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Abstract

In this paper, we consider the non-linearizability of polynomials
with irrationally indifferent fixed points. Under the assumption that
there exists a cubic polynomial which is linearlizable at an irrationally
indifferent fixed point with a non-Brjuno multiplier, we show that, for
every degree more than two, one can construct a holomorphic family
of possible maximal dimension consisting of polynomials linearizable
at the fixed point.

1 Introduction

Let f be a germ of a holomorphic map at z0 ∈ C with f(z0) = z0 and call
λ := f ′(z0) the multiplier of f at z0. We consider the linearization problem
of f at z = z0, i.e. whether there exists a holomorphic local change of
coordinate z = h(w) with h(0) = z0 and h′(0) ̸= 0 which conjugates f to the
linear map w 7→ λw. If such h exists, the germ f is said to be linearizable at
z0 and we call h the (analytic) linearizing map of f at z0 or the solution of
the linearization problem of f at z0.

If λ = 0, Böttcher showed that f(z) = zn + an+1z
n+1 + · · · is always

analytically conjugate to w 7→ wn. In the case 0 < |λ| < 1 (resp. 1 < |λ|),
Kœnigs showed that f is always linearizable at z0 and the fixed point z0 is
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called attracting (resp. repelling). If |λ| = 1 and λ is a root of unity, f is
always non-linearizable at z0 and z0 is called parabolic (for the details, see
[5]).

If |λ| = 1 and λ is not a root of unity, the fixed point z0 of f is said to
be irrationally indifferent. In this case, some are linearizable at z0, others
non-linearizable at z0. For example, a rational or entire function f which has
an irrationally indifferent fixed point z0 is linearizable there if and only if the
fixed point z0 belongs to the Fatou set of f (cf. [5] and [8]).

From now on, we always assume that a real number α is irrational. Let
Gz0,α be the set of holomorphic germs at z0 which have an irrationally indif-
ferent fixed point z0 with multiplier λ = exp(2πiα). If α is a Brjuno number,
any germ f ∈ Gz0,α is linearizable at z0 ([2]). We define

B := {α ∈ R − Q ; α is a Brjuno number}.

The Brjuno numbers are defined in terms of the continued fractional expan-
sion. Since we do not need the definition of them, we omit it. For the precise
definition of them, see, for example, [5].

In [9] Yoccoz showed that the Brjuno condition is optimal. In other
words, if α ̸∈ B, we can find a germ f ∈ Gz0,α which is non-linearizable at z0,
indeed, the quadratic polynomial P (z) = e2πiαz + z2 is non-linearizable at
the origin. Thus it follows that a quadratic polynomial with an irrationally
indifferent fixed point with multiplier e2πiα is linearizable there if and only if
α is a Brjuno number, since it is affinely conjugate to P (z). Can we extend
this result for polynomials of degree more than two?

In this paper, we shall study the linearizability of polynomials of degree
more than two at irrationally indifferent fixed points.

In [7] Pérez-Marco showed that for λ = exp(2πiα) (α ̸∈ B) and d > 2,
the family

Pλ,d :={P (z) = λz + a2z
2 + · · · + adz

d; (a2, . . . , ad) ∈ Cd−1} ∼= Cd−1

contains an open dense subset whose elements are non-linearizable at the
origin. It is not known whether this subset coincides with Pλ,d.

The main theorem in this paper is the following.

Main Theorem. Fix λ = e2πiα (α ̸∈ B). Suppose there exists A ∈ C such
that the cubic polynomial Pλ,A(z) = λz + Az2 + z3 is linearizable at the
origin, then for any d ≥ 3, the family Pλ,d contains a holomorphic subfamily
of complex dimension d − 2 whose elements are linearizable at the origin.

Remark. Fix λ = e2πiα (α ̸∈ B). If Pλ,d has a nonlinear element Pd lineariz-
able at the origin, 1

c
Pd(cz) is also linearizable at the origin for any c ∈ C∗,
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so Pλ,d always contains a holomorphic subfamily of complex dimension one
whose elements are linearizable at the origin.

By Pérez-Marco’s result, if Pλ,d contains a holomorphic subfamily con-
sisting of elements linearizable at the origin, the complex dimension of it
is at most d − 2. In this sense, Main Theorem says that for d ≥ 3, Pλ,d

contains a holomorphic subfamily of possible maximal dimension consisting
of elements linearizable at the origin if it is impossible to extend Yoccoz’s
result on quadratic polynomials to the case of cubic polynomials. Thus we
have the following.

