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Abstract. In this note, we shall give a sharp distortion estimate for a uniformly locally
univalent holomorphic function on the unit disk in terms of the norm of pre-Schwarzian
derivative. As applications, we shall investigate the growth of coe�cients and integral
means of such a function and mention a connection with Hardy spaces. We also give
norm estimates for typical classes of univalent functions.

1. Introduction

We will say that a holomorphic function f on the unit disk D is uniformly locally

univalent if f is univalent on each hyperbolic disk D(a; �) = fz 2 D ; j z�a
1��az

j < tanh �g
with radius � and center a 2 D for a �xed positive number �: In particular, a holomorphic
universal covering map of a plane domain D is uniformly locally univalent if and only
if the boundary of D is uniformly perfect (see [17] or [23]). Also it is well-known (cf.
[25]) that a holomorphic function f on the unit disk is uniformly locally univalent if and
only if the pre-Schwarzian derivative (or nonlinearity) Tf = f 00=f 0 of f is hyperbolically
bounded, i.e., the norm

kTfk = sup
z2D

(1� jzj2)jTf(z)j

is �nite. This quantity can be regarded as the Bloch semi-norm of the function log f 0:
Remark that a holomorphic function f is locally univalent at the point z if and only if Tf =
f 00=f 0 is a well-de�ned holomorphic function near z: Roughly speaking, the quantity Tf
measures the deviation of f from orientation-preserving similarities (non-constant linear
functions). In the following, it is sometimes essential to consider the semi-norm

kTfk0 = lim
jzj!1�0

(1� jzj2)jTf(z)j = 2 lim
jzj!1�0

(1� jzj)jTf(z)j

instead of kTfk: And, it is usually much easier to calculate kTfk0 than kTfk:We note that
kTfk0 � kTfk always holds. A non-constant analytic function f on the unit disk is said
to be almost uniformly locally univalent if and only if kTfk0 <1: For general properties
of almost uniformly locally univalent functions, the reader may consult the lecture note
[26] written by S. Yamashita.
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In this note, we will investigate the growth of various quantities for a uniformly locally
univalent function in terms of the norm of pre-Schwarzian derivative. Because Tf is
invariant under the post-composition by a non-constant linear function, we may assume
that a holomorphic function f on the unit disk is normalized so that f(0) = 0 and
f 0(0) = 1: We denote by A the set of such normalized holomorphic functions on the unit
disk. And we denote by B the set of normalized uniformly locally univalent functions:
B = ff 2 A; kTfk <1g: The space B has a structure of non-separable complex Banach
space under the Hornich operation ([24]).
For a non-negative real number � we set

B(�) = ff 2 A; kTfk � 2�g;
here the factor 2 is due to only some technical reason. The functions in B(�) can be
characterized as the following.

Proposition 1.1. Let a non-negative constant � be given. A locally univalent function

f 2 A belongs to B(�) if and only if for any pair of points z1; z2 in D it holds that

jg(z1)� g(z2)j � 2�dD (z1; z2);(1.1)

where g(z) = log f 0(z) and dD (z1; z2) = tanh�1 j z1�z2
1��z1z2

j stands for the hyperbolic distance

between z1 and z2 in the unit disk D :

Proof. First of all, note that we can take a holomorphic branch g of log f 0 for a locally
univalent holomorphic function f on the unit disk. The \only if " part is shown by
integrating the inequality jg0(z)j = jTf(z)j � 2�=(1� jzj2) along the hyperbolic geodesic
joining z1 and z2: The \if " part directly follows from the observation:

lim
z0!z

jg(z0)� g(z)j
dD (z0; z)

= (1� jzj2)jg0(z)j:

The following theorem is signi�cant in connection with univalent function theory.

Theorem A (Becker and Pommerenke [3], [4]). The set S of normalized univalent holo-

morphic functions on the unit disk is contained in B(3) and contains B(1
2
). The result is

sharp.

We note that the Schwarzian derivative Sf of f can be written as Sf = (Tf )
0� (Tf )

2=2:
Thus the space B has a close connection with (the Bers embedding of) the universal Te-
ichm�uller space T ; which is de�ned as the set of Schwarzian derivatives of those functions
in S which can be quasiconformally extended to the Riemann sphere. Note that T is a
contractible bounded domain in the complex Banach space B2 consisting of all holomor-
phic functions ' in the unit disk with �nite norm k'kB2

= supz2D (1 � jzj2)2j'(z)j and
that f' 2 B2; k'kB2

< 2g � T � f' 2 B2; k'kB2
< 6g: Especially, it is expected to be

useful when considering the Bers boundary of the Teichm�uller spaces since the quantity
Tf is much easier to treat than Sf in some cases. In fact, the space T1 := fTf ; f 2 S
has a quasiconformal extension to the Riemann sphereg can be regarded as a model of
the universal Teichm�uller space (cf. [1] and [29]). By the relation between Sf and Tf ;
we have the estimate kSfkB2

� CkTfk + kTfk2=2; where C is an absolute constant. At
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least, we can take C = 4 (see [9]). On the other hand, as is stated in [7], the inequality
kTfk � kSfkB2

holds for a normalized function f in the Nehari class, i.e., for a function
f 2 A with f 00(0) = 0 such that kSfkB2

� 2 (see also [7]).
Here, as a result in this direction, we mention the following.

