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Abstract

We will show that if a semigroup of rational fuctions on the Rie-
mann sphere is �nitely generated, then the hyperbolicity and the ex-

pandingness are equivalent. Also we consider �nitely generated ra-

tional semigroups satisfying the strong open set condition. We show

that if a semigroup satis�es the strong open set condition, we can con-

struct a �-conformal measure on the Julia set. Also the Julia set has

no interior points, and furthurmore, if the semigroup is hyperbolic,

the Hausdor� dimension of the Julia set is strictly lower than 2: The

value � of the dimension coincides with the unique value that allows

us to construct a �-conformal measure and the �-Hausdor� measure

of the Julia set is a �nite value strictly bigger than zero.

With the method similar to that of the construction of the Patterson-
Sullivan measures we get �-subconformal measures in more general

cases and we will show that if a �nitely generated rational semigroup

is expanding, then the Hausdor� dimension of the Julia set is less than

the exponent �:

Key words: hyperbolic rational semigroup, strong open set condi-

tion, �-(sub)conformal measure
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1 Introduction

For a Riemann surface S, let End(S) denote the set of all holomorphic en-
domorphisms of S. It is a semigroup with the semigroup operation being
composition of functions. A rational semigroup is a subsemigroup of End(C)
without any constant elements. Similarly, an entire semigroup is a subsemi-
group of End(C) without any constant elements. A rational semigroup G
is called a polynomial semigroup if each g 2 G is a polynomial. When a
rational or entire semigroup G is generated by ff1; f2; : : : fn; : : : g; we denote
this situation by

G = hf1; f2; : : : fn; : : : i:

A rational or entire semigroup generated by a single function g is denoted
by hgi. We denote the n th iterate of f by fn.

The studies of dynamics of rational semigroups were introduced by W.Zhou
and F.Ren[ZR], Z.Gong and F.Ren[GR] and Hinkkanen and Martin[HM1].
Some properties of dynamics of rational semigroups were studied in [HM1],
[HM2], [S1] and [S2]. In [S3], dynamics of hyperbolic rational semigroups are
investigated and it is shown that all the limit functions of �nitely generated
rational semigroups on the Fatou sets are constant functions that take their
values in the post critical sets. Also with respect to pertubations of genera-
tors of any �nitely generated hyperbolic rational semigroup, the hyperbolicity
is kept and the Julia set moves continuously.

In this paper, we will show that if a �nitely generated rational semigroup
contains an element of degree at least two and each M�obius transformation
in it is neither the identity nor an elliptic element, then the hyperbolicity and
expandingness are equivalent. If the sets of backward images of the Julia set
by generators are almost disjoint, then the Julia set has no interior points. We
construct a generalized �-conformal measure on the Julia set of any rational
semigroup which satis�es the strong open set condition. We show that if
the semigroup is hyperbolic, then the Hausdor� dimension of the Julia set
coincides with the unique value � that allows us to construct a �-conformal
measure and it is strictly less than 2: Also the �- Hausdor� measure of the
Julia set is a �nite value strictly bigger than zero. Considering the convergent
series of the norm of the derivative at the backward images, with the method
similar to tha! t of the construction of the Patterson-Sullivan measures on
the limit sets of Kleinian groups we get a �-subconformal measure in more
general case and we will show that if a �nitely generated rational semigroup
is expanding, then the Hausdor� dimension of the Julia set is less than the
exponent �:
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Generalized Brolin-Lyubich's invariant measures on the Julia set of any
rational semigroup which is hyperbolic or satisfying the strong open set con-
dition are constructed in [S4] and a lower estimate of the Hausdor� dimension
of the rational semigroups is given.

The author will discuss about the existence and uniquness of the con-
formal measures and self-similar measures of rational semigroups in more
general cases([S5]). In that paper we use the thermodynamic formalism and
give an upper bound of the Hausdor� dimension of the Julia sets of �nitely
generated hyperbolic rational semigroups.

In [S8], we will investigate the dynamics of sub-hyperbolic and semi-
hyperbolic rational semigroups. We will show some non-wandering domain
theorems.

The summary of [S5] and [S8] is in [S7].

