2C('; )

M(Tf ; r) = M̂(r;�) + M̂(r;	)

holds for each r < 1:We remark that the extremal function attaining the above maximum
is uniquely determined for each r < 1: Now it is evident that the estimate (1.7) is best
possible if (1.8) is satis�ed.

4. Applications to the class C('A1;B1
; 'A2;B2

)

As an application of Theorem 1.2, we consider the case when ' = 'A1;B1
and  = 'A2;B2

for some real numbers A1; B1; A2; B2 with �1 � Aj < Bj � 1 for j = 1; 2; where 'A;B is
the function given in (1.1). First we need the next elementary lemma.

Lemma 4.1. For real numbers A;B with �1 � B < A � 1; the inequality

j1 + Azjj1 +Bzj � (1 + "Ajzj)(1 + "Bjzj)
holds for every z 2 D : Here, " = 1 when A +B � 0 and " = �1 when A+B � 0:

Proof. First assume that A + B � 0: If AB � 0, then A � 0 and B � 0; and thus, the
claim is obvious. If AB < 0; the assumptions imply B < 0 < A and

min
jzj=r

j1 + Azj2j1 +Bzj2

= min
�r�x�r

(1 + A2r2 + 2Ax)(1 +B2r2 + 2Bx)

= (1� Ar)2(1�Br)2:

Hence, the required inequality follows. The other case when A + B � 0 can be treated
similarly.

Noting the expressions

'A;B(z)� 1

z
=
A�B

1 +Bz
and

'0A;B(z)

'A;B(z)
=

A� B

(1 + Az)(1 +Bz)

and using Lemma 4.1, we see that the condition (1.8) is ful�lled for ' = 'A1;B1
and

 = 'A2;B2
if either

B1 � 0 and A2 +B2 � 0 (with " = 1)(4.1)

or

B1 � 0 and A2 +B2 � 0 (with " = �1).(4.2)

Put pA;B(z) = 1=(1+Az)(1+Bz) for�1 � B < A � 1: Then we may write M̂(r; ('A;B�
1)=z) = (A�B)M̂(r; p0;B) and M̂(r; '0A;B='A;B) = (A� B)M̂(r; pA;B): We further set

�(r;A;B) = M̂(r; pA;B) = M̂

�
r;

1

(1 + Az)(1 +Bz)

�
:(4.3)
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We note that Theorem 1.2 implies that the best bound of the norm kTfk for functions
f 2 C('A1;B1

; 'A2;B2
) is given by

W (A1; B1; A2; B2) = sup
0�r<1

�
(A1 �B1)�(r; 0; B1) + (A2 �B2)�(r;A2; B2)

�
:(4.4)

In view of the obvious symmetry �(r;A;B) = �(r;�B;�A); we may always assume that
A + B � 0: The following result provides suÆcient information for computation of the
above maximal functions.

Proposition 4.2. Suppose that �1 � B < A � 1 and that A+B � 0: Then, the quantity
�(r;A;B) is given by

8>>>><
>>>>:

pA;B(r) =
1

(1 + Ar)(1 +Br)
if 0 � r < r0

2(1� ABr2) + (A+B)(1� r2)� 2
p
(1 + A)(1 +B)(1� Ar2)(1�Br2)

(A� B)2r(1� r2)
if r0 � r < 1

for r0 � r < 1; where r0 is the unique root of the equation �(r) = r in 0 < r � 1 and �(r)
is de�ned by

�(r) =
1 + ABr2 �p(1 + A)(1 +B)(1� Ar2)(1�Br2)

�(A +B)� AB(1� r2)
:

Furthermore, for r 2 [0; 1); the condition r < r0 is equivalent to r < �(r):

Proof. When r = 0; we have nothing to prove. For a �xed r 2 (0; 1); we consider the
function F (x) = K(r; x)pA;B(x) so that �(r;A;B) = max0�x�r F (x): Then the derivative
of F is computed by

F 0(x) =
�[A +B + AB(1� r2)]x2 � 2(1 + ABr2)x+ 1� (1 + A+B)r2

r(1� r2)(1 + Ax)2(1 +Bx)2
:

Thus F 0 has exactly the two real zeros �(r) and

�(r) =
1 + ABr2 +

p
(1 + A)(1 +B)(1� Ar2)(1� Br2)

�(A+B)� AB(1� r2)
:

Here, we note that the inequality

A+B + AB(1� r2) < 0(4.5)

holds. Indeed, if AB < 0; the inequality holds trivially. If AB > 0; then �1 � B < A < 0:
Hence, A+B +AB(1� r2) < A+B +AB = A(1+B) +B � B < 0: Finally, if AB = 0;
then clearly A+B+AB(1� r2) = A+B � 0: Equality holds here only when A+B = 0;
which together with AB = 0 violates the condition B < A:
Since

