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Abstract

We consider dynamics of sub-hyperbolic and semi-hyperbolic semi-
groups of rational functions on the Riemann sphere and will show some
no wandering domain theorems. The Julia set of a rational semigroup
in general may have non-empty interior points. We give a sufficient
condition that the Julia set has no interior points. From some in-
formation about forward and backward dynamics of the semigroup,
we consider when the area of the Julia set is equal to 0 or an upper
estimate of the Hausdorff dimension of the Julia set.

For a Riemann surface S, let End(S) denote the set of all holomorphic
endomorphisms of S. It is a semigroup with the semigroup operation being
composition of maps. A rational semigroup is a subsemigroup of End(C)
without any constant elements. We say that a rational semigroup G is a

polynomial semigroup if each element of G is a polynomial.

Definition 0.1. Let G be a rational semigroup. We set
F(G) = {z € C| G is normal in a neighborhood of z}, J(G) = C\ F(G).
F(G) is called the Fatou set for G and J(G) is called the Julia set for G.

J(@) is backward invariant under G but not forward invariant in gen-

eral. If G is generated by a compact subset of End(C), then J(G) has the
backward self-similarity. That is,
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Lemma 0.2. Let G be a rational semigroup and assume G is generated by
a compact subset A of End(C). Then

J(@) = 1@

feA
We call this property the backward self-similarity of the Julia set.

Proof. Since J(G) is backward invariant under G, we have
J(G) > UgeafTH(JI(G)).

Suppose there exists a point z € J(G) that does not belong to Usep f 1 (J(G)).
There exists a neighborhood U of 2 in C such that f(U) C F(G) for each
f € A. Take any &’ € U. Let € > 0 be any small number. Since Uscn f(z')
is a compact subset of F(G), there exists a number d; > 0 such that
if d(f(z'), y) < 61 for some f € A, then d(gf(z'), g(y)) < e for each
g € GU{id}. Take d3 > 0 such that if d(2',y) < d2 then d(f(2'), f(¥')) < &1
for each f € A. Then we have that if d(z', y) < 0o, thend(gf (), gf(y')) < €
for each g € G U {id} and each f € A. Hence we have z € F/(G) and this is
a contradiction. O

The Julia set of any rational semigroup is a perfect set, backward orbit of
any point of the Julia set is dense in the Julia set and the set of repelling
fixed points of the semigroup is dense in the Julia set. In general, the
Julia set of a rational semigroup may have non-empty interior points. For
example, J((22,2z)) = {|2| < 1}. In fact, in [HM2] it was shown that if G
is a finitely generated rational semigroup, then any super attracting fixed
point of any element of G does not belong to d.J(G). Hence we can easily
get many examples that the Julia sets have non-empty interior points. For
more details about these properties, see [HM1], [HM2], [ZR], [GR], [S1] and
[S2]. In this paper we use the notations in [HM1] , [S1] and [S2].

Since the Julia set of a rational semigroup may have non-empty interior
points, it is significant for us to get sufficient conditions such that the Julia
set has no interior points, to know when the area of the Julia set is equal to
0 or to get an upper estimate of the Hausdorff dimension of the Julia set.
We will try that using various information about forward dynamics of the
semigroup in the Fatou set or backward dynamics of the semigroup in the
Julia set.

In the section 1 of this paper we will define sub-hyperbolic and semi-
hyperbolic rational semigroups and show no wandering domain theorems.
In particular, we will see that if G is a finitely generated sub-hyperbolic
or semi-hyperbolic rational semigroup, then there exists an attractor in the
Fatou set for G(Theorem 1.34). By using these theorems, we can show the
continuity of the Julia set with respect to the perturbation of the genera-
tors(Corollary 1.39).



In Section 2, we will consider the skew products of rational functions or
dynamics on C-fibrations. The “Julia set” of any skew product is defined
to be the closure of the union of the fibrewise Julia sets. We will define
hyperbolicity and semi-hyperbolicity. We will show that if a skew product
is semi-hyperbolic, then the Julia set is equal to the union of the fibrewise
Julia sets and the skew product has the contraction property with respect to
the backward dynamics along fibres(Theorem 2.13). The results in section 2
are generalized to those of version of dynamics on C-fibrations.

In section 3, we will consider necessary and sufficient conditions to be
semi-hyperbolic(Theorem 3.1, Theorem 3.5). We will show that any sub-
hyperbolic semigroup without any superattracting fixed point of any element
of the semigroup in the Julia set is semi-hyperbolic(Theorem 3.7).

In section 4, we will show that if a finitely generated rational semigroup
G is semi-hyperbolic and satisfies the open set condition with an open set
O such that §(00 N J(G)) < oo , then 2-dimensional Lebesgue measure of
the Julia set is equal to 0(Theorem 4.4).

In section 5, we will consider constructing d-subconformal measures. If a
rational semigroup has at most countably many elements and the j-Poincaré
series converges, then we can construct d-subconformal measures. We will
see that if G is a finitely generated semi-hyperbolic rational semigroup,
then the Hausdorff dimension of the Julia set is less than the exponent
d(Theorem 5.6, Theorem 5.7). To show those results, the contracting prop-
erty of backward dynamics will be used.

Note. This paper belongs to a part of the author’s thesis([S3]) which
was written under supervision of Prof. Shigehiro Ushiki.
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1 No Wandering Domain

Definition 1.1. Let G be a rational semigroup. We set

P(G) = U{ critical values of g}.
9eG

We call P(G) the post critical set of G. We say that G is hyperbolic if
P(G) C F(G). Also we say that G is sub-hyperbolic if 4{P(G) N J(G)} < oo



and P(G) N F(G) is a compact set.

We denote by B(z,€) a ball of center z and radius € in the spherical
metric. We denote by D(z,€) a ball of center z € C and radius € in the
Euclidian metric. Also for any hyperboplic manifold M we denote by H (z, €)
a ball of center x € M and radius € in the hyperbolic metric. For any rational
map g, we denote by Bgy(,¢€) a connected component of g~ (B(z,¢)). For
each open set U in C and each rational map g, we denote by c(U, g) the set
of all connected components of g~ (U). Note that if g is a polynomial and
U = D(z,r) then any element of ¢(U, g) is simply connected by the maximal
principle.

For each set A in C, we denote by A’ the set of all interior points of A.

Definition 1.2. Let G be a rational semigroup and A a set in C. We set
G(A) = Ugeag(A4) and G='(4) = Ugeag™" (4).

We can show the following Lemma immediately.

Lemma 1.3. Let G be a rational semigroup. Assume that {fy}rcp is a
generator system of G. Then we have

U {critical values of g} = U (G U{Id})({critical values of fy}).

gelG AEA

Definition 1.4. Let G be a rational semigroup and N a positive integer.
We set

SHy(G)
= {z € C|3d(z) >0, Vg € G, VBy(z,d(z)), deg(g : By(z,8) — B(z,5)) < N}

and UH(G) = C \ (UvenSHy(G)).

Remark 1. By definition, SHx (G) is an open set in C and ¢~ ' (SHy (G)) C
SHy(G) for each g € G. Also UH(G) is a compact set and g(UH(G)) C
UH(G) for each g € G. For each rational map g with deg(g) < 2, any
parabolic or attracting periodic point of g belongs to UH (G).

Definition 1.5. Let G be a rational semigroup. We say that G is semi-
hyperbolic (resp. weakly semi-hyperbolic) if there exists a positive integer
N such that J(G) C SHyx(G)(resp.0J(G) C SHy(G)).

Remark 2. 1. If G is semi-hyperbolic and N = 1, then G is hyperbolic.
2. If G is hyperbolic, then G is semi-hyperbolic.

3. For a rational map f with the degree at least two, (f) is semi-hyperbolic
if and only if f has no parabolic orbits and each critical point in the
Julia set is non-recurrent([CJY], [Y]). If (f) is semi-hyperbolic, then
there are neither indifferent cycles, Siegel disks nor Hermann rings.



Definition 1.6. Let V be a domain in C and E a compact subset of V. We
set
mod (F,V) =sup{ mod A},

where the supremum is taken over all annulus A such that E lies in a compact
component of V'\ A.

Lemma 1.7 ([CJY]). For any positive integer N and real number r with
0 <r <1, there exists a constant C = C(N,r) such that if f : D(0,1) —
D(0,1) is a proper holomorphic map with deg(f) = N, then

H(f(20),C) C f(H(20,7)) C H(f(20),7)
for any zy € D(0,1). Here we can take C = C(N,r) independent of f.

Corollary 1.8. For any positive integer N and real number r with 0 < r <
1, there exist constants r1 and ro with 0 < r1 < r9 < 1 depending only on
r,N such that if f : D(0,1) — D(0,1) is a proper holomorphic map with
deg(f) = N and f(0) =0, then

D(O,Tl) cCWcC D(O,Tg)
where W is the connected component of f~1(D(0,7)) containing 0.

Corollary 1.9 ([Y]). Let V be a simply connected domain in C, 0 € V, f:
V' — D(0,1) be a proper holomorphic map of degree N and f(0) =0, W be
the component of f~1(D(0,7)) containing 0, 0 < r < 1. Then there ezists a
constant K depending only on r and N, not depending on V and f, so that

<K
Yy

for all x,y € OW.

Proof. We will follow Y.Yin’s proof([Y]). Let g : V" — D(0, 1) be the univa-
lent function such that ¢g(0) = 0. ;From Corollary 1.8,

r1 < g(z)| <72

for all x € OW. Applying the Koebe distortion theorem, we have that

—1y 1 —1y/ T2
0)]- ————=<|z| < 0) - ————.
GO s <ol <16 O s
Then ( 2
z, _ro(l+m
o< B
y —ri(l—ro)
K is a constant depending only on N and 7. U



Lemma 1.10. LetV be a domain in C, K a continuum in C with diamgK =
a. Assume V.C C\ K. Let f : V. — D(0,1) be a proper holomorphic
map of degree N. Then there exists a constant r(N,a) depending only on
N and a such that for each r with 0 < r < r(N,a), there ezists a constant
C = C(N,r) depending only on N and r satisfying that for each connected
component U of f~1(D(0,r)),

diamg U < C,

where we denote by diamg the spherical diameter. Also we have C(N,r) — 0
as r — 0.

Proof. Let r be a number with 0 < r < 1. Let U be a connected component
of f~Y(D(0,r)) and V' be the connected component of C\ V containing
K. Since V is connected, V' is simply connected. Let U’ be the connected
component of C\ U containing V. Since U’ is also simply connected and
V' Cc U’, we have that there exists a connected component of U’ \W which
is a ring domain.

There exists a sequence (Tj)?zo of real numbers withrg =r <r; <--- <
rp = 1 such that there exist no critical values of f in D(0,r;41)\ D(0,r;) for
j=0,...,n—1. Foreachi=0,...,n, let U/ be the connected component
of f71(D(0,7;)) containing U and let U/ be the connected component of
C\ U containing V’. Then we have

Uy =UcU{c---cU, =V and

Uy=U>U0{>---DU, =V".

By the construction, f : U/, \ U/ — D(0,7;11) \ D(0,7;) is a proper map
for i =0,...,n — 1. Since there exist no critical values of f in D(0,7;41) \
D(0,7;), each connected component of U, ; \ U/ is a ring domain.

Now we claim that for each ¢+ = 0,... ,n — 1, there exists a connencted
component of U?,; \ U which is included in U} \ UL, ;. We will show that.
Since U] C U}', |, there exists a ring domain R; in U’ \ U/ such that oU!
is a connected component of OR;. Let R} be the connected component of
U!"., \ U!" containing R;. Since

OU;j \Uj,,) = 0U; UOU}, C oUy UIU,y,

we have R; N 9(U; \ U/, ) = 0. Hence R; C U;\ U/, and we have proved
the above claim.
From the above claim, we get
1 Ti+1

. .
mod (Uj, , Ui)zmlog - , fori=0,... ,n— 1




It follows that

n—1
mod (V/, U") > Y mod (U] \UL,)
=0

1 1

> log —.
r

On the other hand, by Lemma 6.1 in p34 in [LV], we have

[ , 7'['2
mod (V’, U) S 2—6112,

where C; = min{a, diamg U}. Hence the statement of our lemma holds. [

Lemga 1.11. Let V and_W be simply connected domains in C. Suppose
that W C V and mod (W, V) > ¢ > 0. Then there ezxists a constant
0 < A <1 depending only on c such that

diam W
<,
diam V —

here by “diam” we mean the spherical diameter.

