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Abstract

We consider skew product maps related to dynamics of semigroups
generated by rational maps on the Riemann sphere. The entropy of
those maps will be given and we will see there exists the unique maxi-
mal entropy measure. We will also show the uniqueness of self-similar
measure. We will estimate Hausdorff dimension of the Julia sets of
semigorups.

1 Introduction

For a Riemann surface 5, let End(S) denote the set of all holomorphic
endomorphisms of 5. It is a semigroup with the semigroup operation being

composition of functions. A rational semigroup is a subsemigroup of End(C)
without any constant elements. We say that a rational semigroup G is a
polynomial semigroup if each element of GG is a polynomial.

Definition 1.1. Let GG be a rational semigroup. We set
F(G)={z € C| G is normal in a neighborhood of z}, J(G) = C\ F(G).
F(G) is called the Fatou set for G and J(G) is called the Julia set for G.

J(G') is backward invariant under ¢ but not forward invariant in general.
If G = (f1, fo,..., fn) is a finitely generated rational semigroup , then J(G)
has the backward self-similarity. That is, we have J(G) = UL, 71 (J(G)).
For any rational semigroup GG, we set

E(G)={z € C|4G7 () < 2},
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where G71(2) = Uyeqg™'(2). We have that if there exists an element of G
of degree at least two or if there exists an element of G of degree one and
the order is infinite, then E(G) = {z € C | §G71(2) < 00} and $F(G) < 2.

For any z € C\ E((), we have J(G) C G=1(z).

If §$J(G) > 3, then we have J(G) is a perfect set and is equal to the
closure of the set of points z € C which satisfies there exists an element
g € G such that g(z) = z and |¢'(2)| > 1.

In general, the Julia set of a rational semigroup may have non-empty
interior points. For example, J((22,22)) = {|z| < 1}. In fact, in [HM?2] it
was shown that if G is a finitely generated rational semigroup, then any
super attracting fixed point of any element of G does not belong to 0.J(G).
Hence we can easily get many examples that the Julia sets have non-empty
interior points. For more detail about these properties, see [HM1], [HM?2],
[ZR], [GR], [S1] and [S2]. In this paper we use the notations in [HM1] and
[S1].

We will define skew product maps related to a generator system of finitely
generated rational semigroup and will show fundamental properties of them.

We will investigate the upper esitimate of Hausdorff dimension of the
Julia sets of finitely generated rational semigroups applying the methods of
thermodynamical formalisms to the skew product maps(Theorem 4.4).

We will define (backward) self-similar measure in the Julia sets, that
is, a kind of invariant measures whose projection to the base space(space
of one-sided infinite words) are some Bernoulli measures. We will show
the uniform convergence of orbits of the Perron-Frobenius operator which
implies the uniqueness of the measure(Theorem 5.3). Using it, we will see
that the backward self-similar measures are exact(Theorem 6.11) and will
see the lower estimate of (topological, metric) entropy of the skew product
maps.

Using the Ruelle’s inequality for skew product maps, we generalize some
results in [Mal] and will show the existence of the measure theoritic gener-
ator(Lemma 6.9). From this we will see the upper estimate of the entropy
of the skew product maps.

Finally, we see the metric entropy of backward self-similar measures with
respect to the weight ¢ = (a1, ... ,a,) is equal to

- Zajlogaj + Zajlogdj
7=1 7=1

and we will show that the topological entropy of the skew product con-
structed by the generator system {fi,..., f,n} is equal to

log(¥7Z, deg(f;))

and there exists a unique maximal entropy measure i, which coincides with



the backward self-similar measure corresponding to the weight
de deg( f,,
ag 1= (——— gl/1) ey 8Jm) ).
Zl deg(f;) Zl deg(f;)
i= i=

Hence the projection of the maximal entropy measure of the skew product
to the base space is equal to the Bernoulli measure corresponding to the
above weight ao(Theorem 6.11).

Applying this result if {fj_l(J(G))}j:17...7m are mutually disjoint, then
we get the following lower estimate of Hausdorff dimension of the Julia set

of G(Theorem 6.13),

. log(E;ﬁ:l deg(f;))
(I 2 7 a7 du

where u = (7g)«fi and f(z) = fi(z) if z € fTHJ(G)).

Throughout this paper the generator system (fi, f2,... fm) consists of
rational maps and the degrees of f;’s may not be the same. The degree of
some f; may be equal to one. After having being written this paper Mattias
Jonsson contacted and told the author that in [J] he investigated the entropy
of dynamics on “C-fibrations”such that the degree of all fiberwise maps are
equal to some common d, d > 2. He uses the potential theory and Lyubich’s
method to show the uniqueness of maximal entropy measure. On the other
hand, in this paper we do not use potential theory but we will use Lyubich’s
and Mafé’s. The most different points are to show the uniform convergence
of orbits of Perron-Frobenius operator and to show the existence of measure
theoritic generator.

Note. This paper belongs to a part of the author’s thesis([S4]) which
was written under supervision of Prof. Shigehiro Ushiki.
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2 Hyperbolicity

Definition 2.1. Let G be a rational semigroup. We set

P(G)= U { critical values of g}.
geG



We call P(G) the post critical set of G. We say that G is hyperbolic if
P(G) C F(G).

Theorem 2.2 ([S2]). Let G = (f1, fa,... fa) be a finitely generated hyper-
bolic rational semigroup . Assume that G' contains an element with the degree
at least two and each Mébius transformation in G is neither the identity nor
an elliptic element. Let K be a compact subset of C\ P(G). Then there are
a positive number ¢, a number A > 1 and a Riemannian metric p on an open
subset V. of C\ P(G) which contains K U J(G) and is backward invariant
under G such that for each k

mf{H(ka O Ofil)/(Z)Hp | z € (ka O Ofi1)_1(]()7(ik7" . 7i1) € {17' .. 7n}k}

> Ak, here we denote by || - ||, the norm of the derivative measured from
the metric p to it.

Now we will show the converse of Theorem 2.2.

