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Abstract

For a constant β ∈ (−π/2, π/2), a normalized analytic function
f(z) = z +a2z

2 +a3z
3 + · · · on the unit disk is said to be β-spiral-like

if <(e−iβzf ′(z)/f(z)) > 0 for any point z in the unit disk. In this
paper, for such a function f , we shall present the optimal estimate of
the norm of f ′′/f ′.
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1 Introduction

Let A denote the set of analytic functions f on the unit disk D normalized so
that f(0) = f ′(0)−1 = 0. For a constant β ∈ (−π/2, π/2), a function f ∈ A is
called β-spiral-like if f is univalent on D and for any z ∈ D, the β-logarithmic
spiral {f(z) exp(−eiβt); t ≥ 0} is contained in f(D). It is equivalent to the
condition that <(e−iβzf ′(z)/f(z)) > 0 in D. We denote by SP (β) the set
of β-spiral-like functions. We call fβ(z) := z(1 − z)−2eiβ cos β ∈ SP (β) the
β-spiral Koebe function. Note that SP (0) is the set of starlike functions and
that f0(z) = z(1 − z)−2 is the Koebe function. The β-spiral Koebe function
conformally maps the unit disk onto the complement of the β-logarithmic
spiral {fβ(−e−2iβ) exp(−eiβt); t ≤ 0} in C. For the known results about
these classes of the functions, see, for example, [1].

For a locally univalent holomorphic function f , we define

Tf =
f ′′

f ′ and Sf = (Tf )
′ − 1

2
(Tf )
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which are said to be the pre-Schwarzian derivative (or nonlinearity) and the
Schwarzian derivative of f , respectively. For a locally univalent function f
in D, we define the norms of Tf and Sf by

‖Tf‖1 = sup
z∈D

(1 − |z|2)|Tf (z)| and ‖Sf‖2 = sup
z∈D

(1 − |z|2)2|Sf (z)|,

respectively.
As well as ‖Sf‖2, the norm ‖Tf‖1 has a significant meaning in the theory

of Teichmüller spaces. For example, see [9], [3] and [14]. On the other hand,
there is a deep relation between the boundary of the universal Teichmüller
space and such selfsimilar quasiarcs as logarithmic spirals ([2], [4], and [7]).

In the present paper, we shall give the best possible estimate of the norms
of pre-Schwarzian derivatives for the class SP (β).

Main Theorem 1. For any f ∈ SP (β), where β ∈ (−π/2, π/2), we have
the following.

I) In the case |β| ≤ π/3, we have

‖Tf‖1 ≤ ‖Tfβ
‖1 = 2|2 + e2iβ|. (1)

II) In the case |β| > π/3, we have ‖Tf‖1 ≤ ‖Tfβ
‖1, where

‖Tfβ
‖1 = max

0≤m≤ 4
3

sin |β|
2m cos β

(
1 +

√
m2 + 4 − 4m sin |β|
m2 + 1 − 2m sin |β|

)
and (2)

2|2 + e2iβ| < ‖Tfβ
‖1 < 2

(
1 +

4

3
sin 2|β|

)
. (3)

In particular, ‖Tfβ
‖1 → 2 as |β| → π/2.

In both cases, the equality ‖Tf‖1 = ‖Tfβ
‖1 holds if and only if f is a rotation

of the β-spiral Koebe function, i.e., f(z) = (1/ε)fβ(εz) for some |ε| = 1.

From the proof, if |β| ≤ π/3, the function (1−|z|2)|Tfβ
(z)| does not attain

its supremum in D. However if |β| > π/3, it does since

max
∂D3z0

lim sup
D3z→z0

(1 − |z|2)|Tfβ
(z)| = 2|2 + e2iβ| < ‖Tfβ

‖1.

This phenomenon of phase transition seems to be quite interesting.

Remark. Clearly, the β-spiral Koebe function fβ converges to idD (which is
bounded) locally uniformly on D as |β| → π/2 but does not converge to it
with respect to the norm ‖ · ‖1 since lim|β|→π/2 ‖Tfβ

‖1 = 2. On the other
hand, it is known that f ∈ A is bounded if ‖Tf‖1 < 2. Thus the value 2 is
the least one of the norms of unbounded f ∈ A.
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We would also like to mention the related works about norm estimates
of pre-Schwarzian derivatives in other classes of A by Shinji Yamashita [12]
and Toshiyuki Sugawa [10].