Proof. We can assume that 0 € W and diam V = d(0,1) where d is the
spherical metric. Let g : D(0,1) — V be the Riemann map such that
g(0) = 0. By Theorem 2.4 in [M], there exists a constant ¢; depending only
on ¢ such that

diamH(g_l(W)) <ec,

where we denote by diampy the diameter with respect to the hyperbolic
metric in D(0, 1). Since diam V' = d(0, 1), by the Koebe distortion theorem,
we have that there exists a constant ¢y not depending on V' and W such that
|g'(0)| < c2. Using the Koebe distortion theorem again, we see that there
exists a constant c3 depending only on ¢ such that for each z € g~ (W),
|g(2)| < e3. Hence there exists a constant 0 < ¢4 < d(0,1) depending only
on c such that diam W < ¢4.

]

Lemma 1.12. Let G = (f1,..., fm) be a finitely generated rational semi-
group. Let y be a point of C\ UH(G). If there exists a neighborhood W of
y such that C\ G=Y(W) contains a continuum, then there exists a neigh-
borhood W1 of y such that for each simply connected open neighborhood V
of y included in Wy and for each g € G, each element of ¢(V,g) is simply
connected.



Proof. For each j = 1,... ,m, let C; be the set of all critical points of f;.
By Lemma 1.10, there exists a 0 > 0 such that for each g € GG, each element
of ¢(B(y,9), g) does not contain any two different points of Cj, j =1,...m.
Then for any simply connected open neighborhood V' of y included in B(y, d)
and for any g € G, each element of ¢(V, g) is simply connected. O

Lemma 1.13. Let G be a rational semigroup and N a positive integer.
Then for each g € G, any critical point ¢ of g does not belong to SHy(G) N

(G U{id})(g(c))-

Proof. Assume that there exists a critical point ¢ of an element g € G such
that ¢ € SHy(G) N (G U {id})(g(c)). Then there exists a sequence (gy) in
G so that g,g(c) — c.

There exists a positive number € such that B(c,e) C SHy(G). Since
gng(c) — ¢, we can construct a sequence (n;) and a sequence (B;) so that for
each j, Bj is a connected component of ((gn,9)(9n.9) - - (gn;9)) " (B(c, €))
and ¢ € Bj, which contradicts that ¢ € SHy (G). O

Lemma 1.14. Let g be a rational map with deg(g) > 2 and N a positive
integer. Assume that © € J((g)) N SHn({g)). Then x belongs to neither
boundaries of Siegel disks, boundaries of Hermann rings nor indifferent cy-
cles.

Proof. By Theorem 1 and Corollary in [Ma] and Lemma 1.13, we can show
the statement immediately. O

Definition 1.15. Let GG be a rational semigroup and U a component of
F(G). For every element g of G, we denote by U, the connected component
of F(G) containing g(U). We say that U is a wandering domain if {U,} is
infinite.

Remark 3. In [HM1], A.Hinkkanen and G.J.Martin showed that there ex-
ists an infinitely generated polynomial semigroup which has a wandering
domain.

Lemma 1.16. Let G be a rational semigroup which contains an element
with the degree at least two. Let x be a point of F(G) and assume that there
exists a point y € 0J(G) and a sequence (g,) of elements of G such that
gn(x) = y. Then we have y € P(G) N 9J(G).

Proof. We can assume that $P(G) > 3. Suppose y € C\ P(G). Let § be a
number so that B(y,d) C C\ P(G). We can assume that for each n, g,(x) €
B(y,d). For each n, there exists an analytic inverse branch «;, of g, in U
such that ay(gn(z)) = z. Since §P(G) > 3, we have {«y,}is normal in U.

Hence if we take an € small enough,

diam oy, (B(y, €)) < d(z,J(G)), for each n.



But = € a,(B(y, €d)) for large n and a,(B(y, €)) N J(G) # 0 because
J(@) is backward invariant under G. This is a contradiction.
U

Corollary 1.17. Let G be a rational semigroup which contains an element
with the degree at least two. If P(G) NAJ(G) = 0, then for each x €
F(G), G(z) \ F(G) and there is no wandering domain.

Lemma 1.18. Let G be a polynomial semigroup, N a positive integer and
y a point in J(G)NC. Assume that there exists an open neighborhood U of
y such that U C SHy(G) and $(C\G~Y(U)) > 3. Then for each x € F(G),

G(z) C C\ {y}-

Proof. We can assume that oo € C\ G~}(U). Suppose that there exists a
point x € F(G) and a sequence (g,,) in G such that g,(z) — y as n — oo.
Let § be a positive number so that for each g € G,

deg(g: V — D(y,d)) < N,

for each V' € ¢(D(y, 0), g). For any r with 0 < r < § there exists a positive
integer n(r) such that for each integer n with n > n(r), g,(z) € D(y,r).
Let Dy, (y,r) be the connected component of g, ' (D(y,r)) containing z. For
each n with n > n(r), there exists a conformal map ¢, from D(0,1) onto
Dy, (y,6) such that ¢,(0) = x. From Lemma 1.10, there exists a constant
C(r) with C(r) — 0 as » — 0 such that for each integer n with n > n(r),

diam ¢, *(Dy, (y,7)) < C(r).

Since $(C\ G~Y(U)) > 3, the family {¢,} is normal in D(0,1). Hence if r
is sufficiently small, then for each integer n with n > n(r),

diamSDgn (ya T) < d(J(G)a JJ),

where we denote by diamg the spherical diameter and by d the spherical
distance. On the other hand, since J(G) is backward invariant under G' and
y € J(G), we have that for each n with n > n(r), Dy, (y,7) NJ(G) # 0. This
is a contradiction. Therefore we have for each x € F(G), G(z) c C\{y}. O

Lemma 1.19. Let G be a polynomial semigroup. Assume that there exists
a point x € F(G), a point y € 0J(G) and a sequence (gn) in G such that
gn(x) =y as n — oo. Then at least one of the following holds.

1. UH(G) = b and each element of G is a Mdbius transformation. For

each z € F(G), y € G(z).

2. $(UH(G)) = lor2, UH(G) C J(G) and UH(G) N 0J(G) # 0. For
each z € F(G), y € G(z).




3. y e UH(G).

Proof. Suppose that §(UH (G)) > 3. From Lemma 1.18, we have y € UH(G).

Suppose there exists a point z € F(G) such that G(z) ¢ C\ {y}.
Then there exists a neighborhood V of z such that G(V) c C\ {y}. By
Lemma 1.18, y € UH(G).

Now we consider the case §(UH(G)) = 1 or 2. Then co € UH(QG). If
o0 € F(G), then since G(c0) = {00}, from Lemma 1.18 the condition 3.
holds. Now suppose co € J(G). There exists an element g € G with the
degree at least two. From Corollary 1.14, g has no Siegel disks. Let z be
a point in F(G). Since F(G) C F({g)), z € F({g)). From no wandering
domain theorem and the fact that g has no Siegel disks, there exists an
attracting or parabolic periodic point ( € F/(G) of g and a sequence (n;) of
positive integers such that ¢" (z) — . We have ( € UH(G). If ¢ € 0J(G),
then the condition 2. holds. If ( € F(G), then since G is a polynomial
semigroup, we have G({(}) = {¢} C F(G) and it implies y € UH(G) from
Lemma 1.18. Hence the condition 3. holds.

Finally we consider the case UH (G) = ). Assume there exists an element
h € G with the degree at least two. Since F(G) # (), we have F({g)) #
(. By the no wandering domain theorem, g has (super)attracting cycles,
parbolic cycles, Siegel disks or Hermann rings. Since UH (G) = (), this is a
contradiction. O

Theorem 1.20. Let G be a rational semigroup containing an element with
the degree at least two and U a connected component. Assume that there
exists a sequence (gn) of elements of G such that U, NU,, =0 ifn#m (
in pariticular, U is a wandering domain). Then there exists a subsequence
(gn;) of (gn) and a point y € P(G) N 0J(G) such that (gn,) converges to y
locally uniformly on U.

Proof. By the method in the proof of Theorem 2.2.3 in [S1], we can show
that there exists a subsequence (gy,) of (g,) and a point y € 9.J(G) such
that (gn,) converges to y locally uniformly on U. Hence the statement of our
theorem holds from Lemma 1.16. U

Theorem 1.21. Let G be a polynomial semigroup and U a connected com-
ponent of F(G). Assume that there exists a sequence (gn) of elements of G
such that Uy, NUy,, = 0 if n # m (in pariticular, U is a wandering domain,).
Then at least one of the following holds.

1. UH(G) = b and each element of G is a Mdbius transformation. For
each z € F(G), G(2) NdJ(G) # .

2. 4(UH(G)) =1 o0r2, UH(G) C J(G) and UH(G) N OJ(G) # (. For
each z € F(G), G(z) N9J(G) # 0.
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8. There exists a subsequence (gn;) of (gn) and a point y € UH(G) N
0J(G) such that (gn;) converges to y locally uniformly on U.

Proof. Using Lemma 1.19, we can show the statement in the same way as
the proof of Theorem 1.20. U

By Lemma 1.10 and using the method of the proof in Lemma 1.18, we
can show the next lemma immediately.

Lemma 1.22. Let G be a rational semigroup and y a point of 0J(G) \
UH(G). Assume that there exists an open neighborhood U of y such that
C\ G Y(U) contains a continuum K. Then for each v € F(G), G(z) C

C\ {y}

Lemma 1.23. Let G be a rational semigroup. Assume that there exists a
point © € F(G), a point y € 0J(G) and a suquence (gn) in G such that
gn(x) =y as n — oo. Then at least one of the following holds.

1. UH(G) = 0 and each element of G is a Mdbius transformation. For
each z € F(G), y € G(z).

2. UH(G) is totally disconnected, UH(G) C J(G) and UH(G)NOJ(G) #
(0. For each z € F(Q@), y € G(z).

3. y e UH(G).

Proof. Suppose UH(G) is empty. Then we can show that each element of
G is a Mobius transformation in the same way as the proof of Lemma 1.19.

Suppose there exists a point z € F(G) such that G(z) C C\ {y}.
Then there exists a neighborhood V of z such that G(V) c C\ {y}. By
Lemma 1.22, y € UH(G).

Suppose UH(G)NF(G) # 0. Let z € UH(G)NF(G). If G(z) c C\ {y},
then by the previous arguments, y € UH(G). If y € G(z), we have also
y € UH(G).

If UH(G) contains a continuum, then from Lemma 1.22, we have y €
UH(G).

Suppose that ) # UH(G) C J(G) and UH(G) is totally disconnected.
There exists an element g € G of degree at least two. Since UH (G) is totally
disconnected and F(G) # (), by no wandering domain theorem we can show
that ¢ has an (super) attracting or parabolic periodic point ¢ in 9J(G). We
have ( € UH(G). O

By Lemma 1.23, we can show the next result in the same way as the
proof of Theorem 1.20.

11



Theorem 1.24. Let G be a rational semigroup and U a connected compo-
nent of F(G). Assume that there ezists a sequence (g, ) of elements of G such
that Uy, NU,,, = 0 if n # m ( in pariticular, U is a wandering domain,).
Then at least one of the following holds.

1. UH(G) = 0 and each element of G is a Mdbius transformation. For

each z € F(G), G(2) NdJ(G) # .

2. UH(G) is totally disconnected, UH(G) C J(G) and UH(G)NIJ(G) #
0. For each z € F(G), G(z) N2J(G) # 0.

8. There exists a subsequence (gn;) of (gn) and a point y € UH(G) N
9J(G) such that (gn;) converges to y locally uniformly on U.

By Lemma 1.22, we can show the next result immediately.

Theorem 1.25. Let G be a rational semigroup. Assume that G is weakly
semi-hyperbolic and there is a point z € F(G) such that the closure of the

G-orbit G(z) is included in F(G). Then for each x € F(G), G(z) C F(G)

and there is no wandering domain.

Next theorem follows from Lemma 1.23.

Theorem 1.26. Let G be a rational semigroup containing an element g € G

with deg(g) > 2. Assume that G is weakly semi-hyperbolic. If F(G) # 0, then
for each x € F(G), G(x) C F(G) and there is no wandering domain.

Definition 1.27. Let G be a rational semigroup. We set

Ao(G) = G({z € C | 3g € G with deg(g) > 2, g(z) = x and |¢'(z)| < 1.}),

Ay(G) = G({z € F(G) | 3g € G with deg(g) > 2, g(z) = z and |¢'(z)| < 1.}),

AG)=G({ze€C|3geq, g(z) = and |¢'(z)| < 1.}),

A(G) =Gz e F(G) [ € G, 90) =7 and [§ @) < 1),
where the closure in the definition of Ag(G) and A(G) is considered in C.

