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Abstract

We consider skew product maps related to dynamics of semigroups

generated by rational maps on the Riemann sphere. The entropy of

those maps will be given and we will see there exists the unique maxi-

mal entropy measure. We will also show the uniqueness of self-similar

measure. We will estimate Hausdor� dimension of the Julia sets of

semigorups.

1 Introduction

For a Riemann surface S, let End(S) denote the set of all holomorphic
endomorphisms of S. It is a semigroup with the semigroup operation being
composition of functions. A rational semigroup is a subsemigroup of End(C)
without any constant elements. We say that a rational semigroup G is a
polynomial semigroup if each element of G is a polynomial.

De�nition 1.1. Let G be a rational semigroup. We set

F (G) = fz 2 C j G is normal in a neighborhood of zg; J(G) = C n F (G):

F (G) is called the Fatou set for G and J(G) is called the Julia set for G.

J(G) is backward invariant under G but not forward invariant in general.
If G = hf1; f2; : : : ; fni is a �nitely generated rational semigroup , then J(G)
has the backward self-similarity. That is, we have J(G) = [ni=1f

�1
i (J(G)):

For any rational semigroup G; we set

E(G) = fz 2 C j ]G�1(z) < 2g;
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where G�1(z) = [g2Gg
�1(z): We have that if there exists an element of G

of degree at least two or if there exists an element of G of degree one and
the order is in�nite, then E(G) = fz 2 C j ]G�1(z) <1g and ]E(G) � 2:

For any z 2 C nE(G); we have J(G) � G�1(z):
If ]J(G) � 3; then we have J(G) is a perfect set and is equal to the

closure of the set of points z 2 C which satis�es there exists an element
g 2 G such that g(z) = z and jg0(z)j > 1:

In general, the Julia set of a rational semigroup may have non-empty
interior points. For example, J(hz2; 2zi) = fjzj � 1g: In fact, in [HM2] it
was shown that if G is a �nitely generated rational semigroup, then any
super attracting �xed point of any element of G does not belong to @J(G):
Hence we can easily get many examples that the Julia sets have non-empty
interior points. For more detail about these properties, see [HM1], [HM2],
[ZR], [GR], [S1] and [S2]. In this paper we use the notations in [HM1] and
[S1].

We will de�ne skew product maps related to a generator system of �nitely
generated rational semigroup and will show fundamental properties of them.

We will investigate the upper esitimate of Hausdor� dimension of the
Julia sets of �nitely generated rational semigroups applying the methods of
thermodynamical formalisms to the skew product maps(Theorem 4.4).

We will de�ne (backward) self-similar measure in the Julia sets, that
is, a kind of invariant measures whose projection to the base space(space
of one-sided in�nite words) are some Bernoulli measures. We will show
the uniform convergence of orbits of the Perron-Frobenius operator which
implies the uniqueness of the measure(Theorem 5.3). Using it, we will see
that the backward self-similar measures are exact(Theorem 6.11) and will
see the lower estimate of (topological, metric) entropy of the skew product
maps.

Using the Ruelle's inequality for skew product maps, we generalize some
results in [Ma1] and will show the existence of the measure theoritic gener-
ator(Lemma 6.9). From this we will see the upper estimate of the entropy
of the skew product maps.

Finally, we see the metric entropy of backward self-similar measures with
respect to the weight a = (a1; : : : ; am) is equal to

�
mX
j=1

aj log aj +
mX
j=1

aj log dj

and we will show that the topological entropy of the skew product con-
structed by the generator system ff1; : : : ; fmg is equal to

log(�m
j=1 deg(fj))

and there exists a unique maximal entropy measure ~�; which coincides with
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the backward self-similar measure corresponding to the weight

a0 := (
deg(f1)
mP
j=1

deg(fj)
; : : : ;

deg(fm)
mP
j=1

deg(fj)
):

Hence the projection of the maximal entropy measure of the skew product
to the base space is equal to the Bernoulli measure corresponding to the
above weight a0(Theorem 6.11).

Applying this result if ff�1j (J(G))gj=1;::: ;m are mutually disjoint, then
we get the following lower estimate of Hausdor� dimension of the Julia set
of G(Theorem 6.13),

dimH(J(G)) �
log(
Pm

j=1 deg(fj))R
J(G) log(kf

0k) d�
;

where � = (�2)�~� and f(x) = fi(x) if x 2 f
�1
i (J(G)):

Throughout this paper the generator system hf1; f2; : : : fmi consists of
rational maps and the degrees of fj's may not be the same. The degree of
some fj may be equal to one. After having being written this paper Mattias
Jonsson contacted and told the author that in [J] he investigated the entropy
of dynamics on \C-�brations"such that the degree of all �berwise maps are
equal to some common d; d � 2: He uses the potential theory and Lyubich's
method to show the uniqueness of maximal entropy measure. On the other
hand, in this paper we do not use potential theory but we will use Lyubich's
and Ma~n�e's. The most di�erent points are to show the uniform convergence
of orbits of Perron-Frobenius operator and to show the existence of measure
theoritic generator.

Note. This paper belongs to a part of the author's thesis([S4]) which
was written under supervision of Prof. Shigehiro Ushiki.

Acknowledgement. The Author would like to express his gratitude to
Prof. Shigehiro Ushiki for many valuable discussions and advices.

The Author would like to thank Professor Manfred Denker, Hartje Kriete
and Stefan Heinemann for their kind hospitality in Goettingen University
from April to September in 1998. This paper was written during this stay.

The Author would like to thank Professor Manfred Denker and David
Boyd for many valuable discussions and suggestions.

2 Hyperbolicity

De�nition 2.1. Let G be a rational semigroup. We set

P (G) =
[
g2G

f critical values of gg:
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We call P (G) the post critical set of G: We say that G is hyperbolic if
P (G) � F (G):

Theorem 2.2 ([S2]). Let G = hf1; f2; : : : fni be a �nitely generated hyper-
bolic rational semigroup . Assume that G contains an element with the degree
at least two and each M�obius transformation in G is neither the identity nor
an elliptic element. Let K be a compact subset of C nP (G): Then there are
a positive number c; a number � > 1 and a Riemannian metric � on an open
subset V of C n P (G) which contains K [ J(G) and is backward invariant
under G such that for each k

inffk(fik � � � � � fi1)
0(z)k� j z 2 (fik � � � � � fi1)

�1(K); (ik; : : : ; i1) 2 f1; : : : ; ng
kg

� c�k; here we denote by k � k� the norm of the derivative measured from
the metric � to it.

Now we will show the converse of Theorem 2.2.

Theorem 2.3 ([S2]). Let G = hf1; f2; : : : fni be a �nitely generated ratio-
nal semigroup. If there are a positive number c; a number � > 1 and a
Riemannian metric � on an open subset U containing J(G) such that for
each k

inffk(fik � � � � � fi1)
0(z)k� j z 2 (fik � � � � � fi1)

�1(J(G)); (ik; : : : ; i1) 2 f1; : : : ; ng
kg

� c�k; where we denote by k � k� the norm of the derivative measured from
the metric � on V to it, then G is hyperbolic and for each h 2 G such that
deg(h) is one the map h is not elliptic.