Theorem 1.1. Let 0 ≤ α < 1 and f ∈ A.
If f is starlike of order α, i.e., <(zf ′(z)/f(z)) > α, then ‖Tf‖1 ≤ 6−4α.
If f is convex of order α, i.e., <(1 + zf ′′(z)/f ′(z)) > α, then ‖Tf‖1 ≤

4(1 − α).
If f is strongly starlike of order α, i.e., arg(zf ′(z)/f(z)) < πα/2, then

‖Tf‖1 ≤ M(α) + 2α, where M(α) is a specified constant depending only on
α satisfying 2α < M(α) < 2α(1 + α).

All of the bounds are sharp.

On the other hand, we also obtain the estimate of the norms of Schwarzian
derivatives of β-spiral-like functions.

Main Theorem 2. Assume |β| < π/2. For any f ∈ SP (β), ‖Sf‖2 ≤
‖Sfβ

‖2 = 6.

In Theorem 2, the extremality of fβ is trivial since the Kraus–Nehari
theorem says that ‖Sf‖2 ≤ 6 for any univalent f ∈ A.

The proof of Theorems 1 and 2 will be given in Section 2 and 3. Knowing
the norm ‖Tf‖1 of f ∈ A enables us to estimate the growth of coefficients of
f . For example, the following holds.

Theorem 1.2 (cf. [8]). Let (3/2) < λ ≤ 3. For f(z) = z + a2z
2 + a3z

3 +
· · · ∈ A such that ‖Tf‖1 ≤ 2λ, it holds that an = O(nλ−2) as n → +∞. This
order estimate is best possible.

We shall also remark on the sharp order estimate of coefficients of f ∈
SP (β) in Section 4.

2 Proof of Theorem 1

Let f ∈ A be a β-spiral-like function. We set p(z) = Pf (z) = zf ′(z)/f(z).
Then, by assumption, p is a holomorphic function on D satisfying p(0) = 1
and p(D) ⊂ {w ∈ C;−π

2
+ β < arg w < π

2
+ β} =: Hβ. The univalent map

q(z) = (1 + ze2iβ)/(1 − z) on D satisfies q(0) = 1 and q(D) = Hβ. Then p is
subordinate to q, i.e., there exists a holomorphic function ω = ωf : D → D
with ω(0) = 0 such that

p = q ◦ ω =
1 + ωe2iβ

1 − ω
. (4)
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We note that, for |ε| = 1, f(z) = (1/ε)fβ(εz) if and only if ω(z) = εz.
By the logarithmic differentiation of (4), we have

Tf (z) =
f ′′(z)

f ′(z)
= c

ω
z
(1 + ωe2iβ) + ω′

(1 − ω)(1 + ωe2iβ)
, thus

(1 − |z|2)Tf (z) =c
(1 − |z|2){ω

z
(2 + ωe2iβ) + (ω′ − ω

z
)}

(1 − ω)(1 + ωe2iβ)
.

Here we set c := e2iβ + 1. Setting ω = idD, we also have

Tfβ
(z) = c

2 + ze2iβ

(1 − z)(1 + ze2iβ)
and (5)

(1 − |z|2)Tfβ
(z) = c

(1 − |z|2)(2 + ze2iβ)

(1 − z)(1 + ze2iβ)
. (6)

We can easily see that max∂D3z0 lim supD3z→z0
(1− |z|2)|Tfβ

(z)| = 2|2 + e2iβ|.
By the Schwarz-Pick lemma for ω/z, we obtain (1 − |z|2)|zω′ − ω| ≤

|z|2 − |ω|2. So we can estimate as

(1 − |z|2)|Tf (z)| ≤|ω|(1 − |z|2)
|z|(1 − |ω|2)

· |c|(1 − |ω|2)|2 + ωe2iβ|
|1 − ω||1 + ωe2iβ|

+
|z|2 − |ω|2

|z|(1 − |ω|2)
· |c| 1 − |ω|2

|1 − ω||1 + ωe2iβ|

=
|2 + ωe2iβ||ω|(1 − |z|2) + (|z|2 − |ω|2)

|2 + ωe2iβ||z|(1 − |ω|2)
(1 − |ω|2)|Tfβ

(ω)|.