Corollary . For a constant k 2 [0; 1); let Sk be the subset of S consisting of those func-

tions which can be extended to k-quasiconformal self-mappings of the Riemann sphere bC :
Then, we have

B(k=2) � Sk:
This implication is easily obtained by the �-lemma (see, for example, [18, p.121]). This

already appeared (implicitly) in the paper [3] of Becker.

Now we briey explain the structure of this note. In Section 2, we state sharp growth
and distortion theorems for the class B(�): Those are simple analogues of the results of
their paper [6], in which M. Chuaqui and B. Osgood obtained sharp growth, distortion
and covering theorems and an estimate of H�older continuity for normalized functions in
the Nehari class in terms of the Nehari norm of Schwarzian derivatives.
As applications of those theorems, Section 3 discusses the H�older continuity, growth of

coe�cients and integral means, and a connection with Hardy spaces for the class B(�):
Section 4 is devoted to explicit estimates of the norm of pre-Schwarzian derivatives

for typical classes of univalent functions. To this end, we will employ the subordination
method.

Acknowledgements. A part of this work was carried out during authors' visit to
Fukuoka University, February 1998. They sincerely thank Fukuoka University, especially,
Professor Megumi Saigo for inviting them.

2. Growth estimate for the class B(�)
In the class B(�) for 0 � � <1 the function

F�(z) =

Z z

0

�
1 + t

1� t

��

dt

is extremal as we shall see later. We remark that F� 2 A can be de�ned for any complex
number � and satis�es TF� = 2�(1�z2)�1; thus kTF�k = 2j�j: F� may provide an example
of a function with small pre-Schwarzian norm which does not belong to typical classes of
univalent functions when � is su�ciently small and � =2 R:
In practice, it is important to know the univalence of F�:

Lemma 2.1. For a non-negative number �; the function F� is univalent in the unit disk

if and only if 0 � � � 1:

Proof. First, we compute the Schwarzian derivative SF� of F�: Then, we have

sup
z2D

(1� jzj2)2jSF�(z)j = sup
z2D

(1� jzj2)22�j2z � �j
j1� z2j2 = 2�(�+ 2):

In particular, if 1 < �; then 2�(� + 2) > 6; thus the Nehari-Kraus theorem implies that
F� is not univalent.
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On the other hand, if 0 � � � 1; we have ReF 0
�(z) > 0 in the unit disk, hence the

Noshiro-Warschawski theorem ensures the univalence of F� in this case.

The following result is elementary and may be known though we are unable to locate
a reference. So, we shall include the proof because of its importance for our aim.

Theorem 2.2 (Distortion Theorem). Let � be a non-negative real number. For an f 2
B(�) it holds that

F 0
�(�jzj) =

�
1� jzj
1 + jzj

��

� jf 0(z)j �
�
1 + jzj
1� jzj

��

= F 0
�(jzj); and(2.1)

jf(z)j � F�(jzj)(2.2)

in the unit disk. Furthermore, if f is univalent then

�F�(�jzj) � jf(z)j � F�(jzj):(2.3)

If the equality occurs in any of the above inequalities at some point z0 6= 0; then f must

be a rotation of F�; i.e., f(z) = ��F�(�z) for a unimodular constant �:

Proof. Applying Proposition 1.1 in the case of z1 = z and z2 = 0; we see

j log f 0(z)j � � log
1 + jzj
1� jzj :(2.4)

Taking the real part of log f 0; we obtain (2.1). And the integration of (2.1) yields (2.2).
The inequality (2.3) can be shown by the same method as in the proof of the Koebe
distortion theorem. The equality cases are obvious. (Note that the inequality (2.3) is
sharp only for � � 1 by Lemma 2.1.)