�(r)� 1 =
(1 + A)(1 + B) +

p
(1 + A)(1 +B)(1� Ar2)(1�Br2)

�(A +B)� AB(1� r2)
> 0;
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there is at most one zero of F 0 within the interval [0; 1): On the other hand,

�0(r) =
(1+A)(1+B)r[�A2(1+B)(1�Br2)�B2(1+A)(1�Ar2)�2AB

p
(1+A)(1+B)(1�Ar2)(1�Br2)]

(A+B+AB(1�r2))2
p

(1+A)(1+B)(1�Ar2)(1�Br2)

is negative by Lemma 4.3 which will be shown below. Therefore, �(r) is decreasing in
0 � r � 1: Since the function r� �(r) increases from ��(0)(< 0) to 1� �(1)(� 0); there
is only one number r0 in (0; 1] so that �(r0) = r0: Observe that r < �(r) for 0 < r < r0
and �(r) < r for r0 < r < 1: Since F 0(0) > 0; for each 0 < r < r0 the derivative F 0(x)
is positive in 0 < x < r; and therefore, �(r;A;B) = F (r) = pA;B(r): When r0 � r < 1;
noting the inequality �(r) � r; we see that F 0(x) > 0 in 0 < x < �(r) and that F 0(x) < 0 in
�(r) < x < r: Therefore, we conclude that �(r;A;B) = F (�(r)) = K(r; �(r))pA;B(�(r));
which has the desired expression in the theorem.

Lemma 4.3. Under the same assumptions as in Lemma 4.2, the quantity

�A2(1 +B)(1� Br2)� B2(1 + A)(1� Ar2)� 2AB
p
(1 + A)(1 +B)(1� Ar2)(1�Br2)

is negative in 0 < r < 1:

Proof. The assertion is obvious when AB � 0: We now assume that AB < 0; and hence
B < 0 < A: Denote by P (r;A;B) or P the above quantity. Since

@P

@B
=

(A(1� r2)� 2ABr2 + 2Q)(�B(1 + A)(1� Ar2)� AQ)

Q
;

where we have set Q =
p
(1 + A)(1 +B)(1� Ar2)(1� Br2): Clearly, the �rst factor of

the numerator is positive. We next show that the second one is positive, too. To this end,
it is enough to see

� B(1 + A)(1� Ar2) = jBj(1 + A)(1� Ar2) > AQ

, B2(1 + A)2(1� Ar2)2 > A2(1 + A)(1 +B)(1� Ar2)(1� Br2)

, B2(1 + A)(1� Ar2) > A2(1 +B)(1�Br2)

, � (A�B)(A +B + AB(1� r2)) > 0:

The last inequality is certainly valid by virture of (4.5), and thus we have shown that
@P=@B > 0:
Fix A > 0 and 0 < r < 1: Then the range of B is �1 � B � �A by the present

assumptions. Since P is increasing in B; we obtain

P (r;A;B) � P (r;A;�A) = �2A2
h
1� A2r2 �

p
(1� A2)(1� A2r4)

i
:

Since

P (r;A;�A) < 0

, (1� A2)(1� A2r4) < (1� A2r2)2

, 0 < A2(1� r2)2;

the assertion now follows.
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In the sequel, it is convenient to have an exact value of

E(A;B) = sup
jzj<1

1� jzj2
j1 + Azjj1 +Bzj(4.6)

for �1 � B < A � 1: Keeping the simple relation

E(A;B) = E(�B;�A)(4.7)

in mind, we can give a concrete expression of E(A;B) as follows.

Lemma 4.4. If �1 � B < A � 1, then

E(A;B) =
2

1� AB +
p
(1� A2)(1� B2)

:(4.8)

Proof. First we assume that A+B � 0: Then, by Lemma 4.1, we obtain the expression

E(A;B) = sup
0�r<1

g(r);

where we set

g(x) =
1� x2

(1� Ax)(1� Bx)
:

A simple calculation gives E(A;B) = g(x0); where x0 is the unique zero of g0(x) in
0 � x < 1; that is,

x0 =
A+B

1 + AB +
p
(1� A2)(1�B2)

:

Noting the relation (A + B)x20 � 2(1 + AB)x0 � (A + B) = 0; we get (4.8). The case
when A + B < 0 can be reduced to the previous one by using (4.7). The proof is now
complete.