To show ‖Tf‖1 < ‖Tfβ
‖1 for SP (β) 3 f with |ω′(0)| < 1, we show the

following.

Lemma 2.1. Let ω : D → D be a holomorphic function with ω(0) = 0 and
|ω′(0)| < 1. For any set U ⊂ D with ω(U) 63 −e−2iβ, there exists a positive
constant C < 1 such that

D(z) :=
|2 + ωe2iβ||ω|(1 − |z|2) + (|z|2 − |ω|2)

|2 + ωe2iβ||z|(1 − |ω|2)
≤ C (z ∈ U).

From the above lemma, we can conclude the following immediately.

Corollary 2.1. Let f ∈ SP (β) not be a rotation of fβ. For any set U ⊂ D
with ωf (U) 63 −e−2iβ,

sup
z∈U

(1 − |z|2)|Tf (z)| < ‖Tfβ
‖1
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In particular, we can show the essentially unique extremality of fβ on
some condition.

Corollary 2.2. Let f ∈ SP (β) not be a rotation of fβ. If ω(D) 63 −e−2iβ,
then ‖Tf‖1 < ‖Tfβ

‖1.

Proof. We can take D itself as such U in Corollary 2.1.

Proof of Lemma 2.1. We take such U as above.
Put

c1 := inf
z∈U

(|2 + ω(z)e2iβ| − 1) > 0.

For z ∈ U ,

1 − D(z) =
(|z| − |ω|){(|2 + ωe2iβ| − 1)(1 + |z||ω|) + (1 − |z|)(1 − |ω|)}

|2 + ωe2iβ||z|(1 − |ω|2)

≥ (|z| − |ω|){c1(1 + |z||ω|) + (1 − |z|)(1 − |ω|)}
6|z|(1 − |ω|)

=
1

6
{c1

1 + |z||ω|
|z|

(1 − 1 − |z|
1 − |ω|

) + (1 −
∣∣∣ω
z

∣∣∣)(1 − |z|)}.

In Yamashita [11] (p. 313, (6.8∗∗a)), it is shown that for a holomorphic map
ω : D → D with ω(0) = 0 which is not a rotation at the origin,

|ω(z)| ≤ |z|Q(|z|) < |z| (z ∈ D), (7)

where

Q(x) =
x2 + Bx + A

Ax2 + Bx + 1
(0 ≤ x ≤ 1),

A = |ω′(0)| < 1 and

B =
|ω′′(0)|

2(1 − |ω′(0)|)
≤ 1 + A < 2.

From this, it follows that

1 − D(z) ≥ 1

6
{c1(1 − 1 − |z|

1 − |z|Q(|z|)
) + (1 − Q(|z|))(1 − |z|)} (8)

on U . It is easy to see that Q(x) is strictly increasing and (1−x)/(1−xQ(x))
is strictly decreasing in [0, 1]. Thus for z ∈ U ,

1 − D(z) ≥

{
1
6
(1 − Q(|z|))(1 − |z|) ≥ 1

12

(
1 − Q(1

2
)
)

if |z| < 1
2
,

1
6
c1(1 −

1
2

1− 1
2
Q( 1

2
)
) ≥ 1

12
c1

(
1 − Q(1

2
)
)

if 1
2
≤ |z| < 1

≥ 1

12
min(1, c1)

(
1 − Q(

1

2
)

)
> 0.

Now the proof is completed.
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We consider the case ω(D) 3 −e−2iβ. Then infz∈D(|2 + ω(z)e2iβ| − 1) = 0, so
the inequality similar to (8):

1 − D(z) ≥ 1

6
(1 − Q(|z|))(1 − |z|) > 0

holds for z ∈ D. We obtain the following.