Theorem 2.3 ([S2]). Let G = (f1, f2,... fn) be a finitely generated ratio-
nal semigroup. If there are a positive number ¢, a number A > 1 and a
Riemannian metric p on an open subset U containing J(G) such that for

each k

inf{H(fik O"'th)/(Z)Hp | S (flk O"'th)_l(J(G))v(ikv"' 7i1) € {17"'

> ek, where we denote by || - ||, the norm of the derivative measured from
the metric p on V to it, then G is hyperbolic and for each h € G such that
deg(h) is one the map h is not elliptic.

Remark. Because of the compactness of J(G), we can show, with an
easy argument, which is familiar to us in the iteration theory of rational
functions, that even if we exchange the metric p to another Riemannian
metric py, the enequality of the assumption holds with the same number A
and a different constant cy.

Definition 2.4. Let G = (fi, f2,... fn) be a finitely generated rational
semigroup. We say that G is expanding if the assumption in Theorem 2.3
holds.

3 Skew product

Let m be a positive integer. We denote by X, the one-sided word space,
that is

Y, ={1,...,m}N



and denote by o : ¥,,, — X,, the shift map, that is

(wl,...)|—>(w2,...).

Let G :~<f1, f2,--. fm) be afinitely generated rational semigroup. We define
amap f: Y, X C— Y, xC by

]Z((wvx)) = (Uwvfunx)'

is a finite-to-one and open map. We have that a point (w,z) € ¥ X
satisfies f), (z) # 0 if and only if f is a homeomorphism in a small

/
C
neighborhood of (w,z). Hence the map f has infinitely many critical points
in general.

Definition 3.1. For each w € Y, we denote by F,, the set of all the points
2 € C which satisfies that there exists an open neighborhood U of z such
that the family {fy,, o0 fu, }n is normal in U. We set .J,, = C\ F,, and
Jw = {w} x J,,. Moreover we set

JH= U Ju F() = (S xTONI().

WEXm,

We often write F(f)as F and J(f) as J. We call F(f) the Fatou set for f
and J(f) the Julia set for f.

For each (w,z) € ¥, x C and an positive integer n we set

(]Zn)/((wvx)) = (fwn o fun )/(x)

Let (w,z) € ¥, x C be a periodic point of f with the period p. We say that
(w,z) is attracting if |(f7)'((w,2))| < 1, indifferent if |(f?)'((w,2))| = 1
and repelling if |(f?)'((w,z))| > 1.

Proposition 3.2. 1. F and J are completely invariant under f. F is
open and J is compact. f(jw) = Jou. F(f) is equal to the set of all
the points (w,z) € X,, x C which satisfies that there evists an open
neighborhood U of x and an open neighborhood V' of w such that for
each a € V the family of maps {fa, oo fa, } is normal in U.

2. J = Ny [ (Em X J(G)). wo(J) = J(G), where we denote by w :
Y, X C — C the second projection.

3. J has no interior points or is equal to ¥, x C.
4. If4(J(G)) >3, then J is a perfect set.

5. If 8(J(G)) > 3, then J is equal to the closure of the set of all repelling
period points of f.



6. Assume §(J(G)) > 3 and E(G) C F(G). Let K be a compact subset of
7, (C\ E(G)). If U is an open set in ¥, x C satisfying U N J #0,
then there exists a positive integer N such that for each integer n with
n> N, we have f*(U) D K.

Proof. By definition, it is easy to see 1. and 2. Assume .J #%,, x C and
J contains a non-empty open set U. Then F(G) # () and for each positive
integer n we have

w2 f"(U) C C\ F(G).

By Montel’s theorem, this is a contradiction. Hence 3. holds.

Let z € J be a point and assume there exists an open neighborhood
U of z such that U \ {z} C F. There exists a positive integer n such that
T (fY(U)) = L. It follows that mo(f7(2)) € J(G) and mo( f/(U \ {2})) C
F(G). Since §(J(G)) > 3, we have J(G) is perfect and so that is a contra-
diction. Hence 4. holds.

Now we will show 5. Let (w,z) € J. Let U be a neighborhood of w in
¥,, and V be a neighborhood of z in C. There exists a positive integer n
such that if we set

Un:{a62m|aj:wj7 jzlv"'vnv}
then U, C U. We set

Gn:{g€G|g:fwnoofw1}

Then this is a subsemigroup of G. We have

J(Gn) = (fwn "'fw1)_1J(G)

and since J(G) has infinitely many points, J(G',,) must have at least three
points. By Theorem 3.1 in [HM1](Note that if we read the proof of this
theorem, we can see that the statement of this theorem holds whenever the
Julia set has at least three points), we get that J(G',) is the closure of the set
of repelling fixed point of all elements of G,. Since x € (f, * +* fu, ) J(G) =
J(G,,), there exists an element g € G, and a point y € V such that y is a
repelling fixed point of g. Hence 5. holds.

Now we will show 6. Let K and U be as in 6. Assume E(G) # 0. If E(G)
has exactly two points, then it is easy to show the statement of 6. Suppose
E(G) = {2} and let V be a connencted component of F(G) containing z.
Let p be the hyperbolic metric in V. Since each f; does not increase the
metric and 2 is a fixed point of it, there exists an open hyperbolic ball
A about z included in V such that f;(A) C A for each j. It implies that
f(r;71(A)) € 77 (A). Hence, from the beginning of the proof, we can assume
that



f(K)D K. (1)
We will show that for each positive integer k.,
K cu, fH(U). (2)

There exists a positive integer j such that ﬂlfkj(U) = Y. On the other
hand, by [HM1], for any rational semigroup G, the closure of the backward
orbit of each point x € C\ E(G) under 1 contains the Julia set J(Gy). By
[HM1] again, the Julia set of the subsemigroup Hy of G which is generated
by :

{fako---ofal|(ak,...,a1)€{1,...,m}k}

is equal to J(G). Also we have E(Hj) = E(G) by definition of the excep-
tional set. Hence (2) holds.