Corollary 1.1. Fix λ = e2πiα (α ̸∈ B). The cubic polynomial Pλ,A is non-
linearizable at the origin for any A ∈ C if and only if the α satisfies the
degeneration property : For some d ≥ 3, Pλ,d does not contain a holomorphic
subfamily of complex dimension d − 2 whose elements are linearizable at the
origin.

Corollary 1.2. If every non-Brjuno number has the degeneration property,
it holds that a cubic polynomial with an irrationally indifferent fixed point
with multiplier e2πiα is linearizable there if and only if α is a Brjuno number.

Remark. Fix λ = e2πiα (α ̸∈ B) and d > 3. If Pλ,d has an element Pd

linearizable at the origin, by computing the dimension of Teichmüller space
of the polynomial Pd (c.f. McMullen-Sullivan [4]), it may be possible to show
a result similar to the above. But in this paper, we explicitly construct a
holomorphic subfamily in the proof of Main Theorem.

In the rest of this paper, we shall prove Main Theorem. We fix λ = e2πiα.
In Section 2, we shall show that for a univalent function f on D which has
a fixed point z = 0 with multiplier λ, the function fa,A,b(z) := a−1f(az) +
Abz2+b2z3 can be regarded as a cubic-like map under a suitable condition. In
Section 3, we shall show that the cubic-like map is quasiconformally conjugate
to a cubic polynomial which has a fixed point at the origin with multiplier
λ. In Section 4, we shall complete the proof of Main Theorem.

2 Cubic perturbation of univalent maps

We set

S := {f ; holomorphic and univalent functions on D,

f(0) = 0, and |f ′(0)| = 1},
Sλ := {f ∈ S; f ′(0) = λ} and

Dr := {z; |z| < r} for r > 0.
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Let λ = e2πiα for α ∈ R − Q, and let f be an element of Sλ. We set, for
a ∈ D − {0}, A ∈ C and b ∈ C,

fa,A,b(z) := a−1f(az) + Abz2 + b2z3.

A triplet (Ũ , U, f) is called a cubic-like map if Ũ and U are simply connected

proper subdomains of C, and Ũ is relatively compact in U , and f : Ũ → U
is a proper holomorphic map of degree 3.

Lemma 2.1. For A ∈ C and b ∈ C, we define

RA,b :=
10

9
|A||b| + 15

2
,

BA,b :=27RA,b + 3|A||b| + 81

4
= 33|A||b| + 891

4
,

W :=DRA,b
= {z; |z| < RA,b} and

W̃ :=D1/3 ∩ f−1
a,A,b(W ).

For f ∈ S, a ∈ D − {0}, A ∈ C and |b|2 > BA,b, the triplet (W̃ , W, fa,A,b) is
a cubic-like map.

Proof. It is sufficient to prove this in the case a = 1. Since f ∈ S, it follows
that |z|

(1+|z|)2 ≤ |f(z)| ≤ |z|
(1−|z|)2 for z ∈ D. In particular, if |z| = 1/3, we have

3/16 ≤ |f(z)| ≤ 3/4 and it follows that

|f1,A,b(z)| ≥ |b2z3| − |Abz2 + f(z)| ≥ |b|2

27
− |A||b|

9
− 3

4
> RA,b. (1)

Thus f1,A,b(D1/3) contains the disk W , so f1,A,b : W̃ → W is proper and W̃
is simply connected by the maximum modulus principle. And for |z| = 1/3
and z1 ∈ W , it follows from (1) that

|b2z3 − z1| >|b2z3| − RA,b > |Abz2 + f(z)| and

3

√∣∣∣z1

b2

∣∣∣ < 3

√
RA,b

|b|2
< 3

√
RA,b

27RA,b

=
1

3

since |b|2 > BA,b > 27RA,b by definition. Thus by the theorem of Rouché,

f1,A,b : W̃ → W is a proper map of degree 3.

If W̃ is not connected, then the number of connected components of W̃ is
three or two. First, if it is three, the connected component of W̃ containing
the origin is conformally mapped to W by f1,A,b. However this contradicts
the Schwarz lemma because |λ| = 1. Second, if it is two, two cases occur. If
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f1,A,b conformally maps the connected component of W̃ containing the origin
onto W , we can derive a contradiction by the same argument as above.
Otherwise f1,A,b conformally maps the other component W ′ of W̃ onto W .
So there exists the only one point z0 ∈ W ′ such that f1,A,b(z0) = 0. We define
φ := (f1,A,b|W ′)−1, and ψ(z) := φ(RA,bz). Then ψ conformally maps D onto
W ′, and ψ(0) = z0 (see Figure 1).