Remark 4. By definition, Ag(G) C A(G)NP(G). Foreach g € G, g(A¢(G)) C
Ap(G) and g(A(G)) C A(G). We have also similar statements for Ap(G) and
A(G).

Lemma 1.28. Let G be a rational semigroup. If AU(G) 1§ a non-empty
compact subset of F(G), then

D+ Ay(G) = A(G) C P(G) N F(G).
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Proof. Let g be any Mobius transformation in G and z € C a fixed point
of g with |¢'(z)| < 1. Since g(Ao(G)) C Ao(G) N F(G) and Ag(G) # 0, we
have that © € Ag(G). Therefore the statement follows. O

Lemma 1.29. Let G be o rational semigroup containing an element with
the degree at least two. Assume that G is semi-hyperbolic and F(G) # 0.
Then

D # Ay(G) = Ag(G) = A(G) = A(G) C F(G).
Proof. Let g € G be an element with the degree at least two. Since F'(G) #
(), the element g has a (super)attracting periodic point z in F(G). By

Remark 1, we have that Ay(G) C F(G). Hence the statement follows from
the proof of Lemma 1.28. U

Lemma 1.30. Let G = (f1, fa,...,fm) be a finitely generated rational
semigroup. Assume that each element of G with the degree at least two has
neither Siegel disks nor Hermann rings and each element of Aut CNG (if this
is not empty) is loxodromic. Also assume that §J(G) > 3. Let Uy, ... ,Us be
some connected components of F(G) and K a non-empty compact subset of
V = Ui Uj such that U N K # 0 for each j =1,...,s and g(K) C K for
each g € G. Then for each compact subset L of V there exists a constant c
with ¢ > 0 and a constant A with 0 < A < 1 such that

1osup{|[(fi, - fi,) () | 2 € L, (iny...,i1) € {1,... ,m}"} < eA™,
where we denote by || - || the norm of the derivative of with respect to
the hyperbolic metric on V.

2. sup{d(fi, -+ fir(2),K) | 2 € Ly (iny- .. ,i1) € {L,... ,m}"} < eAn,

where we denote by d the spherical metric.

Proof. Let a be a large positive number. For each 7 = 1,...,s, let K; be
the compact a-neighborhood of K N U; in U; with respect to the distance
induced by the hyperbolic metric in U;. We set Ko = Uj_; K. Then for each
g € G, g(Ky) C Ky. If a is large enough, we have that L C K.

We claim that there exists a constant ¢ > 0 and a constant A < 1 such
that

sup{[|(fi, -+ fi)' (D) | 2 € L, (in,...,i1) €{1,... ,m}"} <A™, (1)

where we denote by || - || the norm of the derivative of with respect to the
hyperbolic metric on V. To show the claim, let z be a point of K; and
(is41,...,41) an element of {1,... ,m}**t!. Then there exists an integer ¢
with 1 < t < s such that (f;,,, - fi,,,)(Uj) C Uj, where Uy, is the
component of V' containing (f;, --- fi,)(U;j). From the assumption, we have
that for each = € Kj,, ||(fi,, - fisn)' (x)]| < 1. Hence

“(fis+1 le)l(Z)“ < 1.
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Therefore the claim holds.
From the above claim, we can show the statement of our lemma imme-
diately. O

Definition 1.31. Let G be a rational semigroup and U a open set in C.
We say that a non-empty compact subset K of U is an attractor in U for
G if g(K) C K for each g € G and for any open neighborhood V of K in U
and each z € U, ¢(z) € U for all but finitely many g € G.

Lemma 1.32. Let G = (f1, fa,...,fm) be a finitely generated rational
semigroup and E a finite subset of C. Assume that each v € E is not
a non-repelling fixed point of any element of G. Then for any M > 0,

there exists a positive integer ng such that for any integer n with n > ng if

2, f’LUl(Z)7 wafwl(z)a 7(fwn_1"'fw1)(z) and (fwnfwl)(z) belong to
E and |(fw, - fu) (2)| # 0, then |(fuw, - fuw,)'(2)] > M.

Proof. We will show the statement by induction on $£. When fF = 1, it
easy to see that the statement holds. Now assume that for each finite subset
E of C with #F < s the statement holds. Let E’ be a finite subset of C with
tE'" = s+ 1 and assume that each € E’ is not a non-repelling fixed point
of any element of G. Take a number My so that

Mo (inf{|(f;) (O 1 ¢ € B (f;)'(Q) #0, j=1,... ,m.})* > L.

From the hypothesis of the induction, there exists a positive integer ngy such
that for any subset F of E' with E # E’ and for any integer n with n > ny,

if z, fwl(x), fwszl(x)a ’(fwnfl fwl)(x) and (fwn fwl)(x) belong
to E and |(fw, = fuw,)'(z)] # 0, then |(fuw, - fw,) (x)] > My. For each
y € E and postive integer ¢ with ¢ < ng + 1, we set

Gyt =1{9€G|gly) =y, g: a product of ¢ generators }.

Then we have that §G,; < oo and for each g € G4, y is a repelling fixed
point of g.

Now assume that 2y fwl (Z)v fwszl(z)a SR (fwn—l e fwl)(z) and (fwn e f’UJl)(Z)
belong to E', (fuw, -+ fu)(2) = 2, (fw, -+ fuw,)'(2) # 0 and (fw, o fun)(2) #

zforeach j=1,... ,n—1.1fn <mp+ 1, we have
|(fuw, =+~ fui) ()] > inf{|g'(2)] | g € Gopy, 1<t <mo+1} > L.
If n > ng+ 2, then we have
|(fun = fu) ()] > Mo(inf{|(£;)' (O | ¢ € B, f{(Q) #0, j=1,... ,m.})* > 1.

From these results, we can show that for any M > 0, there exits a posi-
tive integer n such that for any integer u with u > ny if z, fy,(2), fw,fw,(2), -+,
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(fwuor =+ fui)(2) and (fu, -+ fuw,)(2) belong to B and [(fuw, - fu,)'(2)| #
0, then

(fw. +++ fw)'(2)] > M.

Hence we have completed the induction.
O

Lemma 1.33. Let G = (f1, fa,...,fm) be a finitely generated rational
semigroup and E a finite subset of C. Assume that each x € E is not any
non-repelling fized point of any element of G. Then there exists an open
neighborhood V of E in C such that for each z € V, if there exists a word
w = (wy,ws,...) € {1,... ,m satifying that:

1. for each n, (fw, - fu,)(2) €V,

2. (fw, - fu,(2)) accumulates only in E and

3. for each n, (fu,  * fuw,)(C) € E and (fw, -+ fu,) () # 0 where ( is

the closest point to z in E,
then z is equal to the point ( € E.

Proof. Let € be a small number so that B(x,e) N B(y,e) =0 if z,y € E and
z # y. Take an e smaller, if necesarry, so that if 29 € E and f](20) # 0 for
some j, then f;|p(,,c) is injective. We set V' = U,cpB(z,¢).

Let z € V be a point. Assume that there exists a word w = (wy,wy...) €
{1,... ,m}" satisfying the conditions 1, 2 and 3. We set o, = fu. fw, 1~ fu,-
From the conditions 2 and 3, there exists a point ¢ € E and a sequence (n;)
such that ay;(2) — a as j — oo and ay, (¢) = a for each j. By lemma 1.32,
we have |(a,)' (¢)| = 0o as n — oo. Hence by the Koebe distortion theorem,
there exists a number 1 > 0 such that for each positive integer j, there
exists an analytic inverse branch ; of a,,; on B(a,n) so that $;(a) = ¢ and
Bi(B(a,n)) C V and diam 3;(B(a,n)) = 0 as t = oo.

We set y; = Bj(an,(2)) for each large j. We claim that for each integer
[ with 0 <1 < ng — L, if (fwl+1fwz v 'fwl)(yj) = (fwz+1fwl o 'fwl)(z)a then
(fw fw,y = fu )W) = (fugfw,_y -+ fur)(2). Let us show the claim above.
Assume that (fu, , fuw, - fw) (Wj) = (Fwrpr fw, - fuw)(2). We have that

fwlfwz—l"'fwl oﬁj : B(aﬂ?) —-C

is an analytic inverse branch of fwnj Jwn. _y  fwy,, satistying
J

(fwrfwizy = i Bi)(@) = (fur Sy =+ Fun)(C)-

By Lemma 1.32 and the Koebe distortion theorem, we can assume that

(fa fuy_y "fwlﬁj)(B(aan)) C B((fuw fuw, 1 =+ fuwr)(C), €).
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Since

(Fwrfwy = fuw)(2) € B((funfur_y -+ fun)(€); €), (2)

(fwlfwl,l T fwl)(y]) = (fwlfw1,1 o 'fwlﬁj)(anj (Z)) € B((fwlfw1,1 o 'fwl)((é)-)7 6)
3

and fwl+l|B(fwl fuy_yfuy (€), ¢) 18 injective,

(fwz+1fwl : "fuu)(yj) = (fw1+1fwl : fw1)(z)

implies that (fu,fuw,_, * fui)(¥j) = (fw fw,_, - fur)(2). Hence the claim
above holds.
From this claim, it follows that y; = z for each large j. Since diam
Bi(B(a,n)) = 0 as j — oo, we have z = (.
O

Theorem 1.34. Let G = (f1, fa,..., fm) be a finitely generated rational
semigroup. Assume that F(G) # 0, there is an element g € G such that
deg(g) > 2 and each element of Aut CNG (if this is not empty) is lozodromic.
Also we assume all of the following conditions;

1. Ag(G) is a compact subset of F(G),

2. any element of G with the degree at least two has neither Siegel disks
nor Hermann rings.

3. 4(UH(G) N 0J(G)) < oo and each point of UH(G) N 0J(G) is not a
non-repelling fixed point of any element of G.

Then Ay(G) = A(G) # 0 and for each compact subset L of F(G),
sup{d(fi, -~ fi,(2), A(GQ)) |z €L, (in,...,i1) € {1,... ,m}"} =0,

as n — oo, where we denote by d the spherical metric. Also A(G) is the
smallest attractor in F(G) for G. Moreover we have that if (hy) is a sequence
in G consisting of mutually disjoint elements and converges to a map ¢ in
a subdomain V of F(G), then ¢ is constant taking its value in A(G).

Proof. First we will show that Ay(G) = A(G) # 0. By the condition 2,
g has neither Siegel disks nor Hermann rings. Since F(G) # () and by the
condition 3, applying the no wandering domain theorem for (g), we see that
the element ¢ has an attracting periodic point z in F(G). Hence Ay(G) # 0.
By Lemma 1.28, we get Ay(G) = A(G) # 0.

Next we will show that for each z € F(G), G(z) C F(G). Assume that
there exists a connected component U of F(G), a sequence (g, ) of elements
of G and a point y € dJ(G) such that (g,) converges to y locally uniformly
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on U. We take a subsequence (g1,) of (gn) satisfying that there exists a
generator f;, so that

9im =+ firs

for each n. Inductively when we get a sequence (g; )y satisfying that there
exists a word (iy,... ,i;) € {1,...,m}’ so that gj, = -+« fi; -+ fi, for each
n, we take a subsequence (g;11,n)n Of (gjn)n satisfying that there exists a
generator f;., so that

Gjtin = fijer - fir
for each n. By the diagonal method, we get a subsequence (gnn)n of (gn)
satisfying that there exists a word (iy,4,...) € {1,... ,m}" so that for each
n’

nn = anfin"'fila

where «, is an element of G. We consider the sequence (3,) where 3, =
fin =+ fir- We see that Ug, # Up,, if n # m. For, if there exists n and m
with n > m such that Ug, = Up,,, then

(fin " fimi)(Ug,) CUg,

and the element f;, --- f; ., has an (super)attracting fixed point zq in Ug,, .
By the condition 3, we have zy € A(G). From Lemma 1.30, it contradicts to
that (g,,) converges to y € 9.J(G) in U. Hence Ug, # Ug,, if n # m. Now let
z be a point of U. Since Ug, # Ug,, if n # m, we have (3,(z)) accumulates
only in 0.J(G). By Theorem 1.24, we can show that (3,(z)) accumulates
only in 0J(G) NUH(G). For each large n, let ¢, be the closest point to
Bi, (z) in 0J(G) N UH(G). Since §(0J(G) NUH(G)) < oo and there is no
super attracting fixed point of any element of G in 0J(G), there exists an
integer ng such that for each integer n with n > ny,

(Fin -+ Fing 11) (Gny) 0.