By 5., we obtain that there exists an open set Uy included in U and a
positive integer s such that f*(Us) D Up. Hence by (2), we get that there
exists a positive integer N such that fN(U) > K. From (1), it follows that
for each positive integer n with n > N, we have f”(U) D K. Hence the
statement of 6. holds when E((') has exactly one point. If E(G) = 0, we
can show the statement in the same way as the above. O

4 Hausdorff dimension of Julia sets of expanding
semigroups

Definition 4.1. Let GG be a rational semigroup and é be a non-negative
number. We say that a probability measure p on C is é-subconformal if for
each g € G and for each measurable set A,

o) < [ g ld
And we set
s(G) = inf{é | Fu : é-subconformal measure}

Foreach j =1,...,m,let ¢; be a Holder continuous function on fj_l(J(G)).
We set for each (w,z) € J, p((w,2)) = @y, (2). Then ¢ is a Holder con-

tinuous function on .J. We define an operater L on C(J) = {¢ : J — C |
continuous } by

o= 3 SRy,
F((w' ))=(w,x)

counting multiplicities, where we denote by P = P(f|;,¢) the pressure of



Lemma 4.2. With the same notations as the above, let G = (f1, fa, ... fim)
be a finitely generated expanding rational semigroup. Then for each set of
Hélder continuous functions {¢;};=1,.. m, there exists a unique probability
measure T on J such that

o L't =,

o for each v € C(J), ||[L™) — 7(¥)all; — 0,n — oo, where we set
a = lim—o, LH(1) € C(J) and we denote by || -|| ; the supremum norm
on J,

o aT is an equilibrium stale for (f|j,cp).

Lemma 4.3. Let G = (fi, fo,... fm) be a finitely generated expanding ra-
tional semigroup. Then there exists a unique number 6 > 0 such that if we
set @j(x) = —élog([|fi(x)l),5 =1,... ,m, then P =0.

From Lemma 4.2, for this 6 there exists a unique probability measure 7
on J such that L;7 = 7 where Ls is an operator on C(.J) defined by

Lsp((w,z)) = Z %

F((w' y))=(w,z) |
Also ¢ satisfies that

har(f) _ log(35ss deg(f))

6:fjc,5ad7'_ fjcfoadr

where a = lim;_, Lfﬁ(l)ﬁ we denote by hm(f) the metric entropy of (f, ar)
and @ is a function on J defined by @((w,z)) = log(|| f,,, (2)]])-
By these argument, we get the following result.

Theorem 4.4. Let G = (fi, f2,... fm) be a finitely generated expanding
rational semigroup and ¢ the number in the above argument. Then

dimp (J(G)) < s(G) < 6.

Moreover, if the sets {fj_l(J G))} are mutually disjoint, then dimpg(J(G)) =
6 < 2and 0 < Hs(J(G)) < oo, where we denote by Hs the §-Hausdorff

measure.

Corollary 4.5. Let G = (f1, f2,... fm) be a finitely generated expanding
rational semigroup. Then

lo o deg(f;
Gy < B )

b

where A denotes the number in Definition 2.4.



Example 4.6. 1. Let G = (f1, f2) where f1(2) = z* and f2(z) = 2.3(2 —
3) + 3. Then we can see easily that {|z| < 0.9} C F(G) and G is
hyperbolic. By the corollary 4.5, we get

. log 3

A
In particular, J(G) has no interior points. In [S3], it is shown that if
a finitely generated rational semigroup satisfies the open set condition
with an open set O, then the Julia set is equal to the closure of the
open set O or has no interior points. Note that the fact that the Julia
set of the above semigroup G has no interior points was shown by only
using analytic quantity. It seems to be true that G does not satisfy
the open set condition.

2. Let G = <§, 2% + 8). Then we can see easily that {|z| < 2} C F(G)
and G is hyperbolic. Hence we have

log 5
%80 9.

i <
dimg J(G) < Tog 3

In particular, J(G') has no interior points.

5 self-similar measure

We now consider about invariant measures and self-similar measures on Julia
sets. In the cases of iterations of rational functions, Brolin’s and Lyubich’s
studies are well known([Br], [L]). Recently, D.Boyd investigated “invariant
measure” (that is, the measure (72 )./t in the notation in Theorem 5.3) in the
case that each f; is of degree at least two and have shown the uniqueness in
[Bo]. We introduce some notations and results from [L]. Let A be a bounded
operator in the complex Banach space 5. The operator A is called almost
periodic if the orbit {A™p}>°_| of any vector ¢ € B is strongly conditionally
compact. The eigenvalue A and related eigenvector are called unitary if
|A\| = 1. The set of unitary eigenvectors of the operator A will be denoted
by spec,A. We denote by B, the closure of the linear span of the unitary
eigenvectors of the operator A. And we set

By ={¢| A" =0 (m — o0)},
here the convergence is assumed to be strong.

Theorem 5.1. ([L]) If A : B — B is an almost periodic operator in the
complex Banach space B, then

B =85,% B.



Corollary 5.2. ([L]) Let A : B — B be an almost periodic operator in the
complex Banach space B. Assume that spec,A = {1} and the point A = 1
is a simple eigenvalue. Let h # 0 be an invariant vector of the operator A.
Then there exists an A* invariant functional p € B*, p(h) =1, such that

Ao — p(@)h m — .

Let G = (f1, f2,... fm) be a finitely generated rational semigroup. We
set d; = deg(f;) for each j =1,... ,m and d = E;”:l d;. For each compact
set K of C we denote by C'(K) all continuous complex valued functions
on K. It is a Banach space with supremum norm on K. Assume that K is
backward invariant under (. For each j and for each element ¢ we set

A= 3 (0,

e )

where z is any point of K. Then A;p is an element of C'(K) and A; is a
bounded operator on C'(/4'). We set

W:{(al,... ,an)ERn|Zaj:1, a; ZO}
J
And for each a € W we set

n

(Bap)(2) = D aj(Aj9)(2).

J=1

Then B, is a bounded operator on C'(K).

Similarly, let K be a compact subset of ¥,, x C which is backward
invariant under f. We define an operator B, on C(K) as follows. For each
element ¢ € C'(K) we set

(Ba@)(2) = Bg o () P(C)Pa(C)

where Qza(f) = ZZi if m1(¢) = (wi,wa,... ).
B, is a bounded operator on C'(K). Furtheremore, if mo(K) = K, then
we get

5B, = B,7}
and 73;C(K) — C(K) is an isometry.