ACKNOWLEDGEMENT. The author would like to express his grati-
tude to Prof. S.Ushiki, Prof. M.Taniguchi, Prof. J.Kigami, Prof. T.Sugawa
and Prof. M.Kisaka for many valuable discussions and advices. The author
especially would like to express his gratitude to the referee for many valuable
and helpful advices.

De�nition 1.1. Let G be a rational semigroup.

F (G)
def
= fz 2 C j G is normal in a neighborhood of zg

J(G)
def
= C n F (G)

F (G) is called the Fatou set for G and J(G) is called the Julia set for G.
Similarly, the Fatou set and the Julia set for entire semigroup are de�ned.

De�nition 1.2. Let G be a rational semigroup and z be a point of C: The
backward orbit O�(z) of z and the set of exceptional points E(G) are de�ned
by:

O�(z)
def
= fw 2 C j there is some g 2 G such that g(w) = zg;

E(G)
def
= fz 2 C j ]O�(z) � 2g:

De�nition 1.3. A subsemigroup H of a semigroup G is said to be of �nite
index if there is a �nite collection of elements fg1; g2; : : : ; gng of G such that
G = [n

i=1giH: Similarly we say that a subsemigroup H of G has co�nite
index if there is a �nite collection of elements fg1; g2; : : : ; gng of G such that
for every g 2 G there is j 2 f1; 2; : : : ; ng such that gjg 2 H:
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Next lemma was shown in [S3].

Lemma 1.4. Let G be a rational semigroup.

1. For any f 2 G;

f(F (G)) � F (G); f�1(J(G)) � J(G)

F (G) � F (hfi); J(hfi) � J(G)

2. If G = hf1; : : : ; fni; then

F (G) = \n
i=1f

�1
i (F (G)); J(G) = [n

i=1f
�1
i (J(G))

If a set K satis�es that K = [n
i=1f

�1
i (K); we say that K has backward

self-similarity.
Next lemma was shown in [HM1].

Lemma 1.5. Let G be a rational semigroup.

1. If a subsemigroup H of G is of �nite or co�nite index, then

J(H) = J(G):

In particular, when G is a rational semigroup generated by �nite ele-

ments ff1; f2; : : : fng and m is an integer, if we set

Hm = fg = fj1 � � �fjk 2 G j m devides kg;

Im = fg 2 G j g is a product of some elements of word length mg

then

J(G) = J(Hm) = J(Im):

Here we say an element f 2 G is word length m if m is the minimum

integer such that

f = fj1 � � �fjm :

2. If J(G) contains at least three points, then J(G) is a perfect set.
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3. If there is some g 2 G such that deg(g) � 2 or there is some g 2 G
such that deg(g) = 1 and the order of g is in�nite, then

]E(G) � 2:

4. If a point z is not in E(G); then for every x 2 J(G); x belongs to

O�(z): In particular if a point z belongs to J(G) n E(G); then

O�(z) = J(G):

5. If there is some g 2 G such that deg(g) � 2 or there is some g 2 G
such that deg(g) = 1 and the order of g is in�nite and J(G) contains at
least three points, then J(G) is the smallest closed backward invariant

set containing at least three points. Here we say that a set A is backward

invariant under G if for each g 2 G; g�1(A) � A:

6. If J(G) contains at least three points, then

J(G) = fz 2 C j z is a repelling �xed point of some g 2 Gg

Remark 1. A similar result of 6. for entire semigroup can also be stated.

2 Hyperbolicity and Strong Open Set Condi-

tion

De�nition 2.1. Let G be a rational semigroup. We set

P (G) =
[
g2G

f critical values of gg

and we say that G is hyperbolic if P (G) � F (G): We call P (G) the post
critical set of G:

De�nition 2.2. LetG = hf1; f2; : : : fni be a �nitely generated rational semi-
group. We say that G satis�es the strong open set condition if there is an
open neighborhood O of J(G) such that each set f�1

j (O) is included in O
and is mutually disjoint.
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The Julia set of a rational semigroup may have non-empty interior points
in general. For example, the Julia set of hz2; 2zi is the closure of the unit disc.
In [HM2], it was shown that if G is a �nitely generated rational semigroup,
then each super attracting �xed point of any element of g 2 G does not belong
to the boundary of the Julia set. So we can construct many examples such
that the Julia set has non-empty interior points. Here we show a su�cient
condition that the Julia set has no interior points.