Remark. Because of the compactness of J(G); we can show, with an
easy argument, which is familiar to us in the iteration theory of rational
functions, that even if we exchange the metric � to another Riemannian
metric �1; the enequality of the assumption holds with the same number �
and a di�erent constant c1:

De�nition 2.4. Let G = hf1; f2; : : : fni be a �nitely generated rational
semigroup. We say that G is expanding if the assumption in Theorem 2.3
holds.

3 Skew product

Let m be a positive integer. We denote by �m the one-sided word space,
that is

�m = f1; : : : ;mgN
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and denote by � : �m ! �m the shift map, that is

(w1; : : : ) 7! (w2; : : : ):

Let G = hf1; f2; : : : fmi be a �nitely generated rational semigroup. We de�ne
a map ~f : �m � C! �m � C by

~f((w;x)) = (�w; fw1x):

~f is a �nite-to-one and open map. We have that a point (w; x) 2 �m �
C satis�es f 0w1

(x) 6= 0 if and only if ~f is a homeomorphism in a small

neighborhood of (w; x): Hence the map ~f has in�nitely many critical points
in general.

De�nition 3.1. For each w 2 �m we denote by Fw the set of all the points
x 2 C which satis�es that there exists an open neighborhood U of x such
that the family ffwn � � � � � fw1gn is normal in U: We set Jw = C n Fw and
~Jw = fwg � Jw: Moreover we set

~J( ~f) =
[

w2�m

~Jw; ~F ( ~f) = (�m � C) n ~J( ~f):

We often write ~F ( ~f) as ~F and ~J( ~f) as ~J: We call ~F ( ~f) the Fatou set for ~f
and ~J( ~f) the Julia set for ~f:

For each (w; x) 2 �m � C and an positive integer n we set

( ~fn)0((w; x)) = (fwn � � � fw1)
0(x):

Let (w;x) 2 �m�C be a periodic point of ~f with the period p:We say that
(w; x) is attracting if j( ~f p)0((w;x))j < 1; indi�erent if j( ~fp)0((w; x))j = 1
and repelling if j( ~fp)0((w;x))j > 1:

Proposition 3.2. 1. ~F and ~J are completely invariant under ~f: ~F is
open and ~J is compact. ~f( ~Jw) = ~J�w: ~F ( ~f) is equal to the set of all
the points (w; x) 2 �m � C which satis�es that there exists an open
neighborhood U of x and an open neighborhood V of w such that for
each a 2 V the family of maps ffan � � � � � fa1g is normal in U:

2. ~J = \1n=0
~f�n(�m � J(G)): �2( ~J) = J(G); where we denote by �2 :

�m �C! C the second projection.

3. ~J has no interior points or is equal to �m �C:

4. If ](J(G)) � 3; then ~J is a perfect set.

5. If ](J(G)) � 3; then ~J is equal to the closure of the set of all repelling
period points of ~f:
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6. Assume ](J(G)) � 3 and E(G) � F (G): Let K be a compact subset of
��12 (C n E(G)): If U is an open set in �m � C satisfying U \ ~J 6= ;;
then there exists a positive integer N such that for each integer n with
n � N; we have ~fn(U) � K:

Proof. By de�nition, it is easy to see 1. and 2. Assume ~J 6= �m � C and
~J contains a non-empty open set U: Then F (G) 6= ; and for each positive
integer n we have

�2 ~f
n(U) � C n F (G):

By Montel's theorem, this is a contradiction. Hence 3. holds.
Let z 2 ~J be a point and assume there exists an open neighborhood

U of z such that U n fzg � ~F: There exists a positive integer n such that
�1( ~fn(U)) = �m: It follows that �2( ~fn(z)) 2 J(G) and �2( ~fn(U n fzg)) �
F (G): Since ](J(G)) � 3; we have J(G) is perfect and so that is a contra-
diction. Hence 4. holds.

Now we will show 5. Let (w;x) 2 ~J: Let U be a neighborhood of w in
�m and V be a neighborhood of x in C: There exists a positive integer n
such that if we set

Un = f� 2 �m j �j = wj; j = 1; : : : ; n; g

then Un � U: We set

Gn = fg 2 G j g = � � � fwn � � � � � fw1g:

Then this is a subsemigroup of G: We have

J(Gn) = (fwn � � � fw1)
�1J(G)

and since J(G) has in�nitely many points, J(Gn) must have at least three
points. By Theorem 3.1 in [HM1](Note that if we read the proof of this
theorem, we can see that the statement of this theorem holds whenever the
Julia set has at least three points), we get that J(Gn) is the closure of the set
of repelling �xed point of all elements ofGn: Since x 2 (fwn � � � fw1)

�1J(G) =
J(Gn); there exists an element g 2 Gn and a point y 2 V such that y is a
repelling �xed point of g: Hence 5. holds.

Now we will show 6. Let K and U be as in 6. Assume E(G) 6= ;: If E(G)
has exactly two points, then it is easy to show the statement of 6. Suppose
E(G) = fxg and let V be a connencted component of F (G) containing x:
Let � be the hyperbolic metric in V: Since each fj does not increase the
metric and x is a �xed point of it, there exists an open hyperbolic ball
A about x included in V such that fj(A) � A for each j: It implies that
~f(��12 (A)) � ��12 (A): Hence, from the beginning of the proof, we can assume
that
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~f(K) � K: (1)

We will show that for each positive integer k;

K � [1j=1 ~f
kj(U): (2)

There exists a positive integer j such that �1 ~fkj(U) = �m: On the other
hand, by [HM1], for any rational semigroup G1 the closure of the backward
orbit of each point x 2 C nE(G) under G1 contains the Julia set J(G1): By
[HM1] again, the Julia set of the subsemigroup Hk of G which is generated
by :

ff�k � � � � � f�1 j (�k; : : : ; �1) 2 f1; : : : ;mg
kg

is equal to J(G): Also we have E(Hk) = E(G) by de�nition of the excep-
tional set. Hence (2) holds.

By 5., we obtain that there exists an open set U0 included in U and a
positive integer s such that ~f s(U0) � U0: Hence by (2), we get that there
exists a positive integer N such that ~fN (U) � K: From (1), it follows that
for each positive integer n with n � N; we have ~fn(U) � K: Hence the
statement of 6. holds when E(G) has exactly one point. If E(G) = ;; we
can show the statement in the same way as the above.