Theorem 5.3. Let G = (f1,..., fm) be a finitely generated rational semi-
group. Assume that there exists an element go € G of degree at least two,
the exceptional set (G for G is included in F(G) and F(H) D J(G) where
H is a rational semigroup defined by H = {h™' | h € Aut (C)NG}.( if H

10



is empty, put F(H) = C.) Then for each a € W with a # 0 there exists a
unique regular Borel probability measure fi, on X, X C such that for each

compact set K which is included in 751 (C\ E(G)) and backward invariant
under f,

1B:(2) = fa(@)1]| z — 0,

as n — oo, for each ¢ € C(f(), where we denote by 1 the constant function
taking its value 1. Similarly, there exists a unique regular Borel probability
measure p, on C such that for each compact set K which is included in

C\ E(G) and backward invariant under G,

|1 Bz (¢) = pa()1]|x — 0,

as n — oo, for each ¢ € C(K). )
Moreover, (72)«(fia) = pa- The support of i, is equal to J and the sup-
port of ug is equal to J(G).

Definition 5.4. We call fi, or p, the self-similar measure with respect to
the weight a.

We need some lemmas to prove Theorem 5.3.

Lemma 5.5. Let G = (f1,...,fn) be a finitely generated rational semi-
group. Assume that there exists an element gy € G of degree at least two
and F(H) D J(G) where H is a rational semigroup defined by H = {h™! |
h € Aut (C)n G}.( if H is empty, put F(H) = C.) Then there exists a
6 > 0 such that for each x € J(G), if we denote by F, s the family of maps
satisfying that each element of it is a well-defined inverse branch of some
element of G on B(x,0) where B(z,6) is a ball about x with the radius ¢
with respect to the spherical metric, then Fy s is a normal family on B(x,8).

Proof. Take x € J(G). Let D = B(x,¢) where ¢ is a small positive number.
Let Gy be the subsemigroup of GG such that for each element g € G there
exists an element ¢g; € (& and integer j with 1 < 7 <'m and d; > 2 satisfying
g = g1 f;. Let F; be the family of maps from D to C such that each element
of F; is an inverse branch of some element of G;. Then from Theorem 2.1
in [HM3], F; is normal in D. Taking € smaller, we can assume that

Uper, B(D) C F(H). (3)

Now let (g;); be any sequence of elements of F, . where g¢; is an element of
(. For each j there exists an element ¢; € G4 U{[d} and an h; € H U{ld}
such that ¢g; = v;h;. Then for each j, zbj(hjgj_l) = gjgj_1 = Idp. Hence we
have hjgj_l € Fi. Since Fj is normal in D, there exists a map g from D

to C and a sequence of positive integers (j;) such that hjkgﬁl — ¢ locally

11



uniformly on D as k — oo. By (3), we can assume that there exists a map
h from a neighborhood V of g(D) to C such that hj_kl — h locally uniformly
on V as k — oco. It follows that gj_k1 = hj_klhjkgjk — hg locally uniformly on
D as k — oo. Hence we have F, . is normal on D. Since J(G) is compact,
the statement of our lemma holds.

O

Lemma 5.6. Under the same assumption as Theorem 5.3, let Ii be a com-
pact subset of 7, 1(C\ E(G)) which is backward invariant under f. If Bop =
Ag, |A| =1, then A =1 and ¢ is constant. That is, (C(K)), = C-1.

Proof. Let z be a point of K such that

l¢(2)] = sup |p(w)].

weK
Then
o(2)] = |(Bag)(2)]
< Ol
Cef1(2)
< Y ajle(2)] = le(2)-

J

Hence if ¢ is a point of f='(2), then |@(¢)| = |¢(2)| and it implies () =
Ap(z). Fix any point (o € J. By Proposition 3.2.6, there exists a sequence
() such that ¢, € f_”(z) for each positive integer n and (,, — (p as n — oo.
Hence we have A" ¢(z) = ¢((,) — ¢(() as n — oo. It implies A = 1.

Now we will show that ¢ is constant. We put ¢ = Re + iS¢p. Then
B.(Rp) = R, B,(S¢) = Se.
Let z be a point of K such that

Rp(z) = sup Re(w).

weK

By a similar argument we can show that R¢(¢) = Re(2) for each ¢ € f~1(2).
Let ¢ be any point of J. Let (Cn)n be a sequence such that for each n the point
(o belongs to f~"(2) and ¢, — C. Then Rp((,) — Rep(C) s0 Rep(2) = Rep(¢).
In the same way we can show that if = is the minimum point of the function
R, then o(z) = ¢((), where ( is any point of J. Hence Ry is constant and
by the same argument Sy is also constant. Whence ¢ is constant. O

Lemma 5.7. Under the same assumption as Theorem 5.3, if K is a com-
pact subset of 73 (C\ E(G)) which is backward invariant under f, then B,
is an almost periodic operator on C(K).

12



Proof. We will develop the methods of key lemma about equicontinuity of
{B" ¢}, where ag = (%4,..., %), ¢ € O(K) in [Bo]. Let ¢ € C(K) be
any element. We have || B, ¢||x < ||¢||x for each positive integer . By the
Ascoli-Arzela Theorem, we have only to show that the family {Bancp}n is

equicontinuous on K.

For each t = (t1,... ,t,) € N, we set
trdy |
Gt =—=r——> r=1,...,m
75t Zz:l tkdkv ) s 1y
and a(t) = (ay4y... ,am¢) € W. Then there exists a sequence (t'); of ele-

ments of N such that a(t') — a, as | — .
For each p € N, we set

Zy = UGy et mppdev(fo, - fi)} = ma(ev(f7)),

where cv means the critical values.
Let U be any simply connected domain such that U C C\ Z,. For each
t=1,...,mand [ € N, we set

gi]:fzv ]: 17 7ti

For each [ € N we consider {gij}i’j as a generator system and let f; : Y@ X

C — Yy X C be the skew product map constructed by that generator
system in the same way as the beginning of this section where m(l) =
Yy tﬁ». Foreach s € Nand! € N, we denote by 05; = 0,,;(U) the cardinality
of the family consisting of well-defined inverse branches of fi" on Yoy X U.
For each finite word {1,2,... ,m(l)}*, let o5 be the cardinality of the
family consisting of well-defined inverse branches of the element in <gf’7j>i,j
corresponding to the word a on U. Then by definition, we have

051 = E Os.l,a-

a€e{l,2,..,m(D)}*

For each k =1,2,... ,m(l), let e, be the degree of k-th element of {gij}m.
Then we have

Tot1iak > €r(0sia — (265 — 2)).