Theorem 2.3. Let G = hf1; f2; : : : fni be a �nitely generated rational semi-

group. We assume that the set [(i;j):i6=jf
�1
i (J(G))\ f�1

j (J(G)) does not con-
tain any continuum. Then the Julia set J(G) has no interior points.

Proof. Assume J(G) has non-empty interior points and let U be a component
of int(J(G)): Let x be a point of U: From Lemma 1.4.2, there exists a
positive integer i1 with i1 � n such that x 2 f�1

i1
(J(G)): From Lemma 1.5.4,

we have U \ f�1
i1
(intJ(G)) 6= ;: Let V be the connected component of U \

f�1
i1
(intJ(G)):
We will show that V is dense in U: To show that, we can assume that

V 6= U: Then @V \ U 6= ;: If @V \ U contains a continuum K; then from
the assumption of our theorem, there exists a point z 2 K such that for
each j with j 6= i1; z 62 f�1

j (J(G)): We denote the open disk centered at z
of radius � by D(z; �): Hence there is a small positive number � such that
D(z; �) is included in U and disjoint from [j 6=i1f

�1
j (J(G)): From Lemma 1.4.2,

D(z; �) � f�1
i1
(intJ(G)) and this is a contradiction because V is a connected

component of U \ f�1
i1
(intJ(G)): Therefore @V \ U does not contain any

continuum and V is dense in U:
It follows that fi1(U) is included in a component U1 of int(J(G)): In this

way, we can take a sequence (ik)k such that for each k the number ik is in
f1; : : : ; ng and

fik � � � � � fi1(U) � Uk;

where Uk is a component of int(J(G)): Now let (gj) be a sequence of elements
of G: If the sequence contains in�nite elements of (fik �� � ��fi1); then (gj) is a
normal family on U: Unless (gj) contains any element of the form fik �� � ��fi1 ;
then for each l the set gl(U) is included in F (G) because of the assumption of
our theorem and so (gj) is a normal family on U: It follows that U is included
in F (G) and this is a contradiction.

Remark 2. If [(i;j):i6=jf
�1
i (J(G)) \ f�1

j (J(G)) contains a continuum, then
the Julia set may have non-empty interior points. For example, let p1 =
0; p2 = 1; p3 = 1 + i and p4 = i: For each j = 1; : : : ; 4; we set fj(z) =
2(z� pj)+ pj: Then J(hf1; : : : ; f4i) is equal to the closed rectangle p1p2p3p4:

6



De�nition 2.4. Let G be a polynomial semigroup. We denote by K(G) the
closure of the set K1(G) consisting of the points, for each z of which, there
is a sequence (gm)m consisting of mutually distinct elements of G such that
the sequence (gm(z))m is bounded. K(G) is called the �lled-in Julia set of
G:

Remark 3. For each g 2 G the inverse image g�1(K(G)) is included in
K(G) and J(G) � K(G): If G = hf1; f2; : : : fni is a �nitely generated poly-
nomial semigroup, then

K(G) =
n[

j=1

f�1
j (K(G)):

Theorem 2.5. Let G = hf1; f2; : : : fni be a �nitely generated polynomial

semigroup. Assume that the set [(i;j):i6=jf
�1
i (K(G)) \ f�1

j (K(G)) does not

contain any continuum. Then

@(K(G)) = J(G):

Proof. Let z be a point of @(K(G)) and let U be an open neighborhood of z:
For each x 2 K1(G)\U there is a sequence (gm)m of elements of G such that
(gm(x))m is bounded. But for each y 2 UnK(G) the sequence (gm(y))m tends
to in�nity so G is not normal in U and z 2 J(G): So @(K(G)) � J(G): Next
let U be a component of int(K(G)): From the fact K(G) = [n

j=1f
�1
j (K(G))

and our assumption we can show that G is normal in U in the same way as
the proof of Theorem 2.3.

Now we consider the expandingness of hyperbolic rational semigroups,
which gives us an information about the analytic property of them.