4 Hausdor� dimension of Julia sets of expanding

semigroups

De�nition 4.1. Let G be a rational semigroup and � be a non-negative
number. We say that a probability measure � on C is �-subconformal if for
each g 2 G and for each measurable set A;

�(g(A)) �

Z
A

kg0(z)k�d�:

And we set

s(G) = inff� j 9� : �-subconformal measureg

For each j = 1; : : : ; m; let 'j be a H�older continuous function on f
�1
j (J(G)):

We set for each (w;x) 2 ~J; '((w; x)) = 'w1(x): Then ' is a H�older con-
tinuous function on ~J: We de�ne an operater L on C( ~J) = f : ~J ! C j
continuous g by

L ((w; x)) =
X

~f((w0;y))=(w;x)

exp('((w0; y)))

exp(P )
 ((w0; y));

counting multiplicities, where we denote by P = P ( ~f j ~J ; ') the pressure of

( ~f j ~J ; '):
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Lemma 4.2. With the same notations as the above, let G = hf1; f2; : : : fmi
be a �nitely generated expanding rational semigroup. Then for each set of
H�older continuous functions f'jgj=1;::: ;m; there exists a unique probability
measure � on ~J such that

� L�� = �;

� for each  2 C( ~J); kLn � � ( )�k ~J ! 0; n ! 1; where we set

� = liml!1 Ll(1) 2 C( ~J) and we denote by k � k ~J the supremum norm

on ~J;

� �� is an equilibrium state for ( ~f j ~J ; '):

Lemma 4.3. Let G = hf1; f2; : : : fmi be a �nitely generated expanding ra-
tional semigroup. Then there exists a unique number � > 0 such that if we
set 'j(x) = �� log(kf 0j(x)k); j = 1; : : : ;m; then P = 0:

From Lemma 4.2, for this � there exists a unique probability measure �
on ~J such that L��� = � where L� is an operator on C( ~J) de�ned by

L� ((w;x)) =
X

~f((w0;y))=(w;x)

 ((w0; y))

k(fw0

1
)0(y)k�

:

Also � satis�es that

� =
h�� ( ~f)R
~J ~'�d�

�
log(
Pm

j=1 deg(fj))R
~J ~'�d�

;

where � = liml!1 Ll�(1); we denote by h�� (
~f) the metric entropy of ( ~f; ��)

and ~' is a function on ~J de�ned by ~'((w; x)) = log(kf 0w1
(x)k):

By these argument, we get the following result.

Theorem 4.4. Let G = hf1; f2; : : : fmi be a �nitely generated expanding
rational semigroup and � the number in the above argument. Then

dimH(J(G)) � s(G) � �:

Moreover, if the sets ff�1j (J(G))g are mutually disjoint, then dimH(J(G)) =
� < 2 and 0 < H�(J(G)) < 1; where we denote by H� the �-Hausdor�
measure.

Corollary 4.5. Let G = hf1; f2; : : : fmi be a �nitely generated expanding
rational semigroup. Then

dimH(J(G)) �
log(
Pm

j=1 deg(fj))

log �
;

where � denotes the number in De�nition 2.4.
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Example 4.6. 1. Let G = hf1; f2i where f1(z) = z2 and f2(z) = 2:3(z�
3) + 3: Then we can see easily that fjzj < 0:9g � F (G) and G is
hyperbolic. By the corollary 4.5, we get

dimH(J(G)) �
log 3

log 1:8
< 2:

In particular, J(G) has no interior points. In [S3], it is shown that if
a �nitely generated rational semigroup satis�es the open set condition
with an open set O; then the Julia set is equal to the closure of the
open set O or has no interior points. Note that the fact that the Julia
set of the above semigroup G has no interior points was shown by only
using analytic quantity. It seems to be true that G does not satisfy
the open set condition.

2. Let G = hz
3

4 ; z
2 + 8i: Then we can see easily that fjzj < 2g � F (G)

and G is hyperbolic. Hence we have

dimH J(G) �
log 5

log 3
< 2:

In particular, J(G) has no interior points.

5 self-similar measure

We now consider about invariant measures and self-similar measures on Julia
sets. In the cases of iterations of rational functions, Brolin's and Lyubich's
studies are well known([Br], [L]). Recently, D.Boyd investigated \invariant
measure" (that is, the measure (�2)�~� in the notation in Theorem 5.3) in the
case that each fj is of degree at least two and have shown the uniqueness in
[Bo]. We introduce some notations and results from [L]. Let A be a bounded
operator in the complex Banach space B: The operator A is called almost
periodic if the orbit fAm'g1m=1 of any vector ' 2 B is strongly conditionally
compact. The eigenvalue � and related eigenvector are called unitary if
j�j = 1: The set of unitary eigenvectors of the operator A will be denoted
by specuA: We denote by Bu the closure of the linear span of the unitary
eigenvectors of the operator A: And we set

B0 = f' j Am'! 0 (m!1)g;

here the convergence is assumed to be strong.

Theorem 5.1. ([L]) If A : B ! B is an almost periodic operator in the
complex Banach space B; then

B = Bu � B0:
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Corollary 5.2. ([L]) Let A : B ! B be an almost periodic operator in the
complex Banach space B: Assume that specuA = f1g and the point � = 1
is a simple eigenvalue. Let h 6= 0 be an invariant vector of the operator A:
Then there exists an A� invariant functional � 2 B�; �(h) = 1; such that

Am'! �(')h m!1:

Let G = hf1; f2; : : : fmi be a �nitely generated rational semigroup. We
set dj = deg(fj) for each j = 1; : : : ;m and d =

Pm
j=1 dj : For each compact

set K of C we denote by C(K) all continuous complex valued functions
on K: It is a Banach space with supremum norm on K: Assume that K is
backward invariant under G: For each j and for each element ' we set

(Aj')(z) =
1

dj

X
�2f�1

j (z)

'(�);

where z is any point of K: Then Aj' is an element of C(K) and Aj is a
bounded operator on C(K): We set

W = f(a1; : : : ; an) 2 R
n j
X
j

aj = 1; aj � 0g:

And for each a 2 W we set

(Ba')(z) =
nX

j=1

aj(Aj')(z):

Then Ba is a bounded operator on C(K):
Similarly, let ~K be a compact subset of �m � C which is backward

invariant under ~f: We de�ne an operator ~Ba on C( ~K) as follows. For each
element ~' 2 C(K) we set

( ~Ba ~')(z) = �
�2 ~f�1(z) ~'(�)

~ a(�)

where ~ a(�) =
aw1
dw1

if �1(�) = (w1; w2; : : : ):

~Ba is a bounded operator on C( ~K): Furtheremore, if �2( ~K) = K; then
we get

��2Ba = ~Ba�
�
2

and ��2 ;C(K)! C( ~K) is an isometry.

Theorem 5.3. Let G = hf1; : : : ; fmi be a �nitely generated rational semi-
group. Assume that there exists an element g0 2 G of degree at least two,
the exceptional set E(G) for G is included in F (G) and F (H) � J(G) where
H is a rational semigroup de�ned by H = fh�1 j h 2 Aut (C) \ Gg:( if H
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is empty, put F (H) = C:) Then for each a 2 W with a 6= 0 there exists a
unique regular Borel probability measure ~�a on �m � C such that for each
compact set ~K which is included in ��12 (C n E(G)) and backward invariant
under ~f;

k ~Bn
a ( ~')� ~�a(')1k ~K ! 0;

as n!1; for each ~' 2 C( ~K); where we denote by 1 the constant function
taking its value 1: Similarly, there exists a unique regular Borel probability
measure �a on C such that for each compact set K which is included in
C nE(G) and backward invariant under G;

kBn
a (')� �a(')1kK ! 0;

as n!1; for each ' 2 C(K):
Moreover, (�2)�(~�a) = �a: The support of ~�a is equal to ~J and the sup-

port of �a is equal to J(G):

De�nition 5.4. We call ~�a or �a the self-similar measure with respect to
the weight a:

We need some lemmas to prove Theorem 5.3.

