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Abstract

We consider dynamics of sub-hyperbolic and semi-hyperbolic semi-

groups of rational functions on the Riemann sphere and will show some

no wandering domain theorems. The Julia set of a rational semigroup

in general may have non-empty interior points. We give a su�cient

condition that the Julia set has no interior points. From some in-

formation about forward and backward dynamics of the semigroup,

we consider when the area of the Julia set is equal to 0 or an upper

estimate of the Hausdor� dimension of the Julia set.

For a Riemann surface S, let End(S) denote the set of all holomorphic
endomorphisms of S. It is a semigroup with the semigroup operation being
composition of maps. A rational semigroup is a subsemigroup of End(C )
without any constant elements. We say that a rational semigroup G is a
polynomial semigroup if each element of G is a polynomial.

De�nition 0.1. Let G be a rational semigroup. We set

F (G) = fz 2 C j G is normal in a neighborhood of zg; J(G) = C n F (G):

F (G) is called the Fatou set for G and J(G) is called the Julia set for G.

J(G) is backward invariant under G but not forward invariant in gen-
eral. If G is generated by a compact subset of End(C ); then J(G) has the
backward self-similarity. That is,
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Lemma 0.2. Let G be a rational semigroup and assume G is generated by

a compact subset � of End(C ): Then

J(G) =
[
f2�

f�1(J(G)):

We call this property the backward self-similarity of the Julia set.

Proof. Since J(G) is backward invariant under G; we have

J(G) � [f2�f
�1(J(G)):

Suppose there exists a point x 2 J(G) that does not belong to [f2�f
�1(J(G)):

There exists a neighborhood U of x in C such that f(U) � F (G) for each
f 2 �: Take any x0 2 U: Let � > 0 be any small number. Since [f2�f(x

0)
is a compact subset of F (G); there exists a number �1 > 0 such that
if d(f(x0); y) < �1 for some f 2 �; then d(gf(x0); g(y)) < � for each
g 2 G[fidg: Take �2 > 0 such that if d(x0; y) < �2 then d(f(x

0); f(y0)) < �1
for each f 2 �: Then we have that if d(x0; y) < �2; then d(gf(x

0); gf(y0)) < �
for each g 2 G [ fidg and each f 2 �: Hence we have x 2 F (G) and this is
a contradiction.

The Julia set of any rational semigroup is a perfect set, backward orbit of
any point of the Julia set is dense in the Julia set and the set of repelling
�xed points of the semigroup is dense in the Julia set. In general, the
Julia set of a rational semigroup may have non-empty interior points. For
example, J(hz2; 2zi) = fjzj � 1g: In fact, in [HM2] it was shown that if G
is a �nitely generated rational semigroup, then any super attracting �xed
point of any element of G does not belong to @J(G): Hence we can easily
get many examples that the Julia sets have non-empty interior points. For
more details about these properties, see [HM1], [HM2], [ZR], [GR], [S1] and
[S2]. In this paper we use the notations in [HM1] , [S1] and [S2].

Since the Julia set of a rational semigroup may have non-empty interior
points, it is signi�cant for us to get su�cient conditions such that the Julia
set has no interior points, to know when the area of the Julia set is equal to
0 or to get an upper estimate of the Hausdor� dimension of the Julia set.
We will try that using various information about forward dynamics of the
semigroup in the Fatou set or backward dynamics of the semigroup in the
Julia set.

In the section 1 of this paper we will de�ne sub-hyperbolic and semi-
hyperbolic rational semigroups and show no wandering domain theorems.
In particular, we will see that if G is a �nitely generated sub-hyperbolic
or semi-hyperbolic rational semigroup, then there exists an attractor in the
Fatou set for G(Theorem 1.34). By using these theorems, we can show the
continuity of the Julia set with respect to the perturbation of the genera-
tors(Corollary 1.39).
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In Section 2, we will consider the skew products of rational functions or
dynamics on C -�brations. The \Julia set" of any skew product is de�ned
to be the closure of the union of the �brewise Julia sets. We will de�ne
hyperbolicity and semi-hyperbolicity. We will show that if a skew product
is semi-hyperbolic, then the Julia set is equal to the union of the �brewise
Julia sets and the skew product has the contraction property with respect to
the backward dynamics along �bres(Theorem 2.13). The results in section 2
are generalized to those of version of dynamics on C -�brations.

In section 3, we will consider necessary and su�cient conditions to be
semi-hyperbolic(Theorem 3.1, Theorem 3.5). We will show that any sub-
hyperbolic semigroup without any superattracting �xed point of any element
of the semigroup in the Julia set is semi-hyperbolic(Theorem 3.7).

In section 4, we will show that if a �nitely generated rational semigroup
G is semi-hyperbolic and satis�es the open set condition with an open set
O such that ](@O \ J(G)) < 1 , then 2-dimensional Lebesgue measure of
the Julia set is equal to 0(Theorem 4.4).

In section 5, we will consider constructing �-subconformal measures. If a
rational semigroup has at most countably many elements and the �-Poincar�e
series converges, then we can construct �-subconformal measures. We will
see that if G is a �nitely generated semi-hyperbolic rational semigroup,
then the Hausdor� dimension of the Julia set is less than the exponent
�(Theorem 5.6, Theorem 5.7). To show those results, the contracting prop-
erty of backward dynamics will be used.

Note. This paper belongs to a part of the author's thesis([S3]) which
was written under supervision of Prof. Shigehiro Ushiki.

ACKNOWLEDGEMENT. The author would like to express his grati-
tude to Prof. Shigehiro Ushiki for many valuable discussions and advices.

The author would also like to express his gratitude to Prof. Manfred
Denker, Hartje Kriete and Stefan Heinemann for their kind hospitality dur-
ing my stay in Goettingen and many valuable discussions.

The author is grateful to Prof. Olivier Sester for an interesting suggestion
about hyperbolicity on skew products in a conference held at Berlin.

1 No Wandering Domain

De�nition 1.1. Let G be a rational semigroup. We set

P (G) =
[
g2G

f critical values of gg:

We call P (G) the post critical set of G: We say that G is hyperbolic if
P (G) � F (G): Also we say that G is sub-hyperbolic if ]fP (G) \ J(G)g <1
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and P (G) \ F (G) is a compact set.

We denote by B(x; �) a ball of center x and radius � in the spherical
metric. We denote by D(x; �) a ball of center x 2 C and radius � in the
Euclidian metric. Also for any hyperboplic manifoldM we denote byH(x; �)
a ball of center x 2M and radius � in the hyperbolic metric. For any rational
map g; we denote by Bg(x; �) a connected component of g�1(B(x; �)): For
each open set U in C and each rational map g; we denote by c(U; g) the set
of all connected components of g�1(U): Note that if g is a polynomial and
U = D(x; r) then any element of c(U; g) is simply connected by the maximal
principle.

For each set A in C ; we denote by Ai the set of all interior points of A:

De�nition 1.2. Let G be a rational semigroup and A a set in C : We set
G(A) = [g2Gg(A) and G�1(A) = [g2Gg

�1(A):

We can show the following Lemma immediately.

Lemma 1.3. Let G be a rational semigroup. Assume that ff�g�2� is a

generator system of G: Then we have
[
g2G

fcritical values of gg =
[
�2�

(G [ fIdg)(fcritical values of f�g):

De�nition 1.4. Let G be a rational semigroup and N a positive integer.
We set

SHN(G)

= fx 2 C j9�(x) > 0; 8g 2 G; 8Bg(x; �(x)); deg(g : Bg(x; �) ! B(x; �)) � Ng

and UH(G) = C n ([N2NSHN (G)):

Remark 1. By de�nition, SHN (G) is an open set in C and g�1(SHN (G)) �
SHN (G) for each g 2 G: Also UH(G) is a compact set and g(UH(G)) �
UH(G) for each g 2 G: For each rational map g with deg(g) � 2; any
parabolic or attracting periodic point of g belongs to UH(G):

De�nition 1.5. Let G be a rational semigroup. We say that G is semi-

hyperbolic (resp. weakly semi-hyperbolic) if there exists a positive integer
N such that J(G) � SHN (G)(resp.@J(G) � SHN(G)).

Remark 2. 1. If G is semi-hyperbolic and N = 1; then G is hyperbolic.

2. If G is hyperbolic, then G is semi-hyperbolic.

3. For a rational map f with the degree at least two, hfi is semi-hyperbolic
if and only if f has no parabolic orbits and each critical point in the
Julia set is non-recurrent([CJY], [Y]). If hfi is semi-hyperbolic, then
there are neither indi�erent cycles, Siegel disks nor Hermann rings.
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De�nition 1.6. Let V be a domain in C and E a compact subset of V: We
set

mod (E; V ) = supf mod Ag;

where the supremum is taken over all annulusA such that E lies in a compact
component of V nA:

Lemma 1.7 ([CJY]). For any positive integer N and real number r with

0 < r < 1; there exists a constant C = C(N; r) such that if f : D(0; 1) !
D(0; 1) is a proper holomorphic map with deg(f) = N; then

H(f(z0); C) � f(H(z0; r)) � H(f(z0); r)

for any z0 2 D(0; 1): Here we can take C = C(N; r) independent of f:

Corollary 1.8. For any positive integer N and real number r with 0 < r <
1; there exist constants r1 and r2 with 0 < r1 � r2 < 1 depending only on

r;N such that if f : D(0; 1) ! D(0; 1) is a proper holomorphic map with

deg(f) = N and f(0) = 0; then

D(0; r1) �W � D(0; r2)

where W is the connected component of f�1(D(0; r)) containing 0:

Corollary 1.9 ([Y]). Let V be a simply connected domain in C ; 0 2 V; f :
V ! D(0; 1) be a proper holomorphic map of degree N and f(0) = 0; W be

the component of f�1(D(0; r)) containing 0; 0 < r < 1: Then there exists a

constant K depending only on r and N; not depending on V and f; so that

j
x

y
j � K

for all x; y 2 @W:

Proof. We will follow Y.Yin's proof([Y]). Let g : V ! D(0; 1) be the univa-
lent function such that g(0) = 0: >From Corollary 1.8,

r1 � jg(x)j � r2

for all x 2 @W: Applying the Koebe distortion theorem, we have that

j(g�1)0(0)j �
r1

(1 + r1)2
� jxj � j(g�1)0(0)j �

r2
(1� r2)2

:

Then

j
x

y
j �

r2(1 + r1)
2

r1(1� r2)2
=: K:

K is a constant depending only on N and r:
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Lemma 1.10. Let V be a domain in C ; K a continuum in C with diamSK =
a: Assume V � C n K: Let f : V ! D(0; 1) be a proper holomorphic

map of degree N: Then there exists a constant r(N; a) depending only on

N and a such that for each r with 0 < r � r(N; a); there exists a constant

C = C(N; r) depending only on N and r satisfying that for each connected
component U of f�1(D(0; r));

diamS U � C;

where we denote by diamS the spherical diameter. Also we have C(N; r)! 0
as r ! 0:

Proof. Let r be a number with 0 < r < 1: Let U be a connected component
of f�1(D(0; r)) and V 0 be the connected component of C n V containing
K: Since V is connected, V 0 is simply connected. Let U 0 be the connected
component of C n U containing V 0: Since U 0 is also simply connected and
V 0 � U 0; we have that there exists a connected component of U 0 n V 0 which
is a ring domain.

There exists a sequence (rj)
n
j=0 of real numbers with r0 = r < r1 < � � � <

rn = 1 such that there exist no critical values of f in D(0; rj+1)nD(0; rj) for
j = 0; : : : ; n� 1: For each i = 0; : : : ; n; let U 00

i be the connected component
of f�1(D(0; ri)) containing U and let U 0

i be the connected component of
C n U 00

i containing V 0: Then we have

U 00
0 = U � U 00

1 � � � � � U 00
n = V and

U 0
0 = U 0 � U 0

1 � � � � � U 0
n = V 0:

By the construction, f : U 00
i+1 n U

00
i ! D(0; ri+1) nD(0; ri) is a proper map

for i = 0; : : : ; n � 1: Since there exist no critical values of f in D(0; ri+1) n
D(0; ri); each connected component of U 00

i+1 n U
00
i is a ring domain.

Now we claim that for each i = 0; : : : ; n � 1; there exists a connencted
component of U 00

i+1 n U
00
i which is included in U 0

i n U
0
i+1: We will show that.

Since @U 0
i � U 00

i+1; there exists a ring domain Ri in U
00
i+1 nU

00
i such that @U 0

i

is a connected component of @Ri: Let R
0
i be the connected component of

U 00
i+1 n U

00
i containing Ri: Since

@(U 0
i n U

0
i+1) = @U 0

i [ @U 0
i+1 � @U 00

i [ @U 00
i+1;

we have R0
i \ @(U 0

i n U
0
i+1) = ;: Hence R0

i � U 0
i n U

0
i+1 and we have proved

the above claim.
From the above claim, we get

mod (U 0
i+1; U

0
i) �

1

2�N
log

ri+1
ri

; for i = 0; : : : ; n� 1:
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It follows that

mod (V 0; U 0) �
n�1X
i=0

mod (U 0
i n U

0
i+1)

�
1

2�N
log

1

r
:

On the other hand, by Lemma 6.1 in p34 in [LV], we have

mod (V 0; U 0) �
�2

2C2
1

;

where C1 = minfa; diamS Ug: Hence the statement of our lemma holds.