JFrom Lemma 1.33, we get a contradiction. Therefore we have for each
r € F(GQ), G(z) C F(Q).

Now let z be a point of F(G). We have G(z) C F(G). Let {Uy,... ,Us}
be the set of all connected components of F'(G) having non-empty inter-
section with G(z). We set V' = U;_,U;. Suppose that z € U;. For each
(isi1,06,... 1) € {1,...,m}**t1  there exists an integer ¢t with 1 <t < s
such that (fi,,, - fi,s,)(Uj,) C Uj,, where Uj, is the component of V' con-
taining (f;, - - - fi,)(U;). From our assumption, the element f; ., --- f;,,, has

an attracting fixed point in Uj, N A(G). Hence, from Lemma 1.30, we have
sup{d(fi, -+~ fir (2); A(G)) | (in, .. ,ir) € {L,... ,m}"} =0,
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as n — 0o. Therefore for each compact subset L of F/(G), the similar result
holds.

Next we will show that A(G) is the smallest attractor in F(G) for G.
From the argument above, A(G) is an attractor in F/(G) for G. Let K be any
attractor in F(G) for G. It is easy to see that each attracting fixed point of
any element of G in F(G) belongs to the set K. It implies that A(G) C K.

Finally assume (h;) is a sequence in G consisting of mutually disjoint
elements and converges to a map ¢ in a subdomain V' of F(G). Then by
Lemma 1.30 we see that ¢ is constant taking its value in A(G). O

By Theorem 1.34 and Lemma 1.29, we get the next theorem.

Theorem 1.35. Let G = (f1, fa,..., fm) be a finitely generated rational
semigroup which is semi-hyperbolic. Assume that there is an element g € G
such that deg(g) > 2 and each element of Aut C N G (if this is not empty)
is lozodromic. If F(G) # 0, then 0 # A(G) = Ao(G) C F(G) and for each
compact subset L of F(QG),

sup{d(fi, -+ fi,(2), A(G)) |z € L, (in,...,i1) €{1,... ,m}"} =0,

as n — oo, where we denote by d the spherical metric. Also A(G) is the
smallest attractor in F(G) for G. Moreover we have that if (hy) is a sequence
in G consisting of mutually disjoint elements and converges to a map ¢ in
a subdomain V of F(G), then ¢ is constant taking its value in A(G).

Theorem 1.36. Let G = (f1, fa,..., fm) be a finitely generated rational
semigroup which is sub-hyperbolic. Assume that there is an element g € G
such that deg(g) > 2 and each element of Aut C N G (if this is not empty)
is lozodromic. If F(G) # 0, then § # A(G) = Ay(G) C F(G) and for each
compact subset L of F(QG),

sup{d(fi, --- fi,(2), A(G)) | z€ L, (in,...,01) €{l,... ,m}"} =0,

as n — oo, where we denote by d the spherical metric. Also A(G) is the
smallest attractor in F(G) for G. Moreover we have that if (hy) is a sequence
in G consisting of mutually disjoint elements and converges to a map ¢ in
a subdomain V of F(QG), then ¢ is constant taking its value in A(G).

Proof. Since Ay(G) C P(G) and G is sub-hyperbolic, we have that Ay(G) is
a compact subset of F/(G) and §(UH (G)NJ(G)) < co. Now let 2 be a point
of UH(G) N 0J(G). Assume that there exists an element h € G such that
h(z) = z. Since G is sub-hyperbolic, = is neither attracting nor indifferent
fixed point of h. Since G is finitely generated, by [HM2], we have that there
exists no superattracting fixed point of any element of G in 0.J(G). Hence
x is a repelling fixed point of h.

From Theorem 1.34, the statement of our theorem holds. O
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Proposition 1.37. Let G be a finitely generated rational semigroup which
contains an element with the degree at least two. Assume that §P(G) < oo

and P(G) C J(G). Then J(G) = C.

Proof. Suppose F(G) # (. Let ¢ € G be an element with the degree at
least two. By the assumption of our Proposition, ¢ has a super attracting
periodic point in 9J(G). On the other hand, since G is finitely generated,
by [HM2], there exist no super attracting fixed points of any element of G
in 0J(G). This is a contradiction. O

Definition 1.38. Let M be a complex manifold. Suppose the map
(z,a) €CXx M+ fjq(2) €C

is holomorphic for each j = 1,... ,n . We set G, = (f1,4, " , fn,a). Then
we say that {G}eenr is a holomorphic family of rational semigroups.

By Theorem 1.34 and Theorem 2.3.4 in [S1], we get the following result.

Corollary 1.39. Let M be a complez manifold. Let {Gg}acrr be a holo-
morphic family of rational semigroups where Gy = (fi,4," "+ , fn,a)- Let b be
a point of M. We assume that Gy satisfies the assumption in Theorem 1.34.
Then the map

a— J(Gg)
is continuous at the point a = b with respect to the Hausdorff metric.

Corollary 1.40. Let M be a complex manifold. Let {Gg}acrs be a holo-
morphic family of rational semigroups where Go = (fi,4," "+, fn,a)- Let b be
a point of M. Assume that Gy contains an element of degree at least two
and that each element of Aut CN Gy(if this is not empty) is lovodromic. If
Gy is semi-hyperbolic or sub-hyperbolic, then the map

a— J(Gg)

is continuous at the point a = b with respect to the Hausdorff metric.

2 Rational Skew Product

Definition 2.1 (rational skew product). Let X be a topological space.
If a continuous map f : X x C — X x C is represented by the following
form:

f((2,9)) = (p(2), 4(y)),

where p : X — X is a continuous map and ¢, : C — C is a rational map with
the degree at least 1 for each x € X, then we say that f X xC—=XxC
is a rational skew product. In this paper we always assume that X is a
compact metric space.
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O.Sester investigated polynomial skew products(in particular, quadratic
case) in [Se]. M.Jonsson investigated dynamics on C-fibration whose fiber-
wise maps are rational maps of degree d, d > 2 in [J2].

Definition 2.2. Let G be a rational semigroup generated by {fx}xea- Let
X =AN. Let f: X x C — X x C be the map defined by:

f((z, ) = (p(x), fe,(y)),

where p : X — X is the shift map and = € X is represented by: = =
(21,29,...). Then we say that f : X x C = X x C is the rational skew
product constructed by the generator system {fy}xea-

Definition 2.3. Let f : X x C — X x C be a rational skew product. For

eachn € Nand z € X, we set qg;n) '= Qpn—1(z)©" "0 qy and f; = f”|7r)_(1({x}).

We define the following sets. For each = € X,

d(x) = deg(qz),
F, = {y € C | {¢\™}, is normal in a neigborhood of y},
Jp =C\ Fy, Jp = {2} x J,.
Further we set

C(f) = {(z,y) € X x T d,ly) =0}, P(f) = {J fH(C(f).

neN

C( fz is called the critical set for f and P( f ) is called the post critical set
for f. Moreover we set

(7™ (2, 9) = (@) (9)-

If (x,y) is a period point of f with the period n, then we say that (z,y)
is repelling(resp. indifferent, attracting, etc.) if [(f")'((z,y))| > 1(resp.=
1, <1, etc.).

Lemma 2.4. Let f : X xC — X xC be a rational skew product represented
by f((z,y)) = (p(x), qz(y)). Then the following hold.

L ’Lf%' € X, then QEI(Fp(w)) = Fy, QEI(Jp(w)) = Jg, f(j(f)) - j(.f)
2. if p: X — X is surjective, then f : X x C — X x C is surjective.

S.if p: X — X s a surjective and open map, then FYJ)) =
) =)
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Proof. We will show the last statement. Suppose f((z,y)) € J(f). Then
there exists a sequence ((x;, y;)) converging to f((z,y)) such that y; € Fy,
for each 4. Since p is an open map, there exists a sequence (¥;) converging
to x such that p(Z;) = x;. Then there exists a sequence (y;) converging to
y such that gz (7;) = y; for each i. Then §; € J;,. Hence (z,y) € J(f).
Hence f~'(J(f)) C J(f) Since f( )(f) cJ(f)and f: X xC— X xC is

surjective, we have f~'(J(f)) = f(J(f)) = J(f). O

Now we need some notations from [J2], concerning potential theoritic as-
pects. Let f X x C = X x C be a rational skew product represented by
f((z,y)) = (p(z), ¢u(y)). Let w be the spherical probability measure on C.
Let w, = (iz)sw for each 2 € X where we denote by i, : C — w)_(l({x})
the natural isomorphism. For each continuous function ¢ on 71')_( ({z}) let
(/™)*¢ be the continuous function on 5% ({p"(x)}) defined by ((fm)* )( ) =

> ¢(w) for each n € N. Let ju;,, be the probability measure on 7y ({z})
fr(w)=z

defined by (uyn, @) = *). For each x € X, we

m(wp”(x)a (f2)
denote by R, : C2\ {0} — C?\ {0} the homogenious polynomial mapping of
degree d(x) such that ¢, om’ = 7' o R, where ©' : C?\ {0} — C is the natural
projection and sup{|Rz(z,w)| | |(z,w)| = 1} = 1. R, is determined uniquely
up to multiplication by a complex number of units. We can assume z— Ry

is continuous. For each € X and n € N let G, := W log | R7|

where Ry := Ryn-1() 0+ o Ry. Then the following results hold.

Proposition 2.5. Let f:XxC — X xC be a rational skew product
represented by f((z,y)) = (p(x), qz(y)) and assume d(z) > 2 for each
x € X. Then we have the following.

1. iz converges to a probability measure ji, on 7y ({x}) weakly as n —
oo for each z € X.

2. Gy n converges to a continuous plurisubharmonic function G locally
uniformly on C?\ {0} as n — oo for each x € X.

8. pg = (i, 1)« (dd?(Ggos)) where s is a local section of ©' : C2\ {0} — C.
Further G4(z,w) <log |(z,w)|+O(1) as |(z,w)| = oo and G5 (Az, \w) =
Gz (z,w) +log X for each A € C, for each x € X.

4. Gp@y o Ry = d(z) - Gy for each z € X.
5. if v — @ then Gy — G uniformly on C? \ {0}.
6. (Fo)etta = tpiays (Fo)" ey = d(p(e) - s for each € X.

7. g puts no mass on polar subsets of w)_(l({x}) for each x € X.
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8. x> g is continuous with respct to the weak topology of measures in
X x C.

9. supp(pg) = Jp for each z € X.
10. J, has no isolated points for each x € X.

11. z — Jy is lower semicontinuous with respect to the Hausdorff metric
in the space of compact subsets of X x C.

Proof. Since d(x) > 2 for each x € X, we can show the statements in the
same way as that in section 3 in [J2]. O

Definition 2.6 (hyperbolicity). Let f:XxC— X x ENbe a rational
skew product. We say that f is hyperbolic along fibres if P(f) C F(f).

Definition 2.7. Let f : X x C = X x C be a rational skew product. We
say that f is expanding along fibres if there exists a positive constant C' and
a constant A with A > 1 such that for each n € N,

inf (/") ()]l > CA™,
zeJ(f)

where we denote by || - || the norm of the derivative with respect to the
spherical metric.

Definition 2.8 (semi-hyperbolicity). Let f:XxC - XxC bea
rational skew product. Let N be a positive integer. We say that a point
(z0,10) € X x C belongs to SHy(f) if there exists a neighborhood U of
and a positive number § satisfying that for any z € U, any n € N, any

element x,, € p~"(z) and any element V of ¢(B(y, 9), qgi)),
deg(q{) - V = B(yo, 4)) < N.
We set N B 5
UH(f) = (X x C) \ UnenSHN(f).
We say that f is semi-hyperbolic along fibres if for any (o, yo) € J(f) there
exists a positive integer N such that (zg,y0) € SHy(f).

Lemma 2.9. Let f : X x C = X x C be a rational skew product. If f 8
hyperbolic along fibres, then it is semi-hyperbolic along fibres.

Lemma 2.10. Let G = (f1, fa,..., fm) be a finitely generated rational
semigroup. Then G is semi-hyperbolic if and only if the rational skew prod-
uct f : X xC — X x C constructed by the generator system {f1, fo,... , fm}
s semi-hyperbolic along fibres. G is hyperbolic if and only if f 1s hyperbolic
along fibres.
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Definition 2.11 (Condition(C1)). Let f : X x C — X x C be a rational
skew product. We say that f satisfies the condition (C1) if there exists a
family {D;}zex of discs in C such that the following three conditions are
satisfied:

L. Unzo fn({x} x Dy) C F(f)

2. for any x € X, we have that diam(q,(cn)(Dx)) — 0, as n — oo.