Lemma 2.2. Let f ∈ SP (β) not be a rotation of fβ. For z ∈ D,

(1 − |z|2)|Tf (z)| < (1 − |ω|2)|Tfβ
(ω)| ≤ ‖Tfβ

‖1. (9)

In particular, ‖Tf‖1 ≤ ‖Tfβ
‖1. Moreover, if

max
z0∈∂D

lim sup
D3z→z0

(1 − |z|2)|Tfβ
(z)| = 2|2 + e2iβ| < ‖Tfβ

‖1,

this inequality is strict.

From now on, we turn our attention to the norm of Tfβ
. If f ∈ SP (−β),

then g(z) := f(z) ∈ SP (β) and ‖Tf‖1 = ‖Tg‖1, so we can assume β ≥ 0
without any loss of generality.

We consider the conformal automorphism z 7→ w = h(z) of D with h(1) =
1, h(−e−2iβ) = −1 and h(ie−iβ) = i. This is given by the relation

w − 1

w + 1
= e−iβ z − 1

z + e−2iβ
. (10)

By the Schwarz-Pick lemma, we have

1 − |z|2 = (1 − |w|2)
∣∣∣∣
dz

dw

∣∣∣∣ .

Differentiating (10), we have

∣∣∣∣
dz

dw

∣∣∣∣ =
2|z + e−2iβ|2

|c||w + 1|2
.

From them, it follows that

1 − |z|2 = (1 − |w|2)2|z + e−2iβ|2

|c||w + 1|2
.

From (10), we also have

|1 − z| = |z + e−2iβ|
∣∣∣∣
w − 1

w + 1

∣∣∣∣ .
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Thus

(1 − |z|2)|Tfβ
(z)| = |c|(1 − |z|2)|z + 2e−2iβ|

|1 − z||1 + ze2iβ|
= 2

1 − |w|2

|w2 − 1|
· |z + 2e−2iβ|.

Since (1 − |w|2)/|w2 − 1| ≤ 1, we have (1 − |z|2)|Tfβ
(z)| < 2|2 + e2iβ| on

{z ∈ D; |z + 2e−2iβ| < |1 + 2e−2iβ|}. In the case β = 0, it coincides the
whole D. Therefore it is sufficient to consider the only case β > 0. For the
estimate of (1 − |z|2)|Tfβ

(z)| on {z ∈ D; |z + 2e−2iβ| ≥ |1 + 2e−2iβ|}, we use
some geometric argument.

Noting that |w2 − 1|2 = (1−|w|2)2 +4(=w)2, we can see that the circular
arc C1 passing through the three points ±1 and ki (|k| < 1) in the w-plane
is the following:

1 − |w|2

|w2 − 1|
=

1 − k2

1 + k2
.

So C1 is the level curve of (1 − |w|2)/|w2 − 1|. Put C2 = h−1(C1). Since C2

1

ie−iβ
−e−2iβ

−2e−2iβ

1−1

i

−i ki

0

s
0 h

w-plane z-plane

C1
C2

z(m)
h−1(ki)

Figure 1: the level curve C1 and C2

is the circle passing through the three points

1, − e−2iβ and h−1(ki) = ie−iβ · (1 − ki)e−iβ − (1 + ki)

(k − i)e−iβ − (k + i)
,
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we can calculate the center s and the radius r of C2 :

s =
ie−iβ(k2 − 1)

2k cos β + (k2 − 1) sin β
and (11)

r =
(k2 + 1) cos β

|2k cos β + (k2 − 1) sin β|
. (12)

Putting m := k2−1
2k cos β+(k2−1) sin β

, we have s = m · ie−iβ. On the level curve

C2, |z + 2e−2iβ| takes the maximum at the point z(m) in Figure 1, which is
the intersection of the circular arc C2 and the straight line passing through
−2e−2iβ and s = m · ie−iβ. Therefore

(1 − |z|2)|Tfβ
(z)| ≤ 2

1 − k2

1 + k2
(|s + 2e−2iβ| + r)

on C2.

ie−iβ

−e−2iβ

−2e−2iβ

0

s

z-plane

C2
z(m0) = 1

Figure 2: the level curve C2 in the case m = m0.