Since
R 1

0
(1+t
1�t)

�dt <1 for � < 1 and
R r
0
(1+t
1�t)

�dt � 2�

��1(1� r)1�� for � > 1; we have the
following

Corollary 2.3 (Growth and covering theorem). For � > 1 any f 2 B(�) satis�es the

growth condition

f(z) = O(1� jzj)1��
as jzj ! 1: On the other hand, for � < 1; any function f 2 B(�) is bounded with the

uniform bound F�(1):
In both cases, if f is univalent, then f(D ) contains the disk fjzj < �F�(�1)g: This

constant �F�(�1) is best possible for 0 � � � 1:

By the same method, we have a similar conclusion as the �rst half in the above for a
function f 2 A with kTfk0 � 2�: In particular, if kTfk0 < 2; then f is bounded.
We note again that for � � 1=2 the function f 2 B(�) must be univalent. We also note

that, for 0 � � � 1; we have �F�(�1) � �F1(�1) = 2 log 2� 1 = 0:38629 � � � ; therefore
the result above is better than the Koebe one-quarter theorem.
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Remark . By using the integral representation of the Gauss hypergeometric function (cf.
Rainville [20] p.47, Theorem 16),

F�(z)

z
=

Z 1

0

�
1 + tz

1� tz

��

dt

=
1X
k=0

�
�

k

�
zk
Z 1

0

tk(1� tz)��dt

=
1X
k=0

�(�+ k)

(k + 1)!�(�)
zkF (��; k + 1; k + 2;�z);

where F (a; b; c; z) denotes the Gauss hypergeometric function. Also, the values F�(1) and
�F�(�1) can be expressed in terms of the Gauss hypergeometric function. For example,
by [19] p.491,

�F�(�1) =
Z 1

0

�
1� t

1 + t

��

dt =
1

�+ 1
F (1; �;�+ 2;�1)

=
1

2�(�+ 1)
F (�; �+ 1;�+ 2; 1=2)

=
1X
k=0

�(�+ k)

k!(�+ k + 1)�(�)2�+k
;

which may also be rewritten in terms of the di�erence of two Digamma functions ([19],
p.489, Eq.12) :

�F�(�1) = �

�
 

�
�+ 1

2

�
�  

�
�

2

��
� 1

�
 (z) :=

�0(z)
�(z)

�
:

Similarly, we have F�(1) = �[ (��=2)�  ((1 + �)=2)]� 1: It may be useful to note the
following elementary estimate:

1

(�+ 1)2�
< �F�(�1) < 1

�+ 1
:

In the above theorem, the case � = 1 is critical. In this case, by Theorem 2.2, we can
see that for f 2 B(1)

jf(z)j � F1(jzj) = 2 log
1

1� jzj � jzj:

In particular, a function in B(1) need not be bounded (for instance, F1). The next
proposition gives a boundedness criterion for functions in B(1):
Proposition 2.4. If a holomorphic function f on the unit disk satis�es that

�(f) := lim
jzj!1�0

�
(1� jzj2)jTf(z)j � 2

	
log

1

1� jzj2 < �2(2.5)

then f is bounded. Here, the constant �2 in the right hand side is sharp.
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Proof. By assumption, there exists a � < �2 such that the left-hand side in (2.5) is less
than �: Thus, for some 0 < r0 < 1; (1� jzj2)jTf(z)j � 2 � �= log 1

1�jzj2 ; i.e.,

jTf(z)j � 2

1� jzj2 +
�

(1� jzj2) log 1
1�jzj2

(2.6)

for any z 2 C with r0 < jzj < 1: Here, we may choose r0 su�ciently close to 1 so that
1� r20 < e�1: Integrating the inequality (2.6), we see that, for jzj > r0;

j log f 0(z)j � log
1 + jzj
1� jzj +

Z jzj

r0

�dt

(1� t2) log 1
1�t2

+ C1

� log
1 + jzj
1� jzj +

Z jzj

r0

�dt

2(1� t) log 1
2(1�t)

+ C1

= log
1� jzj
1 + jzj +

�

2
log log

1

2(1� jzj) + C2;

where C1 and C2 are constants depending only on f and r0: In particular, we have

jf 0(z)j � eC2
1 + jzj
1� jzj

�
log

1

2(1� jzj)
��=2

:

Since �1=2 < �1 the function 1+t
1�t(log

1
2(1�t) )

�=2 is integrable on the interval [r0; 1): Thus

f is bounded.
The sharpness follows from the example below.