3. infyex diam (Dy) > 0.
Now we will show the following lemma and theorem.

Lemma 2.12. Let f : X xC = X xC be a rational skew product satisfying
the condition (C1). Assume that there exists a point (xg,yo) € X x C with

Yo € Fyy, a connected open neighborhood U of yo in C and a sequence (n;)
of positive integers such that R; := qé’;j) converges to a non-constant map
¢ uniformly on U as j — oo. Let (xj,y;) = f"(20,y0) and (Zeo,Yoo) =

(nj—n;

lim; 00 (2j,y5). Let Sij = qu; ) for 1 <i<j. Let

V ={yeC|3e>0, limsup sup d(S; (&), &) =0}
E0 j>i d(g,y)<e

Then V' is a non-empty open set and for any y € OV, we have that
(200, y) € J(H)NUH(S). (4)

Theorem 2.13. Let f : X xC — X xC be a rational skew product. Assume
f is semi-hyperbolic along fibres and satisfies the condition (C1). Then the
following hold.

1. Let (z9,y0) € X x C be any point with yo € Fy,. Then for any open
connected neighborhood U of yo in C, there exists no subsequence of

(n)

(g’ )n converging to a non-constant map locally uniformly on U.
I =U e
zeX

3. If there exists a disc D in C such that Dy = D for all x € X in the
condition (C1), then there ezist positive constants d, L and \(0 < X <
1) such that for any n € N,

sup{diam U | U € ¢(B(y,0), ¢{), (z,y) € J(f), w € p~"(x)} < LA".

Tn

4. Assume d(z) > 2 for each x € X. Then we have that © +— J, is
continuous with respect to the Hausdorff metric in the space of compact
subsets of X x C.
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5. Assume d(x) > 2 for each x € X. Then for any compact subset K

of F(f), we have that Unzof”(K) c F(f) and there exist constants
C >0 and 7 < 1 such that for each n, sup||(f™) (2)] < Ct™.
z2€K

To show Lemma 2.12 and Theorem 2.13, we need the following lemma.

Lemma 2.14. Let f : XxC—>XxCbea rational skew product satisfying

the condition (C1). Assume (xo,y0) € SHy(f) for some N € N. Then there

exists a positive number &y such that for each § with 0 < § < &g there ewists
a neighborhood U of xqy in C satisfying that for each n € N, each x € U and
each z, € p~"(x), we have that each element of c(B(yo,?), Q:E:Z)) is simply

connected.

Proof. Take a positive number 01 such that for each x € X and each z, €
p~'(z), we have that each connected component of g;.' (D,) contains a ball
with the radius at least ;.

By the semi-hyperbolicity and Lemma 1.10, we can take a positive num-
ber & and a open neighborhood U of g in C such that for each § with
0<d<dy,each z €U, eachn €N, and each 2, € p "(x), we have that

the diameter of each element of ¢(B(yo,d), qg([:)) is less than d;.

Now we will show each element of ¢(B(yo, d), q,(cz)) is simply connected
by induction on n. Assume an element W of ¢(B(yo,9), qg([:)) is simply
connected. Let W; be a connected component of q;nlﬂ (W) where 2,41 is an
element of p~!(z,). Suppose W is not simply connected. Each connected
component of Wy is mapped onto OW by g, ,,. Hence the image of each
connected component of C\ Wy by ¢, ., contains D, . Hence we have that

diam W7 > 01 , which contradicts to the choice of dg and U. O

Now we will show the Lemma 2.12.

Proof. We will show the statement developing a method in M.Jonsson’s
Thesis([J1]). By the definition, V" is an open set. Since ¢ is non-constant,
there exists a positive number a such that

R;j(U) D B(Yoo, @)

for each j € N. We have that B(y, a) C V. For, if y € B(ys, a) then
y = Ry(&) for some & € U and so d(Si;(y), y) = d(R;(&), Ri(&)) which is
small if 7 is large. Hence V is a non-empty open set.

Take any y € 0V. We will show

(Too, ) € J(f). (5)
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Assume this is false. If there exists a positive integer i such that {S; ;};>i>i,
is normal in a neighborhood of y, then since S;; — Id on V NW, we have
that W C V and it is a contradiction. Hence there exist sequences (i), (jx)
and (&) such that ix < jg, jr —ix = 00, { — y and

where we denote by (D,)zex a family of discs in C in the definition of
condition (C1). Since we are assuming (2o, y) € F(f), we have that there
exists an disc B around y such that B C Fy, and ¢ € B for large k. By (6),
the condition (C1) and the definition of V, we get a contradiction. Hence
(5) holds.

Now we will show (z~,y) € UH(f) Suppose this is false. Then there
exists a positive integer N such that (20,y) € SHn(f). Let 6 be a number
for (o0, y) in Lemma 2.14 and let § = §p/2. We can assume that there exists
a neighborhood U’ of z, satisfying that for any z € U’, any n € N, any

element x,, € p~"(z) and any element V' of ¢(B(y, dy), qgi)),

deg(¢{" : V = B(y, &)) < N.
Take two domains V; and V5 such that
Yso € Vo CC Vi CCV, B(y, §) NV # 0. (7)

If 5 > ¢ and 4 is large enough, then S; ; is close to idy; on V;. Hence S; ; is
biholomorphic on Vi and S; (V1) D Va. Let h;j : Vo — Vi be a map such
that S;johij = id on V3 and h;jo S;; = id on S; /(V2) N V1. Then we have
that
lim sup sup d(hi;(€), €) = 0. (8)
=00 j>1 EEV,
For each (7, j) such that j > i and i is large enough, let B; ; € ¢(B(y,6), Si ;)
be an element such that h; j(VoaNB(y,d)) C B; j. By the choice of §, we have

that B; ; is simply connected. By semi-hyperbolicity, there exists a positive
integer M such that for each (i,7) with j > i where i is large enough,

i( cv(Siy

where we denote by “cv” the set of critical values. Hence there exists a
positive number 6 with 0 < 6 < 27 such that for each (i,j) with i < j
there exists a sector U; ; in B(y, ) of angle § with the center y such that
Ui N CV(Sz',j|B,-,j) = () and Ui,j NVy # (). Let 9ij + Uij = Bij be the
analytic continuation of h;; on Vo N U; ;. Let y;; € B;j N g ;(Ui;) such
that S;;(vi;)) = y. By (8), Corollary 1.9, Condition (C1) and the fact
VoanU;; # 0, we have that there exists a positive number §; such that

Bi,j) N B(ya 5)) S M, (9)

B(yi;, 61) C Bij, (10)
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for each (7, ) such that j > i and 7 is large enough. Now we will show the
following claim:

Claim: lim supd(y; ;, y) = 0. (11)
Suppose this is false. Then there exists a sequence ((ix,jx)) with ji > i
and a positive number dy such that d(y;, j,, y) > d2, for each k. We can
assume that (y;, ;. ) converges to a point § as k — oo and that there exists a
sector Uy with the center y such that U; = Uy for each k. Then we have
that

ksJk

B(§, 61/2)NV = 0. (12)

For, assume the left hand side is not empty. Then since S;, ;, — id inV
and the family {S;, j,|B(7,6,/2) }& is normal, we have that S;, ;, — id locally
uniformly on B(g,d;/2). But this is a contradiction because § # y. Hence
we have (12).

By Lemma 1.10, there exists a positive number d3 with d3 < d1/4 such
that for each k, the diameter of each element of ¢(B(y,d3), Si, ;) is less
than 0. Hence if we take a fixed point z € B(y, d3) N Uy, then we have that
for each large k,

d(§, iy, (2)) < 61/4 (13)

On the other hand, since g;, j, — id locally uniformly on V5 and (gi, j, )k
is normal in Uy, we have that g;, j, — id locally uniformly on Uy. Hence
we have that d(g;, j,(2), y) < 01/4 for each large k. Together with (13) and
B(g, 01/2)NV =0, we get a contradiction. Hence we have shown the claim
(11).

Since B(y;j, 01) C B;j for each (i,7) such that 7 > ¢ and 7 is large
enough, by the above claim we have that there exists a positive integer ig
such that for each (i,7) with j > i > iy,

Sij(B(y, 61/2)) C B(y, 9).

Hence (S; ;) j>i<i, is normal in B(y, 01/2). Since S; ; — id on B(y, §1/2)NV,
we have that y € V and this is a contradiction. Hence we have shown the
first statement of our lemma. O

Now we will show Theorem 2.13.

Proof. The statement 1 follows from Lemma 2.12.

Now we will show the statement 2 of our theorem. Suppose the state-
ment is false. Then there exists a point (29,10) € J(f) with yy € F,, a
connected component U of yo in C and a sequence (n;) of positive integers
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such that R; := qgﬁj ) converges to a map ¢ uniformly on U as j — oo.
Let (x,y;) = f™ (20,y0) and (Too, Yoo) = lim;_,00(xj,y;). By Lemma 1.10,
there exists a positive number a such that y; € B(y, a) and the element
B; € ¢(B(yso, a), R;) containing y; satisfies that B; C U for each large
j. Hence R;j(U) D B(yoo, a) for each large j and it implies that ¢ is non-
constant. By Lemma 2.12, it is a contradiction. Hence we have shown the
statement 2 of our theorem.

Next we will show the statement 3 of our theorem. By semi-hyperbolicity
and Lemma 2.14, there exists a positive integer N and a positive real number
dp such that for any («,y’) € J(f) there exists a neighborhood U’ of 2’

satisfying that for any real number 7 with 0 < 7 < dy, any x € U’, any

n € N, any element x, € p~"(x) and any element V of ¢(B(y', 1), qﬂ(vz)),

we have that V' is simply connected and
deg(q{)) : V = B(y/, 7)) < N.
Let 0 = dp/2. We set
Ap = sup{diam U | U € ¢(B(y,0), i), (x,y) € J(f), zn € p " (2)}.
First we will show
A, =0, asn — oo. (14)

Suppose this is false. Then there exists a positive constant C, a sequence
((z*, y*)) of points in J(f), a sequence ((&*, §*)) with f™((&*, §*)) =
(2%, y¥) for some ny € N, — oo and a sequence (U )y, with Uy € ¢(B(yg, ), qéﬁ’“))
and §* € Uy, for each k such that

diam U, > C, for each k.

We can assume that ((z*, y¥)) tends to a point (2, y°) € J(f) and that
((z*, §*)) tends to a point (&°, 7°) € J(f). By Corollary 1.9, there exists a
positive number 7 such that B(j°, r) C Uy for each large k. Hence

¢ (B, 1)) € B, r), (15)

for each large k. By the second statement of our theorem, we have that
7" € Jzo. Hence there exists a positive integer j and a point z € B(g°, r)
such that .

qé] )(z) €D.
Hence qg(z? )(z) € D for each large k. On the other hand by the condition (C1)
if we take dg so small then we can assume

U /(=) x D)0 ({4°} x B(y°, &) = 0.

n>0
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Since ny — 00, by (15) we get a contradiction. Hence we have (14).
Take a positive integer ng such that for each n € N with n > ny,

An <0/2. (16)

Fix any positive integer k. Let (2, yn)) be a sequence such that f((2n11,Ynt1)) =

(n,yn) for each n and (xo,yo) € j(f) For each j =0,... ,k, let W, be the

element of ¢(B(Y(k—jyng, 9), q;(nj,ﬁg)) containing Yn,. By (16) we have that

WoD -+ D W (17)
For each j=1,... Kk,
gii") : Wi = B(Y(k—jyny» 9)

is a proper holomorphic map with the degree at most V. Since qéﬁz) (Wig1)is

a connected component of (qg(c?,gzj)no ) HB(Y(k—j—1)ne» 0)), which is included

in B(Y(k—jyne, 9/2) by (16), we have that for each j =0,... ,k —1,
mod (Wjt1, Wj;) >¢ >0, (18)

where ¢ is a constant number depending only on N. By Lemma 1.11, there
exists a A with 0 < A < 1 depending only on N such that

diam W /diam W; < A, for each j =0,... ,k — 1.

Hence we get that diam Wy < A\* diam B(yo, 6). Therefore the statement 3
of our theorem holds.

The statement 4 of our theorem follows from the statement 2 of Theo-
rem 2.13 and 11 in Proposition 2.5.