Lemma 1.11. Let V and W be simply connected domains in C : Suppose
that W � V and mod (W; V ) > c > 0: Then there exists a constant

0 < � < 1 depending only on c such that

diam W

diam V
� �;

here by \diam" we mean the spherical diameter.

Proof. We can assume that 0 2 W and diam V = d(0; 1) where d is the
spherical metric. Let g : D(0; 1) ! V be the Riemann map such that
g(0) = 0: By Theorem 2.4 in [M], there exists a constant c1 depending only
on c such that

diamH(g
�1(W )) � c1;

where we denote by diamH the diameter with respect to the hyperbolic
metric in D(0; 1): Since diam V = d(0; 1); by the Koebe distortion theorem,
we have that there exists a constant c2 not depending on V andW such that
jg0(0)j � c2: Using the Koebe distortion theorem again, we see that there
exists a constant c3 depending only on c such that for each z 2 g�1(W );
jg(z)j � c3: Hence there exists a constant 0 < c4 < d(0; 1) depending only
on c such that diam W � c4:

Lemma 1.12. Let G = hf1; : : : ; fmi be a �nitely generated rational semi-

group. Let y be a point of C n UH(G): If there exists a neighborhood W of
y such that C n G�1(W ) contains a continuum, then there exists a neigh-

borhood W1 of y such that for each simply connected open neighborhood V
of y included in W1 and for each g 2 G; each element of c(V; g) is simply

connected.
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Proof. For each j = 1; : : : ;m; let Cj be the set of all critical points of fj:
By Lemma 1.10, there exists a � > 0 such that for each g 2 G; each element
of c(B(y; �); g) does not contain any two di�erent points of Cj; j = 1; : : : m:
Then for any simply connected open neighborhood V of y included in B(y; �)
and for any g 2 G; each element of c(V; g) is simply connected.

Lemma 1.13. Let G be a rational semigroup and N a positive integer.

Then for each g 2 G; any critical point c of g does not belong to SHN (G)\
(G [ fidg)(g(c)):

Proof. Assume that there exists a critical point c of an element g 2 G such
that c 2 SHN (G) \ (G [ fidg)(g(c)): Then there exists a sequence (gn) in
G so that gng(c) ! c:

There exists a positive number � such that B(c; �) � SHN (G): Since
gng(c) ! c; we can construct a sequence (nj) and a sequence (Bj) so that for
each j; Bj is a connected component of ((gn1g)(gn2g) � � � (gnjg))

�1(B(c; �))
and c 2 Bj ; which contradicts that c 2 SHN (G):

Lemma 1.14. Let g be a rational map with deg(g) � 2 and N a positive

integer. Assume that x 2 J(hgi) \ SHN (hgi): Then x belongs to neither

boundaries of Siegel disks, boundaries of Hermann rings nor indi�erent cy-

cles.

Proof. By Theorem 1 and Corollary in [Ma] and Lemma 1.13, we can show
the statement immediately.

De�nition 1.15. Let G be a rational semigroup and U a component of
F (G): For every element g of G; we denote by Ug the connected component
of F (G) containing g(U): We say that U is a wandering domain if fUgg is
in�nite.

Remark 3. In [HM1], A.Hinkkanen and G.J.Martin showed that there ex-
ists an in�nitely generated polynomial semigroup which has a wandering
domain.

Lemma 1.16. Let G be a rational semigroup which contains an element

with the degree at least two. Let x be a point of F (G) and assume that there
exists a point y 2 @J(G) and a sequence (gn) of elements of G such that

gn(x)! y: Then we have y 2 P (G) \ @J(G):

Proof. We can assume that ]P (G) � 3: Suppose y 2 C n P (G): Let � be a
number so that B(y; �) � C nP (G): We can assume that for each n; gn(x) 2
B(y; �): For each n; there exists an analytic inverse branch �n of gn in U
such that �n(gn(x)) = x: Since ]P (G) � 3; we have f�ngis normal in U:
Hence if we take an � small enough,

diam �n(B(y; ��)) < d(x; J(G)); for each n:
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But x 2 �n(B(y; ��)) for large n and �n(B(y; ��)) \ J(G) 6= ; because
J(G) is backward invariant under G: This is a contradiction.

Corollary 1.17. Let G be a rational semigroup which contains an element

with the degree at least two. If P (G) \ @J(G) = ;; then for each x 2
F (G); G(x) n F (G) and there is no wandering domain.

Lemma 1.18. Let G be a polynomial semigroup, N a positive integer and

y a point in @J(G)\ C : Assume that there exists an open neighborhood U of

y such that U � SHN (G) and ](C nG
�1(U)) � 3: Then for each x 2 F (G);

G(x) � C n fyg:

Proof. We can assume that 1 2 C n G�1(U): Suppose that there exists a
point x 2 F (G) and a sequence (gn) in G such that gn(x) ! y as n ! 1:
Let � be a positive number so that for each g 2 G;

deg(g : V ! D(y; �)) � N;

for each V 2 c(D(y; �); g): For any r with 0 < r � � there exists a positive
integer n(r) such that for each integer n with n � n(r); gn(x) 2 D(y; r):
Let Dgn(y; r) be the connected component of g�1n (D(y; r)) containing x: For
each n with n � n(r); there exists a conformal map 'n from D(0; 1) onto
Dgn(y; �) such that 'n(0) = x: From Lemma 1.10, there exists a constant
C(r) with C(r)! 0 as r! 0 such that for each integer n with n � n(r);

diam '�1n (Dgn(y; r)) � C(r):

Since ](C n G�1(U)) � 3; the family f'ng is normal in D(0; 1): Hence if r
is su�ciently small, then for each integer n with n � n(r);

diamSDgn(y; r) < d(J(G); x);

where we denote by diamS the spherical diameter and by d the spherical
distance. On the other hand, since J(G) is backward invariant under G and
y 2 J(G); we have that for each n with n � n(r); Dgn(y; r)\J(G) 6= ;: This

is a contradiction. Therefore we have for each x 2 F (G); G(x) � C nfyg:

Lemma 1.19. Let G be a polynomial semigroup. Assume that there exists
a point x 2 F (G); a point y 2 @J(G) and a sequence (gn) in G such that

gn(x)! y as n!1: Then at least one of the following holds.

1. UH(G) = ; and each element of G is a M�obius transformation. For

each z 2 F (G); y 2 G(z):

2. ](UH(G)) = 1or 2; UH(G) � J(G) and UH(G) \ @J(G) 6= ;: For
each z 2 F (G); y 2 G(z):
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3. y 2 UH(G):

Proof. Suppose that ](UH(G)) � 3: From Lemma 1.18, we have y 2 UH(G):
Suppose there exists a point z 2 F (G) such that G(z) � C n fyg:

Then there exists a neighborhood V of z such that G(V ) � C n fyg: By
Lemma 1.18, y 2 UH(G):

Now we consider the case ](UH(G)) = 1 or 2: Then 1 2 UH(G): If
1 2 F (G); then since G(1) = f1g; from Lemma 1.18 the condition 3.
holds. Now suppose 1 2 J(G): There exists an element g 2 G with the
degree at least two. From Corollary 1.14, g has no Siegel disks. Let z be
a point in F (G): Since F (G) � F (hgi); z 2 F (hgi): From no wandering
domain theorem and the fact that g has no Siegel disks, there exists an
attracting or parabolic periodic point � 2 F (G) of g and a sequence (nj) of
positive integers such that gnj (z)! �: We have � 2 UH(G): If � 2 @J(G);
then the condition 2. holds. If � 2 F (G); then since G is a polynomial
semigroup, we have G(f�g) = f�g � F (G) and it implies y 2 UH(G) from
Lemma 1.18. Hence the condition 3. holds.

Finally we consider the case UH(G) = ;: Assume there exists an element
h 2 G with the degree at least two. Since F (G) 6= ;; we have F (hgi) 6=
;: By the no wandering domain theorem, g has (super)attracting cycles,
parbolic cycles, Siegel disks or Hermann rings. Since UH(G) = ;; this is a
contradiction.

Theorem 1.20. Let G be a rational semigroup containing an element with

the degree at least two and U a connected component. Assume that there

exists a sequence (gn) of elements of G such that Ugn \ Ugm = ; if n 6= m (

in pariticular, U is a wandering domain). Then there exists a subsequence

(gnj ) of (gn) and a point y 2 P (G) \ @J(G) such that (gnj ) converges to y
locally uniformly on U:

Proof. By the method in the proof of Theorem 2.2.3 in [S1], we can show
that there exists a subsequence (gnj ) of (gn) and a point y 2 @J(G) such
that (gnj ) converges to y locally uniformly on U: Hence the statement of our
theorem holds from Lemma 1.16.

Theorem 1.21. Let G be a polynomial semigroup and U a connected com-

ponent of F (G): Assume that there exists a sequence (gn) of elements of G
such that Ugn\Ugm = ; if n 6= m ( in pariticular, U is a wandering domain).

Then at least one of the following holds.

1. UH(G) = ; and each element of G is a M�obius transformation. For

each z 2 F (G); G(z) \ @J(G) 6= ;:

2. ](UH(G)) = 1 or 2; UH(G) � J(G) and UH(G) \ @J(G) 6= ;: For
each z 2 F (G); G(z) \ @J(G) 6= ;:
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3. There exists a subsequence (gnj ) of (gn) and a point y 2 UH(G) \
@J(G) such that (gnj ) converges to y locally uniformly on U:

Proof. Using Lemma 1.19, we can show the statement in the same way as
the proof of Theorem 1.20.

By Lemma 1.10 and using the method of the proof in Lemma 1.18, we
can show the next lemma immediately.

Lemma 1.22. Let G be a rational semigroup and y a point of @J(G) n
UH(G): Assume that there exists an open neighborhood U of y such that

C n G�1(U) contains a continuum K: Then for each x 2 F (G); G(x) �
C n fyg:

Lemma 1.23. Let G be a rational semigroup. Assume that there exists a

point x 2 F (G); a point y 2 @J(G) and a suquence (gn) in G such that

gn(x)! y as n!1: Then at least one of the following holds.

1. UH(G) = ; and each element of G is a M�obius transformation. For

each z 2 F (G); y 2 G(z):

2. UH(G) is totally disconnected, UH(G) � J(G) and UH(G)\@J(G) 6=
;: For each z 2 F (G); y 2 G(z):

3. y 2 UH(G):

Proof. Suppose UH(G) is empty. Then we can show that each element of
G is a M�obius transformation in the same way as the proof of Lemma 1.19.

Suppose there exists a point z 2 F (G) such that G(z) � C n fyg:
Then there exists a neighborhood V of z such that G(V ) � C n fyg: By
Lemma 1.22, y 2 UH(G):

Suppose UH(G)\F (G) 6= ;: Let z 2 UH(G)\F (G): If G(z) � C n fyg;
then by the previous arguments, y 2 UH(G): If y 2 G(z); we have also
y 2 UH(G):

If UH(G) contains a continuum, then from Lemma 1.22, we have y 2
UH(G):

Suppose that ; 6= UH(G) � J(G) and UH(G) is totally disconnected.
There exists an element g 2 G of degree at least two. Since UH(G) is totally
disconnected and F (G) 6= ;; by no wandering domain theorem we can show
that g has an (super) attracting or parabolic periodic point � in @J(G): We
have � 2 UH(G):

By Lemma 1.23, we can show the next result in the same way as the
proof of Theorem 1.20.
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Theorem 1.24. Let G be a rational semigroup and U a connected compo-

nent of F (G): Assume that there exists a sequence (gn) of elements of G such

that Ugn \ Ugm = ; if n 6= m ( in pariticular, U is a wandering domain).

Then at least one of the following holds.

1. UH(G) = ; and each element of G is a M�obius transformation. For

each z 2 F (G); G(z) \ @J(G) 6= ;:

2. UH(G) is totally disconnected, UH(G) � J(G) and UH(G)\@J(G) 6=
;: For each z 2 F (G); G(z) \ @J(G) 6= ;:

3. There exists a subsequence (gnj ) of (gn) and a point y 2 UH(G) \
@J(G) such that (gnj ) converges to y locally uniformly on U:

By Lemma 1.22, we can show the next result immediately.

Theorem 1.25. Let G be a rational semigroup. Assume that G is weakly

semi-hyperbolic and there is a point z 2 F (G) such that the closure of the

G-orbit G(z) is included in F (G): Then for each x 2 F (G); G(x) � F (G)
and there is no wandering domain.

Next theorem follows from Lemma 1.23.

Theorem 1.26. Let G be a rational semigroup containing an element g 2 G
with deg(g) � 2: Assume that G is weakly semi-hyperbolic. If F (G) 6= ;; then
for each x 2 F (G); G(x) � F (G) and there is no wandering domain.