Theorem 2.6. Let G = hf1; f2; : : : fni be a �nitely generated hyperbolic ra-

tional semigroup . Assume that G contains an element with the degree at

least two and each M�obius transformation in G is neither the identity nor an

elliptic element. Let K be a compact subset of C n P (G): Then there are a

positive number c; a number � > 1 and a Riemannian metric � on an open

subset V of C n P (G) which contains K [ J(G) and is backward invariant

under G such that for each k

inffk(fik � � � � � fi1)
0(z)k� j z 2 (fik � � � � � fi1)

�1(K); (ik; : : : ; i1) 2 f1; : : : ; ng
kg

� c�k; here we denote by k � k� the norm of the derivative measured from the

metric � to it.
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Proof. We will show the statement in the way similar to that of the proof of
theorem3.13 in [M]. We denote by B the union of all components of F (G)
each of which has a non-empty intersection with P (G): Let B1; : : : ; Bs be all
the components of B: For each j = 1; : : : ; s we take the hyperbolic metric
in Bj: Let Lj be the �-neighborhood of P (G) \ Bj in Bj with respect to
the distance in Bj induced by the hyperbolic metric, where � is a positive
number which is su�ciently small. We set L = [s

j=1Lj and V = C nL: Then
V contains K [ J(G) and for each element g of G the inverse image g�1(V )
is included in V:

We see that for large positive integer m; every element of G which is a
product of m generators of G is a contraction map from B to B and the
contraction rate is bounded by a constant strictly less than one in each �xed
compact subset of B: For, assume that g 2 G is of the form fis � � � � � fi1 : For
each j there are positive integers u; v with u < v which are smaller than s
such that fiv � � � � � fi1(Bj) = fiu � � � � � fi1(Bj): Hence fiv � � � � � fiu+1 maps
the component U of F (G) which contains fiu � � � � � fi1(Bj) into it. This
map is a contraction with respect to the hyperbolic metric on U and the
contraction rate is bounded by a constant strictly less than one in each �xed
compact subset of U; because of the assumpsion of our theorem. Thus g is
a contraction map from Bj to the component of F (G) which contains g(Bj)
and the above claim holds.

So there is a positive integer m0 such that for each number m � m0

the closure of g�1
m (V ) is included in V for any element gm of G in the form

fim � � � � � fi1 : Now let m be any positive integer with m � m0 and gm any
element of G in the form fim � � � � � fi1 : We set U = g�1

m (V ): We take the
hyperbolic metric in each component of V and denote it by �: Also we take
the hyperbolic metric in each component of U and denote it by �:

We will show that the inclusion map i : U ! V satis�es that ki0(z)k < 1
for each z 2 U where we denote by k � k the norm of the derivative mea-
sured from the Riemannian metric � on U to the Riemannian metric � on V:
Assume that there is a point z0 2 U such that ki0(z0)k = 1: Let W1 be the
connected component of U containing z0 and W2 the connected component
of V containing z0: For each i = 1; 2 the universal cover of Wi is D(0; 1):
Let ~i : D(0; 1) ! D(0; 1) be the lift of i : W1 ! W2: Since ki0(z0)k = 1;
~i(D(0; 1)) = D(0; 1) from Schwartz lemma. It follows that W1 = W2 but
this is a contradiction because the closure of g�1

m (V ) is included in V: Hence
ki0(z)k < 1 for each z 2 U:

The map gm is a covering map from U to V and is a local isometry
between the Riemannian metric � on U and � on V: Hence kg0m(z)k� > 1 for
each z 2 U; where we denote by k � k� the norm of the derivative measured
from the Riemannian metric � on V to it.
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It is eacy to see that there exists a compact subset C of V which contains
K and is backward invariant under G; hence the statement of our theorem
holds.

Corollary 2.7. Under the same assumpsion of Theorem 2.6, if W is a sim-

ply connected domain which is a relatively compact subdomain of C n P (G)
and A is a family of maps on W such that each element h of A is a well

de�ned branch of g�1 where g is an element of G; then each limit function

of A on W is a constant function such that the constant value is in J(G):

Proof. By Theorem 2.6, each limit function of A on W is constant. And by
[S3], for each point z of F (G); the G-orbit of z can accumulate only to P (G):
Since W � C n P (G); the constant values belong to J(G):

Now we will show the converse of Theorem 2.6.

Theorem 2.8. Let G = hf1; f2; : : : fni be a �nitely generated rational semi-

group. If there are a positive number c; a number � > 1 and a Riemannian

metric � on an open subset U containing J(G) such that for each k

inffk(fik � � � � � fi1)
0(z)k� j z 2 (fik � � � � � fi1)

�1(J(G)); (ik; : : : ; i1) 2 f1; : : : ; ng
kg

� c�k; where we denote by k � k� the norm of the derivative measured from

the metric � on V to it, then G is hyperbolic and each M�obius transformation

in G is loxodromic or hyperbolic.