Next we will show the statement 5 of our theorem. Let K be a compact
subset of F(f). Suppose there exists a sequence (2,y;) of points in K and
a sequence (ny) of positive integers such that (™ ((zy,yx))) converges to a
point (z',y') € J(f). By 11 in Proposition 2.5, we have that x — .J, is lower
semi-continuous. Hence we have that for each k there exists a point z; €

Jpni (z,) and (2x) converges to y'. Since KNJ(f) =0, by the condition (C1)

and Lemma 1.10 we get a contradiction. Hence we get that U,>of"(K) C

F(f). Let K' = Unzgfn(K). By the statement 1 of Theorem 2.13, we have
that for each z = (z,y) € K', there exists a neighoborhoood U(z) of z in
X, a neighborhood V(z) of y in C and a positive integer n(z) such that
|(f DY ()] < 1/2 for each 2’ € U(z) x V(z). Since K’ is a compact set,
we get the statement . O

Corollary 2.15. Let G = (f1, fo,..., fm) be a finitely generated rational
semigroup which is semi-hyperbolic. Assume G contains an element with
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the degree at least two and each element of Aut C N G (if this is not empty)
is lozodromic. Also assume F(G) # 0. Then there exists a 6 > 0, a constant
L with L > 0 and a constant A with 0 < X\ < 1 such that

sup{diam U | U € ¢(B(z,9), fi, - fi,), ¢ € J(Q), (i1,...,ip) € {1,... ,m}"}
< LA, for each n.

Proof. Let f : X x C — X x C be the rational skew product constructed
by the generator system { f1, fa, ..., fm}. Then this is semi-hyperbolic along
fibres. By the existence of an attractor in F'(G) for G (Theorem 1.35) we
have that if we set D, = D for each x € X where D is a small disc around
a point of the attractor, then f satisfies the condition (C1) with that family
of discs. By Theorem 2.13, the statement of our Corollary holds.

O

Theorem 2.16. Let f : X xC — X xC be a rational skew product. Assume
f is hyperbolic along fibres and satisfies the condition (C1) with a family of
discs (Dg)gex such that there exists a disc D satisfying Dy = D for all
x € X. Then f s expanding along fibres.

Proof. We have only to show that there exists a positive integer no such
that for each n € N with n > ngy and z € J(f),

I () = 2.

Suppose this is false. Then there exists a sequence (nj) of positive integers
and a sequence (2;) = ((z;,y;)) in J(f) such that

1) () < 2. (19)

We can assume that ™ (z;) converges to a point (z,y) € J(f). Let § be a
small positive number. For each j let B; € ¢(B(y,9), qg")) be the element
containing y;. By (19) and Koebe distortion theorem, there exists a positive
constant ¢ such that for each j, diam B; > c. But this contradicts to the
statement 3 of Theorem 2.13. U

Remark 5. We can show that the results in this section are generalized to
the version of dynamics on C-fibration. For the definition of C-fibration, see
[J2].

3 Conditions to be semi-hyperbolic

Theorem 3.1. Let G = (f1, f2,-..,fm) be a finitely generated rational
semigroup. Let zo € J(G) be a point. Assume all of the following con-
ditions:
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1. there exists a neighborhood U1_0f 2 in C such that for any sequence
(gn) C G, any domain V in C and any point ( € Uy, we have that
the sequence (gn,) does NOT converge to ¢ locally uniformly on V.

2. there exists a neighborhood U, of zy in C and a positive real number é
such that if we set

T ={ceC|3j, fic) =0, (GU{id})(f;(c)) N U2 # 0}
then, for each ¢ € TN C(f;), we have d(c, (G U {id})(f;(c))) > &.
3. F(G) # 0.
Then 2 € SHy(G) for some N € N.

Notation: For any family {g)}\ca of rational functions, we denote by
F({g»}) the set of all points z € C such that z has a neighborhood where
the family {g)} is normal. We set J({gx}) = C\ F({gr}). F({gr}) is called
the Fatou set and J({gy}) is called the Julia set for the family.

Corollary 3.2. Let G = (f1, fo,..., fm) be a finitely generated rational
semigroup. Let zgp € J(G) be a point. Assume all of the following conditions:

1. there exists a neighborhood Uy of zy in C such that for any sequence
(gn) C G consisting of mutually distinct elements and any domain
V in F((gn)), there exists a point x € V such that the sequence

Un{gn(z)} NC\ Uy # 0.

2. there exists a neighborhood Uy of zy in C and a positive real number é
such that if we set

T ={ceC|3j, filc)=0, (GU{id})(f;(c)) N U2 # 0}
then for each ¢ € T N C(f;), we have d(c, (G U {id})(f;(c))) > €.

3. F(G) #10.

Then zy € SHy(G) for some N € N and there exists a neighborhood W of
2o in C such that for any sequence (g,) C G consisting of mutually distinct
elements, we have

sup{ diam S| S € ¢(W,g,)} — 0, as n — oo.

We will consider the proof of Theorem 3.1. We may assume Uy = Uy = U
for some small disc U . By condition 1 and 3, we may assume oo € F(G)
and g }(U) C C for each g € G. Now we will show the above theorem by
developing a lemma in [Ma] and using the methods in [KS]. The stories are
almost same as those in [KS], except some modifications.
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First we need some new notations. An “square” is a set S of the form
S={2€C|[R(z —p)| <0, [S(z—p)| < d}.

The point p is called the center of S and ¢ its radius . For each & > 0, given
a square S with center p and radius §, we denote by S* the square with the
center p and radius kd. Take a o > 0 such that U contains a closed square
Q' with the center a point in U and its radius 20. Let Q" = (Q')'/2. Q" is
called “admissable square at level 1.” We will define asmissable squares at
level n for each n € N. Let () be an admissable square at level n with the
radius a. Then @Q is covered by 16 squares with the radius /8. We have
20 squares with the radius a/8 adjacent to ). We call all these 36 squares
admissable at level n+1. These squares are denoted by {Q, n+1}. The union
of these 36 squares is denoted by Q, which is called the “square attached to
(.” Each admissable and each attached square is a relative compact subset
of U.

Notation: For any open set V; and for any rational map ¢, if V5 €
c(V1, g) then we set A(Vy, g) = ${z € V1 | ¢'(x) = 0}, counting the
multiplicity.

We need some lemmas to show Theorem 3.1.

Lemma 3.3. For given € > 0 and N € N, there exists some ng € N such
that the following holds: If Q is an admissable square at some level n > ny,
Q the corresponding attached square, V an element of C(Q, f) for some
feqG, and AV, f) < N, then diam (K) < € for each element K € ¢(Q, f)

contained in V.

Proof. Fix € > 0 and N € N. If the lemma is false then there exists a
sequence (ny)keN converging to oo, admissable squares @, », and functions
gr € G such that diam (Kj) > e > 0 and A(Vj, gx) < N for some element
Vi € C(Quk’nk, gr) and some element Kj € ¢(Qu, n,, gr) contained in Vj.
Take v > 1 such that 7N+1 = % Then there exists 0 < 7 < N + 1 such
that, denoting by Ry = Qui,nka the set fﬁ Ry, does not contain any
critical values of ggl|y,. We have Rk D Qupn,- Take K, € c(Rk, gr) such
that K C Kk C Vk. Then diam Kk > €. The element g; is represented by
the following form: g = fs, 0---o fs,. Then there exists a positive integer ¢
such that

diam fs, o---ofsl(f(k) > €, diam f, o---ofsl(f(k) <e

We may assume 7 is the largest one satisfying the above. Then taking € > 0
small enough since the cardinality of generator system of G is finite we see
that fs, o---o fy, (K}) is simply connected. Set Kj, = fs, 0--- o f, (K;) and
gk = fs, 00 fs,,,. Since R'y Ry, does not contain any critical values of
gk|v,, the element K Ij € C(Rk, gr) containing K}, is also simply connected.
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Since deg(?kh%,j) <1+ N and diam K > ¢, by Corollary 1.9 we see that
there exists a positive real number r such that for each k,

B(zg, 1) C Ky,

for some z; € C. We can assume that (z;) converges to a point z € C and
(Ry) converges to a point y € U. Then (j;) is normal in B(z, r/2) and we
can assume that (gx) converges to y locally uniformly on B(z, r/2). But
this contradicts to the assumption 1. Hence the lemma holds. O

Now, let ¢t = 4T, N = (j:nlnfm“xmdeg(fj))t and € < %LN. We can assume

that € is sufficiently small and diam U < €. Let ng € N be an integer in
Lemma 3.3 for these e and NNV.

Lemma 3.4. Let G be an element of the form f = fy, o---0 fy,. Let B
be a simply connected subdomain of U, B' € ¢(B, f) an element such that
A(B', f) > N. Then there exists some v € {0,... ,k — 1} such that if we set
By, = fu,_, -0 fu,(B'), then B, is simply connected, diam (B,) > ¢,
and

deg(fw, © - fwp_,_,|Bv : B, = B) < N.

Proof. Suppose diam B, < ¢ for each v = 1, ...k — 1, then B’ is simply
connected(Note that we can assume € is sufficiently small) and deg(f|p’ :
B'" — B) < N. Hence A(B', f) < N and it is a contradiction. Hence there
exists a v € {1,... ,k — 1} such that

diam B, > €.

Take the maximal v(1 < v < k —1) satisfying the above. Then B, is simply
connected and

deg(fwl SE Ofwk:—u—l|Bu :BV - B) < N.

Now we will show the Theorem 3.1.

Proof. Take €, ¢ and N as before. Take ng in Lemma 3.3 for ¢ and N.
Let k£ be the smallest integer such that there exists some admissable square
Q = Qun at level n > ng with diam (K) > € for some element K of
c(Q, fw, 00 fu,) where (wi,... ,wg) is some word of length k. We have
k > 1. Let Q be the square attached to Q. By lemma 3.3, there exists an
element S € ¢(Q, fu, ©-- 0 fu,) such that A(S, fu, 0---0 fu,) > N. Take
an integer v with 1 < v < k in Lemma 3.4. Then we have

diam (fwk—u o---ofwk(S)) > €.
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If we set S = fi,,_ 00 fu, (S) then

deg(fwl ©---0 fwk_u—1|§) <N

and

Sc U(fw1 ©---0 fwkfufl)_l(Q“a n+1)-
n

By the minimality of £, we have that the diameter of each element of
C(Qu, nt+1s fw 00 'Ofwk_,,_l) is less than e. Since deg(fy, o 0 fuwpy_s |§) <
N, we have that .

€ < diam S < 36Ne.

This contradicts to € < zz5 . Hence we have proved that for each admissable
square @, , with n > ng and each g € G, each element K € ¢(Q, g) sat-
isfies that diam (K) < e. Since € is sufficiently small, K is simply connected.
By Lemma 3.4, we have that

deg(flx : K = Qun) < N + 1.

Hence 2y € SHy+1. O

Now we will show the Corollary 3.2.

Proof. If we assume the conditions in the assumption of Corollary 3.2, then
clearly the conditions in the assumption of Theorem 3.1 are satisfied. Hence
we have zyp € SHy(G) for some N € N. Now take a small disc W around
2o contained in SHy(G) N U,. If there exists a constant C' > 0, a sequence
(9n) C G consisting of mutually distinct elements and a sequence (W),)
with W,, € ¢(W,gy,) such that diam W,, > C for each n, then by Corol-
lary 1.9, there exists a positive real number r such that for each n, we have
B(z,, r) C W, for some z, € C. We can assume (z,) converges to a point
y € C. Then (g,) is normal in B(y, r/2). Since g,(B(y, r/2)) C W C Uy
for each large n € N, we get a contradiction. Hence the statement of the
Corollary holds. O

Theorem 3.5. Let G = (f1, f2,... fn) be a finitely generated rational semi-
group. Assume that there exists an element of G with the degree at least
two, that each element of Aut CN G (if this is not empty) is lozodromic and
that F(G) # 0. Then G is semi-hyperbolic if and only if all of the following
conditions are satisfied.

1. for each z € J(G) there exists a neighborhood U of z in C such that for
any sequence (gn) C G, any domain V in C and any point ( € U, we
have that the sequence (g,) does NOT converge to ¢ locally uniformly
onV
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2. for each j =1,...,m each c € C(f;) N J(G) satisfies
d(e, (GU{id})(fi(c))) >0

Proof. First assume the conditions 1 and 2. Then by Theorem 3.1, we have
that G is semi-hyperbolic.