As an immediate consequence of this together with Theorem 3.2, we obtain

Theorem 4.5. Let �1 � B < A � 1: If f 2 K('A;B), then

kTfk � 2(A� B)

1 +
p
1�B2

;(4.9)

and equality holds when f = k'A;B :

Proof. If f 2 K('A;B), by Theorem 3.2, we have

kTfk � kTkk;
where k denotes the function k'A;B given in (3.4). Since

k00(z)

k0(z)
=
'A;B(z)� 1

z
=
A� B

1 +Bz
;

we obtain kTkk = (A� B)E(0; B) = 2(A� B)=(1 +
p
1�B2) by Lemma 4.4.
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5. Examples

First we compute the quantity �(r;A;B) given in (4.3) for special choices of A and B:
When B = �1; then �(r) = 1 and thus r0 = 1 in Proposition 4.2. Therefore, we compute

�(r;A;�1) = 1

(1 + Ar)(1� r)
; 0 � r < 1:

Next consider the case A = 0: A simple computation yields r0 = 1=(1 +
p
2(1 +B)) and

thus

�(r; 0; B) =

8>>>><
>>>>:

1

1 +Br
if 0 � r < r0

2 +B(1� r2)� 2
p
(1 +B)(1� Br2)

B2r(1� r2)
if r0 � r < 1:

6. Relationship with the Hardy space

The Hardy space Hp (0 < p � 1) is the class of all functions f analytic in D such that

kfkp := lim
r!1�

Mp(r; f) <1;

where

Mp(r; f) =

8<
:
�

1
2�

R 2�

0

��f �rei����p d��1=p (0 < p <1)

M(r; f) = maxjzj�r jf(z)j (p =1):

Let BMOA be the family of functions f analytic in D with �nite BMOA norm:

kfk� := sup
�2D

kf�k2 + jf(0)j <1;

where f�(z) = f((z + �)=(1 + ��z)) � f(�): See [1] and [2] for further information. A

simple relationship between the class C(';  ) and the Hardy space Hp is given by

Theorem 6.1. Let 1 � p < 1: Suppose that ' 2 M has positive real part and satis�es

k0' 2 H1; where k' is given by (3.2). Then C(';  ) � Hp for every  2 Hp \M:

Proof. If f 2 C(';  ), from (1.2) we have

f(z) =

Z z

0

h0(t) (!(t))dt;

where h 2 K(') and j!(z)j � jzj. By Littlewood's Subordination Theorem [2, Theorem
1.7], it follows that  Æ ! 2 Hp. By assumption, h0 � k0' 2 H1; and hence h0 2 H1: This
implies that h 2 H1 � BMOA: Now the following theorem yields the desired result.

Theorem (Aleman and Siskakis [1]). Let h be an analytic function in the unit disk

and 1 � p <1: The operator

f 7! 1

z

Z z

0

f(t)h0(t)dt

maps Hp continuously into itself if and only if h 2 BMOA:
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Corollary 6.2. Let �1 � B < A � 1: If �1 < B or A � 0; then for any number

1 � p <1 we have C('A;B;  ) � Hp for all  2 M\Hp: The range of A and B is sharp.

Proof. In view of (3.3), we can see that k0'A;B 2 H1 if and only if �1 < B or A < 0:
Thus, by Theorem 6.1, the statement holds in this case. When B = �1 and A = 0;
'(z) = '0;�1(z) = 1=(1� z); therefore k0'(z) = 1=(1� z): If h0 � k0'; then h

0 = 1=(1� !);
where ! : D ! D is analytic with !(0) = 0: Hence (1 � jzj2)jh0(z)j � (1 � jzj2)=(1 �
j!(z)j) � 1 + jzj < 2; which implies h 2 BMOA because a univalent Bloch function is
known to be of BMOA. Now the theorem of Aleman and Siskakis implies the desired
claim even in this case.
Now suppose B = �1 and A > 0: We take  (z) = 1 � log(1 � z) 2 Msu and de�ne

f 2 A by the relation f 0=k0'A;�1 =  : Note that  2 Hp for any p < 1: Using (3.4), we
can calculate as

f(z) =
1

A

�
1� log(1� z)� 1

A

��
(1� z)�A � 1

�� 1

A
log(1� z):

Therefore we see that f 2 Hp for any p < 1=A but f =2 H1=A: This implies that the above
statement fails when p � 1=A:

Remark. In general, if  2 M has positive real part, by [2, Theorem 3.2], we have

 2
\

0<p<1

Hp:

We note also that
C(';  ) � C � S �

\
0<p<1=2

Hp

for ' 2 M with Re' > 0 and  2 M with Re ei > 0 for some  2 R (see [2, Theorem
3.16]). The above ranges for p are sharp.
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