Remark 4. Because of the compactness of J(G); we can show, with an easy
argument, which is familiar to us in the iteration theory of rational functions,
that even if we exchange the metric � to another Riemannian metric �1; the
enequality of the assumption holds with the same number � and a di�erent
constant c1:

Proof. Take a positive integer k such that c�k > 1 and �x it. We take the
compact �-neighborhood K of J(G) in U with respect to the distance �: If �
is su�ciently small, then

inffk(fik � � � � � fi1)
0(z)k� j z 2 (fik � � � � � fi1)

�1(K); (ik; : : : ; i1) 2 f1; : : : ; ngkg

> 1 and for each g 2 G which is of the form fik � � � � � fi1 ; the set g
�1(K) is

included in K: Moreover if we take � smaller, then in K there is no critical
value of any element of G with the word length less than k hence there is no
critical value of any element of G in K:
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Now let h be any M�obius transformation in G: We will show that h is
loxodromic or hyperbolic. Assume that h is parabolic. Then the �xed point
x of h satis�es that (hn)0(x) = 1 for each positive integer n and x 2 J(G)
but this is a contradiction. Assume that h is elliptic. We can assume that
h(z) = ei�z for some � 2 R and C \ J(G) 6= ;: There is a sequence (nj) of
positive integers such that for y 2 C \ J(G); hnj (y)! y and (hnj)0(y)! 1
as j !1 but this is a contradiction.

De�nition 2.9. LetG = hf1; f2; : : : fni be a �nitely generated rational semi-
group. We say that G is expanding if the assumption of Theorem 2.8 holds.

Theorem 2.10. Let G = hf1; f2; : : : fni be a �nitely generated hyperbolic

rational semigroup satisfying the strong open set condition. Then m(J(G)) =
0; where we denote by m the Lebesgue measure on C:

Proof. We can assume that1 belongs to F (G): FromTheorem 2.6, Lemma 1.5.1
and the remark stated after Theorem 2.8, we can also assume that there is a
number � > 1 such that for each k

inffjf 0k(z)j j z 2 f�1
k (J(G))g > �:

>From Theorem 2.3, J(G) has no interior points. We �x a small positive
number �: Then there is a number 1 > � > 0 such that for each � 2 J(G)

m(D(�; �) \ F (G))

m(D(�; �))
� �;

where we denote by D(�; �) the � disc about �: We �x any point z0 in J(G):
From Lemma 1.4.2, for each integer j there is a unique element gj 2 G of word
length j such that gj(z0) belongs to J(G):We denote by Dj the component of
g�1
j (D(gj(z0); �)) containing z0: From the Koebe theorem, there are positive
numbers c0; c1; c2 such that for every j

D(z0; c0jg
0
j(z0)j

�1) � Dj � D(z0; c1jg
0
j(z0)j

�1) (1)

inffj(g�1
j )0(z)j j z 2 D(gj(z0); �)g

supfj(g�1
j )0(z)j j z 2 D(gj(z0); �)g

� c2; (2)

where we take a branch of g�1
j so that it maps D(gj(z0); �) onto Dj: Now

for each j;

gj(Dj \ J(G)) = D(gj(z0); �) \ J(G);
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gj(Dj \ F (G)) = D(gj(z0); �) \ F (G);

from Lemma 1.4.2 and because of the strong open set condition. So for each
j

m(Dj \ F (G))

m(Dj)
=

R
D(gj(z0); �)\F (G)

j(g�1
j )0(z)j2dmR

D(gj(z0); �)
j(g�1

j )0(z)j2dm
� c22�:

So from (1) for each j

m(D(z0; c1jg0j(z0)j
�1) \ F (G))

m(D(z0; c0jg0j(z0)j
�1))

� c22�:

Also we have

m(D(z0; c1jg0j(z0)j
�1) \ F (G))

m(D(z0; c0jg0j(z0)j
�1))

=
m(D(z0; c1jg0j(z0)j

�1) \ F (G))

m(D(z0; c1jg0j(z0)j
�1))

� (
c1
c0
)2:

Now jg0j(z0)j ! 1 as j tends to in�nity and so z0 is not the Lebesgue point
of J(G): So each point z 2 J(G) is not the Lebesgue point of J(G) and
m(J(G)) is equal to zero.