Lemma 5.5. Let G = hf1; : : : ; fmi be a �nitely generated rational semi-
group. Assume that there exists an element g0 2 G of degree at least two
and F (H) � J(G) where H is a rational semigroup de�ned by H = fh�1 j
h 2 Aut (C) \ Gg:( if H is empty, put F (H) = C:) Then there exists a
� > 0 such that for each x 2 J(G); if we denote by Fx;� the family of maps
satisfying that each element of it is a well-de�ned inverse branch of some
element of G on B(x; �) where B(x; �) is a ball about x with the radius �
with respect to the spherical metric, then Fx;� is a normal family on B(x; �):

Proof. Take x 2 J(G): Let D = B(x; �) where � is a small positive number.
Let G1 be the subsemigroup of G such that for each element g 2 G1 there
exists an element g1 2 G and integer j with 1 � j � m and dj � 2 satisfying
g = g1fj: Let F1 be the family of maps from D to C such that each element
of F1 is an inverse branch of some element of G1: Then from Theorem 2.1
in [HM3], F1 is normal in D: Taking � smaller, we can assume that

[�2F1�(D) � F (H): (3)

Now let (gj)j be any sequence of elements of Fx;� where gj is an element of
G: For each j there exists an element  j 2 G1 [ fIdg and an hj 2 H [ fIdg
such that gj =  jhj: Then for each j;  j(hjg

�1
j ) = gjg

�1
j = IdD: Hence we

have hjg
�1
j 2 F1: Since F1 is normal in D; there exists a map g from D

to C and a sequence of positive integers (jk) such that hjkg
�1
jk

! g locally
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uniformly on D as k ! 1: By (3), we can assume that there exists a map
h from a neighborhood V of g(D) to C such that h�1jk ! h locally uniformly

on V as k !1: It follows that g�1jk
= h�1jk hjkgjk ! hg locally uniformly on

D as k ! 1: Hence we have Fx;� is normal on D: Since J(G) is compact,
the statement of our lemma holds.

Lemma 5.6. Under the same assumption as Theorem 5.3, let ~K be a com-
pact subset of ��12 (CnE(G)) which is backward invariant under ~f: If ~Ba' =
�'; j�j = 1; then � = 1 and ' is constant. That is, (C( ~K))u = C � 1:

Proof. Let z be a point of ~K such that

j'(z)j = sup
w2 ~K

j'(w)j:

Then

j'(z)j = j( ~Ba')(z)j

�
X

�2 ~f�1(z)

j a(�)jj'(�)j

�
X
j

aj j'(z)j = j'(z)j:

Hence if � is a point of ~f�1(z); then j'(�)j = j'(z)j and it implies '(�) =
�'(z): Fix any point �0 2 ~J: By Proposition 3.2.6, there exists a sequence
(�n) such that �n 2 ~f�n(z) for each positive integer n and �n ! �0 as n!1:

Hence we have �n'(z) = '(�n)! '(�) as n!1: It implies � = 1:
Now we will show that ' is constant. We put ' = <' + i=': Then

~Ba(<') = <'; ~Ba(=') = =':

Let z be a point of ~K such that

<'(z) = sup
w2K

<'(w):

By a similar argument we can show that <'(�) = <'(z) for each � 2 ~f�1(z):
Let � be any point of ~J: Let (�n)n be a sequence such that for each n the point
�n belongs to ~f�n(z) and �n ! �: Then <'(�n)! <'(�) so <'(z) = <'(�):
In the same way we can show that if x is the minimum point of the function
<'; then '(x) = '(�); where � is any point of ~J: Hence <' is constant and
by the same argument =' is also constant. Whence ' is constant.

Lemma 5.7. Under the same assumption as Theorem 5.3, if K is a com-
pact subset of ��12 (C nE(G)) which is backward invariant under ~f; then ~Ba

is an almost periodic operator on C(K):
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Proof. We will develop the methods of key lemma about equicontinuity of
fBn

a0
�gn where a0 = (d1

d
; : : : ; dm

d
); � 2 C(K) in [Bo]. Let ' 2 C(K) be

any element. We have k ~Ba
n
'kK � k'kK for each positive integer n: By the

Ascoli-Arzela Theorem, we have only to show that the family f ~Ba
n
'gn is

equicontinuous on ~K:
For each t = (t1; : : : ; tm) 2 N

m; we set

ar;t =
trdrPn
k=1 tkdk

; r = 1; : : : ;m;

and a(t) = (a1;t; : : : ; am;t) 2 W : Then there exists a sequence (tl)l of ele-
ments of Nm such that a(tl)! a; as l !1:

For each p 2 N; we set

Zp = [(ip;::: ;i1)2f1;::: ;mgpfcv(fip � � � fi1)g = �2(cv( ~f
p));

where cv means the critical values.
Let U be any simply connected domain such that U � C n Zp: For each

i = 1; : : : ; m and l 2 N; we set

gli;j = fi; j = 1; : : : ; tli:

For each l 2 N we consider fgli;jgi;j as a generator system and let ~fl : �m(l)�

C ! �m(l) � C be the skew product map constructed by that generator
system in the same way as the beginning of this section where m(l) =Pm

i=1 t
l
i: For each s 2 N and l 2 N; we denote by �s;l = �s;l(U) the cardinality

of the family consisting of well-de�ned inverse branches of ~fl
s
on �m(l) �U:

For each �nite word f1; 2; : : : ;m(l)gs; let �s;k;� be the cardinality of the
family consisting of well-de�ned inverse branches of the element in hgli;jii;j
corresponding to the word � on U: Then by de�nition, we have

�s;l =
X

�2f1;2;::: ;m(l)gs

�s;l;�:

For each k = 1; 2; : : : ; m(l); let ek be the degree of k-th element of fgli;jgi;j :
Then we have

�s+1;l;�k � ek(�s;l;� � (2ek � 2)):

13



Hence we get

�s+1;l =
X

�2f1;2;::: ;m(l)gs

X
k2f1;2;::: ;m(l)g

�s+1;l;�k

�
X

�2f1;2;::: ;m(l)gs

X
k2f1;2;::: ;m(l)g

ek(�s;l;� � (2ek � 2))

= (
X

k2f1;2;::: ;m(l)g

ek)�s;l �m(l)s
X

k2f1;2;::: ;m(l)g

ek(2ek � 2)

= (
mX
j=1

tljdj)�s;l �m(l)s(
mX
j=1

2tlj(d
2
j � dj))

= d(l)�s;l �m(l)se(l);

where d(l) =
Pm

j=1 t
l
jdj and e(l) =

Pm
j=1 2t

l
j(d

2
j � dj): It follows that �p;l =

d(l)p and for each positive integer n;

�p+n;l � d(l)p+n � e(l)m(l)p
n�1X
i=0

m(l)n�1�id(l)i:

Hence we get for each l 2 N and n 2 N;

d(l)p+l � �p+n;l

d(l)p+n
� e(l)(

m(l)

d(l)
)p

1

d(l)

n�1X
i=1

(
m(l)

d(l)
)i: (4)

We have

m(l)

d(l)
=

mX
j=1

aj;tl
1

dj
!

mX
j=1

aj
1

dj
< 1; (5)

e(l)

d(l)
=

mX
j=1

aj;tl2(d
2
j � dj)!

mX
j=1

aj2(d
2
j � dj); (6)

as l!1: By (5), we can assume that there exists a number � with 0 < � < 1
such that for each l 2 N;

m(l)

d(l)
< �: (7)

Now let � > 0 be arbitrary small positive number. From (4), (6) and (7), we
get that there exists a positive integer p such that for each simply connected
domain U satisfying U � C n Zp; the number �p+n;l = �p+n;l(U) satis�es
that

d(l)p+n � �p+n;l

d(l)p+n
� �; (8)
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for each l 2 N and n 2 N:
Let d�m

be a �xed metric in �m and d
C
(; ) the spherical metric on

C: Let ~d(; ) be the metric on �m � C de�ned by: ~d((w0; y0); (w; y)) =
maxfd�m(w

0; w); d
C
(y0; y)g:

Let � be a number in Lemma 5.5. Let K 0 = B(J(G); 1
2�): Let (w; x) 2

�m � C be a point such that x 2 �2(K) \K 0 n Zp: We can easily see that
there exists a positive number �1 such that if ~d(z; z0) < �1; z; z

0 2 K and
�2(z) = �2(z

0); then

j ~Bn
a(l)'(z)�

~Bn
a(l)'(z

0)j < �; (9)

for each l 2 N and n 2 N: Hence by Lemma 5.5, (8) and (9), we get that if
we take �2 so small then for each (w0; x0) 2 K with ~d((w; x); (w0; x0)) < �2;

we have

j ~Bn
a(l)'((w; x))�

~Bn
a(l)'((w

0; x0))j

� j ~Bn
a(l)'((w; x))�

~Bn
a(l)'((w; x

0))j + j ~Bn
a(l)'((w;x

0))� ~Bn
a(l)'((w

0; x0))j

� �+ 2M�+ � = �(2 + 2M);

(10)

where M = supz2K j'(z)j; for each l 2 N and n 2 N:
Now, let z 2 K be any point. By Proposition 3.2.6, there exists a positive

integer � such that for each y 2 K; we have

�2( ~f
�� (y)) \ (�2(K) \K 0 n Zp) 6= ;: (11)

For each l 2 N; we set

�(l) = min
(w1;::: ;w� )2f1;::: ;mg�

tlw1
� � � tlw� : (12)

Then we have

0 < ( min
j=1;::: ;m

awj

dwj
)� � lim inf

l!1

�(l)

d(l)�
; (13)

lim sup
l!1

�(l)

d(l)�
� ( max

j=1;::: ;m

awj

dwj
)� < 1: (14)

Hence we can assume that there exist constants c1 and c2 such that for each
l 2 N;

0 < c1 �
�(l)

d(l)�
� c2 < 1: (15)
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For each l 2 N; let �l : �m � C ! �m(l) � C be an natural embedding

and �l : �m(l) � C ! �m � C the natural projection. For each l 2 N

and n 2 N; let Sn;l be the set of solution of ~f �nl (z0) = �l(z) and ]Sn;l the
cardinality counting multiplicity. Let S1;l;1 be a subset of S1;l such that the
second projection of each point of the set belongs to �2(K) \K 0 n Zp and
]S1;l;1 = �(l): And let S1;l;2 = S1;l n S1;l;1: Inductively, for each n � 1;
let Sn+1;l;1 be a set of backward images of Sn;l;2 by ~f �l such that the second
projection of each point of the set belongs to �2(K)\K 0 nZp and ]Sn+1;l;1 =
�(l)]Sn;l;2 where the cardinalities are counted considering multiplicity. And
let Sn+1;l;2 = ~f�� (Sn;l) n Sn+1;l;1: Then inductively we can see that for each
n 2 N;

]Sn;l;2 = (d(l)� � �(l))n�1 (16)

and

]Sn;l;1 = (d(l)� � �(l))n�2�(l): (17)

By (15), there exists a positive integer N such that for each l 2 N;

(
d(l)� � �(l)

d(l)�
)N < �: (18)

By (9 ), there exists a number � > 0 such that for each n 2 N; l 2 N and
j = 1; : : :N; if z0 2 �l(Sj;l;1) and ~d(z0; x); ~d(z0; y) < �;

j ~Bn
a(l)(')(x)�

~Bn
a(l)(')(y)j < 2�(2 + 2M): (19)

By (16), (17), (18) and (19), we can see that if we take �2 > 0 small enough
then ~d(z; z0) < �2; z

0 2 K implies that for each n 2 N and l 2 N;

j ~Bn+�N
a(l) (')(z)� ~Bn+�N

a(l) (')(z0)j

� d(l)�N�

d(l)�NX
i=1

j ~Bn
a(l)(')(�

l(zi))� ~Bn
a(l)(')(�

l(z0i))j

�
1

d(l)N�
(
NX
j=1

]Sj;l;1

d(l)N��j�
2�(2 + 2M) + ]SN;l;22M)

= (
NX
j=1

(
d(l)� � �(l)

d(l)�
)j�1

�(l)

d(l)�
� 2�(2 + 2M)) + 2M�;

where on the above we set fz1; : : : zbg = S�N;l; b = d(l)�N and we denoted
by z0i the point of

~f��N
l

(�l(z0)) corresponding to zi: By (15), there exists a
constant C > 0; not depending on N; such that for each l 2 N;

NX
j=1

(
d(l)� � �(l)

d(l)�
)j�1

�(l)

d(l)�
� C: (20)
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Hence we get

j ~Bn+�N
a(l)

(')(z)� ~Bn+�N
a(l)

(')(z0)j � �(4C + 4MC + 2M): (21)

Letting l !1; we get that for each n 2 N;

j ~Bn+�N
a (')(z)� ~Bn+�N

a (')(z0)j � �(4C + 4MC + 2C): (22)

Thus we have proved the lemma.

Proof. of Theorem 5.3. By Corollary 5.2, Lemma 5.6 and Lemma 5.7 we can
show the statement about convergence of the operator and that the support
of ~�a is included in ~J in the same way as that in [L]. Since ~�a is ~B�

a-invariant
and inf

z2 ~J
~ a(z) > 0; by Proposition 3.2.6, we can show that the support of

~�a is equal to ~J immediately. It implies that the support of �a is equal to
J(G):

Lemma 5.8. Under the same assumption as Theorem 5.3, for any a 2 W
with a 6= 0; we have �a is non-atomic.

Proof. We set for each n 2 N; l 2 N and z 2 J(G);

c(n; l)(z) =
X

�2f1;::: ;m(l)gn; g�1�����g�n(z)2J(G)

(mul (g�1 � � � � � g�n)at z); (23)

where we denote by g�j any element of fgli;jg and mul denotes the multi-
plicity. We will show the following claim.