Example 2.1. Let a constant � < 0 be given. Choose a constant c > 0 so that c�+2 � 0:
Now we consider the function f 2 A determined by

f 0(z) =
K

1� z

�
1 + c log

2

1� z

��

;

where K = (1+ c log 2)��: Then this function satis�es that kTfk = 2: And moreover, f is
bounded in the uint disk if and only if � < �1:
In fact, �rst observe that

Tf(z) =
1

1� z
+

c�

(1� z)(1 + c log 2
1�z )

=
1

1� z

"
1 +

�
1
c
+ log 2

1�z

#
:

By the fact that Re 2
1�z > 1; one can conclude that Rew > 1

c
� ��=2 and jImwj < �=2;

where w = 1
c
+ log 2

1�z : Noting that j1 + �=wj2 = 1 + �(2Rew + �)=jwj2 � 1; one can see

that jTf(z)j � 1
j1�zj � 1

1�jzj : In particular, it holds that (1� jzj2)jTf(z)j � 1+ jzj < 2: On

the other hand, it is easy to see that limx!1�0(1� x2)jTf(x)j = 2; thus kTfk = 2:
Next, we shall show that �(f) = 2�: Since j1 + �=wj = [1 + �(2Rew + �)=jwj2]1=2 �

1 + �(Rew+ �=2)=jwj2 � 1 + �=Rew � 1� �= log j1� zj as z ! 1 and since the function
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t(1 + �= log t) of t is monotonically increasing for su�ciently large t; we have

�(f) = lim
D3z!1

�
(1� jzj2)jTf(z)j � 2

	
log

1

1� jzj2

= lim
D3z!1

�
(1� jzj2)
j1� zj

�
1 +

�

log 1=j1� zj
�
� 2

�
log

1

1� jzj2

= lim
D3z!1

�
(1 + jzj)

�
1 +

�

log 1=(1� jzj)
�
� 2

�
log

1

1� jzj2

= lim
x!1�0

(
�(1� x) log

1

1� x2
+ (1 + x)�

log 1
1�x2

log 1
1�x

)
= 0 + 2�:

In particular, we can conclude that f is bounded if � < �1 by Proposition 2.4.
On the other hand, in the case that � � �1; noting that R 1

r0
1

1�x(log
1

1�x)
� =1; we can

directly see lim x!1�0 f(x) = +1; thus f is unbounded.

3. Applications

As applications of the results in the previous section, we will derive various properties
of the functions in the class B(�):We begin with the H�older continuity of those functions.
Recall the following fundamental fact due to Hardy-Littlewood.

Theorem B (cf. [8]). Let � be a constant such that 0 < � � 1: A holomorphic function

f on the unit disk is H�older continuous of exponent � if and only if f 0(z) = O(1� jzj)��1
as jzj ! 1:

Combining this with Theorem 2.2, we have

Theorem 3.1. Let 0 � � < 1: Then any function f 2 B(�) is H�older continuous of

exponent 1� � on the unit disk.

Remarks . 1. We can directly see that jf(z1) � f(z2)j � C
1�� jz1 � z2j1�� for any pair of

points z1; z2 2 D ; where C is an absolute constant, owing to the estimate
R s
r
(1+t
1�t)

�dt �
2�

1��((1� r)1�� � (1� s)1��) � 2�

1��(s� r)1�� for 0 < r < s < 1:
2. Chuaqui and Osgood proved in [6] that a normalized function f in the Nehari class

is H�older continuous with exponent
p
1� � where kSfkB2

= 2�: Their result is better
than that obtained by combining the estimate kTfk � kSfkB2

with the above theorem.

Second we consider coe�cient estimates for the class B(�): Let f(z) = z + a2z
2 + � � � 2

B(�): Then, by de�nition, jTf(0)j � 2�; which implies ja2j � �: Of course, this is sharp
because the equality holds for the function F�: But, a function in B(�) essentially di�erent
from F� may attain this maximum. For instance, consider the function f(z) = (e2�z �
1)=2�:
If the origin is a critical point of the function (1 � jzj2)jTf(z)j then (Tf )

0(0) = 6a3 �
(2a2)

2 = 0 though this condition need not be su�cient for ja2j = �:
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As for the growth of coe�cients of a holomorphic function f(z) = a0+ a1z+ a2z
2+ � � �

in the unit disk, it is convenient to consider the integral mean of exponent p 2 R:

Ip(r; f) =
1

2�

Z 2�

0

jf(rei�)jpd�:

In fact, we have the following elementary

Lemma 3.2. If I1(r; f) = O(1 � r)�� as r ! 1 for a constant � � 0; then we have

an = O(n�) as n!1:

Proof. Suppose that I1(r; f) �M(1�r)�� for 0 � r < 1: Then, for n > 1 and r = 1�1=n;
it follows from Cauchy's integral formula that

janj =
���� 12�

Z 2�

0

f(rei�)(rei�)�nd�

���� � r�nI1(r; f) �Mr�n(1� r)��

=M

�
1� 1

n

��n
n� <

eMn

n� 1
n�:

thus janj < 2eMn�:
In particular, for a function f(z) = z + a2z

2 + � � � in B(�); by Theorem 2.2, we have
I1(r; f

0) = O(1 � r)��; thus janj = O(n��1) as n ! 1: Moreover if � < 1 and if f is
univalent, then f is bounded by Corollary 2.3, so