D
0 0

z0 φ

ψ

{|z| < 1
3
}

W ′

< 1
6

1
3

f1,A,b|W ′

RA,b

W = {|z| < RA,b}

Figure 1:

By the Koebe one-quarter theorem, it follows that W ′ contains the open
disk of which the radius is 1

4
|ψ′(0)| = 1

4
RA,b|φ′(0)|. Since D1/3 ⊃ W ′ and

W ′ ̸∋ 0, we have 1
4
RA,b|φ′(0)| < 1

6
. Hence

1

|φ′(0)|
>

3RA,b

2
.

On the other hand, we have

1

|φ′(0)|
= |f ′

1,A,b(z0)| ≤ |f ′(z0)| + 2|A||b||z0| + 3|b|2|z0|2

and by the Koebe distortion theorem, |f ′(z0)| < 9/2 for |z0| < 1/3. Since

f1,A,b(z0) = f(z0)+Abz2
0 +b2z3

0 = 0 and |f(z0)| ≤ |z0|
(1−|z0|)2 , we have 3|b|2|z0|2+

2|A||b||z0| < 27
4

+ 5
3
|A||b| for |z0| < 1/3. Hence

1

|φ′(0)|
<

9

2
+

27

4
+

5

3
|A||b| =

45

4
+

5

3
|A||b| =

3

2
RA,b.

This is a contradicton. So W̃ is connected, and the proof is completed.
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3 Straightening of the cubic-like mapping

We define N(M) := 33M+
√

1089M2+891
2

for M > 0. Then |b|2 > BA,b if and
only if |b| > N(|A|).

Let M be an arbitrary positive number and take a smooth function η :
R → [0, 1] which is identically 1 on (−∞, 1/3] and 0 on [RA,b, +∞). And
we define the round annulus A(M) := {b; N(M) < |b| < N(M) + 1}. There
exists a constant R(M) > 0 which depends only on M such that RA,b < R(M)
for any A ∈ DM and b ∈ A(M).

For f ∈ Sλ, a ∈ D1/R(M) − {0}, A ∈ DM and b ∈ A(M), we define

f̃a,A,b(z) := η(|z|)fa,A,b(z) + (1 − η(|z|))(λz + Abz2 + b2z3).

Then f̃a,A,b : C → C is in C∞.

Lemma 3.1. If a → 0, then f̃a,A,b(z) converges to λz + Abz2 + b2z3 in C∞-
topology on C, and this convergence is uniform in f ∈ Sλ, A ∈ DM and
b ∈ A(M).

Proof. On C − DRA,b
, f̃a,A,b(z) ≡ λz + Abz2 + b2z3. If we write f(z) =

λz +
∑∞

n=2 anz
n then |an| ≤ n. Noting that RA,b < R(M), we see that on

DRA,b
,

|fa,A,b − (λz + Abz2 + b2z3)| ≤
∞∑

n=2

|an||a|n−1|z|n

≤ |z|
∞∑

n=2

n|az|n−1 ≤ R(M)
∞∑

n=2

n|aR(M)|n−1

< R(M)
|a|R(M)(2 − |a|R(M))

(1 − |a|R(M))2

so lima→0 fa,A,b(z) = λz + Abz2 + b2z3 uniformly on DRA,b
and in f ∈ Sλ,

A ∈ DM and b ∈ A(M). Since f̃a,A,b(z)−(λz+Abz2+b2z3) = η(z){fa,A,b(z)−
(λz + Abz2 + b2z3)}, it follows that lima→0 f̃a,A,b(z) = λz + Abz2 + b2z3

uniformly on C and in f ∈ Sλ, A ∈ DM and b ∈ A(M). Similarly, we
can see the convergence of the derivatives of f̃a,A,b.

Lemma 3.2. Both of two finite critical points of f̃a,A,b(z) belong to {z; |z| <
1/3} if |a| is sufficiently small.

Proof. From Lemma 3.1, it is sufficient to prove that two critical points of
z 7→ λz + Abz2 + b2z3 is included in {z; |z| < 1/3}. Note that (λz + Abz2 +
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b2z3)′ = λ + 2Abz + 3b2z2. Since |b| > N(M) i.e. |b|2 > BA,b, we can see on
|z| = 1/3,

|3b2z2| − |λ + 2Abz| ≥ BA,b

3
− 1 − 2

3
|A||b| > 0.

By the theorem of Rouché, both of critical points of λz + Abz2 + b2z3 are in
D1/3.

We can conclude the following by the previous lemmas.