De�nition 1.27. Let G be a rational semigroup. We set

A0(G) = G(fz 2 C j 9g 2 G with deg(g) � 2; g(x) = x and jg0(x)j < 1:g);

~A0(G) = G(fz 2 F (G) j 9g 2 G with deg(g) � 2; g(x) = x and jg0(x)j < 1:g);

A(G) = G(fz 2 C j 9g 2 G; g(x) = x and jg0(x)j < 1:g);

~A(G) = G(fz 2 F (G) j 9g 2 G; g(x) = x and jg0(x)j < 1:g);

where the closure in the de�nition of ~A0(G) and ~A(G) is considered in C :

Remark 4. By de�nition,A0(G) � A(G)\P (G): For each g 2 G; g(A0(G)) �
A0(G) and g(A(G)) � A(G): We have also similar statements for ~A0(G) and
~A(G):

Lemma 1.28. Let G be a rational semigroup. If ~A0(G) is a non-empty

compact subset of F (G); then

; 6= ~A0(G) = ~A(G) � P (G) \ F (G):

12



Proof. Let g be any M�obius transformation in G and x 2 C a �xed point
of g with jg0(x)j < 1: Since g( ~A0(G)) � ~A0(G) \ F (G) and ~A0(G) 6= ;; we
have that x 2 ~A0(G): Therefore the statement follows.

Lemma 1.29. Let G be a rational semigroup containing an element with

the degree at least two. Assume that G is semi-hyperbolic and F (G) 6= ;:
Then

; 6= A0(G) = ~A0(G) = A(G) = ~A(G) � F (G):

Proof. Let g 2 G be an element with the degree at least two. Since F (G) 6=
;; the element g has a (super)attracting periodic point x in F (G): By
Remark 1, we have that A0(G) � F (G): Hence the statement follows from
the proof of Lemma 1.28.

Lemma 1.30. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational

semigroup. Assume that each element of G with the degree at least two has

neither Siegel disks nor Hermann rings and each element of Aut C \G(if this
is not empty) is loxodromic. Also assume that ]J(G) � 3: Let U1; : : : ; Us be
some connected components of F (G) and K a non-empty compact subset of

V = [sj=1Uj such that Uj \K 6= ; for each j = 1; : : : ; s and g(K) � K for

each g 2 G: Then for each compact subset L of V there exists a constant c
with c > 0 and a constant � with 0 < � < 1 such that

1. supfk(fin � � � fi1)
0(z)k j z 2 L; (in; : : : ; i1) 2 f1; : : : ;mgng � c�n;

where we denote by k � k the norm of the derivative of with respect to

the hyperbolic metric on V:

2. supfd(fin � � � fi1(z);K) j z 2 L; (in; : : : ; i1) 2 f1; : : : ;mgng � c�n;
where we denote by d the spherical metric.

Proof. Let a be a large positive number. For each j = 1; : : : ; s; let Kj be
the compact a-neighborhood of K \ Uj in Uj with respect to the distance
induced by the hyperbolic metric in Uj :We set K0 = [sj=1Kj: Then for each
g 2 G; g(K0) � K0: If a is large enough, we have that L � K0:

We claim that there exists a constant c > 0 and a constant � < 1 such
that

supfk(fin � � � fi1)
0(z)k j z 2 L; (in; : : : ; i1) 2 f1; : : : ;mgng � c�n; (1)

where we denote by k � k the norm of the derivative of with respect to the
hyperbolic metric on V: To show the claim, let z be a point of Kj and
(is+1; : : : ; i1) an element of f1; : : : ;mgs+1: Then there exists an integer t
with 1 � t � s such that (fis+1 � � � fit+1)(Ujt) � Ujt; where Ujt is the
component of V containing (fit � � � fi1)(Uj): From the assumption, we have
that for each x 2 Kjt; k(fis+1 � � � fit+1)

0(x)k < 1: Hence

k(fis+1 � � � fi1)
0(z)k < 1:
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Therefore the claim holds.
From the above claim, we can show the statement of our lemma imme-

diately.

De�nition 1.31. Let G be a rational semigroup and U a open set in C :
We say that a non-empty compact subset K of U is an attractor in U for
G if g(K) � K for each g 2 G and for any open neighborhood V of K in U
and each z 2 U; g(z) 2 U for all but �nitely many g 2 G:

Lemma 1.32. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational

semigroup and E a �nite subset of C : Assume that each x 2 E is not

a non-repelling �xed point of any element of G: Then for any M > 0;
there exists a positive integer n0 such that for any integer n with n � n0 if

z; fw1(z); fw2fw1(z); : : : ; (fwn�1 � � � fw1)(z) and (fwn � � � fw1)(z) belong to

E and j(fwn � � � fw1)
0(z)j 6= 0; then j(fwn � � � fw1)

0(z)j > M:

Proof. We will show the statement by induction on ]E: When ]E = 1; it
easy to see that the statement holds. Now assume that for each �nite subset
E of C with ]E � s the statement holds. Let E0 be a �nite subset of C with
]E0 = s+ 1 and assume that each x 2 E0 is not a non-repelling �xed point
of any element of G: Take a number M0 so that

M0(inffj(fj)
0(�)j j � 2 E0; (fj)

0(�) 6= 0; j = 1; : : : ;m:g)2 > 1:

From the hypothesis of the induction, there exists a positive integer n0 such
that for any subset E of E0 with E 6= E0 and for any integer n with n � n0;
if x; fw1(x); fw2fw1(x); : : : ; (fwn�1 � � � fw1)(x) and (fwn � � � fw1)(x) belong
to E and j(fwn � � � fw1)

0(x)j 6= 0; then j(fwn � � � fw1)
0(x)j > M0: For each

y 2 E and postive integer t with t � n0 + 1; we set

Gy;t = fg 2 G j g(y) = y; g: a product of t generators g:

Then we have that ]Gy;t < 1 and for each g 2 Gy;t; y is a repelling �xed
point of g:

Now assume that z; fw1(z); fw2fw1(z); : : : ; (fwn�1 � � � fw1)(z) and (fwn � � � fw1)(z)
belong to E0; (fwn � � � fw1)(z) = z; (fwn � � � fw1)

0(z) 6= 0 and (fwj � � � fw1)(z) 6=
z for each j = 1; : : : ; n� 1: If n � n0 + 1; we have

j(fwn � � � fw1)
0(z)j > inffjg0(z)j j g 2 Gz;t; 1 � t � n0 + 1g > 1:

If n � n0 + 2; then we have

j(fwn � � � fw1)
0(z)j > M0(inffj(fj)

0(�)j j � 2 E0; f 0j(�) 6= 0; j = 1; : : : ;m:g)2 > 1:

From these results, we can show that for any M > 0; there exits a posi-
tive integer n1 such that for any integer u with u � n1 if z; fw1(z); fw2fw1(z); : : : ;
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(fwu�1 � � � fw1)(z) and (fwu � � � fw1)(z) belong to E
0 and j(fwu � � � fw1)

0(z)j 6=
0; then

(fwu � � � fw1)
0(z)j > M:

Hence we have completed the induction.

Lemma 1.33. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational

semigroup and E a �nite subset of C : Assume that each x 2 E is not any
non-repelling �xed point of any element of G: Then there exists an open

neighborhood V of E in C such that for each z 2 V; if there exists a word

w = (w1; w2; : : : ) 2 f1; : : : ;mgN satifying that:

1. for each n; (fwn � � � fw1)(z) 2 V;

2. (fwn � � � fw1(z)) accumulates only in E and

3. for each n; (fwn � � � fw1)(�) 2 E and (fwn � � � fw1)
0(�) 6= 0 where � is

the closest point to z in E;

then z is equal to the point � 2 E:

Proof. Let � be a small number so that B(x; �)\B(y; �) = ; if x; y 2 E and
x 6= y: Take an � smaller, if necesarry, so that if z0 2 E and f 0j(z0) 6= 0 for
some j; then fjjB(z0;�) is injective. We set V = [z2EB(z; �):

Let z 2 V be a point. Assume that there exists a word w = (w1; w2 : : : ) 2
f1; : : : ;mgN satisfying the conditions 1, 2 and 3. We set �n = fwnfwn�1 � � � fw1 :
From the conditions 2 and 3, there exists a point a 2 E and a sequence (nj)
such that �nj (z) ! a as j !1 and anj (�) = a for each j: By lemma 1.32,
we have j(�n)

0(�)j ! 1 as n!1: Hence by the Koebe distortion theorem,
there exists a number � > 0 such that for each positive integer j; there
exists an analytic inverse branch �j of �nj on B(a; �) so that �j(a) = � and
�j(B(a; �)) � V and diam �t(B(a; �)) ! 0 as t!1:

We set yj = �j(�nj (z)) for each large j: We claim that for each integer
l with 0 � l � nj � 1; if (fwl+1fwl � � � fw1)(yj) = (fwl+1fwl � � � fw1)(z); then
(fwlfwl�1 � � � fw1)(yj) = (fwlfwl�1 � � � fw1)(z): Let us show the claim above.
Assume that (fwl+1fwl � � � fw1)(yj) = (fwl+1fwl � � � fw1)(z): We have that

fwlfwl�1 � � � fw1 � �j : B(a; �)! C

is an analytic inverse branch of fwnj fwnj�1 � � � fwl+1 satisfying

(fwlfwl�1 � � � fw1�j)(a) = (fwlfwl�1 � � � fw1)(�):

By Lemma 1.32 and the Koebe distortion theorem, we can assume that

(fwlfwl�1 � � � fw1�j)(B(a; �)) � B((fwlfwl�1 � � � fw1)(�); �):
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Since

(fwlfwl�1 � � � fw1)(z) 2 B((fwlfwl�1 � � � fw1)(�); �); (2)

(fwlfwl�1 � � � fw1)(yj) = (fwlfwl�1 � � � fw1�j)(�nj (z)) 2 B((fwlfwl�1 � � � fw1)(�); �)
(3)

and fwl+1jB(fwlfwl�1 ���fw1 (�); �) is injective,

(fwl+1fwl � � � fw1)(yj) = (fwl+1fwl � � � fw1)(z)

implies that (fwlfwl�1 � � � fw1)(yj) = (fwlfwl�1 � � � fw1)(z): Hence the claim
above holds.

From this claim, it follows that yj = z for each large j: Since diam
�j(B(a; �)) ! 0 as j !1; we have z = �:

Theorem 1.34. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational

semigroup. Assume that F (G) 6= ;; there is an element g 2 G such that

deg(g) � 2 and each element of Aut C \G(if this is not empty) is loxodromic.

Also we assume all of the following conditions;

1. ~A0(G) is a compact subset of F (G),

2. any element of G with the degree at least two has neither Siegel disks

nor Hermann rings.

3. ](UH(G) \ @J(G)) < 1 and each point of UH(G) \ @J(G) is not a

non-repelling �xed point of any element of G:

Then ~A0(G) = ~A(G) 6= ; and for each compact subset L of F (G);

supfd(fin � � � fi1(z); ~A(G)) j z 2 L; (in; : : : ; i1) 2 f1; : : : ;mgng ! 0;

as n ! 1; where we denote by d the spherical metric. Also ~A(G) is the

smallest attractor in F (G) for G: Moreover we have that if (hn) is a sequence
in G consisting of mutually disjoint elements and converges to a map � in

a subdomain V of F (G); then � is constant taking its value in ~A(G):

Proof. First we will show that ~A0(G) = ~A(G) 6= ;: By the condition 2,
g has neither Siegel disks nor Hermann rings. Since F (G) 6= ; and by the
condition 3, applying the no wandering domain theorem for hgi; we see that
the element g has an attracting periodic point x in F (G): Hence ~A0(G) 6= ;:
By Lemma 1.28, we get ~A0(G) = ~A(G) 6= ;:

Next we will show that for each x 2 F (G); G(x) � F (G): Assume that
there exists a connected component U of F (G); a sequence (gn) of elements
of G and a point y 2 @J(G) such that (gn) converges to y locally uniformly
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on U: We take a subsequence (g1;n) of (gn) satisfying that there exists a
generator fi1 so that

g1;n = � � � fi1 ;

for each n: Inductively when we get a sequence (gj;n)n satisfying that there
exists a word (i1; : : : ; ij) 2 f1; : : : ;mgj so that gj;n = � � � fij � � � fi1 for each
n; we take a subsequence (gj+1;n)n of (gj;n)n satisfying that there exists a
generator fij+1 so that

gj+1;n = � � � fij+1 � � � fi1

for each n: By the diagonal method, we get a subsequence (gn;n)n of (gn)
satisfying that there exists a word (i1; i2; : : : ) 2 f1; : : : ;mgN so that for each
n;

gn;n = �nfin � � � fi1 ;

where �n is an element of G: We consider the sequence (�n) where �n =
fin � � � fi1 : We see that U�n 6= U�m if n 6= m: For, if there exists n and m
with n > m such that U�n = U�m ; then

(fin � � � fim+1)(U�m) � U�m

and the element fin � � � fim+1 has an (super)attracting �xed point x0 in U�m :

By the condition 3, we have x0 2 ~A(G): From Lemma 1.30, it contradicts to
that (gn) converges to y 2 @J(G) in U: Hence U�n 6= U�m if n 6= m: Now let
z be a point of U: Since U�n 6= U�m if n 6= m; we have (�n(z)) accumulates
only in @J(G): By Theorem 1.24, we can show that (�n(z)) accumulates
only in @J(G) \ UH(G): For each large n; let �n be the closest point to
�in(z) in @J(G) \ UH(G): Since ](@J(G) \ UH(G)) < 1 and there is no
super attracting �xed point of any element of G in @J(G); there exists an
integer n0 such that for each integer n with n � n0;

(fin � � � fin0+1)
0(�n0) 6= 0:

>From Lemma 1.33, we get a contradiction. Therefore we have for each
x 2 F (G); G(x) � F (G):

Now let x be a point of F (G): We have G(x) � F (G): Let fU1; : : : ; Usg
be the set of all connected components of F (G) having non-empty inter-
section with G(x): We set V = [sj=1Uj : Suppose that x 2 Uj: For each

(is+1; is; : : : ; i1) 2 f1; : : : ;mgs+1; there exists an integer t with 1 � t � s
such that (fis+1 � � � fit+1)(Ujt) � Ujt ; where Ujt is the component of V con-
taining (fit � � � fi1)(Uj): From our assumption, the element fis+1 � � � fit+1 has

an attracting �xed point in Ujt \ ~A(G): Hence, from Lemma 1.30, we have

supfd(fin � � � fi1(z); ~A(G)) j (in; : : : ; i1) 2 f1; : : : ;mgng ! 0;
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as n!1: Therefore for each compact subset L of F (G); the similar result
holds.