13



Hence we get

Os4+1,0 = z z Os41,l,ak

a€{1,2,... m()}s k€{1,2,...,m(D)}

E E eu(0s10 — (265 — 2))

a€{1,2,... m()}* ke€{1,2,...,m(D)}

= (> eog-ml)yr D> e(2e,-2)

v

ke{1,2,.... m(D)} ke{1,2,.... m(D)}
= (Y thdj)aes —m(1)° (Y 2t4(dF = d;))
j=1 7=1

= d(l)os; —m(l)’e(l),
where d(l) = >0, thd; and e(l) = Py 2t5(d3 — dj). It follows that o, =

d(l)? and for each positive integer n,

|
—

n

Tping > AP — e(m(DP Y m(D)"~1=d(1)".

=0
Hence we get for each [ € N and n € N,
AP = 0, UM ”2‘:1 (i) n
d(letr = d(l) " d(l) =" d(l)
We have
m(l) 1 G|
—d(l) _Za]7tz@—>za]@<l, (5)
7=1 7=1
WIZ%”M —dj) = > a2d? - dj) (6)
J=1 7=1

as [ — 00. By (5), we can assume that there exists anumber § with 0 < A < 1
such that for each [ € N,

—= <A (7)

Now let € > 0 be arbitrary small positive number. From (4), (6) and (7), we
get that there exists a positive integer p such that for each simply connected
domain U satisfying U C C\ Z,, the number 0,4, ; = 0,4,,;(U) satisfies
that

AP = opyng
qr =6 (8)
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for each / € N and n € N.

Let dy,, be a fixed metric in ¥,, and dg(, ) the spherical metric on
C. Let d(, ) be the metric on %, x C defined by: d((w',y), (w,y)) =
max{ds,, (v, w), de(y',y)}.

Let 6 be a number in Lemma 5.5. Let K’ = B(J(G), 16). Let (w,z) €
Y., x C be a point such that ¢ € m(K) N K’ \ Z,. We can easily see that
there exists a positive number 6; such that if d(z,2') < &, 2,2/ € K and
mo(z) = wa(2'), then

| Bl (#) = Bligy () < e, (9)

for each [ € N and n € N. Hence by Lemma 5.5, (8) and (9), we get that if
we take d3 so small then for each (w',2’) € K with d((w,z), (w',2")) < b2,
we have

| Brye((w,2)) = Bigye((w',2'))]

| B ye((w,2)) = Bigye((w,a")| + | Bigye((w,a")) = Blyye((vw',2")]
e+2Me+e=¢€242M),

IAN A

where M = sup,cp |p(2)|, for each I € N and n € N.
Now,let z € K be any point. By Proposition 3.2.6, there exists a positive
integer 7 such that for each y € K, we have

ma(f7T () N (m(K) N K"\ Z,) £ 0. (11)

For each | € N, we set

l) = min Ao b
ﬁ( ) (w17""w7')€{17"~7m}7— Wi wr ( )
Then we have
I\ <L
0 < min G5 <Tmint o )
l w
timsup 2L < (max Loy <, (14)

I—o00 (Z)T - Vy=l,..,m dwj

Hence we can assume that there exist constants ¢; and ¢y such that for each

[ €N,

ORI (15)

<
0<e < d(l)T <

15



For each [ € N, let ¢; : ¥, x C — Yy X C be an natural embedding
and 7! : Yy X C — ¥,, x C the natural projection. For each [ € N
and n € N, let 5, ; be the set of solution of ff”(z’) = y(2) and 15, the
cardinality counting multiplicity. Let S7 ;1 be a subset of 57; such that the
second projection of each point of the set belongs to mo(K) N K’ \ Z, and
8511 = B(). And let 51,5 = 517\ S141. Inductively, for each n > 1,
let Sy,41,,1 be a set of backward images of S, ;2 by ff such that the second
projection of each point of the set belongs to mo( K)N K"\ Z, and 45,411 =
B(1)85,,1,2 where the cardinalities are counted considering multiplicity. And
let S,1172 = f‘T(SnJ) \ Sp+1,1- Then inductively we can see that for each
n €N,

85n12 = (d()" = B(1))" (16)
and
85000 = (d(1)T = B(1))"2B(1). (17)
By (15), there exists a positive integer N such that for each [ € N,
Ay — p(l
(%)N <e (18)

By (9 ), there exists a number 1 > 0 such that for each n € N,/ € N and
j=1,...N, if 2 € 7!(8;,1) and d(2',z), d(2',y) < n,

Bl (9)(@) = Bl (2)(y)] < 26(2+ 2M). (19)

By (16), (17), (18) and (19), we can see that if we take é3 > 0 small enough
then d(z,2') < 63, 2/ € K implies that for each n € Nand [ € N,

BN (@)(z) — BTN ()()

< d()~NT Z | By (@)(w'(20)) = By (@)(x' ()]
< d(l 7 ﬁ%’i’lﬁ (24 2M) + §5N 122M)

N T
- Z‘“) — 5 Jldﬂ((l))ag(HQM))HMg,

where on the above we set {z1,...5} = SNy, b= d(l)TN and we denoted
by z! the point of f7 ™V (1(2')) corresponding to z. By (15), there exists a
constant C' > 0, not depending on N, such that for each [ € N,

N

d(ly = B(1) ;. BU
> ()d(l)f( y dﬂ((l)l <c. (20)

i=1
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Hence we get

BN (0)(2) = BIT V(o)) < e(4C +4MC +2M). (21

Letting | — oo, we get that for each n € N,
Bt (@)(2) = Byt ™V (@)(2')] < e(4C +4MC +20). (22)
Thus we have proved the lemma. (|

Proof. of Theorem 5.3. By Corollary 5.2, Lemma 5.6 and Lemma 5.7 we can
show the statement about convergence of the operator and that the support
of fi, is included in .J in the same way as that in [L]. Since ji, is B-invariant
and inf 7 zza(z) > 0, by Proposition 3.2.6, we can show that the support of

fia is equal to J immediately. It implies that the support of . is equal to
J(G). O

Lemma 5.8. Under the same assumption as Theorem 5.3, for any a € W
with a # 0, we have i, is non-atomic.