Conversely, suppose G is semi-hyperbolic. By Lemma 1.13, the condition
2. holds. Now we will show the condition 1.holds. By Theorem 1.35,
there exists an attractor K in F(G) for G. Let zp be any point and U
a neighborhood of zy such that U N K = (). Suppose that there exists a
sequence (g,) C G, a domain V in C and a point ( € U such that g, — ¢
as n — oo locally uniformly on V. We will deduce a contradiction. We can
assume that there exists a word w € {1,... ,m}N such that for each n,

gn:anofwno"'ofwlv

where «,, € G is an element. Then from Theorem 1.35 and that UNK = (),
we have that

fun 00 fu, (V) C J(G), (20)

for each n. Hence (f,, © -0 fy,)n is normal in V. Now let us consider the
rational skew product f constructed by the generator system {f1,..., fm}
By the second statement of Theorem 2.13, we have that {w} x V C F(f).
Hence there exists a positive integer n such that f,, o---o fy,, (V) C F(G),
if we take V' sufficiently small. But this contradicts to (20). Hence we have

shown that the condition 1. holds. O

Theorem 3.6. Let G = (f1, fa,... , fm) be a finitely generated sub-hyperbolic
rational semigroup. Assume that there exists an element of G with the degree

at least two, that each element of Aut C N G (if this is not empty) is lozo-

dromic and that there is no super attracting fized point of any element of G

in J(G). Then there exists a Riemannian metric p on a neighborhood V' of
J(G)\P(G) such that for each zy € J(G)\G H(P(G)NJ(Q)), if there exists

a word w = (wy,wa,...,) € {1,... ,mM satisfying (fu, -+ fu,)(20) € J(G)

for each n, then

H(fwn T fwl),(zo)“ — 00, S N — 00,
where || - || is the norm of the derivative measured from p on V to it.

Proof. By Theorem 1.36, there exists an attractor K in F/(G) for G such that
K> P(G)NF(G). Let {Vi,...,V;} be the set of all connected components
of C\ K having non-empty intersection with .J(G). We take the hyperbolic
metric in V; \ P(G) for each i = 1,... ,t. We denote by p the Riemannian
metric in V = U'_;V; \ P(G). First we will show the following.
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e Claim 1. there exists a £ € N such that for each n,

1(fwnsn = fwn) (fron = fuor (0)) ] > 1,

where || - || is the norm of the derivative measured from p to it. For each

i=1,...,t, let z; be a point of V;N F(G). Since K is an attractor in F(G)

for G, there exists a k € N such that for each (iy,... i) € {1,... ,m}¥,
(flkfll)(xl)eKa fOI‘lZI,,t (21)

Let 2 be a point of J(G)NV;\ P(G). Suppose (fi, --- fi,)(x) € V;\ P(G) for
some (iy,...,i;) € {1,... ,m}* and j. Let U be the connected component
of (fi, -+ fi) 1(V; \ P(G)) N (V; \ P(Q@)) containing z. Then

(fir - fi) : U = V;\ P(G)
is a covering map. Hence we have

I(fir -+ £ (D)llw, vj\poy =1, for each z € U, (22)

where we denote by |- ||, v;\p(g) the norm of the derivative measured from
the hyperbolic metric on U to that on V;\ P(G). On the other hand, by
(21), U # V; \ P(G). Therefore the inclusion map i : U — V; \ P(G) satisfies
that

17" (2)lo, vivp(e) < 1, for each z € U, (23)

where we denote by || - ||, v;\ p(c) the norm of the derivative measured from
the hyperbolic metric on U to that on V; \ P(G). By (22) and (23), we get

1(fir - fir)' ()

where we denote by || -[[v;\ p(@), v;\p(@) the norm of the derivative measured
from the hyperbolic metric on V; \ P(G) to that on V; \ P(G). Hence the
Claim 1. holds.

By Claim 1., we get that if the sequence (fy, - - fuw,)(20))5%; does not
accumulate to any point of P(G) N J(G), then ||(fw, -+ fu) (20)]| = o0 as
n — 0o. Hence we can assume that the sequence accumulates to a point of
P(G)NJ(G). We set

Vi\P(G), V;\P(c) > 1, for each z € U, (24)

Gn = fw, - fun, for each n.
We will show the following.

e Claim 2. ||(9n)'(20)]| = 00 as n — oo.
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Since zp € J(G) \ G Y(P(G) N J(G)), by the same arguments as that in
the proof of Theorem 1.34, we can show that there exists an €; > 0 and a
sequence (n;) of integers such that

In; (20) € J(G) \B(P(G)’El)a gn]‘-l-l(z(]) € J(G) n B(P(G)ael)
Suppose the case there exists a constant e such that for each j,

d(gn;+1(20), P(G)) > €.

Then from Claim 1, there exists a constant ¢ > 1 such that for each j,

(o= fwn i) ((Fuon = i) (0D > e

Using the Claim 1 again, we can show that ||(gn)'(20)|| — oo as n — oo.

Next suppose the case there exists a subsequence (h;);2; of (gn;+1)52;
such that d(h;(z0), P(G)) — 0 as [ — oo. There exists a subsequence
()2, of (gnj)é?‘;l such that for each | h; = o o 8, where q; is an element
of G. Then there exists a constant ¢; € N such that for each [, wig(a;) <
¢1 where S = {fi,..., fm}. Hence there exists a sequence (z;) such that
d(z;, Bi(z)) — 0 as | — oo and oq(z;) € P(G) for each [ € N. We can
assume that x; € B(8;(29), €1) for each [ € N. Let 7, be the analytic inverse
branch of f; in B(f;(z0), €1) such that

Y(B1(20)) = 20, for each [ € N.

Since U2, (B(Bi(20), €1)) C C\ K and d(xy, fi(20)) — 0, We get yi(x1) —
2y as | — 0o. Hence we have

d(20, h; H(P(G))) = 0, as | — cc. (25)

There exists an ¢ such that z9 € V; \ P(G). For each [ let Vj, be the element
of {Vi,...,V;} such that hi(z) € Vj, \ P(G). Let W; be the connected
component of h, ' (V}, \ P(G)) NV;\ P(G) containing z. Then h; : W; — Vj,
is a covering map. Hence we have

()" (2) [l V;,\P(G) = 1, for z € Wy,

where || - ||y, v;,\P(G) is the norm of the derivative measured from the hy-
perbolic metric on W to that on Vj,. By Theorem 2.25 in [M], (25) implies
that

(i)' (2)llw,, vi\p(a) — 0 as I — oo,

where we denote by ¢; the inclusion map from W; into V; \ P(G) for each
[ € N. It follows that

1h7(2)

Vi\P(G), V}I\P(G) — oo asl — oo, (26)
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where || - [|y;\ p(@), Vi, \P(G) is the norm of the derivative measured from the
hyperbolic metric on V; \ P(G) to that on Vj, \ P(G). By (26) and Claim 1,
we get ||(gn) (20)]] = oo as n — oo. Hence the Claim 2 holds.

In the same way we can show that for each ¢ =1, ... k-1,

I (fuonpii = Jur)(20)|] = 00 as n — oo.
We have thus proved the Theorem. 0

Theorem 3.7. Let G = (f1, fa,... , fm) be a finitely generated sub-hyperbolic
rational semigroup. Assume that there exists an element of G with the de-
gree at least two, that each element of Aut C N G (if this is not empty) is
loxodromic and that there is no super attracting fized point of any element

of G in J(G). Then G is semi-hyperbolic.

Proof. We will appeal to Theorem 3.5. Since there is no super attracting
fixed point of any element of G in J(G), the condition 2. in Theorem 3.5 is
satisfied. By Theorem 1.36, there exists an attractor K in F(G) for G. Let
2o be any point and U a neighborhood of 2y such that U N K = (). Suppose
that there exists a sequence (g,) C G, a domain V in C and a point ( € U
such that g, — ¢ as n — oo locally uniformly on V. We will deduce a
contradiction. We can assume that there exists a word w € {1,... ,m}"
such that for each n,

gn :anfwno"'ofwla

where o, € G is an element. Then from Theorem 1.35 and that UNK = 0,
we have that

fun 00 fu, (V) C J(G), (27)

for each n. Hence (fy,, 0---0 fu,)n is normal in V. Let 2z, € VNG~H(P(G)N
J(@)) be a point. By the backward self-similarity of J(G) and Lemma 1.33,
there exists a sequence (n;) of positive integers and a neighborhood W' of
P(G)N J(G) in C such that for each j,

fwn. °"'0fw1(21) E@\W

J

By Theorem 3.6, we have that
[(Fuwn; @0 fui) (21)] = 00, as j — oo, (28)

where || - || denotes the norm of the derivative with respect to the spherical
metric. Since (fuw, ©- -0 fu, )n is normal in V, this is a contradiction. Hence
the condition 1 in Theorem 3.5 is satisfied. By Theorem 3.5, we get that G
is semi-hyperbolic. O
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4 Open Set Condition and Area 0

Definition 4.1. Let G = (f1, f2,..., fm) be a finitely generated rational
semigroup. We say that G satisfies the open set condition with respect to
the generators f1, fo, ..., fm if there exists an open set O such that for each
j=1,...,m, fJfI(O) C O and {fjfl(O)}j:l,___,m are mutually disjoint.

Definition 4.2. Let G be a rational semigroup and S = {f)\ | A € A} a
generator system of G. For each g € G, We set

wls(g) = min{n € N[ g = fx -~ /1, }.
We call wig(g) the word length of g with respect to S.

Proposition 4.3. Let G = (f1, fo,... , fm) be a finitely generated rational
semigroup. Assume that G satisfies the open set condition with respect to
the generators fi, fa,... , fm and O\ J(G) # 0 where O is an open set in
the definition of the open set condition. Then J(G)' = () where we denote
by J(G)! the interior of J(G).

Proof. Let S = {f1,... , fm}. Assume that J(G)* # 0.
Then we claim that for each element g € G and each point x € J(G)*,

g(z) € T\ (0O\ J(G)).

Suppose that there exists a point y € J(G)* and an element ¢g; € G such that
91(y) € O\ J(G). Since J(G) = U, f; '(J(G)), there exists an element
h € G with wig(h) = wlg(g1) such that h(y) € J(G). Since fJfI(O) C
O for each j = 1,...,m, we have J(G) C O and J(G)" C O. Hence
g, H(O)Nh™1(0) # 0. But g; # h and that is a contradiction because of the
open set condition. Therefore the above claim holds.

Now the claim implies that G is normal in J(G)? but this is a contradic-
tion and so we have J(G)" = 0. O

Theorem 4.4. Let G = (f1, fo,..., fm) be a finitely generated rational
semigroup which is semi-hyperbolic, contains an element with the degree at
least two and satisfies the open set condition with respect to the gemera-
tors f1, fo,..., fm. Let O be an open set in Definition 4.1. Assume that
tH(00 N J(G)) < oo. Then the 2-dimensional Lebesgue measure of J(G) is
equal to 0.

Proof. We will show the statement using the method of Theorem 1.3 in
[Y]. We fix a gemerator system S = {f1,..., fn}. By the assumption of
our Theorem, we have each element of Aut C N G(if this is not empty) is
loxodromic. By Theorem 1.35, A(G) is an attractor in F'(G) for G. We can
assume oo € A(G). Suppose that the 2-dimensional Lebesgue measure of
J(G) is positive.
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Since (00 N J(G)) < oo, G HG(00 N J(G))) is a countable set.
Hence there exists a Lebesgue density point = of J(G) such that = €
J(G)\ (G "HG(00 N J(@))). Since we have J(G) = U;f’lzlfj_l(J(G)), there
exists a word w = (wy,wy,...) € {1,... ,m}" such that for each positive
integer u, fy, - fuw, () € J(G).

We will show that the sequence (fu, - fuw, (%)), has an accumulation
point in J(G)\ 00. Assume that is false. For each large u, let ¢, be the clos-
est point to fy,, - -+ fu, () in JONJ(G). Since there exists no super attracting
fixed point of any point of any element of G in J(G), there exists a positive
integer s such that for each integer ¢ with ¢t > s, (fu, "+ fw.) ((s—1) # 0.
Since G is semi-hyperbolic, we have that for each x € 90 N J(G), if there
exists an element g € G such that g(z) = x, then z is a repelling fixed point
of g. Applying Lemma 1.33, we get a contradiction. Hence the sequence
(fw. -+ fwy (2))y has an accumulation point in J(G) \ 00.