Claim 1. for any z 2 J(G); there exists an open neighborhood U(z) of
z and a word (w1(z); : : : ; w2(z)) 2 f1; : : : ;mg2 such that for each y 2 U(z);

(mul (fw2(z) � fw1(z))at y) < dw2(z)dw1(z):

Suppose there exists a point z 2 J(G) such that for each (w2; w1) 2 f1; : : : ; mg2;

mul (fw2 � fw1)at z = dw2dw1 :

For each j = 1; : : : m; we set zj = fj(z): We can assume that there exists a
positive integer t with 1 � t � m such that d1; : : : ; dt � 2 and dt+1 = � � � =
dm = 1:

If there exists an integer i such that z 6= zi then for each integer s with
1 � s � t; mul fs at z and at zi are equal to ds: Hence, conjugating G by
some M�obius transformation, we can assume that z = 0; zs = 1; fs(z) =
1
zds

for each s with 1 � s � t and zt+1; : : : ; zm 2 f0;1g: It implies z 2 E(G)
but this contradicts to the assumption E(G) � F (G):

If z = zi for each i = 1; : : : ;m; then conjugating G by some M�obius
transformation, we can assume that z =1 and f1; : : : ; fm are polynomials.
It contradicts to E(G) � F (G): Hence the claim 1. holds.
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From claim 1, there exists a �nite collection U(x1); : : : ; U(xk) with
[kj=1U(xj) � J(G) where x1; : : : xk 2 J(G) such that for each j = 1; : : : ; k;

there exists a word (w2(xj); w1(xj)) 2 f1; : : :mg2 satisfying that for each
y 2 U(xj);

(mul (fw2(xj) � fw1(xj))at y) < dw2(xj)dw1(xj):

We set

c = min
j=1;::: ;k

min
y2U(xk)

(dw2(xj)dw1(xj) � (mul fw2(xj) � fw1(xj )at y)) > 0:

We get for each z 2 J(G) and l 2 N;

c(2; l)(z) � d(l)2 � ( min
j=1;::: ;m

tlj)
2c:

Hence for each n 2 N; l 2 N and z 2 J(G);

c(2n; l)(z)

d(l)2n
� (

d(l)2 � (minj=1;:::m t
l
j)
2c

d(l)2
)n: (24)

Let � > 0 be any small number. And �x z 2 J(G): By (24), there exists a
positive integer n0 such that for each l 2 N;

c(2n0; l)(z)

d(l)2n0
� �: (25)

Take � 2 J(G): For each l 2 N and n 2 N; we set

�
�

l;n
=

1

d(l)n

X
�2f1;::: ;m(l)gn

X
y2(g�1�����g�n)

�1(�)

�y;

where �y denotes the dirac measure concentrated at y and gk denotes the

k-th element of fgli;jgi;j : Note that by Theorem 5.3, ��
l;n
! �a(tl) weakly as

n!1: There exists an open neighborhood U of z such that if we set

c0(2n0; l)(U) =
X

�2f1;::: ;m(l)gn0 ; g�1�����g�n0 (z)2J(G)

deg(g�1 � � � � � g�n0 jU);

then we have c0(2n0; l)(U) = c(2n0; l)(z): Hence by (25), we get that for each
n 2 N and l 2 N;

�
�

l;2n0+n
(U) �

d(l)nc0(2n0; l)(U)

d(l)2n0+n
� �;

Letting n ! 1; since we can assume that �a(tl)(@U) = 0 for each l 2 N;
we get for each l 2 N;

�a(tl)(U) � �: (26)
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By the uniqueness of the self-similar measure with respect to the weight a;
we have �a(tl) ! �a weakly as l ! 1: Since we can assume �a(@U) = 0;
by (26), we get

�a(U) � �:

Since � can be taken arbitrary small, we get �a(fzg) = 0: Hence �a is
non-atomic.

6 entropy

Lemma 6.1. Under the same assumption as Theorem 5.3, let ~�a be the self-
similar measure with respect to the weight a 2 W : Then ~�a is ~f -invariant
and

1. ( ~f; ~�a) is exact.

2. h~�a(
~f) � H(�j( ~f)�1�) = �

Pm
j=1 aj log aj +

Pm
j=1 aj log dj; where we

denote by � the partition of �m � C into one point subsets.

Proof. By Theorem 5.3, the measure ~�a is ~B�
a-invariant. Hence for each

' 2 C(�m �C);

Z
' � ~fd~� =

Z
~Ba(' � ~f)d~� =

Z
'd~�:

Hence ~�a is ~f -invariant.
Let �z denote the conditional measure on the element of partition ~f�1�

containing z 2 �m � Cwith respect to the measure ~mua: Then by Theo-
rem 5.3 and using the same argument as that in p366-367 in [L], we can
show that

�z =
mX
j=1

aj

dj

X
�2 ~f�1 ~f(z)\�m;j

�� ; (27)

where �m;j = fw 2 �m j w1 = jg: By Theorem 5.3 and (27), using the same
argument as that in P367 in [L] again, we can show that ( ~f; ~�a) is exact.

By Lemma 5.8, we have �2�~�a is non-atomic. In particular,

~�a(cv ( ~f)) = 0: (28)

By (27) and (28), we get that

I(�j ~f�1�)(z) = �
mX
j=1

dj �
aj

dj
log

aj

dj
= �

mX
j=1

aj log
aj

dj
; (29)
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for ~�-almost all z 2 �m �C: Hence

H(�j ~f�1�) =

Z
I(�j ~f�1�)(z)d~�(z) = �

mX
j=1

aj log
aj

dj
:

Now we will estimate the topological entropy of ~f from above.

Theorem 6.2. Let G = hf1; : : : ; fmi be a rational semigroup and ~f : �m�
C ! �m � C the skew product map constructed by the generator system
ff1; : : : ; fmg: Then the toplogical entropy h( ~f) on �m � C sati�es that

h( ~f) � log(
mX
j=1

deg fj):

To prove this theorem, we need several lemmas.
The �rst one is the Ruelle's inequality for skew product maps. Let

X be a compact metric space and M a compact C1 manifold. Let f :
X �M ! X �M be a continuous map such that f(x; y) = (�(x); gx(y))
where � : X ! X is a continuous map, gx : M ! M is a di�erential map
for each x 2 X: Let Dygx : TyM ! Tgx(y)M be the linear map induced
by gx: Assume that (x; y) 7! Dygx is continuous. For each positive integer
n and (x; y) 2 X � M; we de�ne D(x;y)f

n : TyM ! T�2(fn(x;y))M as
v 7! D(g�n(x) � � � � � gx)(v): Then we get the following result by a slight
modi�cation of Theorem 2. in [Ru].