Lemma 3.3. There exist an a0 ∈ (0, 1
R(M)

] and a continuous function k :

[0, a0] → [0, 1) such that k(0) = 0 and for any f ∈ Sλ, A ∈ DM , b ∈ A(M)
and a ∈ Da0 − {0}, the map f̃a,A,b is a branched covering map of C of degree
3 and it satisfies

∣∣∣∣∣
∂̄f̃a,A,b(z)

∂f̃a,A,b(z)

∣∣∣∣∣ ≤ k(|a|) (1/3 ≤ |z| ≤ RA,b).

Moreover, the Beltrami coeffitient
∂̄f̃a,A,b(z)

∂f̃a,A,b(z)
holomorphically depends on f ∈

Sλ, A ∈ DM , b ∈ A(M) and a ∈ Da0 − {0}.

For an open set U ⊂ C, we identify a Beltrami coefficient on U with a
function µ ∈ L∞(U) such that ∥µ∥∞ < 1. And for a C1-function f : U → V
and a Beltrami coefficient µ on V , we define the pullback f∗µ of µ on U by

(f∗µ)(z) =
∂f(z)µ(f(z)) + ∂̄f(z)

∂̄f(z)µ(f(z)) + ∂f(z)
.

For f ∈ Sλ, A ∈ DM , b ∈ A(M) and a ∈ Da0 − {0}, there exists a
unique Beltrami coefficient µ = µf,a,A,b on C which is invariant under the

pullback by f̃a,A,b and agrees with
∂̄f̃a,A,b

∂f̃a,A,b
on 1/3 ≤ |z| ≤ RA,b and is 0

on (C − W ) ∪
⋂

n≥0 f−n
a,A,b(W̃ ). Since supp µ ⊂ W and ∥µ∥∞ ≤ k(a) <

1, by the Ahlfors-Bers theorem [1], there exists a unique quasiconformal
homeomorphism φ = φf,a,A,b of C onto itself which satisfies the following

(i) for a.e.z ∈ C, ∂̄φ(z) = µ(z)∂φ(z),

(ii) φ(0) = 0 and

(iii) φ(z) − z is bounded on C.
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Lemma 3.4 (cf. [3]). There exists an A′ ∈ C such that φ◦ f̃a,A,b ◦φ−1(z) =
λz +A′z2 + b2z3, where A′ ∈ C holomorphically depends on f ∈ Sλ, A ∈ DM ,
b ∈ A(M) and a ∈ Da0 − {0}.

Proof. Since µ(φ ◦ fa,A,b) = µ(φ), it follows that φ ◦ f̃a,A,b ◦ φ−1 : C → C is
holomorphic and fixes the origin. So it is a branched covering map of C of
degree 3 fixing the origin. Thus we can write

φ ◦ f̃a,A,b ◦ φ−1(z) = λ′z + A′z2 + b′z3 (λ′, A′, b′ ∈ C).

By the theorem of Naishul [6], the multiplier of the fixed point of a holomor-
phic map is topologically invariant when its modulus is 1. So we have λ′ = λ.
Next, we show b′ = b2. According to (iii), we have

φf,a,A,b(z) = z + c + (lower terms) (2)

on a neighborhood of the point at infinity. When |z| is sufficiently large,
f̃a,A,b(z) = λz + Abz2 + b2z3 by definition, and we note that φ(f̃a,A,b(z)) =
λφ(z) + A′(φ(z))2 + b′(φ(z))3. Therefore it follows that

φ(λz + Abz2 + b2z3) − (λz + Abz2 + b2z3)

= (b′ − b2)z3 + {(A′ − Ab) + 3b′c}z2 + (lower terms).

Since this quantity remains bounded as |z| → +∞, it is necessary that
b′ − b2 = 0 and A′ − Ab + 3b′c = 0. Thus it follows that b′ = b2 and
A′ = Ab − 3b2c.

Lemma 3.5. c = c(f, a, A, b) in (2) holomorphically depends on f ∈ Sλ,
A ∈ DM , b ∈ A(M) and a ∈ Da0 − {0}. And c → 0 uniformly in f ∈ Sλ,
A ∈ DM and b ∈ A(M) as a → 0.

Proof. The former part follows from the Ahlfors-Bers theorem. Noting that
∥µ∥∞ ≤ k(|a|) and lima→0 k(|a|) = 0 uniformly in f ∈ Sλ, A ∈ DM and
b ∈ A(M), we can see the latter part holds.