Since we are considering the case |z+2e−2iβ| ≥ |1+2e−2iβ|, we can assume
0 ≤ m ≤ m0 := 4

3
sin β. We note that if m = m0, then C2 is tangential to

the circular arc {z ∈ D; |z + 2e−2iβ| = |1 + 2e−2iβ|} and the tangent point
between them is z(m0) = 1, and that if m moves from 0 to m0, the level
curve C2 sweeps out {z ∈ D; |z + 2e−2iβ| ≥ |1 + 2e−2iβ|} (see Figure 2).

Noting that 2k cos β + (k2 − 1) sin β < 0 since m ≥ 0 and k2 ≤ 1, we also
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have r = 1+k2

1−k2 m cos β. It follows that

|s + 2e−2iβ| =
√

m2 + 4 − 4m sin β,

1 − k2

1 + k2
=

m cos β√
m2 + 1 − 2m sin β

and for z ∈ C2,

(1 − |z|2)|Tfβ
(z)| ≤ E(m) := 2m cos β

(
1 +

√
m2 + 4 − 4m sin β

m2 + 1 − 2m sin β

)
.

We also note that z(m0) = 1 ∈ ∂D and that z(m) ∈ {z ∈ D; |z + 2e−2iβ| ≥
|1 + 2e−2iβ|} for 0 ≤ m < m0.

Here we consider the case 0 < β ≤ π/3. Noting that 2|2 + e2iβ| =
2
√

5 + 4 cos 2β and E(m0) = 4 sin 2β, we can see that E(m0) ≤ 2|2 + e2iβ|
and the equality holds if and only if β = π/3.

The following holds.

Lemma 2.3. If 0 < β ≤ π/3, then E(m) ≤ E(m0) for any 0 ≤ m ≤ m0,
and the equality holds if and only if m = m0.

Proof. It is easy to see that E(0) < E(m0) and that for 0 < m ≤ m0,
E(m) ≤ E(m0) if and only if

(m − m0){2m2 sin β + (1 − 8 sin2 β)m + 4 sin β} ≤ 0.

Putting

g(m) := 2m2 sin β + (1 − 8 sin2 β)m + 4 sin β, (13)

we calculate as

g(m) = 2 sin β

(
m +

1 − 8 sin2 β

4 sin β

)2

− 64 sin4 β − 48 sin2 β + 1

8 sin β
and

m0 −
(
−1 − 8 sin2 β

4 sin β

)
=

3 − 8 sin2 β

12 sin β
.

The following holds:

(i) If 0 < sin2 β ≤ 1
8
, then g(m) > 0 for any 0 < m ≤ m0 from (13).

(ii) If 1
8

< sin2 β ≤ 3
8
, the same thing as the above holds since −64 sin4 β−48 sin2 β+1

8 sin β
>

0.
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(iii) If 3
8

< sin2 β ≤ 3
4
, then g(m) ≥ 0 for any 0 < m ≤ m0 since g(m) is

decreasing in (0,m0] and

g(m0) = g(
4

3
sin β) = −64

9
sin β(sin2 β − 3

4
) ≥ 0.

Thus E(m) ≤ E(m0) for any 0 ≤ m ≤ m0 and the equality holds if and only
if m = m0.

Consequently it follows that for |β| ≤ π/3, (1− |z|2)|Tfβ
(z)| < 2|2 + e2iβ|

on D. Noting that (1 − |z|2)|Tfβ
(z)| tends to 2|2 + e2iβ| as z tends to 1 − 0

along the real axis, we can conclude that ‖Tfβ
‖1 = 2|2 + e2iβ| and that the

function (1 − |z|2)|Tfβ
(z)| does not attain its supremum in D.

Next we consider the case β > π/3. In this case, we can see ‖Tfβ
‖1 is

strictly larger than 2|2 + e2iβ|. In fact, we have 0 ≤ 1/ sin β < m0 and
E(1/ sin β) > 2|2 + e2iβ|. Therefore from Lemma 2.2, we can also conclude
that a rotation of fβ is a unique extremal function.

Moreover, for 0 ≤ m ≤ 4
3
sin β, we have a uniform estimate:

E(m) = 2m cos β

(
1 +

∣∣∣∣1 − ie−iβ

m − ie−iβ

∣∣∣∣
)

< 2m cos β

(
2 +

1

|m − ie−iβ|

)

≤ 8

3
sin 2β + 2 cos β

m

|m − ie−iβ|

≤ 2

(
1 +

4

3
sin 2β

)
.