Lemma 6.3. Under the above, let � be an f -invariant probability measure
on X �M: Then,

1. there exists a Borel set 
 in X �M such that �(
) = 1 and for each
(x; y) 2 
 the following holds. There is a strictly increasing sequence
of subspaces:

0 = V (0)
x;y � Vx;y(1) � � � � � V (s(x;y))

x;y = TyM

such that, for r = 1; : : : ; s(x; y);

lim
n!1

1

n
log kD(x;y)f

nuk = �(r)x;y if u 2 V (r)
x;y n V

(r�1)
x;y

and �
(1)
x;y < �

(2)
x;y < � � � < �

(s(x;y))
x;y : here we may have �

(1)
x;y = �1:

The V
(r)
x;y and �

(r)
x;y are uniquely de�ned with these properties and in-

dependent of the choice of the Riemannian metric on M: The maps

(x; y) 7! s(x; y); (V
(1)
x;y ; : : : ; V

(s(x;y))
x;y ); (�

(1)
x;y; : : : ; �

(s(x;y))
x;y ) are Borel.
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2. Let m
(r)
x;y = dimV

(r)
x;y � dim V

(r�1)
x;y for r = 1; : : : ; s(x; y) and de�ne

�+(x; y) =
X

r:�
(r)
x;y>0

m(r)
x;y�

(r)
x;y:

Then, the metric entropy h�(f) of (f; �) satis�es that

h�(f) � ��(f) + h(�1)��(�);

where ��(f) =
R
�+(x; y)d�(x; y):

Corollary 6.4. Let G = hf1; : : : ; fmi be a �nitely generated rational semi-
group and ~f : �m � C ! �m � C the skew product map constructed by the
generator system ff1; : : : ; fm:g Let � be an ~f -invariant probability measure
on �m � C: Then we have

h�( ~f) � 2maxf0;

Z
�m�C

lim
n!1

1

n
log k( ~fn)0(z)kd�(z)g+ h(�1)��(�):

Let � be an ~f -invariant probability measure on �m � C: As in p108 in
[P], there exists a �-integrable function J� : �m �C! [1;1) such that

�( ~f(A)) =

Z
A

J�(z)d�(z);

for any Borel set A in �m � C such that ~fjA is injective. Now we will gen-
eralize some Ma~n�e's results([Ma1]), using the methods in [Ma1] and Corol-
lary 6.4.

Lemma 6.5. Let � be an ~f-invariant ergodic probability measure on �m�C
with h�( ~f) > h(�1)��(�): Then the function z 7! log k ~f 0(z)k is �-integrable
and Z

�m�C
logk ~f 0(z)kd�(z) �

1

2
(h�( ~f)� h(�1)��(�)): (30)

Moreover,

lim
n!1

1

n
log k( ~fn)0(z)k =

Z
�m�C

log k ~f 0(z)kd�(z); (31)

for �-almost all z 2 �m � C:

Proof. log k ~f 0(z)k is upper bounded. Since � is ergodic, we have either
log k ~f 0(z)k is not �-integrable and then

lim
n!1

1

n
log k( ~fn)0(z)k = �1 (32)
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for �-a.e. z 2 �m � C; or log k ~f 0k is �-integrable and :

lim
n!1

1

n
log k( ~fn)0(z)k =

Z
�m�C

log k ~f 0(z)kd�(z) (33)

for �-a.e. z 2 �m � C: By Corollary 6.4, we have (32) contradicts to our
assumption. Hence (33) holds. Using again Corollary 6.4, we get thatR
�m�C

log k ~f 0(z)kd�(z) > 0 and

h�( ~f) � 2

Z
�m�C

log k ~f 0(z)kd�(z) + h(�1)��(�):

Corollary 6.6. Let x 2 C be a critical point of some fj; j = 1; : : : ; m: We
set A = f(w;x) 2 �m � C j w1 = jg: Then the function z 7! ~d(z; A) is
�-integrable for each ergodic ~f-invariant probability measure � with h�( ~f) >
h(�1)��(�):

We set

fx1; : : : ; xbg = [mj=1cp(fj);

where cp means the critical points. For each j = 1; : : : ;m; we set

Xj = f(w;xj) 2 �m �C j f 0w1
(xj) = 0g:

Then the following lemma holds.

Lemma 6.7. For each k with 0 < k < 1; there exists a continuous function
� on �m � C; a constant C > 0 and a constant � > 0 such that

1. � (z) � C
Qb

j=1
~d(z; Xj)

�; (if dj = 1 for each j = 1; : : : ;m; then
�(z) � C)

2. if z 2 (�m � C) n [bj=1Xj and ~d(z1; z); ~d(z2; z) < �(z); then

d
C
(�2( ~f(z1); �2( ~f(z2))) � kk ~f 0(z)kd

C
(�2(z1); �2(z2)):

Proof. By Lemma II.5 in [Ma1] and the proof of it, for each i = 1; : : : ; m;
there exists a continuous function �i; a constant Ci > 0 and a constant
�i > 0 such that

1. �i(x) � Ci

Qbi
k=1 dC(x; yk)

�i ; where y1; : : : ; ybi are critical points of fi:
(if di = 1; then �i(x) � Ci:)

2. if x 2 C is not a critical point of fi and dC(a1; x); dC(a2; x) < � (x);
then

d
C
(fi(a1); fi(a2)) � kkf 0i(x)kdC(a1; a2):
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We set �(w; x) = �w1(x) for each (w; x) 2 �m � C: Then there exists
a constant C > 0 such that 1. of our lemma holds. We can assume
sup

z2�m�C
�(z) < 1: Then we can assume that if ~d(z1; z2) < sup

z2�m�C
�(z);

then �1(z1) = �1(z2): By the property of �i; i = 1; : : : m; we have 2. of our
lemma holds.

We can show the following lemma using the same proof as that of Lemma
13.3 in [Ma2](with a slight modi�cation).

Lemma 6.8. Let � be an ~f -invariant probability measure on �m � C and
� : �m�C! [0; 1) a function such that log � is a �-integrable function. Then
there exists a measurable partition P of �m�C such that h�( ~f;P) <1 and
diamP(z) � �(z) for �-almost all z 2 �m�C; where P(z) denotes the atom
of P containing z:

Lemma 6.9. Let � be an ~f-invariant ergodic probability measure on �m�C
with h�( ~f) > h(�1)��(�): Then there exists a measurable partition P of �m�

C such that h�( ~f;P) <1 and P is a generator for ( ~f; �) i.e. _1i=1
~f�n(P) =

� (mod 0 ) where � denotes the partition of �m � C into one point subsets.

Proof. By Lemma 6.5, there exists a constant k with 0 < k < 1 such that
for �-almost all z 2 �m �C;

lim
n!1

1

kn
k( ~fn)0(z)k�1 = 0: (34)

For this k; take � : �m � C ! [0; 1) in Lemma 6.7. By Lemma 6.6 and
Lemma 6.7, we have log � is �-integrable. By Lemma 6.8, we get that there
exists a measurable partition P on �m � C such that h�( ~f;P) < 1 and
diamP(z) � �(z) for �-almost all z 2 �m � C: We will show that P is a
generator for ( ~f; �): For each n 2 N; let Pn = _ni=0

~f�n(P): It is su�cient
to show that

lim
n!1

diam Pn(z) = 0 (35)

for �-almost all z 2 �m � C: Let zi 2 Pn(z); i = 1; 2: Then ~f j(zi) 2
P( ~f j(z)); i = 1; 2; for all j = 1; : : : n: Since diam P( ~f j(z)) � �( ~f j(z)); j =
1; : : : n; we have

d
C
(�2 ~f

j(z1); �2 ~f
j(z2)) � kk ~f 0( ~f j�1(z))kd

C
(�2 ~f

j�1(z1); �2 ~f
j�1(z2));

for each j = 1; : : : ; n: Hence we get

d
C
(�2 ~f

n(z1); �2 ~f
n(z2)) � knk( ~fn)0(z)kd

C
(�2(z1); �2(z2)):

Let C be the diameter of C: We get

d
C
(�2(z1); �2(z2)) � C �

1

kn
k( ~fn)0(z)k�1: (36)
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Hence

diam �2(Pn(z)) � C �
1

kn
k( ~fn)0(z)k�1: (37)

We can assume that for each i = 1; : : :m; the set Yi = f(w;x) 2 �m � C j
w1 = ig is a union of atoms of P : Hence by (34) and (37), we get that (35)
holds. Thus we have proved the lemma.