Area(f(D )) = �

 
1 +

1X
n=2

njanj2
!
<1:

By this simple observation, we have an = o(n�1=2) as n!1:
But we can improve the exponents in these trivial order estimates. We now explain

this.
For � > 0; we set

�(�) =

p
1 + 4�2 � 1

2
:

Noting �(�) = 2�2=(
p
1 + 4�2 + 1); then we have

�2

�+ 1
< �(�) < min

�
�2;

2�2

2�+ 1

�
� minf�2; �g:

We also note that

�(�) = �� 1

2
+

1

8�
+O

�
1

�3

�
(�!1):

For this number, we have the next result.

Theorem 3.3. Let f(z) = z + a2z
2 + a3z

3 + � � � be in B(�): Then, for any " > 0 and a

real number p; we have Ip(r; f
0) = O(1� r)��(jpj�)�"; in particular, an = O(n�(�)�1+"):

This immediately follows from the next result.
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Theorem C ([15, Lemma 5.3]). Let h be a holomorphic function in the unit disk such

that

(1� jzj)
����h0(z)h(z)

���� � c (r0 � jzj < 1)

for constants c > 0 and r0 < 1: Then, Ip(r; h) = O(1�r)��; where � = (
p
1 + 4p2c2�1)=2

and p 2 R:

We note that this is a consequence of the Fuchsian di�erential inequality:

I 00p (r; h) �
p2

2�

Z 2�

0

jh(z)jp
����h0(z)h(z)

����2 d� � p2c2

(1� r)2
Ip(r; h):

Moreover if f is univalent, we may have a better growth estimate for the coe�cients.
First we remind the reader of the following result due to Littlewood, Paley, Clunie, Pom-
merenke and Baernstein II (see [2], [18, Theorem 8.8] and [12, Theorem 3.7]).

Theorem D.Suppose that f(z) = z + a2z
2 + � � � 2 S satis�es f(z) = O(1 � jzj)��: If

0:491 < � � 2; then
R 2�

0
jf 0(rei�)jd� = O(1� r)�� and an = O(n��1): If � = 0; in other

words, if f is bounded, then
R 2�

0
jf 0(rei�)jd� = O(1� r)�0:491 and an = O(n0:491�1):

In view of Corollary 2.3 we have the following result as a corollary.

Theorem 3.4. Let f(z) = z + a2z
2 + � � � 2 S: If f 2 B(�) with 1:491 < � � 3; then it

holds that an = O(n��2) as n!1: This order estimate is best possible.

In order to see the sharpness, we may consider the function f(z) = (1 � z)1�� =
1 + a1z + a2z

2 + � � � for 1 < �: We note that f is univalent in the unit disk if 1 < � � 3:
For this function, we can see that kTfk = 2� and an = �(� + n � 1)=n!�(�� 1) � n��2

as n!1 by Stirling's formula.
On the other hand, in the case that f is univalent with kTfk < 3; the situation seems

rather complicated. Given a holomorphic function f(z) = z + a2z
2 + � � � in the unit disk,

let (f) denote the in�mum of exponents  such that an = O(n�1) as n!1; i.e.,

(f) = lim
n!1

lognjanj
logn

:

And, for a subset X of A; we denote by (X) the supremum of f(f); f 2 Xg: As for
(Sb); where Sb denotes the class of normalized bounded univalent functions in the unit
disk, it has been shown ([5] and [14]) that 0:24 < (Sb) < 0:4886; and conjectured by
Carleson and Jones that (Sb) = 0:25: We also remark that the growth of coe�cients
seems to involve an irregurality of the boundary of image under f when f is bounded
and univalent (see [18, Chapter 10]) and, recently, Makarov and Pommerenke observed
a remarkable phenomenon of phase transition of the functional (f) with respect to the
Minkowski dimension of the boundary curve [14].
Now we turn to our case. Theorem 3.3 implies (B(�)) � �(�): And the above example

(1�z)1�� (or, � log(1�z) when � = 1) shows ��1 � (B(�)): By standard calculations,
we can see that the extremal function F� also satis�es (F�) = �� 1:
To construct an analytic function with curious boundary behaviour, the Hadamard gap

series is often used (e.g., [18, x8.6]). Here, we present a simple example of such a kind to
improve the above lower estimate of (B(�)):
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Example 3.1 (Gap series construction). Let q be a �xed integer greater than 1:We con-
sider the function

g(z) = z + zq + zq
2

+ zq
3

+ � � �
in the unit disk, which can be characterized by the functional equation g(z) = z + g(zq)
with the initial condition g(0) = 0: We note that this is a Bloch function satisfying
kg0k � q=(q � 1) (cf. [18, x8.6]). Let t > 0 be a constant. Then the function h(z) =
etg(z) = b0 + b1z + b2z