4 Proof of Main Theorem

Let α ̸∈ B and λ = e2πiα. For A0 ∈ C, we take M = M0 := 2|A0| + 1. By
Lemma 3.5, for a fixed 0 < ϵ < 1/3, there exists an a1 ∈ (0, a0] which is
independent of f ∈ Sλ, A ∈ DM0 and b ∈ A(M0) such that

3|b||c(f, a, A, b)| < ϵ (0 < |a| < a1).
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Then |A0| < M0 − 2ϵ. We define a holomorphic map Ff,a,b on DM0 :

A 7→ A − 3bc(f, a, A, b).

By the theorem of Rouché, there exists A1 = A1(f, a, b) ∈ DM0−ϵ such that
Ff,a,b(A1) = A0. From the implicit function theorem, A1 = A1(f, a, b) holo-
morphically depends on f ∈ Sλ, b ∈ A(M0) and a ∈ Da1 − {0}. Thus we
have the following.

Theorem 4.1. Fix λ = e2πiα (α ̸∈ B). For A0 ∈ C, we set M0 := 2|A0|+ 1.
Then there exist an a1 ∈ (0, a0], a holomorphic function A1 = A1(f, a, b)
with |A1| < M0 of f ∈ Sλ, a ∈ Da1 − {0}, b ∈ A(M0), and also exists a
quasiconformal homeomorphism φ = φf,a,A1,b of C onto itself such that

φ ◦ f̃a,A1,b ◦ φ−1(z) = λz + A0bz
2 + b2z3 =

1

b
Pλ,A0(bz).

If Pλ,A0 is linearizable at the origin, then fa,A1,b(z) = a−1f(az)+A1bz
2 +b2z3

is linearizable at the origin.

Proof. The former part has been proved in the above and the latter part
follows from Lemma 3.4. Assume Pλ,A0 is linearizable at the origin and let D
be the Siegel disk of 1

b
Pλ,A0(bz). We have fa,A1,b(φ

−1(D)) = φ−1(D), so the
fixed point z = 0 of fa,A1,b is contained in the Fatou set of fa,A1,b.

Proof of Main Theorem. Suppose Pλ,A0 is linearizable at the origin. If d = 3,
Main Theorem is trivial. We consider, for d > 3, the family

Ud := {P (z) = λz + a2z
2 + · · · + adz

d;
d∑

n=2

n|an| ≤ 1} ⊂ Sλ.

We fix b ∈ A(M0) and a ∈ Da1 −{0}. If f(z) = λz+a2z
2+a3z

3+ · · ·+adz
d ∈

Ud and ad ̸= 0, then we can see

fa,A1,b(z) = λz + (a2a + A1b)z
2 + (a3a

2 + b2)z3 +
d∑

n=4

ana
n−1zn

is linearizable at the origin. The map

(a2, a3, . . . , ad) 7→ (a2a + A1(a, b, a2, a3, . . . , ad)b, a3a
2 + b2, a4a

3, . . . , ada
d−1)

is holomorphic on {(a2, a3, . . . , ad);
∑d

n=2 n|an| < 1 and ad ̸= 0} which is
an open subset of Cd−1. Note that the Jacobian of the map (a3, . . . , ad) 7→
(a3a

2 +b2, a4a
3, . . . , ada

d−1) is not zero. Therefore {fa,A1,b; f ∈ Ud} is at least
a d − 2 dimensional holomorphic subfamily of Pλ,d and all of the elements
are linearizable at the origin. Consequently we have completed the proof of
Main Theorem in Section 1.
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In Proof of Main Theorem, we do not use Pérez-Marco’s result. Combining
Pérez-Marco’s result and the argument in Proof of Main Theorem, we have
the following.

Theorem 4.2. Fix λ = e2πiα (α ̸∈ B). The cubic polynomial Pλ,A0(z) =
λz + A0z

2 + z3 is non-linearizable at the origin if the pair (α, A0) satisfies
the fulldimension property : For some d > 3, the holomorphic map

(a, b, a2, . . . , ad) 7→
(a2a + A1(a, b, a2, a3, . . . , ad)b, a3a

2 + b2, a4a
3, . . . , ada

d−1) (3)

has the maximal rank d − 1.

Proof. Suppose that Pλ,A0 is linearizable at the origin. Then the image of the
map (3) is a d − 1 dimensional holomorphic subfamily of Pλ,d consisting of
elements linearizable at the origin. It contradicts Pérez-Marco’s result.

Corollary 4.1. If any pair (α, A0) (α ̸∈ B and A0 ∈ C) has the fulldimen-
sion property, it holds that a cubic polynomial with an irrationally indifferent
fixed point with multiplier e2πiβ is linearizable there if and only if β is a
Brjuno number.
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une conjecture de V. I. Arnold, Ann. Scient. Éc Norm Sup., 4e série, 26
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