Proof. We set for each n € N,l € N and z € J(G),

e(n,l)(z) = Z (mul (ga, 0+ -0 ga,)at 2), (23)

a€{l,...,m(D)}", goy 0 0gan (2)EJ(G)

where we denote by g,, any element of {gij} and mul denotes the multi-
plicity. We will show the following claim.

Claim 1. for any z € J((), there exists an open neighborhood U(z) of
z and a word (w1(z),... ,wa(2)) € {1,... ,m}? such that for each y € U(z2),

(mul (fwz(Z) © ftm(Z))&vE y) < dwz(z)dw1(z)'

Suppose there exists a point z € J(G) such that for each (w2, wy1) € {1,... ,m}?%,

mul (fu, © fu,)at 2 = dy,dy, .

For each j =1,...m, weset z; = f;(2). We can assume that there exists a
positive integer ¢t with 1 <¢ < m such that dy,... ,d; > 2 and dyy; =--- =
dy = 1.

If there exists an integer ¢ such that z # z; then for each integer s with
1 <s<t, mul fs at z and at z; are equal to ds. Hence, conjugating G' by
some Mobius transformation, we can assume that z = 0, z, = oo, fs(z) =
ZITS for each s with 1 < s <tand z41,...,2m € {0,00}. It implies z € E(G)
but this contradicts to the assumption E(G) C F(G).

If 2z = 2 for each ¢ = 1,... ,m, then conjugating G by some Mobius
transformation, we can assume that z = oo and fi,..., f, are polynomials.
It contradicts to £(G) C F(G). Hence the claim 1. holds.
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From claim 1, there exists a finite collection U(z1),..., U(zy) with
Uk_ U(x;) D J(G) where 2q,...25 € J(G) such that for each j = 1,... ,k,
there exists a word (wa(z;),wi(z;)) € {1,...m}?* satisfying that for each
y € Ulz)),

(MUl (foon () © fror ()t ¥) < s () D ()
We set

= i i dwxdwlx - 1w2x wi (x t > 0.
¢ = mmin i (o)) sy = (U fus o) © fuos(a)8 )

We get for each z € J(G) and [ € N,
c(2,0)(2) < d(1)? - (. min t;)zc.

1=1,....m

Hence for each n € N,l € Nand z € J(G),

c(2n,0)(2) _ d(l)? = (minj=1,.m ;)%
FTOLR <( d(l)? )" (24)

Let € > 0 be any small number. And fix z € J(G). By (24), there exists a
positive integer ng such that for each [ € N,

c(2ng,1)(2) .
d(l)zo =7

Take ¢ € J(G). For each [ € N and n € N, we set

1
:“lc,n = d(l)y" z Z by,

a€{l,... m()}" yE€(ga; 0-0gan ) ~1(C)

(25)

where ¢, denotes the dirac measure concentrated at y and g¢; denotes the

k-th element of {gij}m. Note that by Theorem 5.3, ,ulcn — () Weakly as
n — 00. There exists an open neighborhood U of z such that if we set

(2no,)(U) = > deg(gay © 0 an, IU7),

a€{1,...;m(1)}70, gay 0--0gan, (2)€J(G)

then we have ¢/(2n¢,)(U) = ¢(2ng,[)(2). Hence by (25), we get that for each
n € Nandl €N,

S (V) < d”’;c(’l()ggf;ixm

<€,

Letting n — oo, since we can assume that fi,)(0U) = 0 for each [ € N,
we get for each [ € N,

fa@y(U) < e (26)
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By the uniqueness of the self-similar measure with respect to the weight a,
we have p, 1y — pa weakly as I — o0o. Since we can assume 1,(9U) = 0,
by (26), we get

1a(U) < e

Since € can be taken arbitrary small, we get u,({z}) = 0. Hence p, is
non-atomic. O

6 entropy

Lemma 6.1. Under the same assumption as Theorem 5.3, let ji, be the self-
similar measure with respect to the weight a € W. Then ji, is f-invariant
and

1. (f, jia) is exact.

2. ha (f) > H(e|(f)e) = — > ajloga; + > ajlogd;, where we

denote by € the partition of ., X C into one point subsets.

Proof. By Theorem 5.3, the measure [, is B;—invariant. Hence for each

p e (%, xC),
/Wfdﬂ: /Ba(wf)dﬂz /wdﬂ-

Hence ji, is f-invariant.

Let v, denote the conditional measure on the element of partition f~'e
containing z € ¥,, x Cwith respect to the measure niu,. Then by Theo-
rem 5.3 and using the same argument as that in p366-367 in [L], we can
show that

J Cef~Hf(z)NZm

where X, ; = {w € Xy, | w1 = j}. By Theorem 5.3 and (27), using the same
argument as that in P367 in [L] again, we can show that (f, fi,) is exact.
By Lemma 5.8, we have ma.ji, is non-atomic. In particular,

fia(cv (f)) = 0. (28)

By (27) and (28), we get that



for fi-almost all z € X, x C. Hence

1) = [ HAF i) = =3 aglox

Now we will estimate the topological entropy of f from above.

Theorem 6.2. Let G = (f1,..., fm) be a rational semigroup and f:Y, x
C — Yp x C the skew product map consiructed by the generator system
{fi,-- s fm}. Then the toplogical entropy h(f) on %,, x C satifies that

f) <log(d_ deg f)).

i=1

To prove this theorem, we need several lemmas.

The first one is the Ruelle’s inequality for skew product maps. Let
X be a compact metric space and M a compact C'* manifold. Let f :
X XM — X X M be a continuous map such that f(z,y) = (6(2),9:(y))
where ¢ : X — X is a continuous map, ¢, : M — M is a differential map
for each € X. Let Dyg, : T,M — T, ,)M be the linear map induced
by g;. Assume that (z,y) — D,g, is continuous. For each positive integer
n and (v,y) € X x M, we define D yf" : T,M — TrpnzynM as
v+ D(gsn(z) 0 -+ 0 gz)(v). Then we get the following result by a slight
modification of Theorem 2. in [Ru].