2 + � � � obeys the functional equation h(z) = etzh(zq): Thus the
coe�cients bn are all positive and calculated by the relations

bkq+m =
kX
l=0

clq+mbk�l;

where cn = tn=n!: Letting m = 0; we have bkq = c0bk + � � �+ ckqb0 > bk: In particular, we
know bqk > bqk�1 > � � � > b1 = t: Therefore, we have lim log bn= logn � 0:
On the other hand, the function f 2 A determined by f 0 = h satis�es Tf = tg0; therefore

kTfk can be made arbitrarily small by letting t su�ciently small. This shows (B(�)) � 0
for any � > 0:

Summarizing these observations, we have the next result.

Theorem 3.5. For any � 2 (0;1); we have

maxf0; �� 1g � (B(�)) � �(�) =

p
1 + 4�2 � 1

2
:(3.1)

In particular, (B(�)) = O(�2) as �! 0:

Remarks . 1. Recently, Chuaqui, Osgood and Pommerenke [7] proved that (B(�)) � c�2

actually holds for some positive constant c when � is su�ciently small. Their construction
is rather technical and complicated, so our simple Example 3.1 seems still meaningful to
be mentioned here.
2. More generally, by Theorem C, for any f 2 A we have the estimate

(f) � 1

2

�q
1 + kTfk20 � 1

�
:

3. For 0 < � � 1=2; we note that �(�) � �2 � 2�4=3 � 5=24 = 0:2083 � � � ; becausep
1 + x < 1 + x=2 � x2=(6 + 4

p
2) < 1 + x=2 � x2=12 for 0 < x � 1: Remark again that

B(1=2) � Sb:

Next we consider the relationship between the class B(�) and Hardy spaces. The
following are fundamental results in the univalent function theory.

Theorem E (cf. [18]). Let � be a constant with 0 � � � 2: If a univalent function f 2 S
satis�es that f(z) = O(1� jzj)�� as jzj ! 1; then the following holds.

For 0 < p < 1=�; we have f 2 Hp: For 1=� < p; we have Mp(r; f) = O(1 �
r)1=p�� (r ! 1):

Where Mp(r; f) denotes L
p-integral mean of f; i.e., Mp(r; f) = Ip(r; f)

1=p:
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Theorem F (Pommerenke [16]). Let f be a univalent holomorphic function on the unit

disk. Then, f 2 BMOA if and only if f is Bloch, i.e., supz2D (1� jzj2)jf 0(z)j <1:

Combining these theorems with Theorem 2.2, we have the following results.

Theorem 3.6. Let f 2 S and set kTfk = 2�:
If � < 1 then f 2 H1:
If � > 1 then f 2 Hp for any 0 < p < 1=(�� 1):
If � = 1 then f 2 BMOA:

Note that H1 � BMOA � \0<p<1Hp:

Remark . Most of the above results can be extended to the case of p-valent, or more
generally, mean p-valent functions with p <1 (see Hayman [12]).

We shall mention a connection with integral means for univalent functions. For a
univalent function f 2 S and a real number p; we set

�f(p) = lim
r!1�0

log
R 2�

0
jf 0(rei�)jpd�
log 1

1�r
= lim

r!1�0
log Ip(r; f

0)
log 1

1�r
:

The Brennan conjecture asserts that �f (�2) � 1 for every univalent holomorphic function
f (cf. [18, Chapter 8]).
For f 2 B(�); as a corollary of Theorem 3.3, we have the next

Theorem 3.7. For f 2 B(�) amd p 2 R the inequality

�f(p) � �(jpj�) =
p
1 + 4p2�2 � 1

2
holds. In particular, the Brennan conjecture is true for any univalent function f with

kTfk �
p
2:

A similar statement can be found in [18, Exercise 8.3.4].

4. Norm estimates for various classes of univalent functions

In this section, we provide several norm estimates for well-known classes of univalent
functions. These enable us to obtain growth and coe�cient estimates for those classes,
which agree with known results in many cases.
The following is due to S. Yamashita. (The case of strongly starlike functions was �rst

shown by [22].)