Lemma 6.10. Let � be an ~f -invariant ergodic probability measure on �m�
C with h�( ~f) > h(�1)��(�): Then

h�( ~f) =

Z
�m�C

log J�(z)d�(z) =

Z
�m�C

I(�j ~f�1(�))(z)d�(z):

Proof. By Lemma 6.9, there exists a generator P with h�( ~f; P) < 1: By
Remark 8.10 and Lemma 10.5 in [P], we get h�( ~f) =

R
�m�C

log J�(z)d�(z):

Proof. of Theorem 6.2 Suppose h( ~f) � logm: Then we have nothing to do.
Suppose h( ~f) > logm: Let � be any ~f -invariant ergodic probability measure
on �m � C with h�( ~f) > logm: Then since h(�) = logm; by variational
principle we get

h�( ~f) > h(�1)��(�):

By Lemma 10.5 in [P] and Lemma 6.10, we have I(�j ~f�1�)(z) = log J�(z) and
h�( ~f) =

R
�m�C

log J�(z)d�(z): Since ~f is a d : 1 map where d =
Pm

j=1 deg(fj)

, we have I(�j ~f�1�)(z) � log(
Pm

j=1 deg(fj)): Hence we get

h�( ~f) � log(
mX
j=1

deg(fj)):

By the variational principle, we get

h( ~f) � log(
mX
j=1

deg(fj)):

Theorem 6.11. Let G = hf1; : : : ; fmi be a �nitely generated rational semi-
group. Assume that there exists an element g0 2 G of degree at least two,
the exceptional set E(G) for G is included in F (G) and F (H) � J(G) where
H is a rational semigroup de�ned by H = fh�1 j h 2 Aut (C) \ Gg:( if H
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is empty, put F (H) = C:) Let ~�a be the self-similar measure with respect to
the weight a 2 W(See Theorem 5.3). Then it is ~f -invariant and

h~�a(
~f) = �

mX
j=1

aj log aj +
mX
j=1

aj log dj:

Also we have that (�1)�~�a is the Bernoulli measure on �m corresponding to
the weight a: Moreover, let ~� be the self-similar measure with respect to the
weight (d1

d
; : : : ; dm

d
): Then ~� is the unique maximizing measure for ~f and we

have

h( ~f) = h~�( ~f) = log(
mX
j=1

deg(fj)):

Also we have ( ~f; ~�a) is exact.

Proof. By Lemma 6.1 and Theorem 6.2, we have

h( ~f) = h~�( ~f) = log(
mX
j=1

deg(fj)):

Now assume there exists an ~f -invariant probability measure � on �m � C
with ~� 6= � and h�( ~f) = log d where d =

Pm
j=1 deg(fj): We will show it

causes a contradiction. We can assume � is ergodic. Since there exists an
element g 2 G with the degree at least two, we have log d > logm: Hence
h�( ~f) > h(�1)��(�): By Lemma 6.10, we have

h�( ~f) =

Z
�m�C

log J�(z)d�(z):

By Lemma 10.5 in [P], we have I(�j ~f�1�)(z) = log J�(z): Since ~f is a d : 1
map, we have log J�(z) � log d for � almost all z 2 �m � C: Hence we get
log J�(z) = log d for � almost all z 2 �m�C: By Proposition 2.2 in [DU], we
get that ~B�

a(�) = � where a = (d1
d
; : : : ; dm

d
) and ~Ba denotes the operator on

C(�m �C) de�ned in section 5. If E(G) = ;; then by Theorem 5.3, we get
� = ~� and this is a contradiction. Assume E(G) 6= ;: Let V be the union of
connected components of F (G) having non-empty intersection with E(G):
Let ' 2 C(�m � C) be any element with '(z) � 0 for all z 2 �m � C: Let
� > 0 be any number. Let A� be the �-open hyperbolic neighborhood in V:
Then K� = ��12 (C nA�) is compact and backward invariant under ~f: Then
by Theorem 5.3,Z

�m�C
'(z)d�(z) =

Z
�m�C

( ~Bn
a')(z)d�(z)

�

Z
K�

( ~Bn
a')(z)d�(z)

! �(K�) �

Z
K�

'(z)d~�(z);
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as n!1: Hence we have for each � > 0;Z
�m�C

'(z)d�(z) � �(K�) �

Z
K�

'(z)d~�(z):

Since h�( ~f) > h(�1)��(�) and � is ergodic, we have �(��12 (E(G))) = 0: Let-
ting �! 0; we getZ

�m�C
'(z)d�(z) �

Z
�m�C

'(z)d~�(z):

It implies that � � ~�: Since � and ~� are probability measures, it follows that
� = ~� but it is a contradiction.

Now we consider a generalization of Ma~n�e's result([Ma3]).

Theorem 6.12. Let G = hf1; f2; : : : fmi be a �nitely generated rational
semigroup. Assume that the sets ff�1i (J(G))gj=1;::: ;m are mutually disjoint.
We de�ne a map f : J(G) ! J(G) by f(x) = fi(x) if x 2 f�1i (J(G)):
If � is an ergodic invariant probability measure for f : J(G) ! J(G) with
h�(f) > 0; then

Z
J(G)

log(kf 0k) d� > 0

and

HD(�) =
h�(f)R

J(G) log(kf
0k) d�

;

where we set

HD(�) = inffdimH(Y ) j Y � J(G); �(Y ) = 1g:

Proof. We can show the statement in the same way as [Ma3]. Note that the
Ruelle's inequality([Ru]) also holds for the map f : J(G)! J(G):

By Theorem 6.11 and Theorem 6.12, we get the following result.

Theorem 6.13. Let G = hf1; f2; : : : fmi be a �nitely generated rational
semigroup. Assume that F (H) � J(G) whereH = fh�1 j h 2 Aut(C)\Gg(if
H = ;; put F (H) = C:) Also assume that the sets ff�1i (J(G))gj=1;::: ;m are
mutually disjoint. Then

dimH(J(G)) �
log(
Pm

j=1 deg(fj))R
J(G) log(kf

0k) d�
;

where � = (�2)�~�a; a = (d1
d
; : : : ; dm

d
) and f(x) = fi(x) if x 2 f

�1
i (J(G)):
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