Next we will show that ~A(G) is the smallest attractor in F (G) for G:
From the argument above, ~A(G) is an attractor in F (G) for G: Let K be any
attractor in F (G) for G: It is easy to see that each attracting �xed point of
any element of G in F (G) belongs to the set K: It implies that ~A(G) � K:

Finally assume (hn) is a sequence in G consisting of mutually disjoint
elements and converges to a map � in a subdomain V of F (G): Then by
Lemma 1.30 we see that � is constant taking its value in ~A(G):

By Theorem 1.34 and Lemma 1.29, we get the next theorem.

Theorem 1.35. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational

semigroup which is semi-hyperbolic. Assume that there is an element g 2 G
such that deg(g) � 2 and each element of Aut C \ G(if this is not empty)

is loxodromic. If F (G) 6= ;; then ; 6= A(G) = A0(G) � F (G) and for each

compact subset L of F (G);

supfd(fin � � � fi1(z); A(G)) j z 2 L; (in; : : : ; i1) 2 f1; : : : ;mgng ! 0;

as n ! 1; where we denote by d the spherical metric. Also A(G) is the

smallest attractor in F (G) for G: Moreover we have that if (hn) is a sequence
in G consisting of mutually disjoint elements and converges to a map � in

a subdomain V of F (G); then � is constant taking its value in ~A(G):

Theorem 1.36. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational
semigroup which is sub-hyperbolic. Assume that there is an element g 2 G
such that deg(g) � 2 and each element of Aut C \ G(if this is not empty)

is loxodromic. If F (G) 6= ;; then ; 6= ~A(G) = ~A0(G) � F (G) and for each

compact subset L of F (G);

supfd(fin � � � fi1(z); ~A(G)) j z 2 L; (in; : : : ; i1) 2 f1; : : : ;mgng ! 0;

as n ! 1; where we denote by d the spherical metric. Also ~A(G) is the

smallest attractor in F (G) for G: Moreover we have that if (hn) is a sequence
in G consisting of mutually disjoint elements and converges to a map � in

a subdomain V of F (G); then � is constant taking its value in ~A(G):

Proof. Since ~A0(G) � P (G) and G is sub-hyperbolic, we have that ~A0(G) is
a compact subset of F (G) and ](UH(G)\J(G)) <1: Now let x be a point
of UH(G) \ @J(G): Assume that there exists an element h 2 G such that
h(x) = x: Since G is sub-hyperbolic, x is neither attracting nor indi�erent
�xed point of h: Since G is �nitely generated, by [HM2], we have that there
exists no superattracting �xed point of any element of G in @J(G): Hence
x is a repelling �xed point of h:

From Theorem 1.34, the statement of our theorem holds.
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Proposition 1.37. Let G be a �nitely generated rational semigroup which

contains an element with the degree at least two. Assume that ]P (G) < 1
and P (G) � J(G): Then J(G) = C :

Proof. Suppose F (G) 6= ;: Let g 2 G be an element with the degree at
least two. By the assumption of our Proposition, g has a super attracting
periodic point in @J(G): On the other hand, since G is �nitely generated,
by [HM2], there exist no super attracting �xed points of any element of G
in @J(G): This is a contradiction.

De�nition 1.38. Let M be a complex manifold. Suppose the map

(z; a) 2 C �M 7! fj;a(z) 2 C

is holomorphic for each j = 1; : : : ; n . We set Ga = hf1;a; � � � ; fn;ai: Then
we say that fGaga2M is a holomorphic family of rational semigroups.

By Theorem 1.34 and Theorem 2.3.4 in [S1], we get the following result.

Corollary 1.39. Let M be a complex manifold. Let fGaga2M be a holo-

morphic family of rational semigroups where Ga = hf1;a; � � � ; fn;ai: Let b be
a point of M: We assume that Gb satis�es the assumption in Theorem 1.34.

Then the map

a 7! J(Ga)

is continuous at the point a = b with respect to the Hausdor� metric.

Corollary 1.40. Let M be a complex manifold. Let fGaga2M be a holo-
morphic family of rational semigroups where Ga = hf1;a; � � � ; fn;ai: Let b be
a point of M: Assume that Gb contains an element of degree at least two

and that each element of Aut C \Gb(if this is not empty) is loxodromic. If

Gb is semi-hyperbolic or sub-hyperbolic, then the map

a 7! J(Ga)

is continuous at the point a = b with respect to the Hausdor� metric.

2 Rational Skew Product

De�nition 2.1 (rational skew product). Let X be a topological space.
If a continuous map ~f : X � C ! X � C is represented by the following
form:

~f((x; y)) = (p(x); qx(y));

where p : X ! X is a continuous map and qx : C ! C is a rational map with
the degree at least 1 for each x 2 X; then we say that ~f : X � C ! X � C

is a rational skew product. In this paper we always assume that X is a
compact metric space.
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O.Sester investigated polynomial skew products(in particular, quadratic
case) in [Se]. M.Jonsson investigated dynamics on C -�bration whose �ber-
wise maps are rational maps of degree d; d � 2 in [J2].

De�nition 2.2. Let G be a rational semigroup generated by ff�g�2�: Let
X = �N : Let ~f : X � C ! X � C be the map de�ned by:

~f((x; y)) = (p(x); fx1(y));

where p : X ! X is the shift map and x 2 X is represented by: x =
(x1; x2; : : : ): Then we say that ~f : X � C ! X � C is the rational skew
product constructed by the generator system ff�g�2�:

De�nition 2.3. Let ~f : X � C ! X � C be a rational skew product. For

each n 2 N and x 2 X; we set q
(n)
x := qpn�1(x)�� � ��qx and ~fnx := ~fnj��1

X
(fxg):

We de�ne the following sets. For each x 2 X;

d(x) = deg(qx);

Fx = fy 2 C j fq(n)x gn is normal in a neigborhood of yg;

Jx = C n Fx; ~Jx = fxg � Jx:

Further we set

~J( ~f) =
[
x2X

~Jx; ~F ( ~f) = (X � C ) n ~J( ~f):

C( ~f) = f(x; y) 2 X � C j q0x(y) = 0g; P ( ~f) =
[
n2N

~fn(C( ~f)):

C( ~f) is called the critical set for ~f and P ( ~f) is called the post critical set
for ~f: Moreover we set

( ~fn)0((x; y)) = (q(n)x )0(y):

If (x; y) is a period point of ~f with the period n; then we say that (x; y)
is repelling(resp. indi�erent, attracting, etc.) if j( ~fn)0((x; y))j > 1(resp.=
1; < 1; etc.).

Lemma 2.4. Let ~f : X�C ! X�C be a rational skew product represented

by ~f((x; y)) = (p(x); qx(y)): Then the following hold.

1. if x 2 X; then q�1x (Fp(x)) = Fx; q
�1
x (Jp(x)) = Jx; ~f( ~J( ~f)) � ~J( ~f):

2. if p : X ! X is surjective, then ~f : X � C ! X � C is surjective.

3. if p : X ! X is a surjective and open map, then ~f�1( ~J( ~f)) =
~f( ~J( ~f)) = ~J( ~f):
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Proof. We will show the last statement. Suppose ~f((x; y)) 2 ~J( ~f): Then
there exists a sequence ((xi; yi)) converging to ~f((x; y)) such that yi 2 Fxi
for each i: Since p is an open map, there exists a sequence (~xi) converging
to x such that p(~xi) = xi: Then there exists a sequence (~yi) converging to
y such that q~xi(~yi) = yi for each i: Then ~yi 2 J~xi : Hence (x; y) 2 ~J( ~f):
Hence ~f�1( ~J( ~f)) � ~J( ~f): Since ~f( ~J)( ~f) � ~J( ~f) and ~f : X � C ! X � C is
surjective, we have ~f�1( ~J( ~f)) = ~f( ~J( ~f)) = ~J( ~f):

Now we need some notations from [J2], concerning potential theoritic as-
pects. Let ~f : X � C ! X � C be a rational skew product represented by
~f((x; y)) = (p(x); qx(y)): Let ! be the spherical probability measure on C :
Let !x = (ix)�! for each x 2 X where we denote by ix : C ! ��1X (fxg)
the natural isomorphism. For each continuous function ' on ��1X (fxg) let

( ~fnx )
�' be the continuous function on ��1X (fpn(x)g) de�ned by (( ~fnx )

�')(z) =P
~fnx (w)=z

'(w) for each n 2 N: Let �x;n be the probability measure on ��1X (fxg)

de�ned by h�x;n; 'i =
1Qn�1

j=0 d(p
j(x))

h!pn(x); ( ~fnx )
�'i: For each x 2 X; we

denote by Rx : C
2 nf0g ! C 2 nf0g the homogenious polynomial mapping of

degree d(x) such that qx ��
0 = �0 �Rx where �

0 : C 2 nf0g ! C is the natural
projection and supfjRx(z; w)j j j(z; w)j = 1g = 1: Rx is determined uniquely
up to multiplication by a complex number of units. We can assume x 7! Rx

is continuous. For each x 2 X and n 2 N let Gx;n := 1Qn�1
j=0 d(p

j(x))
log jRn

x j

where Rn
x := Rpn�1(x) � � � � � Rx: Then the following results hold.

Proposition 2.5. Let ~f : X � C ! X � C be a rational skew product

represented by ~f((x; y)) = (p(x); qx(y)) and assume d(x) � 2 for each

x 2 X: Then we have the following.

1. �x;n converges to a probability measure �x on ��1X (fxg) weakly as n!
1 for each x 2 X:

2. Gx;n converges to a continuous plurisubharmonic function Gx locally

uniformly on C 2 n f0g as n!1 for each x 2 X:

3. �x = (i�1x )�(dd
c(Gx �s)) where s is a local section of �0 : C 2 nf0g ! C :

Further Gx(z; w) � log j(z; w)j+O(1) as j(z; w)j ! 1 and Gx(�z; �w) =
Gx(z; w) + log � for each � 2 C ; for each x 2 X:

4. Gp(x) � Rx = d(x) �Gx for each x 2 X:

5. if x! x0 then Gx ! Gx0 uniformly on C 2 n f0g:

6. ( ~fx)��x = �p(x); ( ~fx)
��p(x) = d(p(x)) � �x for each x 2 X:

7. �x puts no mass on polar subsets of ��1X (fxg) for each x 2 X:

21



8. x 7! �x is continuous with respct to the weak topology of measures in

X � C :

9. supp(�x) = ~Jx for each x 2 X:

10. ~Jx has no isolated points for each x 2 X:

11. x 7! ~Jx is lower semicontinuous with respect to the Hausdor� metric

in the space of compact subsets of X � C :

Proof. Since d(x) � 2 for each x 2 X; we can show the statements in the
same way as that in section 3 in [J2].

De�nition 2.6 (hyperbolicity). Let ~f : X � C ! X � C be a rational
skew product. We say that ~f is hyperbolic along �bres if P ( ~f) � ~F ( ~f):

De�nition 2.7. Let ~f : X � C ! X � C be a rational skew product. We
say that ~f is expanding along �bres if there exists a positive constant C and
a constant � with � > 1 such that for each n 2 N;

inf
z2 ~J( ~f)

k( ~fn)0(z)k � C�n;

where we denote by k � k the norm of the derivative with respect to the
spherical metric.

De�nition 2.8 (semi-hyperbolicity). Let ~f : X � C ! X � C be a
rational skew product. Let N be a positive integer. We say that a point
(x0; y0) 2 X � C belongs to SHN ( ~f) if there exists a neighborhood U of x0
and a positive number � satisfying that for any x 2 U; any n 2 N; any

element xn 2 p�n(x) and any element V of c(B(y0; �); q
(n)
xn );

deg(q(n)xn : V ! B(y0; �)) � N:

We set
UH( ~f) = (X � C ) n [N2NSHN ( ~f):

We say that ~f is semi-hyperbolic along �bres if for any (x0; y0) 2 ~J( ~f) there
exists a positive integer N such that (x0; y0) 2 SHN( ~f):

Lemma 2.9. Let ~f : X � C ! X � C be a rational skew product. If ~f is

hyperbolic along �bres, then it is semi-hyperbolic along �bres.