Theorem G (Yamashita [28]). Let 0 � � < 1 and f 2 S:
If f is starlike of order �; i.e., Re(zf 0(z)=f(z)) > �; then kTfk � 6� 4�:
If f is convex of order �; i.e., Re(1 + zf 00(z)=f 0(z)) > �; then kTfk � 4(1� �):
If f is strongly starlike of order �; i.e., arg(zf 0(z)=f(z)) < ��=2; then kTfk � M(�)+

2�; where M(�) is a speci�ed constant depending only on � satisfying 2� < M(�) <
2�(1 + �):

All of the bounds are sharp.

Remark . For the equality cases and more detailed and greatly general results, consult
the paper [28] by S. Yamashita. For information about the constantM(�) see [22] or [28].
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Now we state general and useful principles for estimation of the norm of Tf : A holomor-
phic function f on the unit disk is said to be weakly subordinate to another g if f can be
written as f = g�!; where ! is a holomorphic self-mapping of the unit disk. Furthermore
if !(0) = 0; the function f is said to be subordinate to g:
Remark that the Schwarz-Pick lemma implies that any holomorphic self-mapping ! of

the unit disk satis�es

j!0(z)j
1� j!(z)j2 �

1

1� jzj2(4.1)

for any point z 2 D :
We also note that if g 2 S; then f is weakly subordinate to g if and only if f(D ) � g(D ):
The following always generates a sharp result for �xed g: The idea is due to Littlewood.

Theorem 4.1 (Subordination Principle I). Let g 2 B be given. For a holomorphic func-

tion f in the unit disk, if f 0 is weakly subordinate to g0 then we have kTfk � kTgk: In
particular, f is uniformly locally univalent on the unit disk.

Proof. By assumption, there exists a holomorphic function ! : D ! D such that f 0 =
g0 � !: Therefore, Tf = Tg � ! � !0: Thus (4.1) implies the following:

(1� jzj2)jTf(z)j = (1� jzj2)jTg(!)jj!0j � (1� j!j2)jTg(!)j � kTgk;
which leads to the conclusion.

Remark . The analogous statement does not follow for the semi-norm k � k0: We also note
that there exists an absolute constant c0 > 0 such that for any g 2 B the inequality
c0kTgk � supf kTfk0 � kTgk holds where the supremum is taken over all holomorphic
functions f for which f 0 is weakly subordinate to g0:
Actually, a single f is su�cient. In fact, take the holomorphic function f in the unit

disk with f 0 = g0 �!; where !(z) = exp(�1+z
1�z ) is a holomorphic universal covering map of

the punctured disk D n f0g: The preimage of the circle jwj = e�a under ! is a horocircle,
say Ca; tangent to @D at 1: Since (1 � jzj2)j!0(z)j=(1 � j!(z)j2) = a= sinh a along that
horocircle, we know

lim
Ca3z!1

(1� jzj2)jTf(z)j = a

sinh a
max
jwj=e�a

(1� jwj2)jTg(w)j = 2ae�aMa;

whereMa = maxjwj=e�a jTg(w)j: In particular, we have 2ae�aMa � lim z!1(1�jzj2)jTf (z)j �
kTfk0: When a � 1 we have (1 � e�2a)Ma � Ma � M1 � e

2
kTfk0: When a < 1 we

have (1 � e�2a)Ma � sinh a
a
kTfk0 � sinh 1kTfk0 � e

2
kTfk0: Therefore we have kTgk =

supa>0(1� e�2a)Ma � e
2
kTfk0:

As a typical application of the Subordination Principle, we exhibit the following.

Theorem 4.2. If f 2 A satis�es that Ref 0 > 0 on the unit disk, then kTfk � 2: The
bound is sharp.

Remark . The Noshiro-Warschawski theorem says that such an f must be univalent.
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Proof. The condition Ref 0 > 0 is equivalent to the statement that f 0 is subordinate to
the function F 0

1(z) =
1+z
1�z : Thus we have kTfk � kTF1k = 2:

We note that f 0 is a Gelfer function if Ref 0 > 0; where a holomorphic function g on
the unit disk with g(0) = 1 is called Gelfer when g(z) + g(w) 6= 0 for all z; w 2 D :
Therefore the next result can be viewed as a natural generalization of the above theorem.

Theorem 4.3. Suppose that f 0 is a Gelfer function for an f 2 A: Then we have kTfk � 2:
This bound is sharp.

Proof. For a Gelfer function g(z) = f 0(z) it is known to hold that����g0(z)g(z)

���� � 2

1� jzj2
(see [27]). Hence, the result immediately follows.

The next is a variant of the subordination principle.