Lemma 6.3. Under the above, let p be an f-invariant probability measure
on X x M. Then,

1. there exists a Borel set Q in X X M such that p(Q) = 1 and for each
(z,y) € Q the following holds. There is a strictly increasing sequence
of subspaces:

such that, forr =1,... ,s(z,y),
: 1 n r—1)
lim ElogHD qu_/\ zquV \V

and /\55173)/ < /\;273)/ < e < /\ij’y)) : here we may have /\;171)/ = —o0.
The V;Z) and /\g@)/ are uniquely defined with these properties and in-
dependent of the choice of the Riemannian metric on M. The maps

(z,y) — s(z,y), (V;}y), ... ,Vlfsy(l”y))), (/\;171)/, ... ,/\nggx’y))) are Borel.

)
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2. Let mggfz/ = dim V;Z) — dim V;Z/_l) forr=1,...,s(z,y) and define
Mley) = mAL).
rAl)>0
Then, the metric entropy h,(f) of (f,p) satisfies that
ho(f) < Xo(f) + B(ryyap(0),

where X,(f) = [ A4 (z,y)dp(z,y).

Corollary 6.4. Let G = (f1,..., fm) be a finitely generated rational semi-
group and f : ¥, x C — X,, X C the skew product map constructed by the
generator system {fi,..., fm.} Let p be an f-invariant probability measure
on X, X C. Then we have

h(F) < 2max(o, [ lim Clog [FY()4p() + hiey.p(0)

EmXE n—oo

Let p be an f-invariant probability measure on X, X C. As in p108 in
[P], there exists a p-integrable function J, : ¥, x C — [1,00) such that

mﬂmzé%wmm

for any Borel set A in X, x C such that f|A is injective. Now we will gen-
eralize some Mané’s results([Mal]), using the methods in [Mal] and Corol-
lary 6.4.

Lemma 6.5. Lel p be an f-invariant ergodic probability measure on Xy, xC
with h,(f) > hr),p(0). Then the function z — log || f'(2)|| is p-integrable
and

[ 1ol Pldotz) 2 S0 = hieyolo) (30)
YmXxC
Moreover,

Jim Sl (Y= [ el F)an(e). (31)

for p-almost all z € %, x C.

Proof. log || f/(2)|| is upper bounded. Since p is ergodic, we have either
log || f/(2)|| is not p-integrable and then

lim ~ log [[(F")(2)]] = —oc (32)

n—oo 1
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for p-a.e. z € ¥, x C, or log || f'|| is p-integrable and :
1 . ]
lim —log [|(f")' ()]l = / log [[f'(2)lldp(=) (33)
n—oo N T XC

for p-a.e. z € %, x C. By Corollary 6.4, we have (32) contradicts to our
assumption. Hence (33) holds. Using again Corollary 6.4, we get that

Js. welogllf(2)lldp(z) > 0 and

m(Fy<2 [ toglIFdp) + sl

YmxC

O

Corollary 6.6. Let x € C be a critical point of some fj, j=1,.. .,m. We
set A = {(w,2) € S, x C | wy = j}. Then the function z — d(z, A) is
p-integrable for each ergodic f-invariant probability measure p with h,(f) >
h(m)*p(a).
We set
{xlv cee 7$b} = Ugn:ﬂip(fj)v

where cp means the critical points. For each j = 1,...,m, we set

Xj ={(w,2)) € By x C| f, (2;) = 0}
Then the following lemma holds.

Lemma 6.7. Foreach k with 0 < k < 1, there exists a continuous function
T on X, X C, a constant C' > 0 and a constant o > 0 such that

1. 7(z) > CH?:1 d(z, X;)*, (if d;j = 1 for each j = 1,...,m, then
7(2) 2 C)

2. if 2 € (Bp x C)\UA_ X and d(z1,2), d(29,2) < 7(2), then
de(ma(f(#1), ma(f(22))) 2 I/ ()llde(m2(21), 7a(z2)).

Proof. By Lemma IL.5 in [Mal] and the proof of it, for each ¢ = 1,... ,m,
there exists a continuous function 7;, a constant C; > 0 and a constant
«; > 0 such that

1. mi(z) > C; H%:l de(x,yr)™, where yi, ..., 4, are critical points of f;.
(if d; = 1, then 7(2) > C;.)

2. if z € C is not a critical point of f; and dg(ar,z),dg(az,z) < 7(z),
then

de(filar), filaz)) 2 k|l fi(z)lldg(ar, az).
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We set 7(w,2) = 7,,(2) for each (w,z) € %, x C. Then there exists
a constant ¢’ > 0 such that 1. of our lemma holds. We can assume
SUP_cy g 7(2) < 1. Then we can assume that ifd(21,29) < SUPey & T(2);
then m1(21) = m1(22). By the property of 7;, i = 1,...m, we have 2. of our
lemma holds. 0

We can show the following lemma using the same proof as that of Lemma
13.3 in [Ma2](with a slight modification).

Lemma 6.8. Let p be an f-invariant probability measure on ¥,, X C and
7: %, xC — [0,1) a function such thatlogT is a p-integrable function. Then
there exists a measurable partition P of ¥, x C such that hp(f,P) < o0 and
diamP(z) < 7(2) for p-almost all z € %, xC, where P(z) denotes the atom
of P containing z.

Lemma 6.9. Lel p be an f-invariant ergodic probability measure on X, X C
with hy(f) > hr,),0(0). Then there exists a measurable partition P of ¥, x
C such that h,(f,P) < oo and P is a generator for (f,p) i.e. V2, f~"(P) =

€ (mod 0 ) where € denotes the partition of ¥, X C into one point subsets.