Lemma 2.10. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational

semigroup. Then G is semi-hyperbolic if and only if the rational skew prod-

uct ~f : X�C ! X�C constructed by the generator system ff1; f2; : : : ; fmg
is semi-hyperbolic along �bres. G is hyperbolic if and only if ~f is hyperbolic

along �bres.
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De�nition 2.11 (Condition(C1)). Let ~f : X � C ! X � C be a rational
skew product. We say that ~f satis�es the condition (C1) if there exists a
family fDxgx2X of discs in C such that the following three conditions are
satis�ed:

1.
S
n�0

~fn(fxg �Dx) � ~F ( ~f):

2. for any x 2 X; we have that diam(q
(n)
x (Dx))! 0; as n!1:

3. infx2X diam (Dx) > 0:

Now we will show the following lemma and theorem.

Lemma 2.12. Let ~f : X�C ! X�C be a rational skew product satisfying

the condition (C1). Assume that there exists a point (x0; y0) 2 X � C with

y0 2 Fx0 ; a connected open neighborhood U of y0 in C and a sequence (nj)

of positive integers such that Rj := q
(nj)
x0 converges to a non-constant map

� uniformly on U as j ! 1: Let (xj ; yj) = ~fnj (x0; y0) and (x1; y1) =

limj!1(xj ; yj): Let Si;j = q
(nj�ni)
xi for 1 � i < j: Let

V = fy 2 C j 9� > 0; lim
i!1

sup
j>i

sup
d(�;y)��

d(Si;j(�); �) = 0g:

Then V is a non-empty open set and for any y 2 @V; we have that

(x1; y) 2 ~J( ~f) \ UH( ~f): (4)

Theorem 2.13. Let ~f : X�C ! X�C be a rational skew product. Assume
~f is semi-hyperbolic along �bres and satis�es the condition (C1). Then the

following hold.

1. Let (x0; y0) 2 X � C be any point with y0 2 Fx0 : Then for any open

connected neighborhood U of y0 in C ; there exists no subsequence of

(q
(n)
x0 )n converging to a non-constant map locally uniformly on U:

2.
~J( ~f) =

[
x2X

~Jx:

3. If there exists a disc D in C such that Dx = D for all x 2 X in the

condition (C1), then there exist positive constants �; L and �(0 < � <
1) such that for any n 2 N;

supfdiam U j U 2 c(B(y; �); q(n)xn ); (x; y) 2
~J( ~f); xn 2 p�n(x)g � L�n:

4. Assume d(x) � 2 for each x 2 X: Then we have that x 7! ~Jx is

continuous with respect to the Hausdor� metric in the space of compact

subsets of X � C :
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5. Assume d(x) � 2 for each x 2 X: Then for any compact subset K

of ~F ( ~f); we have that [n�0 ~fn(K) � ~F ( ~f) and there exist constants

C > 0 and � < 1 such that for each n; sup
z2K

k( ~fn)0(z)k � C�n:

To show Lemma 2.12 and Theorem 2.13, we need the following lemma.

Lemma 2.14. Let ~f : X�C ! X�C be a rational skew product satisfying

the condition (C1). Assume (x0; y0) 2 SHN ( ~f) for some N 2 N: Then there

exists a positive number �0 such that for each � with 0 < � < �0 there exists

a neighborhood U of x0 in C satisfying that for each n 2 N; each x 2 U and

each xn 2 p�n(x); we have that each element of c(B(y0; �); q
(n)
xn ) is simply

connected.

Proof. Take a positive number �1 such that for each x 2 X and each x1 2
p�1(x); we have that each connected component of q�1x1 (Dx) contains a ball
with the radius at least �1:

By the semi-hyperbolicity and Lemma 1.10, we can take a positive num-
ber �0 and a open neighborhood U of x0 in C such that for each � with
0 < � < �0 , each x 2 U; each n 2 N; and each xn 2 p�n(x); we have that

the diameter of each element of c(B(y0; �); q
(n)
xn ) is less than �1:

Now we will show each element of c(B(y0; �); q
(n)
xn ) is simply connected

by induction on n: Assume an element W of c(B(y0; �); q
(n)
xn ) is simply

connected. Let W1 be a connected component of q�1xn+1(W ) where xn+1 is an

element of p�1(xn): Suppose W1 is not simply connected. Each connected
component of @W1 is mapped onto @W by qxn+1 : Hence the image of each
connected component of C nW1 by qxn+1 contains Dxn : Hence we have that
diam W1 � �1 , which contradicts to the choice of �0 and U:

Now we will show the Lemma 2.12.

Proof. We will show the statement developing a method in M.Jonsson's
Thesis([J1]). By the de�nition, V is an open set. Since � is non-constant,
there exists a positive number a such that

Rj(U) � B(y1; a)

for each j 2 N: We have that B(y1; a) � V: For, if y 2 B(y1; a) then
y = Ri(�i) for some �i 2 U and so d(Si;j(y); y) = d(Rj(�i); Ri(�i)) which is
small if i is large. Hence V is a non-empty open set.

Take any y 2 @V: We will show

(x1; y) 2 ~J( ~f): (5)
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Assume this is false. If there exists a positive integer i0 such that fSi;jgj�i�i0
is normal in a neighborhood of y; then since Si;j ! Id on V \W; we have
that W � V and it is a contradiction. Hence there exist sequences (ik); (jk)
and (�k) such that ik � jk; jk � ik !1; �k ! y and

Sik; jk(�k) 2 Dxik
; (6)

where we denote by (Dx)x2X a family of discs in C in the de�nition of
condition (C1). Since we are assuming (x1; y) 2 ~F ( ~f); we have that there
exists an disc B around y such that B � Fxik and �k 2 B for large k: By (6),
the condition (C1) and the de�nition of V; we get a contradiction. Hence
(5) holds.

Now we will show (x1; y) 2 UH( ~f): Suppose this is false. Then there
exists a positive integer N such that (x1; y) 2 SHN( ~f): Let �0 be a number
for (x1; y) in Lemma 2.14 and let � = �0=2:We can assume that there exists
a neighborhood U 0 of x1 satisfying that for any x 2 U 0; any n 2 N; any

element xn 2 p�n(x) and any element V of c(B(y; �0); q
(n)
xn );

deg(q(n)xn : V ! B(y; �0)) � N:

Take two domains V1 and V2 such that

y1 2 V2 �� V1 �� V; B(y; �) \ V2 6= ;: (7)

If j > i and i is large enough, then Si;j is close to idV1 on V1: Hence Si;j is
biholomorphic on V1 and Si;j(V1) � V2: Let hi;j : V2 ! V1 be a map such
that Si;j � hi;j = id on V2 and hi;j � Si;j = id on S�1i;j (V2)\ V1: Then we have
that

lim
i!1

sup
j>i

sup
�2V2

d(hi;j(�); �) = 0: (8)

For each (i; j) such that j > i and i is large enough, let Bi;j 2 c(B(y; �); Si;j)
be an element such that hi;j(V2\B(y; �)) � Bi;j: By the choice of �0; we have
that Bi;j is simply connected. By semi-hyperbolicity, there exists a positive
integer M such that for each (i; j) with j > i where i is large enough,

]( cv(Si;jjBi;j
) \B(y; �)) �M; (9)

where we denote by \cv" the set of critical values. Hence there exists a
positive number � with 0 < � < 2� such that for each (i; j) with i < j
there exists a sector Ui;j in B(y; �) of angle � with the center y such that
Ui;j \ cv(Si;j jBi;j

) = ; and Ui;j \ V2 6= ;: Let gi;j : Ui;j ! Bi;j be the

analytic continuation of hi;j on V2 \ Ui;j: Let yi;j 2 Bi;j \ gi;j(Ui;j) such
that Si;j(yi;j)) = y: By (8), Corollary 1.9, Condition (C1) and the fact
V2 \ Ui;j 6= ;; we have that there exists a positive number �1 such that

B(yi;j; �1) � Bi;j; (10)
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for each (i; j) such that j > i and i is large enough. Now we will show the
following claim:

Claim: lim
i!1

sup
j>i

d(yi;j; y) = 0: (11)

Suppose this is false. Then there exists a sequence ((ik; jk)) with jk > ik
and a positive number �2 such that d(yik;jk ; y) > �2; for each k: We can
assume that (yik;jk) converges to a point ~y as k !1 and that there exists a
sector U0 with the center y such that Uik;jk = U0 for each k: Then we have
that

B(~y; �1=2) \ V = ;: (12)

For, assume the left hand side is not empty. Then since Sik;jk ! id inV
and the family fSik;jk jB(~y;�1=2)gk is normal, we have that Sik;jk ! id locally
uniformly on B(~y; �1=2): But this is a contradiction because ~y 6= y: Hence
we have (12).

By Lemma 1.10, there exists a positive number �3 with �3 < �1=4 such
that for each k; the diameter of each element of c(B(y; �3); Sik;jk) is less
than �1: Hence if we take a �xed point z 2 B(y; �3)\U0; then we have that
for each large k;

d(~y; gik;jk(z)) < �1=4: (13)

On the other hand, since gik;jk ! id locally uniformly on V2 and (gik;jk)k
is normal in U0; we have that gik;jk ! id locally uniformly on U0: Hence
we have that d(gik;jk(z); y) < �1=4 for each large k: Together with (13) and
B(~y; �1=2)\V = ;; we get a contradiction. Hence we have shown the claim
(11).

Since B(yi;j; �1) � Bi;j for each (i; j) such that j > i and i is large
enough, by the above claim we have that there exists a positive integer i0
such that for each (i; j) with j > i � i0;

Si;j(B(y; �1=2)) � B(y; �):

Hence (Si;j)j>i�i0 is normal inB(y; �1=2): Since Si;j ! id on B(y; �1=2)\V;
we have that y 2 V and this is a contradiction. Hence we have shown the
�rst statement of our lemma.

Now we will show Theorem 2.13.

Proof. The statement 1 follows from Lemma 2.12.
Now we will show the statement 2 of our theorem. Suppose the state-

ment is false. Then there exists a point (x0; y0) 2 ~J( ~f) with y0 2 Fx0 ; a
connected component U of y0 in C and a sequence (nj) of positive integers
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such that Rj := q
(nj)
x0 converges to a map � uniformly on U as j ! 1:

Let (xj ; yj) = ~fnj (x0; y0) and (x1; y1) = limj!1(xj ; yj): By Lemma 1.10,
there exists a positive number a such that yj 2 B(y1; a) and the element
Bj 2 c(B(y1; a); Rj) containing yj satis�es that Bj � U for each large
j: Hence Rj(U) � B(y1; a) for each large j and it implies that � is non-
constant. By Lemma 2.12, it is a contradiction. Hence we have shown the
statement 2 of our theorem.

Next we will show the statement 3 of our theorem. By semi-hyperbolicity
and Lemma 2.14, there exists a positive integer N and a positive real number
�0 such that for any (x0; y0) 2 ~J( ~f) there exists a neighborhood U 0 of x0

satisfying that for any real number � with 0 < � � �0; any x 2 U 0; any

n 2 N; any element xn 2 p�n(x) and any element V of c(B(y0; �); q
(n)
xn );

we have that V is simply connected and

deg(q(n)xn : V ! B(y0; �)) � N:

Let � = �0=2: We set

An = supfdiam U j U 2 c(B(y; �); q(n)xn ); (x; y) 2
~J( ~f); xn 2 p�n(x)g:

First we will show

An ! 0; as n!1: (14)

Suppose this is false. Then there exists a positive constant C; a sequence
((xk; yk)) of points in ~J( ~f); a sequence ((~xk; ~yk)) with ~fnk((~xk; ~yk)) =

(xk; yk) for some nk 2 N; !1 and a sequence (Uk)k with Uk 2 c(B(yk; �); q
(nk)

~xk
)

and ~yk 2 Uk for each k such that

diam Uk � C; for each k:

We can assume that ((xk; yk)) tends to a point (x0; y0) 2 ~J( ~f) and that
((~xk; ~yk)) tends to a point (~x0; ~y0) 2 ~J( ~f): By Corollary 1.9, there exists a
positive number r such that B(~y0; r) � Uk for each large k: Hence

q
(nk)

~xk
(B(~y0; r)) � B(y0; r); (15)

for each large k: By the second statement of our theorem, we have that
~y0 2 J~x0 : Hence there exists a positive integer j and a point z 2 B(~y0; r)
such that

q
(j)
~x0
(z) 2 D:

Hence q
(j)

~xk
(z) 2 D for each large k: On the other hand by the condition (C1)

if we take �0 so small then we can assume

[
n�0

~fn(fxg �D) \ (fy0g �B(y0; �0)) = ;:
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Since nk !1; by (15) we get a contradiction. Hence we have (14).
Take a positive integer n0 such that for each n 2 N with n � n0;

An � �=2: (16)

Fix any positive integer k: Let ((xn; yn)) be a sequence such that ~f((xn+1; yn+1)) =
(xn; yn) for each n and (x0; y0) 2 ~J( ~f): For each j = 0; : : : ; k; let Wj be the

element of c(B(y(k�j)n0 ; �); q
(jn0)
xkn0

) containing ykn0 : By (16) we have that

W0 � � � � �Wk: (17)

For each j = 1; : : : ; k;

q(jn0)xkn0
: Wj ! B(y(k�j)n0; �)

is a proper holomorphic map with the degree at mostN: Since q
(jn0)
xkn0

(Wj+1) is

a connected component of (q
(n0)
x(k�j)n0

)�1(B(y(k�j�1)n0 ; �)); which is included
in B(y(k�j)n0 ; �=2) by (16), we have that for each j = 0; : : : ; k � 1;

mod (Wj+1; Wj) � c > 0; (18)

where c is a constant number depending only on N: By Lemma 1.11, there
exists a � with 0 < � < 1 depending only on N such that

diam Wj+1=diam Wj � �; for each j = 0; : : : ; k � 1:

Hence we get that diam Wk � �k diam B(y0; �): Therefore the statement 3
of our theorem holds.