Theorem 4.4 (Subordination Principle II). Let g 2 B be given. For f 2 A; if zf 0(z)=f(z)
is subordinate to g0 then we have

kTfk � sup
z2D

(1� jzj2)
�����g0(z)� 1

z

����+ jTg(z)j
�

(4.2)

� sup
z2D

(1� jzj2)
����g0(z)� 1

z

���� + kTgk:(4.3)

Proof. By assumption, there exists a holomorphic function ! : D ! D with !(0) = 0
such that zf 0(z)=f(z) = g0(!(z)): By taking logarithmic derivative, we have the following
formula.

Tf =
f 0

f
� 1

z
+
g00(!)
g0(!)

!0

=
!

z

g0(!)� 1

!
+ Tg(!)!

0:

From this, we can easily have the desired estimate.

The following is a simple application of this principle.

Theorem 4.5. If f 2 A satis�es that jzf 0(z)=f(z) � 1j < 1; then we have an estimate

kTfk � 2:25: The equality holds if and only if f is a rotation of the function zez:

Remark . In this case, f satis�es Rezf 0(z)=f(z) > 0 thus f is starlike, in particular,
univalent in the unit disk.

Proof. We have only to apply the esitimate (4.2) with g(z) = z + z2=2: Then, we have
kTfk � sup(2+ jzj�jzj2) = 9=4; where the supremum is attained only by jzj = 1=2: Thus,
if kTfk = 9=4; then j!j must be the constant 1; whence f is a rotation of zez: Conversely,
it is clear that the function f(z) = ze�z with j�j = 1 satis�es kTfk = 9=4:
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Finally, we consider uniformly convex functions:

UCV =

�
f 2 S; Re

�
1 + (z � �)

f 00(z)
f 0(z)

�
� 0; 8z; 8� 2 D

�
:

For the geometric meaning of this class, see [11]. R�nning gave a simple characterization
for this class.

Theorem H (R�nning [21]). A function f 2 A is uniformly convex if and only if

zTf (z) 2 W for any z 2 D ; where W is the domain fw = u+ iv; v2 < 2u+ 1g:
We note that a conformal map g : D !W with g(0) = 0 is given by

g(z) =
2

�2

�
log

1 +
p
z

1�p
z

�2

=
8z

�2

�
1 +

z

3
+
z2

5
+
z3

7
+ � � �

�2

:(4.4)

Therefore, f 2 A is uniformly convex if and only if zTf (z) is subordinate to the function
g; i.e., there exists a holomorphic function ! : D ! D with !(0) = 0 such that zTf (z) =
g(!(z)): Since g has positive Taylor coe�cients, we see that jzTf (z)j � g(j!(z)j) � g(jzj):
Hence, we have

kTf (z)k � sup
0<x<1

(1� x2)
g(x)

x
= sup

0<t<1
h(t);

where

h(t) =
8t2

�2
cosh t

sinh2 t

and 1+
p
x

1�px = et: By the logarithmic di�erentiation, we have

h0(t)
h(t)

=
2 sinh 2t� t(cosh 2t+ 3)

t sinh 2t
=

N(t)

t sinh 2t
:

Since N 00(t) = 4(tanh 2t�t)
cosh 2t

has the unique zero t0 in (0;1); the function N 0(t) = 3(cosh 2t�
1) � 2t sinh 2t attains its maximum at t0: Since N

0(0) = 0 and N 0(t) ! �1 as t ! 1;
the function N 0(t) has the unique zero t1 > t0 in (0;1): By exactly same reason, the
function N(t) has the unique zero t2 > t1 in (0;1): Thus, h(t) assumes its maximum
at the point t = t2: By a numerical calculation, we have t2 = 1:6061152988 � � � ; and
h(t2) = 0:94774221287 � � � : Therefore, we summalize as follows.

Theorem 4.6. If f 2 A is uniformly convex, then we have

kTfk � h(t2) = 0:94774 � � � ;
where the equality occurs only when f is a rotation of the function F 2 A determined by

TF (z) = g(z)=z; where g is given by (4.4).

Remark . By the corollary of Theorem A, we see that a uniformly convex function can
be extended to a h(t2)-quasiconformal self-homeomorphism of the Riemann sphere. As
for quasiconformal extendability, we have a better estimate. In fact, from a recent result
by Kanas and R�nning [13], for a uniformly convex function f the image of the function
zf 0(z)=f(z) lies in the domain�

w; jw� 1j < Rew � 1

2

�
=

�
w = u+ iv; v2 < u� 3

4

�
�
n
w; j arg wj < �

6

o
:
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Hence, we can conclude that every uniformly convex function is strongly starlike of order
1=3: By a theorem of Fait, Krzy_z and Zygmunt [10], such a function can be extended to

a 1
2
-quasiconformal automorphism of bC ; since sin 1

3
�
2
= 1

2
:
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