3 �-Conformal Measure

We construct �-conformal measures on Julia sets of rational semigroups. �-
conformal measures on Julia sets of rational functions were introduced in
[Sul]. See also [MTU].

De�nition 3.1. LetG = hf1; f2; : : : fni be a �nitely generated rational semi-
group satisfying the strong open set condition and let � be a non-negative
number. We say that a probability measure � on C is �-conformal if for each
j = 1; : : : ; n and for each measurable set A included in f�1

j (J(G)) where fj
is injective on A;

�(fj(A)) =

Z
A

kf 0j(z)k
�d�;

where k � k denotes the norm of the derivative with respect to the spherical
metric. And we set

�(G) = inff� j there is a �-conformal measure on J(G)g:

11



Theorem 3.2. Let G = hf1; f2; : : : fni be a �nitely generated rational semi-

group satisfying the strong open set condition. We assume that when n is

equal to one the degree of f1 is at least two. Then there are a number

0 < � � 2 and a probability measure � whose support is equal to J(G) such
that � is �-conformal. Also �(G) > 0:

We will show the statement in the same way as [Sul] or [MTU]. We need
the following lemma.

Lemma 3.3. Under the same assumption in Theorem 3.2, let O be an open

set in De�nition 2.2. Then there exists an open set U whose closure is in-

cluded in O \ F (G) such that for each open neighborhood W of J(G) there
is a positive integer m satisfying

[
g2G: word length �m

g�1(U) � W: (3)

Proof. Let V be an open set whose closure is included in O \ F (G): First
we consider the case such that for each z 2 F (G); the G-orbit of z does not
accumulate at any point of V : If there are a sequence (xk) converging to a
point y 2 F (G) and a sequence (gk) of G such that for each k; gk(xk) 2 V
and the word length of gm tends to in�nity as m ! 1; then the sequence
(gk(y)) accumulates in V because (gk) is normal in a neighborhood of y: This
is a contradiction. Putting U = V; we have (3).

Now let V1; : : : ; Vm be all connected components of F (G) each of which
has a non-empty intersection with Oc: For each j we take the hyperbolic
metric in Vj: We set

H = fg 2 G j g(V1 \ O) \ (V1 \ O) 6= ;g:

If H is empty, take U in V1 \ O so small that whose closure is included in
V1 \ O: For each z 2 F (G); the G-orbit of z does not accumulate at any
point of U; so by the previous argument, (3 ) holds. Hence we can assume
that H is non-empty. We have for each j; fj(O

c) � Oc: Therefore for each
h 2 H; h(V1 \O

c) � V1 \O
c: If V1 is included in a Siegel disc or a Hermann

ring of an element of g 2 G; then g(V1 \ O) = V1 \ O: We can assume the
word length of g is less than that of any other element of G which has a
Siegel disc or a Hermann ring containing V1: We represent g as

g = fik � � � fi1 :

Take small open set U in B = g�1(V1 \ O) n (V1 \ O): Note that because of
the backward self-similarity of J(G) and the strong open set condition, for

12



each open set D in O \ F (G) and each element h 2 G; h�1(D) � O \ F (G)
and so B � O \ F (G): We have for each z 2 B;

G(z) \ O = ffis � � � fi1g
t(z) j 0 � s � k; t � 0g n fzg:

Hence G(z) \ O does not accumulate at any point of U and it follows that
for each y 2 F (G); G(y) does not accumulate at any point of U: Therefore
(3) holds.

So we can assume that each h 2 H has a (super)attracting basin con-
taining V1; here note that h(V1 \ Oc) � V1 \ Oc: Let K be the compact
�-neighborhood of Oc in [m

j=1Vj with respect to the hyperbolic metric. For
each j = 1; : : : ; n and i = 1; : : : ; m; we set

aji = supfkf
0

j(z)k j z 2 K \ Vig;

where k �k is the norm of the derivative measured from the hyperbolic metric
on Vi to that on some Vu which contains fj(Vi): We denote by dH(�; �) the
distance on V1 induced by the hyperbolic metric. Then for each h 2 H and
for each z 2 K \ V1 \O; dH(h(z); V1 \ Oc)=dH(z; V1 \ Oc) is less than

supfaji j j = 1; : : : ; n; i = 1; : : : ; m; aji 6= 1g < 1:

Since h(Oc) � Oc for each h 2 H; if we take U small enough in K \ V1 \O;
then for each y 2 F (G); G(y) does not accumulate at any point of U and so
(3 ) holds.