The statement 4 of our theorem follows from the statement 2 of Theo-
rem 2.13 and 11 in Proposition 2.5.

Next we will show the statement 5 of our theorem. Let K be a compact
subset of ~F ( ~f): Suppose there exists a sequence (xk; yk) of points in K and
a sequence (nk) of positive integers such that ( ~fnk((xk; yk))) converges to a
point (x0; y0) 2 ~J( ~f): By 11 in Proposition 2.5, we have that x 7! ~Jx is lower
semi-continuous. Hence we have that for each k there exists a point zk 2
Jpnk (xk) and (zk) converges to y

0: Since K\ ~J( ~f) = ;; by the condition (C1)

and Lemma 1.10 we get a contradiction. Hence we get that [n�0 ~fn(K) �
~F ( ~f): Let K 0 = [n�0 ~fn(K): By the statement 1 of Theorem 2.13, we have
that for each z = (x; y) 2 K 0; there exists a neighoborhoood U(z) of x in
X; a neighborhood V (z) of y in C and a positive integer n(z) such that
k( ~f (n(z)))0(z0)k < 1=2 for each z0 2 U(z) � V (z): Since K 0 is a compact set,
we get the statement .

Corollary 2.15. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational

semigroup which is semi-hyperbolic. Assume G contains an element with
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the degree at least two and each element of Aut C \G(if this is not empty)

is loxodromic. Also assume F (G) 6= ;: Then there exists a � > 0; a constant

L with L > 0 and a constant � with 0 < � < 1 such that

supfdiam U j U 2 c(B(x; �); fin � � � fi1); x 2 J(G); (i1; : : : ; in) 2 f1; : : : ;mgng

� L�n; for each n:

Proof. Let ~f : X � C ! X � C be the rational skew product constructed
by the generator system ff1; f2; : : : ; fmg: Then this is semi-hyperbolic along
�bres. By the existence of an attractor in F (G) for G (Theorem 1.35) we
have that if we set Dx = D for each x 2 X where D is a small disc around
a point of the attractor, then ~f satis�es the condition (C1) with that family
of discs. By Theorem 2.13, the statement of our Corollary holds.

Theorem 2.16. Let ~f : X�C ! X�C be a rational skew product. Assume
~f is hyperbolic along �bres and satis�es the condition (C1) with a family of

discs (Dx)x2X such that there exists a disc D satisfying Dx = D for all

x 2 X: Then ~f is expanding along �bres.

Proof. We have only to show that there exists a positive integer n0 such
that for each n 2 N with n � n0 and z 2 ~J( ~f);

k( ~fn)0(z)k � 2:

Suppose this is false. Then there exists a sequence (nj) of positive integers
and a sequence (zj) = ((xj ; yj)) in ~J( ~f) such that

k( ~fnj )0(zj)k � 2: (19)

We can assume that ~fnj (zj) converges to a point (x; y) 2 ~J( ~f): Let � be a

small positive number. For each j let Bj 2 c(B(y; �); q
(nj)
xj ) be the element

containing yj: By (19) and Koebe distortion theorem, there exists a positive
constant c such that for each j; diam Bj � c: But this contradicts to the
statement 3 of Theorem 2.13.

Remark 5. We can show that the results in this section are generalized to
the version of dynamics on C -�bration. For the de�nition of C -�bration, see
[J2].

3 Conditions to be semi-hyperbolic

Theorem 3.1. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational

semigroup. Let z0 2 J(G) be a point. Assume all of the following con-

ditions:
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1. there exists a neighborhood U1 of z0 in C such that for any sequence

(gn) � G; any domain V in C and any point � 2 U1; we have that

the sequence (gn) does NOT converge to � locally uniformly on V:

2. there exists a neighborhood U2 of z0 in C and a positive real number ~�
such that if we set

T = fc 2 C j 9j; f 0j(c) = 0; (G [ fidg)(fj(c)) \ U2 6= ;g

then for each c 2 T \ C(fj); we have d(c; (G [ fidg)(fj(c))) > ~�:

3. F (G) 6= ;:

Then z0 2 SHN(G) for some N 2 N:

Notation: For any family fg�g�2� of rational functions, we denote by
F (fg�g) the set of all points z 2 C such that z has a neighborhood where
the family fg�g is normal. We set J(fg�g) = C n F (fg�g): F (fg�g) is called
the Fatou set and J(fg�g) is called the Julia set for the family.

Corollary 3.2. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational

semigroup. Let z0 2 J(G) be a point. Assume all of the following conditions:

1. there exists a neighborhood U1 of z0 in C such that for any sequence
(gn) � G consisting of mutually distinct elements and any domain

V in F ((gn)); there exists a point x 2 V such that the sequence

[nfgn(x)g \ C n U1 6= ;:

2. there exists a neighborhood U2 of z0 in C and a positive real number ~�
such that if we set

T = fc 2 C j 9j; f 0j(c) = 0; (G [ fidg)(fj(c)) \ U2 6= ;g

then for each c 2 T \ C(fj); we have d(c; (G [ fidg)(fj(c))) > ~�:

3. F (G) 6= ;:

Then z0 2 SHN (G) for some N 2 N and there exists a neighborhood W of
z0 in C such that for any sequence (gn) � G consisting of mutually distinct

elements, we have

supf diam S j S 2 c(W; gn)g ! 0; as n!1:

We will consider the proof of Theorem 3.1. We may assume U1 = U2 = U
for some small disc U . By condition 1 and 3, we may assume 1 2 F (G)
and g�1(U) � C for each g 2 G: Now we will show the above theorem by
developing a lemma in [Ma] and using the methods in [KS]. The stories are
almost same as those in [KS], except some modi�cations.
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First we need some new notations. An \square" is a set S of the form

S = fz 2 C j j<(z � p)j < �; j=(z � p)j < �g:

The point p is called the center of S and � its radius . For each k > 0; given
a square S with center p and radius �; we denote by Sk the square with the
center p and radius k�: Take a � > 0 such that U contains a closed square
Q0 with the center a point in U and its radius 2�: Let Q00 = (Q0)1=2: Q00 is
called \admissable square at level 1." We will de�ne asmissable squares at
level n for each n 2 N: Let Q be an admissable square at level n with the
radius a: Then Q is covered by 16 squares with the radius a=8: We have
20 squares with the radius a=8 adjacent to Q: We call all these 36 squares
admissable at level n+1: These squares are denoted by fQ�;n+1g: The union
of these 36 squares is denoted by ~Q; which is called the \square attached to
Q:" Each admissable and each attached square is a relative compact subset
of U:

Notation: For any open set V1 and for any rational map g; if V2 2
c(V1; g) then we set 4(V1; g) = ]fx 2 V1 j g0(x) = 0g; counting the
multiplicity.

We need some lemmas to show Theorem 3.1.

Lemma 3.3. For given � > 0 and N 2 N; there exists some n0 2 N such

that the following holds: If Q is an admissable square at some level n � n0;
~Q the corresponding attached square, V an element of c( ~Q; f) for some

f 2 G; and 4(V; f) � N; then diam (K) � � for each element K 2 c(Q; f)
contained in V:

Proof. Fix � > 0 and N 2 N: If the lemma is false then there exists a
sequence (nk)k2N converging to1; admissable squares Q�k;nk and functions
gk 2 G such that diam (Kk) � � > 0 and 4(Vk; gk) � N for some element
Vk 2 c( ~Q�k;nk ; gk) and some element Kk 2 c(Q�k;nk ; gk) contained in Vk:
Take  > 1 such that N+1 = 3

2 : Then there exists 0 < j � N + 1 such

that, denoting by R̂k = Qj
�k;nk ; the set R̂

k � R̂k does not contain any

critical values of gkjVk : We have R̂k � Q�k;nk : Take K̂k 2 c(R̂k; gk) such
that Kk � K̂k � Vk: Then diam K̂k > �: The element gk is represented by
the following form: gk = fsl � � � � � fs1 : Then there exists a positive integer i
such that

diam fsi � � � � � fs1(K̂k) > �; diam fsi+1 � � � � � fs1(K̂k) � �:

We may assume i is the largest one satisfying the above. Then taking � > 0
small enough, since the cardinality of generator system of G is �nite we see
that fsi � � � � � fs1(K̂k) is simply connected. Set ~Kk = fsi � � � � � fs1(K̂k) and
~gk = fsl � � � � � fsi+1: Since R̂


k � R̂k does not contain any critical values of

gkjVk ; the element ~K+
k 2 c(R̂

k ; ~gk) containing
~Kk is also simply connected.
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Since deg(~gkj ~K+
k
) � 1 +N and diam ~Kk > �; by Corollary 1.9 we see that

there exists a positive real number r such that for each k;

B(zk; r) � ~Kk;

for some zk 2 C : We can assume that (zk) converges to a point z 2 C and
(R̂k) converges to a point y 2 U: Then (~gk) is normal in B(z; r=2) and we
can assume that (~gk) converges to y locally uniformly on B(z; r=2): But
this contradicts to the assumption 1. Hence the lemma holds.

Now, let t = ]T; N = ( max
j=1;::: ;m

deg(fj))
t and � < ~�

36N : We can assume

that ~� is su�ciently small and diam U � ~�: Let n0 2 N be an integer in
Lemma 3.3 for these � and N:

Lemma 3.4. Let G be an element of the form f = fw1 � � � � � fwk : Let B
be a simply connected subdomain of U; B0 2 c(B; f) an element such that

4(B0; f) > N: Then there exists some � 2 f0; : : : ; k� 1g such that if we set

B� = fwk�� � � � � � fwk(B
0); then B� is simply connected, diam (B�) � ~�;

and

deg(fw1 � � � � fwk���1 jB� : B� ! B) � N:

Proof. Suppose diam B� < ~� for each � = 1; : : : k � 1; then B0 is simply
connected(Note that we can assume ~� is su�ciently small) and deg(f jB0 :
B0 ! B) � N: Hence 4(B0; f) � N and it is a contradiction. Hence there
exists a � 2 f1; : : : ; k � 1g such that

diam B� � ~�:

Take the maximal �(1 � � � k� 1) satisfying the above. Then B� is simply
connected and

deg(fw1 � � � � � fwk���1 jB� : B� ! B) � N:

Now we will show the Theorem 3.1.

Proof. Take ~�; � and N as before. Take n0 in Lemma 3.3 for � and N:
Let k be the smallest integer such that there exists some admissable square
Q = Q�;n at level n � n0 with diam (K) > � for some element K of
c(Q; fw1 � � � � � fwk) where (w1; : : : ; wk) is some word of length k: We have
k � 1: Let ~Q be the square attached to Q: By lemma 3.3, there exists an
element S 2 c( ~Q; fw1 � � � � � fwk) such that 4(S; fw1 � � � � � fwk) > N: Take
an integer � with 1 � � < k in Lemma 3.4. Then we have

diam (fwk�� � � � � � fwk(S)) > ~�:
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If we set ~S = fwk�� � � � � � fwk(S) then

deg(fw1 � � � � � fwk���1 j ~S) � N

and
~S �

[
�

(fw1 � � � � � fwk���1)
�1(Q�; n+1):

By the minimality of k; we have that the diameter of each element of
c(Q�; n+1; fw1 �� � � �fwk���1) is less than �: Since deg(fw1 �� � � �fwk���1 j ~S) �
N; we have that

~� < diam ~S � 36N�:

This contradicts to � < ~�
36N : Hence we have proved that for each admissable

square Q�;n with n � n0 and each g 2 G; each element K 2 c(Q�;n; g) sat-
is�es that diam (K) < �: Since � is su�ciently small, K is simply connected.
By Lemma 3.4, we have that

deg(f jK : K ! Q�;n) � N + 1:

Hence z0 2 SHN+1:

Now we will show the Corollary 3.2.

Proof. If we assume the conditions in the assumption of Corollary 3.2, then
clearly the conditions in the assumption of Theorem 3.1 are satis�ed. Hence
we have z0 2 SHN (G) for some N 2 N: Now take a small disc W around
z0 contained in SHN (G) \ U2: If there exists a constant C > 0; a sequence
(gn) � G consisting of mutually distinct elements and a sequence (Wn)
with Wn 2 c(W; gn) such that diam Wn > C for each n; then by Corol-
lary 1.9, there exists a positive real number r such that for each n; we have
B(zn; r) � Wn for some zn 2 C : We can assume (zn) converges to a point
y 2 C : Then (gn) is normal in B(y; r=2): Since gn(B(y; r=2)) � W � U1

for each large n 2 N; we get a contradiction. Hence the statement of the
Corollary holds.

Theorem 3.5. Let G = hf1; f2; : : : fni be a �nitely generated rational semi-

group. Assume that there exists an element of G with the degree at least

two, that each element of Aut C \G(if this is not empty) is loxodromic and

that F (G) 6= ;: Then G is semi-hyperbolic if and only if all of the following

conditions are satis�ed.