Proof. By Lemma 6.5, there exists a constant & with 0 < k& < 1 such that
for p-almost all z € ¥, x C,

. 1 N/ -1 _
lim () ()17 = 0. (34)

n—odo

For this k, take 7 : ¥, x C — [0,1) in Lemma 6.7. By Lemma 6.6 and
Lemma 6.7, we have log 7 is p-integrable. By Lemma 6.8, we get that there
exists a measurable partition P on ¥, x C such that h,(f,P) < oo and
diamP(z) < 7(2) for p-almost all » € %, x C. We will show that P is a
generator for (f,p). For each n € N, let P, = V&, f~"(P). It is sufficient
to show that

lim diam P,(2) =0 (35)

n—odo

for p-almost all z € %, x C. Let z € Pu(z), ¢ = 1,2. Then f(z) €
P(f/(2)), i = 1,2, forall j = 1,...n. Since diam P(f/(2)) < 7(f/(2)), j =

1,...n, we have
de(ma [/ (21), m2f7(22)) > KL F' (/=1 (2))ldg(ma [/~ (z1), o f ™! (22)),
for each 7 = 1,... ,n. Hence we get

de(m2["(21), T2 ["(22)) = K[| (") (2)lldg(m2(21), m2(22)).
Let C' be the diameter of C. We get

de(ma(=1), ma(=2)) < O+ (PG~ (36)
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Hence
diam m3(Py(2)) < C- kinH(f”)’(Z)H_l- (37)

We can assume that for each i = 1,...m, the set Y; = {(w,z) € ¥,, x C |
wy = 1} is a union of atoms of P. Hence by (34) and (37), we get that (35)
holds. Thus we have proved the lemma. O

Lemma 6.10. Let p be an f-invariant ergodic probability measure on X, X

C with h,(f) > Bir)eo(0). Then

ho(F) = /E ox (ol = /E Il () (2)dp(2).

mxC

Proof. By Lemma 6.9, there exists a generator P with h,(f, P) < oo. By

Remark 8.10 and Lemma 10.5 in [P], we get hy(f) = [5;  ¢logJ(2)dp(z).
O

Proof. of Theorem 6.2 Suppose h(f)~§ logm. Then we have nothing to do.

Suppose h(f) > log m. Let p be any f-invariant ergodic probability measure
on Y, x C with h,(f) > logm. Then since h(c) = logm, by variational
principle we get

ho(f) > hry).p0)-

By Lemma 10.5 in [P] and Lemma 6.10, we have I(e|f~te)(2) = log J,(z) and
ho(f) =[5, «elogJo(2)dp(z). Since fisad: 1 map whered = 77" deg(f;)
, we have I(e|fe)(2) < log(>_7L, deg(f;)). Hence we get

ho(f) <log(y_ deg(f;).

7=1
By the variational principle, we get
h(f) <log(}_ deg(f;))-
7=1
O

Theorem 6.11. Let G = (f1,..., fm) be a finitely generated rational semi-
group. Assume that there exists an element go € G of degree at least two,
the exceptional set (G for G is included in F(G) and F(H) D J(G) where
H is a rational semigroup defined by H = {h™' | h € Aut (C)N G}.( if H
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is empty, put F(H) = C.) Let ji, be the self-similar measure with respect to
the weight a € W(See Theorem 5.3). Then it is f-invariant and

m m

hi(f)==> ajloga; + > a;logd;.
=1 =1
Also we have that (71)«fi, is the Bernoulli measure on ¥, corresponding to
the weight a. Moreover, let i be the self-similar measure with respect to the
weight (%1, ceey dT’"). Then fi is the unique maximizing measure for f and we
have

h(f) = ha(f) =1og() _ deg(f;)).

i=1
Also we have (f, i) is exact.

Proof. By Lemma 6.1 and Theorem 6.2, we have

h(f) = hu(f) = 10g(z deg(f;))-

Now assume there exists an f-invariant probability measure pon Y, xC

with i # p and h,(f) = logd where d = } 7, deg(f;). We will show it
causes a contradiction. We can assume p is ergodic. Since there exists an
element g € G with the degree at least two, we have logd > logm. Hence

ho(f) > h(z).p(0). By Lemma 6.10, we have

hFy= [ logd,(2)ipl).
YmxC
By Lemma 10.5 in [P], we have I(¢|f~ €)(2) = log J,(z). Since fisa d: 1
map, we have log.J,(z) < logd for p almost all z € X,, x C. Hence we get
log J,(2) = log d for p almost all z € %, x C. By Proposition 2.2 in [DU], we
get that BX(p) = p where a = (%1, ...,%m) and B, denotes the operator on
C(X,, X C) defined in section 5. If E(G) =0, then by Theorem 5.3, we get
p = ft and this is a contradiction. Assume E(G') # (0. Let V be the union of
connected components of F(G) having non-empty intersection with E(G).
Let ¢ € C(X,, x C) be any element with ¢(z) > 0 for all 2 € X, x C. Let
€ > 0 be any number. Let A, be the e-open hyperbolic neighborhood in V.
Then K, = 7;'(C\ A.) is compact and backward invariant under f. Then

by Theorem 5.3,
[ etne = [ (BreKen)
Ym xXC Y xXC

/I (Bre)()dp(2)

— oKD [ etz

v
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as m — oo. Hence we have for each ¢ > 0,
[ etenter = i) [ ol
Ym XC K

Since h,(f) > h(r).o(0) and p is ergodic, we have p(m;H(E(G))) = 0. Let-

ting € — 0, we get

/ ()dplz) > / ()il 2).
Ym xC YmxC

It implies that p > fi. Since p and ji are probability measures, it follows that
p = fi but it is a contradiction. O

Now we consider a generalization of Mané’s result([Ma3]).

Theorem 6.12. Let G = (f1, fa,... fm) be a finitely generated rational
semigroup. Assume that the sets { f7(J(G))}j=1,... m are mutually disjoint.
We define a map f : J(G) — J(G) by f(z) = fi(z) if x € fFHI(G)).
If 1 is an ergodic invariant probability measure for f : J(G) — J(G) with
hu(f) > 0, then

/ log(|lF|l) dp > 0
J(G)

and

ha(/)
D) = ol dn

where we set
HD(p) = inf{dimgy(Y) | Y C J(G), u(Y)=1}.

Proof. We can show the statement in the same way as [Ma3]. Note that the
Ruelle’s inequality([Ru]) also holds for the map f: J(G) — J(G). O

By Theorem 6.11 and Theorem 6.12, we get the following result.

Theorem 6.13. Let G = (f1, fa,... fm) be a finitely generated rational
semigroup. Assume that F(H) D J(G) where H = {h™! | h € Aut(C)NG}(if
H =0, put F(H) = C.) Also assume that the sets { 7 (J(G))}j=1,..,m are
mutually disjoint. Then

_ log(3 7=, deg(f;))
fJ ylog([1/71) dp”

where 1 = (72)ufla, @ = (%, ..., %) and f(z) = fi(x) if x € f7H(J(G)).

dimpg(J(G
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