By the argument above, we have that there exists an € > 0 and a sequence
(gn) of elements of G such that for each n, g,+1 = hpgy for some h, € G
and g (z) € J(G) \ D(00, ¢). Let § be a small number so that § < ¢ and
for each g € G and each = € J(G),

deg(g : U = D(z,0)) < N

for each U € ¢(D(z,9d), g), where N is a positive integer independent of
xz, g and U. By Lemma 1.12, we can assume that for each ¢ € G and each
x € J(G), if V is a simply connected open neighborhood of x contained in
D(z,0), then each element of ¢(D(x,d), g) is simply connected.

For each n, we set x, = g,(z). Let U, be the conncted component of
g~ (D(zy, 16)) containing z. Now we will claim that

lim ma (U, N J(G))

n—00 ma(Up)

=1, (29)

where we denote by mo the 2-dimensional Lebesgue measure. By Corol-
lary 1.9, Proposition 4.3 and Corollary 2.15, there exist a constant K > 0,
two sequences (r,) and (R,) such that & < # <1, R, > 0 and

D(z,r,) C U, C D(z,Ry).
Since z is a Lebesgue density point of J(G), the claim holds. Now we get
F
i M2WUn N F(G))

n—00 my (Un)

= 0. (30)

For each n, Let ¢, : D(0,1) = Dy, (xy,d) be the Riemann map such that
¢n(0) = z, where Dy (xy,0) is the element of ¢(D(zy,d), g,) containing
Un. By (30) and the Koebe distortion theorem, we get

ma (¢, (Un N F(G)))

BT e ) By
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By Corollary 1.8, there exists a constant 0 < ¢; < 1 such that for each
n, the Euclidian diameter of ¢, 1(U,) is less than ¢;. Since we can assume
that Dy, (xp,d) C C for each n and uniformly bounded in C, by Cauchy’s
formula, we get that there exists a constant ce such that

|(9ndn) (2)] < c2 on d);l(Un), n=12... (32)

Now we will show

L5) 0 F(G) = gn(U,, A F(G)), for each n. (33)

D(xy, 5

It is easy to see that D(zy, 36)NF(G) D gn(U,NF(G)). Now let z be a point
of D(zy,,16) N F(G) and assume that there exists a point w € U, N J(G)
such that g, (w) = 2. Since J(G) = UJL, f,; L(J(G)) and g, (w) € F(G), there
exists an element g € G with wlg(g) = wls(g,) such that g(w) € J(G) C O.
Hence we have g # g, and g 1(0)Ng, 1(O) # 0. But this contradicts to the

open set condition. Therefore (33) holds.
By (31) , (32) and (33), we have

ma(D(n, 50) NF(G) _ mal(gn © 6n) (67" (Un N F(G)))
ma(D(wa, 30)) ma(D (w0, $9))
o o wanry | 0 80)' (2)Pdma(2) mo(g, (Un))
- ma(pn ' (Un) ma(D (2, 5))
— 0,

as n — 0o. Hence we have

i ma(D(zy, 16) N J(G)) _
n—00 ma (D (2, %6))

We can assume that there exists a point 2o, € J(G) such that x,, — .
Then

ma(D(Teo, 30) N J(G))
ma(D (200, %6))

=1.

This implies that D (7, 36) C J(G) but this is a contradiction because we
have J(G)" = () by Proposition 4.3. O

Corollary 4.5. Let G = (f1, f2,..., fm) be a finitely generated rational
semigroup which is sub-hyperbolic, contains an element with the degree at
least two and satisfies the open set condition with respect to the generators
fisfas- oy fm- Let O be an open set in Definition 4.1. Assume that §(00 N
J(@)) < oo. Then the 2-dimensional Lebesque measure of J(G) is equal to
0.
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Proof. By Proposition 4.3, J(G)" = (). Since G is finitely generated, by
[HM2], there is no super attracting fixed point of any element of G in
0J(G) = J(@). Therefore by Theorem 3.7, we have that G is semi-hyperbolic.
By Theorem 4.4, the statement holds.

]

5 ¢4-subconformal measure and Hausdorff dimen-
sion of Julia sets

Definition 5.1. Let G be a rational semigroup and § a non-negative num-
ber. We say that a Borel probability measure p on C is d-subconformal if
for each g € G and for each Borel measurable set A

)< /A lo' ()P,

where we denote by || - || the norm of the derivative with respect to the
spherical metric. For each x € C and each real number s we set

S, )= > IdWI’

9€G g(y)=x

counting multiplicities and
S(z) =inf{s | S(s, ) < co}.
If there is not s such that S(s, x) < oo, then we set S(z) = 00.Also we set
s0(G) = inf{S(x)}, s(G) = inf{d | 3u : §-subconformal measure}

It is not difficult for us to prove the next result using the same method
as that in [Sul].

Theorem 5.2 ([S2]). Let G be a rational semigroup which has at most
countably many elements. If there exists a point x € C such that S(z) < 0o
then there is a S(x)-subconformal measure. In particular, we have s(G) <

So(G).

Proposition 5.3 ([S2]). Let G be a rational semigroup and T a 6-subconformal
measure for G where § is a real number. Assume that $J(G) > 3 and for
each x € E(G) there exists an element g € G such that g(x) = = and
|g'(x)] < 1. Then the support of T contains J(G).

Proposition 5.4. Let G = (f1, fo,... , fm) be a finitely generated rational
semigroup. Assume that G satisfies the open set condition with respect to
the generators f1, fa,... , fm and O\ J(G) # 0 where O is an open set in

the definition of the open set condition. If there exists an attractor in F(G)
for G, then

s0(G) < 2.
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Proof. We can assume m > 2. Let K be an attractor in F'(G) for G. There
exists a simply connected domain U in (O N F(G)) \ (K U P(G)) such that
g(U)NU = for each g € G. By the open set condition, it is easy to see
that if g # h, then g='(U) N h~Y(U) = 0. Hence we have

5 [ 18/ @) Pdmate) < e,
S

where S is taken over all holomorphic inverse branches of all elements of
G defined on U, || - || denotes the norm of the derivative with respect to
the spherical metric and my is the 2-dimensional Lebesgue measure on C.
It follows that for almost every where x € U, S(2,z) < oc. O

Lemma 5.5. Let G be a rational semigroup. Assume that oo € F(G),
tJ(G) > 3 and for each x € E(G) there exists an element g € G such that
g(z) = x and |¢'(x)] < 1. We also assume that there exist a countable set
E in C, positive numbers a; and as and a constant ¢ with 0 < ¢ < 1 such
that for each x € J(G) \ E, there exist two sequences (ry,) and (Ry) of
positive real numbers and a sequence (g,) of elements of G satisfying all of
the following conditions:

1. ry = 0 and for each n, 0 < 3= <c and gn(z) € J(G).
2. for each n, gn(D(z,Ry)) C D(gn(z),a1).
3. for each n gn(D(x,7)) D D(gn(x),as2).

Let 6 be a real number with § > s(G) and p a §- subconformal measure. Then
d-Hausdorff measure on J(G) is absolutely continuous with respect to u such
that the Radon-Nikodim derivative is bounded from above. In particular, we
have

dimp (J(@)) < 5(G).

Proof. By Proposition 5.3, the support of px contains J(G). Hence there
exists a constant ¢; > 0 such that for each x € J(G), pu(D(z,a2)) > c1.
Fix any = € J(G) \ E. For each n we set R,(z) = R,z + x. By the
condition 1 and 2, the family {g, o R,} is normal in D(0,1). By Marty’s
theorem, there exists a constant ¢y such that for each n and each w €

D(0,¢),
“(gn © Rn),(w)n < co.

Note that we can take the constant ¢y independent of z € J(G) \ E. Hence
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we have for each n,

1 1(D(gn(z), az))

p(gn(D(z,70)))
/ gt (2) P dpa(2)
D(z,rn)

IN NN

s~ 1
/ 1(gn © Boo B Y(2)]Pdu(2)
D(z,rn)

1
< C3ﬁM(D($arn))
n

1
< auD(E,m)),
rn

where c3 is a constant not depending on n and z € J(G) \ E. Therefore we
get that there exists a constant ¢4 not depending on n and x € J(G) \ E
such that

p(D(2,7r0))

> cy. 34
rd €4 (34)

Now we can show the statement of our lemma in the same way as the
proof of Theorem 14 in [DU]. We will follow it. Let A be any Borel set
in J(G). We set A = A\ E. We denote by Hy the d-Hausdorff measure.
Since E is a countable set, we have Hs(A) = Hs(A;). Fix 7, €. For every x €
Ay, denote by {r,(x) 221 the sequence constructed in the above paragraph.
Since p is regular, for every x € A; there exists a radius r(x) being of the
form 7y, (z) such that

p( | Dz,r(z) \ A) <e.
TEA,

By the Besicovi¢ theorem we can choose a countable subcover {D(z;, r4,)}52,
from the cover {D(z,r(z)}zca, of A1, of multiplicity bounded by some
constant C' > 1, independent of the cover. By (34), we obtain

> or()’ < et u(D(i,r(x4)))
i—1 i=1

< 'Ol D(wi,r(:))
1=1

< 'O+ p(Ay)).
Letting € — 0 and then v — 0 we get

Hs(A) = Hs(A1) < ¢y 'Op(Ar) < e ' Cp(A).
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Theorem 5.6. Let G be a rational semigroup generated by a generator sys-
tem {fataen such that Uyea{fr} is a compact subset of End(C). Let f be
a rational skew product constructed by the generator system. Assume f 8
semi-hyperbolic along fibres and satisfies the condition C1 with a family of
discs {Dy}pex such that Dy = D, Yz € X with some D. Then we have

dimp (J(G)) < s(G).

Proof. We can assume oo € F(G). Let x be any point of J(G). Since we
have J(G) = U fy "(J(G)), for each n € N there exists an element g, € G
which is a product of n generators such that g, (z) € J(G). Let § be a small
positive number. For each n, we denote by Dy, (gn(z),d) the element of
¢(D(gn(x),d), 0) containing x. By Theorem 2.13, if we take a ¢ smaller, then

diam (D, (gn(),d)) = 0, as n — oo. (35)

By Lemma 2.14, we can assume that D (gn(z),d) is simply connected for
each n. Let ¢, : D(0,1) = Dy, (g9n(x),d) be the Riemann map such that
¢r(0) = x. By the Koebe distortion theorem, we have that for each n,

Dy, (9a(2),5) > Dz, 116, (0))).

Since G is semi-hyperbolic, we can assume that D(J(G), §) C SHy(G)
where N is a positive integer. By Corollary 1.10, we get

sup{diam (¢,,' (Dy, (gn(x),€d)))} — 0, as € — 0.
neN

Therefore by the Koebe distortion theorem, there exists an e such that

Dy, (gn(z), €6) = ¢n(dy" (Dy, (gn(x), €0)))
c Dz, %|¢’n(0)|), for each n.

By (35), we have |¢! (0)] — 0 as n — oo. Applying Lemma 5.5, we get
dimy (J(G)) < 5(G).
U

Theorem 5.7. Let G = (f1, fo,..., fm) be a finitely generated rational
semigroup which is semi-hyperbolic. Assume that G contains an element
with the degree at least two, each element of Aut CNG/(if this is not empty)

is lozodromic and F(G) # 0. Then we have
dimpr(J(G)) < 5(G) < 50(G).

Proof. By Theorem 5.6 and Theorem 5.2. U
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Remark 6. Let G = (f1, f2,..., fm) be a finitely generated hyperbolic
rational semigroup which satisfies the strong open set condition (i.e. G
satisfies the open set condition with an open set O satisfying O D J(G).).
We assume that when n = 1 the degree of f; is at least two. By the results
in [S4](Theorem 3.2 and the proof, Theorem 3.4 and Corollary 3.5), we have

0 < dimy J(G) = s(G) = so(G) < 2.

Example 5.8. Let G = (f1, f2) where fi(2) = 22+ 2, fo(z) = 22 —
2. Since P(G) N J(G) = {2,-2} and P(G) N F(G) is compact, we have
G is sub-hyperbolic. By Theorem 3.7, G is also semi-hyperbolic. Since
£ H(D(0,2)) € D(0,2) for j = 1,2 andf, ' (D(0,2)) N f, 1(D(0,2)) =0, G
satisfies the open set condition. Also J(G) isincluded in B = U?Zlfj*l(D(O, 2)).
Since BN 0D(0,2) = {2,-2,2i,—2i}, we get §(J(G) N9D(0,2)) < co. By
Corollary 4.4, we have mgy(J(G)) = 0, where we denote by mg the 2-
dimensional Lebesgue measure. By Theorem 5.7 and Proposition 5.4, we
have also
dimg(J(G)) < s(G) < s9(G) < 2.
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