1. for each z 2 J(G) there exists a neighborhood U of z in C such that for

any sequence (gn) � G; any domain V in C and any point � 2 U; we

have that the sequence (gn) does NOT converge to � locally uniformly

on V
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2. for each j = 1; : : : ;m each c 2 C(fj) \ J(G) satis�es

d(c; (G [ fidg)(fj(c))) > 0

Proof. First assume the conditions 1 and 2. Then by Theorem 3.1, we have
that G is semi-hyperbolic.

Conversely, supposeG is semi-hyperbolic. By Lemma 1.13, the condition
2. holds. Now we will show the condition 1.holds. By Theorem 1.35,
there exists an attractor K in F (G) for G: Let z0 be any point and U
a neighborhood of z0 such that U \ K = ;: Suppose that there exists a
sequence (gn) � G; a domain V in C and a point � 2 U such that gn ! �
as n ! 1 locally uniformly on V: We will deduce a contradiction. We can
assume that there exists a word w 2 f1; : : : ;mgN such that for each n;

gn = �n � fwn � � � � � fw1 ;

where �n 2 G is an element. Then from Theorem 1.35 and that U \K = ;;
we have that

fwn � � � � � fw1(V ) � J(G); (20)

for each n: Hence (fwn � � � � � fw1)n is normal in V: Now let us consider the
rational skew product ~f constructed by the generator system ff1; : : : ; fmg:
By the second statement of Theorem 2.13, we have that fwg � V � ~F ( ~f):
Hence there exists a positive integer n such that fwn � � � � � fw1(V ) � F (G);
if we take V su�ciently small. But this contradicts to (20). Hence we have
shown that the condition 1. holds.

Theorem 3.6. Let G = hf1; f2; : : : ; fmi be a �nitely generated sub-hyperbolic
rational semigroup. Assume that there exists an element of G with the degree

at least two, that each element of Aut C \ G(if this is not empty) is loxo-

dromic and that there is no super attracting �xed point of any element of G
in J(G): Then there exists a Riemannian metric � on a neighborhood V of

J(G)nP (G) such that for each z0 2 J(G)nG�1(P (G)\J(G)); if there exists

a word w = (w1; w2; : : : ; ) 2 f1; : : : ;mgN satisfying (fwn � � � fw1)(z0) 2 J(G)
for each n; then

k(fwn � � � fw1)
0(z0)k ! 1; as n!1;

where k � k is the norm of the derivative measured from � on V to it.

Proof. By Theorem 1.36, there exists an attractorK in F (G) forG such that
Ki � P (G)\F (G): Let fV1; : : : ; Vtg be the set of all connected components
of C nK having non-empty intersection with J(G): We take the hyperbolic
metric in Vi n P (G) for each i = 1; : : : ; t: We denote by � the Riemannian
metric in V = [ti=1Vi n P (G): First we will show the following.
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� Claim 1. there exists a k 2 N such that for each n;

k(fwn+k � � � fwn)
0(fwn � � � fw1(z0))k > 1;

where k � k is the norm of the derivative measured from � to it. For each
i = 1; : : : ; t; let xi be a point of Vi \F (G): Since K is an attractor in F (G)
for G; there exists a k 2 N such that for each (i1; : : : ; ik) 2 f1; : : : ;mgk;

(fik � � � fi1)(xi) 2 K; for i = 1; : : : ; t: (21)

Let x be a point of J(G)\Vi nP (G): Suppose (fik � � � fi1)(x) 2 Vj nP (G) for
some (i1; : : : ; ik) 2 f1; : : : ;mgk and j: Let U be the connected component
of (fik � � � fi1)

�1(Vj n P (G)) \ (Vi n P (G)) containing x: Then

(fik � � � fi1) : U ! Vj n P (G)

is a covering map. Hence we have

k(fik � � � fi1)
0(z)kU; VjnP (G) = 1; for each z 2 U; (22)

where we denote by k � kU; VjnP (G) the norm of the derivative measured from
the hyperbolic metric on U to that on Vj n P (G): On the other hand, by
(21), U 6= Vi nP (G): Therefore the inclusion map i : U ! Vi nP (G) satis�es
that

ki0(z)kU; VinP (G) < 1; for each z 2 U; (23)

where we denote by k � kU; VinP (G) the norm of the derivative measured from
the hyperbolic metric on U to that on Vi n P (G): By (22) and (23), we get

k(fik � � � fi1)
0(z)kVinP (G); VjnP (G) > 1; for each z 2 U; (24)

where we denote by k �kVinP (G); VjnP (G) the norm of the derivative measured
from the hyperbolic metric on Vi n P (G) to that on Vj n P (G): Hence the
Claim 1. holds.

By Claim 1., we get that if the sequence (fwn � � � fw1)(z0))
1
n=1 does not

accumulate to any point of P (G) \ J(G); then k(fwn � � � fw1)
0(z0)k ! 1 as

n!1: Hence we can assume that the sequence accumulates to a point of
P (G) \ J(G): We set

gn = fwnk � � � fw1 ; for each n:

We will show the following.

� Claim 2. k(gn)
0(z0)k ! 1 as n!1:
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Since z0 2 J(G) n G�1(P (G) \ J(G)); by the same arguments as that in
the proof of Theorem 1.34, we can show that there exists an �1 > 0 and a
sequence (nj) of integers such that

gnj (z0) 2 J(G) n B(P (G); �1); gnj+1(z0) 2 J(G) \B(P (G); �1):

Suppose the case there exists a constant �2 such that for each j;

d(gnj+1(z0); P (G)) � �2:

Then from Claim 1, there exists a constant c > 1 such that for each j;

k(fw(nj+1)k � � � fwnjk+1)
0((fwnjk � � � fw1)(z0))k > c:

Using the Claim 1 again, we can show that k(gn)
0(z0)k ! 1 as n!1:

Next suppose the case there exists a subsequence (hl)
1
l=1 of (gnj+1)

1
j=1

such that d(hl(z0); P (G)) ! 0 as l ! 1: There exists a subsequence
(�l)

1
l=1 of (gnj )

1
j=1 such that for each l hl = �l � �l where �l is an element

of G: Then there exists a constant c1 2 N such that for each l; wlS(�l) �
c1 where S = ff1; : : : ; fmg: Hence there exists a sequence (xl) such that
d(xl; �l(z0)) ! 0 as l ! 1 and �l(xl) 2 P (G) for each l 2 N: We can
assume that xl 2 B(�l(z0); �1) for each l 2 N: Let l be the analytic inverse
branch of �l in B(�l(z0); �1) such that

l(�l(z0)) = z0; for each l 2 N:

Since [1l=1l(B(�l(z0); �1)) � C nK and d(xl; �l(z0))! 0; We get l(xl)!
z0 as l!1: Hence we have

d(z0; h
�1
l (P (G))) ! 0; as l!1: (25)

There exists an i such that z0 2 Vi nP (G): For each l let Vjl be the element
of fV1; : : : ; Vtg such that hl(z0) 2 Vjl n P (G): Let Wl be the connected
component of h�1l (Vjl nP (G))\Vi nP (G) containing z0: Then hl : Wl ! Vjl
is a covering map. Hence we have

k(hl)
0(z)kWl; VjlnP (G)

= 1; for z 2Wl;

where k � kWl; VjlnP (G)
is the norm of the derivative measured from the hy-

perbolic metric on Wl to that on Vjl : By Theorem 2.25 in [M], (25) implies
that

k(il)
0(z)kWl; VinP (G) ! 0 as l!1;

where we denote by il the inclusion map from Wl into Vi n P (G) for each
l 2 N: It follows that

kh0l(z)kVinP (G); VjlnP (G) !1 as l!1; (26)
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where k � kVinP (G); VjlnP (G) is the norm of the derivative measured from the

hyperbolic metric on Vi n P (G) to that on Vjl n P (G): By (26) and Claim 1,
we get k(gn)

0(z0)k ! 1 as n!1: Hence the Claim 2 holds.
In the same way we can show that for each i = 1; : : : ; k � 1;

k(fwnk+i � � � fw1)(z0)k ! 1 as n!1:

We have thus proved the Theorem.

Theorem 3.7. Let G = hf1; f2; : : : ; fmi be a �nitely generated sub-hyperbolic
rational semigroup. Assume that there exists an element of G with the de-

gree at least two, that each element of Aut C \ G(if this is not empty) is

loxodromic and that there is no super attracting �xed point of any element

of G in J(G): Then G is semi-hyperbolic.

Proof. We will appeal to Theorem 3.5. Since there is no super attracting
�xed point of any element of G in J(G); the condition 2. in Theorem 3.5 is
satis�ed. By Theorem 1.36, there exists an attractor K in F (G) for G: Let
z0 be any point and U a neighborhood of z0 such that U \K = ;: Suppose
that there exists a sequence (gn) � G; a domain V in C and a point � 2 U
such that gn ! � as n ! 1 locally uniformly on V: We will deduce a
contradiction. We can assume that there exists a word w 2 f1; : : : ;mgN

such that for each n;
gn = �nfwn � � � � � fw1 ;

where �n 2 G is an element. Then from Theorem 1.35 and that U \K = ;;
we have that

fwn � � � � � fw1(V ) � J(G); (27)

for each n: Hence (fwn � � � � �fw1)n is normal in V: Let z1 2 V \G�1(P (G)\
J(G)) be a point. By the backward self-similarity of J(G) and Lemma 1.33,
there exists a sequence (nj) of positive integers and a neighborhood W of
P (G) \ J(G) in C such that for each j;

fwnj � � � � � fw1(z1) 2 C nW:

By Theorem 3.6, we have that

k(fwnj � � � � � fw1)
0(z1)k ! 1; as j !1; (28)

where k � k denotes the norm of the derivative with respect to the spherical
metric. Since (fwn �� � � �fw1)n is normal in V; this is a contradiction. Hence
the condition 1 in Theorem 3.5 is satis�ed. By Theorem 3.5, we get that G
is semi-hyperbolic.
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4 Open Set Condition and Area 0

De�nition 4.1. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational
semigroup. We say that G satis�es the open set condition with respect to
the generators f1; f2; : : : ; fm if there exists an open set O such that for each
j = 1; : : : ;m; f�1j (O) � O and ff�1j (O)gj=1;::: ;m are mutually disjoint.

De�nition 4.2. Let G be a rational semigroup and S = ff� j � 2 �g a
generator system of G: For each g 2 G; We set

wlS(g) = minfn 2 N j g = f�1 � � � f�ng:

We call wlS(g) the word length of g with respect to S:

Proposition 4.3. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational

semigroup. Assume that G satis�es the open set condition with respect to

the generators f1; f2; : : : ; fm and O n J(G) 6= ; where O is an open set in
the de�nition of the open set condition. Then J(G)i = ; where we denote

by J(G)i the interior of J(G):

Proof. Let S = ff1; : : : ; fmg: Assume that J(G)i 6= ;:
Then we claim that for each element g 2 G and each point x 2 J(G)i;

g(x) 2 C n (O n J(G)):

Suppose that there exists a point y 2 J(G)i and an element g1 2 G such that
g1(y) 2 O n J(G): Since J(G) = [ni=1f

�1
i (J(G)); there exists an element

h 2 G with wlS(h) = wlS(g1) such that h(y) 2 J(G): Since f�1j (O) �

O for each j = 1; : : : ;m; we have J(G) � O and J(G)i � O: Hence
g�11 (O)\h�1(O) 6= ;: But g1 6= h and that is a contradiction because of the
open set condition. Therefore the above claim holds.

Now the claim implies that G is normal in J(G)i but this is a contradic-
tion and so we have J(G)i = ;:

Theorem 4.4. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational

semigroup which is semi-hyperbolic, contains an element with the degree at

least two and satis�es the open set condition with respect to the genera-

tors f1; f2; : : : ; fm: Let O be an open set in De�nition 4.1. Assume that

](@O \ J(G)) < 1: Then the 2-dimensional Lebesgue measure of J(G) is

equal to 0:

Proof. We will show the statement using the method of Theorem 1.3 in
[Y]. We �x a gemerator system S = ff1; : : : ; fmg: By the assumption of
our Theorem, we have each element of Aut C \ G(if this is not empty) is
loxodromic. By Theorem 1.35, A(G) is an attractor in F (G) for G: We can
assume 1 2 A(G): Suppose that the 2-dimensional Lebesgue measure of
J(G) is positive.
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Since ](@O \ J(G)) < 1; G�1(G(@O \ J(G))) is a countable set.
Hence there exists a Lebesgue density point x of J(G) such that x 2
J(G) n (G�1(G(@O \ J(G))): Since we have J(G) = [mj=1f

�1
j (J(G)); there

exists a word w = (w1; w2; : : : ) 2 f1; : : : ;mgN such that for each positive
integer u; fwu � � � fw1(x) 2 J(G):

We will show that the sequence (fwu � � � fw1(x))u has an accumulation
point in J(G)n@O: Assume that is false. For each large u; let �u be the clos-
est point to fwu � � � fw1(x) in @O\J(G): Since there exists no super attracting
�xed point of any point of any element of G in J(G); there exists a positive
integer s such that for each integer t with t � s; (fwt � � � fws)

0(�s�1) 6= 0:
Since G is semi-hyperbolic, we have that for each x 2 @O \ J(G); if there
exists an element g 2 G such that g(x) = x; then x is a repelling �xed point
of g: Applying Lemma 1.33, we get a contradiction. Hence the sequence
(fwu � � � fw1(x))u has an accumulation point in J(G) n @O:

By the argument above, we have that there exists an � > 0 and a sequence
(gn) of elements of G such that for each n; gn+1 = hngn for some hn 2 G
and gn(x) 2 J(G) n D(@O; �): Let � be a small number so that � < � and
for each g 2 G and each x 2 J(G);

deg(g : U ! D(x; �)) � N

for each U 2 c(D(x; �); g); where N is a positive integer independent of
x; g and U: By Lemma 1.12, we can assume that for each g 2 G and each
x 2 J(G); if V is a simply connected open neighborhood of x contained in
D(x; �); then each element of c(D(x; �); g) is simply connected.