Thus ‖Tfβ
‖1 → 2 as β → π/2.

Finally, we will show that for |β| ≤ π/3, fβ is also the essentially unique
extremal function in SP (β).

Let f ∈ SP (β) not be a rotation of fβ. Noting Corollary 2.2, we consider

the only case that ω(D) 3 −e−2iβ. Put ε := |2 + e2iβ| − 1 > 0. Noting that

lim sup
D3z→−e−2iβ

(1 − |z|2)|Tfβ
(z)| = 2,

we can take the constant r > 0 such that (1 − |z|2)|Tfβ
(z)| < 2 + ε on

N := {z ∈ D; |z + e−2iβ| < r}. We note that 2 + ε < 2|2 + e2iβ| = ‖Tfβ
‖1.

Next put M := ω−1(N ). From (9) in Lemma 2.2, we obtain the following:

sup
z∈M

(1 − |z|2)|Tf (z)| ≤ sup
z∈N

(1 − |z|2)|Tfβ
(z)| ≤ 2 + ε < ‖Tfβ

‖1.
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On the other hand, since ω(D \M) 63 −e−2iβ, we have

sup
z∈D\M

(1 − |z|2)|Tf (z)| < ‖Tfβ
‖1.

Combining both estimates, we can conclude ‖Tf‖1 < ‖Tfβ
‖1.

Now the proof of Theorem 1 is completed.

3 Proof of Theorem 2

From (5), it follows that

Sfβ
=(Tfβ

)′ − 1

2
(Tfβ

)2

= − c
e2iβ{e2iβ(e2iβ − 1)z2 + 4(e2iβ − 1)z + 6}

2(1 − z)2(1 + ze2iβ)2
.

So we also have

(1 − |z|2)2|Sfβ
(z)| = |c|(1 − |z|2)2|e2iβ(e2iβ − 1)z2 + 4(e2iβ − 1)z + 6|

2|1 − z|2|1 + ze2iβ|2
.

It follows easily that (1 − |z|2)2|Sfβ
(z)| → 6 as z → −e−2iβ radially. By the

Kraus-Nehari theorem, supz∈D |Sfβ
(z)|(1 − |z|2)2 ≤ 6. Therefore we obtain

‖Sfβ
‖2 = 6 for any |β| < π/2.

4 Order estimate of the coefficients

Knowing the norm ‖Tf‖1 enables us to estimate the growth of coefficients of
f (cf. [8]). However the sharp estimate of coefficients of f ∈ SP (β) has been
already obtained by Zamorski [13] in 1960. We would like to remark that we
can derive the sharp growth estimate of coefficients of f ∈ SP (β) from this.

Theorem 4.1 (Zamorski). If f(z) = z+a2z
2 +a3z

3 + · · · is in SP (β) and
|β| < π/2, then

|an| ≤
n−1∏

k=1

∣∣∣∣1 +
e2iβ

k

∣∣∣∣ (14)

for any n ≥ 2. The equality in (14) holds for some n ≥ 2 if and only if f is
a rotation of the β-spiral Koebe function fβ.
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Remark. This is also shown in terms of generalized spiral-like functions by
C. Burniak, J. Stankiewicz and Z. Stankiewicz [6](1980).

Corollary 4.1. Let |β| < π/2 and f(z) = z+a2z
2 +a3z

3 + · · · be a β-spiral-
like function. Then it holds that

an = O(ncos 2β) (n → +∞). (15)

This order estimate is sharp.

Proof. From the inequality (14), we have that for |β| < π/2,

log |an| ≤
1

2

n−1∑

k=1

log

(
1 +

2 cos 2β

k
+

1

k2

)

=
1

2

n−1∑

k=1

(
2 cos 2β

k

)
+ O(1)

= cos 2β log n + O(1)

as n → +∞. Therefore we obtain the estimate (15).

Remark. In the case |β| < π/4, this is shown by Basgöze and Keogh in
[5](1970).
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