For each n; we set xn = gn(x): Let Un be the conncted component of
g�1(D(xn;

1
2�)) containing x: Now we will claim that

lim
n!1

m2(Un \ J(G))

m2(Un)
= 1; (29)

where we denote by m2 the 2-dimensional Lebesgue measure. By Corol-
lary 1.9, Proposition 4.3 and Corollary 2.15, there exist a constant K > 0;
two sequences (rn) and (Rn) such that 1

K � rn
Rn

< 1; Rn ! 0 and

D(x; rn) � Un � D(x;Rn):

Since x is a Lebesgue density point of J(G); the claim holds. Now we get

lim
n!1

m2(Un \ F (G))

m2(Un)
= 0: (30)

For each n; Let �n : D(0; 1) ! Dgn(xn; �) be the Riemann map such that
�n(0) = x; where Dgn(xn; �) is the element of c(D(xn; �); gn) containing
Un: By (30) and the Koebe distortion theorem, we get

lim
n!1

m2(�
�1
n (Un \ F (G)))

m2(�
�1
n (Un))

= 0: (31)
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By Corollary 1.8, there exists a constant 0 < c1 < 1 such that for each
n; the Euclidian diameter of ��1n (Un) is less than c1: Since we can assume
that Dgn(xn; �) � C for each n and uniformly bounded in C , by Cauchy's
formula, we get that there exists a constant c2 such that

j(gn�n)
0(z)j � c2 on ��1n (Un); n = 1; 2; : : : (32)

Now we will show

D(xn;
1

2
�) \ F (G) = gn(Un \ F (G)); for each n: (33)

It is easy to see that D(xn;
1
2�)\F (G) � gn(Un\F (G)): Now let z be a point

of D(xn;
1
2�) \ F (G) and assume that there exists a point w 2 Un \ J(G)

such that gn(w) = z: Since J(G) = [mj=1f
�1
j (J(G)) and gn(w) 2 F (G); there

exists an element g 2 G with wlS(g) = wlS(gn) such that g(w) 2 J(G) � O:
Hence we have g 6= gn and g�1(O)\ g�1n (O) 6= ;: But this contradicts to the
open set condition. Therefore (33) holds.

By (31) , (32) and (33), we have

m2(D(xn;
1
2�) \ F (G))

m2(D(xn;
1
2�))

=
m2((gn � �n)(�

�1
n (Un \ F (G)))

m2(D(xn;
1
2�))

�

R
��1n (Un\F (G))

j(gn � �n)
0(z)j2dm2(z)

m2(�
�1
n (Un))

m2(�
�1
n (Un))

m2(D(xn;
1
2))

! 0;

as n!1: Hence we have

lim
n!1

m2(D(xn;
1
2�) \ J(G))

m2(D(xn;
1
2�))

= 1:

We can assume that there exists a point x1 2 J(G) such that xn ! x1:
Then

m2(D(x1;
1
2�) \ J(G))

m2(D(x1;
1
2�))

= 1:

This implies that D(x1;
1
2�) � J(G) but this is a contradiction because we

have J(G)i = ; by Proposition 4.3.

Corollary 4.5. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational
semigroup which is sub-hyperbolic, contains an element with the degree at

least two and satis�es the open set condition with respect to the generators

f1; f2; : : : ; fm: Let O be an open set in De�nition 4.1. Assume that ](@O \
J(G)) < 1: Then the 2-dimensional Lebesgue measure of J(G) is equal to
0:
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Proof. By Proposition 4.3, J(G)i = ;: Since G is �nitely generated, by
[HM2], there is no super attracting �xed point of any element of G in
@J(G) = J(G): Therefore by Theorem 3.7, we have thatG is semi-hyperbolic.
By Theorem 4.4, the statement holds.

5 �-subconformal measure and Hausdor� dimen-

sion of Julia sets

De�nition 5.1. Let G be a rational semigroup and � a non-negative num-
ber. We say that a Borel probability measure � on C is �-subconformal if
for each g 2 G and for each Borel measurable set A

�(g(A)) �

Z
A
kg0(z)k�d�;

where we denote by k � k the norm of the derivative with respect to the
spherical metric. For each x 2 C and each real number s we set

S(s; x) =
X
g2G

X
g(y)=x

kg0(y)k�s

counting multiplicities and

S(x) = inffs j S(s; x) <1g:

If there is not s such that S(s; x) <1; then we set S(x) =1:Also we set

s0(G) = inffS(x)g; s(G) = inff� j 9� : �-subconformal measureg

It is not di�cult for us to prove the next result using the same method
as that in [Sul].

Theorem 5.2 ([S2]). Let G be a rational semigroup which has at most

countably many elements. If there exists a point x 2 C such that S(x) <1
then there is a S(x)-subconformal measure. In particular, we have s(G) �
s0(G):

Proposition 5.3 ([S2]). Let G be a rational semigroup and � a �-subconformal

measure for G where � is a real number. Assume that ]J(G) � 3 and for

each x 2 E(G) there exists an element g 2 G such that g(x) = x and

jg0(x)j < 1: Then the support of � contains J(G):

Proposition 5.4. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational

semigroup. Assume that G satis�es the open set condition with respect to

the generators f1; f2; : : : ; fm and O n J(G) 6= ; where O is an open set in

the de�nition of the open set condition. If there exists an attractor in F (G)
for G; then

s0(G) � 2:
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Proof. We can assume m � 2: Let K be an attractor in F (G) for G: There
exists a simply connected domain U in (O \ F (G)) n (K [ P (G)) such that
g(U) \ U = ; for each g 2 G: By the open set condition, it is easy to see
that if g 6= h; then g�1(U) \ h�1(U) = ;: Hence we have

X
S

Z
U
kS0(z)k2dm2(z) <1;

where S is taken over all holomorphic inverse branches of all elements of
G de�ned on U; k � k denotes the norm of the derivative with respect to
the spherical metric and m2 is the 2-dimensional Lebesgue measure on C :
It follows that for almost every where x 2 U; S(2; x) <1:

Lemma 5.5. Let G be a rational semigroup. Assume that 1 2 F (G);
]J(G) � 3 and for each x 2 E(G) there exists an element g 2 G such that

g(x) = x and jg0(x)j < 1: We also assume that there exist a countable set

E in C ; positive numbers a1 and a2 and a constant c with 0 < c < 1 such

that for each x 2 J(G) n E; there exist two sequences (rn) and (Rn) of

positive real numbers and a sequence (gn) of elements of G satisfying all of

the following conditions:

1. rn ! 0 and for each n; 0 < rn
Rn

< c and gn(x) 2 J(G):

2. for each n; gn(D(x;Rn)) � D(gn(x); a1):

3. for each n gn(D(x; rn)) � D(gn(x); a2):

Let � be a real number with � � s(G) and � a �- subconformal measure. Then

�-Hausdor� measure on J(G) is absolutely continuous with respect to � such

that the Radon-Nikodim derivative is bounded from above. In particular, we

have

dimH(J(G)) � s(G):

Proof. By Proposition 5.3, the support of � contains J(G): Hence there
exists a constant c1 > 0 such that for each x 2 J(G); �(D(x; a2)) > c1:

Fix any x 2 J(G) n E: For each n we set ~Rn(z) = Rnz + x: By the
condition 1 and 2, the family fgn � ~Rng is normal in D(0; 1): By Marty's
theorem, there exists a constant c2 such that for each n and each w 2
D(0; c);

k(gn � ~Rn)
0(w)k � c2:

Note that we can take the constant c2 independent of x 2 J(G) n E: Hence
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we have for each n;

c1 � �(D(gn(x); a2))

� �(gn(D(x; rn)))

�

Z
D(x;rn)

kg0n(z)k
�d�(z)

=

Z
D(x;rn)

k(gn � ~Rn � ~Rn
�1
)0(z)k�d�(z)

� c3
1

R�
n

�(D(x; rn))

� c3
1

r�n
�(D(x; rn));

where c3 is a constant not depending on n and x 2 J(G) n E: Therefore we
get that there exists a constant c4 not depending on n and x 2 J(G) n E
such that

�(D(x; rn))

r�n
� c4: (34)

Now we can show the statement of our lemma in the same way as the
proof of Theorem 14 in [DU]. We will follow it. Let A be any Borel set
in J(G): We set A1 = A n E: We denote by H� the �-Hausdor� measure.
Since E is a countable set, we have H�(A) = H�(A1): Fix ; �: For every x 2
A1; denote by frn(x)g

1
j=1 the sequence constructed in the above paragraph.

Since � is regular, for every x 2 A1 there exists a radius r(x) being of the
form rn(x) such that

�(
[
x2A1

D(x; r(x)) nA1) < �:

By the Besicovi�c theorem we can choose a countable subcover fD(xi; rxi)g
1
i=1

from the cover fD(x; r(x)gx2A1 of A1; of multiplicity bounded by some
constant C � 1; independent of the cover. By (34), we obtain

1X
i=1

r(xi)
� � c�14

1X
i=1

�(D(xi; r(xi)))

� c�14 C�(
1[
i=1

D(xi; r(xi)))

� c�14 C(�+ �(A1)):

Letting �! 0 and then  ! 0 we get

H�(A) = H�(A1) � c�14 C�(A1) � c�14 C�(A):
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Theorem 5.6. Let G be a rational semigroup generated by a generator sys-

tem ff�g�2� such that [�2�ff�g is a compact subset of End(C ): Let ~f be

a rational skew product constructed by the generator system. Assume ~f is

semi-hyperbolic along �bres and satis�es the condition C1 with a family of

discs fDxgx2X such that Dx = D; 8x 2 X with some D: Then we have

dimH(J(G)) � s(G):

Proof. We can assume 1 2 F (G): Let x be any point of J(G): Since we
have J(G) = [��f

�1
� (J(G)); for each n 2 N there exists an element gn 2 G

which is a product of n generators such that gn(x) 2 J(G): Let � be a small
positive number. For each n; we denote by Dgn(gn(x); �) the element of
c(D(gn(x); �); �) containing x: By Theorem 2.13, if we take a � smaller, then

diam (Dgn(gn(x); �)) ! 0; as n!1: (35)

By Lemma 2.14, we can assume that Dgn(gn(x); �) is simply connected for
each n: Let �n : D(0; 1) ! Dgn(gn(x); �) be the Riemann map such that
�n(0) = x: By the Koebe distortion theorem, we have that for each n;

Dgn(gn(x); �) � D(x;
1

4
j�0n(0)j):

Since G is semi-hyperbolic, we can assume that D(J(G); �) � SHN (G)
where N is a positive integer. By Corollary 1.10, we get

sup
n2N

fdiam (��1n (Dgn(gn(x); ��)))g ! 0; as �! 0:

Therefore by the Koebe distortion theorem, there exists an � such that

Dgn(gn(x); ��) = �n(�
�1
n (Dgn(gn(x); ��)))

� D(x;
1

8
j�0n(0)j); for each n:

By (35), we have j�0n(0)j ! 0 as n!1: Applying Lemma 5.5, we get

dimH(J(G)) � s(G):

Theorem 5.7. Let G = hf1; f2; : : : ; fmi be a �nitely generated rational

semigroup which is semi-hyperbolic. Assume that G contains an element

with the degree at least two, each element of Aut C \G(if this is not empty)

is loxodromic and F (G) 6= ;: Then we have

dimH(J(G)) � s(G) � s0(G):

Proof. By Theorem 5.6 and Theorem 5.2.
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Remark 6. Let G = hf1; f2; : : : ; fmi be a �nitely generated hyperbolic
rational semigroup which satis�es the strong open set condition (i.e. G
satis�es the open set condition with an open set O satisfying O � J(G):).
We assume that when n = 1 the degree of f1 is at least two. By the results
in [S4](Theorem 3.2 and the proof, Theorem 3.4 and Corollary 3.5), we have

0 < dimH J(G) = s(G) = s0(G) < 2:

Example 5.8. Let G = hf1; f2i where f1(z) = z2 + 2; f2(z) = z2 �
2: Since P (G) \ J(G) = f2;�2g and P (G) \ F (G) is compact, we have
G is sub-hyperbolic. By Theorem 3.7, G is also semi-hyperbolic. Since
f�1j (D(0; 2)) � D(0; 2) for j = 1; 2 andf�11 (D(0; 2)) \ f�12 (D(0; 2)) = ;; G

satis�es the open set condition. Also J(G) is included inB = [2j=1f
�1
j (D(0; 2)):

Since B \ @D(0; 2) = f2;�2; 2i;�2ig; we get ](J(G) \ @D(0; 2)) < 1: By
Corollary 4.4, we have m2(J(G)) = 0; where we denote by m2 the 2-
dimensional Lebesgue measure. By Theorem 5.7 and Proposition 5.4, we
have also

dimH(J(G)) � s(G) � s0(G) � 2:
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