Proof. of Theorem 3.2. Let O be the open set in De�nition 2.2. Let U be
the open set in Lemma 3.3. we can assume that U is a simply connected
domain in O n (P (G) [ J(G)): Now we have

X
S

Z
U

kS 0(z)k2dm <1; (4)

where S is taken all holomorphic inverse branches of all elements of G de�ned
on U; k � k denotes the norm of the derivative with respect to the spherical
metric and m is the Lebesgue measure. For, assume that there are sequences
(mk)k and (lk)k of integers with mk ! 1 such that for each k there is an
element gmk+lk 2 G of word length mk + lk and glk 2 G of word length lk so
that

g�1
mk+lk

(U) \ g�1
lk
(U) 6= ;:

13



Then because of the strong open set condition for each k there is an element
hmk

2 G of word length mk such that

U \ h�1
mk
(U) 6= ;:

But this is a contradiction by (3) and so (4) holds.
Now for each x 2 U we set

I(x) =
[
m

[
g2G: word length m

g�1(x)

and

d(y) = kg0(y)k�1;

for y 2 g�1(x): By (4) for almost everywhere x 2 U
X
y2I(x)

d(y)2 <1: (5)

We �x a point x 2 U such that (5) holds. And we set

� = inffsj
X
y2I(x)

d(y)s <1g:

For each j there is a positive number Cj such that kf 0j(z)k � Cj in a neigh-

borhood of f�1
j (J(G)) and the set

[
g2G: word length m

g�1(x)

has (
Pn

j=1 deg(fj))
m points so � > 0:

Now we consider the case
P

y2I(x) d(y)
� =1: For each number s > � we

denote by �s the probability measure on C such that for each y 2 I(x)

�s(fyg) =
d(y)sP

w2I(x) d(w)
s
:

Let � be a weak limit of �s when s & �: Then the support of � is included
in J(G) because

P
y2I(x) d(y)

� =1: Let � be a point of f�1
j (J(G)): Also let

V be a neighborhood of � in f�1
j (O) and assume that fj is injective on V:

Then fj is a bijection from I(x)\V to I(x)\fj(V ): We set � = kf 0j(�)k: Let
� > 0 be a small number. We take V smaller such that for each z 2 V

�(1� �) < kf 0j(z)k < �(1 + �):

14



Then

�s�s(V )(1� �)s � �s(fj(V )) � �s�s(V )(1 + �)s:

Let s& � and we get

���(V )(1� �)� � �(fj(V )) � ���(V )(1 + �)�:

If f
0

j(�) = 0; we can show that �(fj(�)) = 0: It follows that � is a �-conformal
measure on J(G):

Next we consider the case
P

y2I(x) d(y)
� <1: We take Patterson's func-

tion h i.e. h is a continuous and non-decreasing function from R+ to R+ and
satis�es that

1.
P

y2I(x) h(d(y)
�1)d(y)s converges for each s > � and does not converge

for each s � �:

2. for each � there is a number r0 such that h(rt) � t�h(r) for each r > r0
and t > 1:

For more detail about Patterson's function, see [P] . We set

�s =
1P

y2I(x) h(d(y)
�1)d(y)s

X
y2I(x)

h(d(y)�1)d(y)s�y;

where we denote by �y the dirac measure which is concentrated on fyg:
Letting s& � we get a �-conformal measure on J(G) in the same way as the
case

P
y2I(x) d(y)

� =1:

We will show that support of � is equal to J(G): By the construction,
the support of � is included in J(G): Now assume that there are a point
� 2 J(G) and a positive number a such that �(D(�; a)) = 0: By Lemma 1.5,
there exists an element g 2 G such that g(D(�; a)) � J(G): Since � is a
conformal measure, it follows that �(J(G)) = 0 and this is a contradiction.
Therefore the support of � is equal to J(G):

We now consider �(G): There is a �(G) conformal measure � on J(G):
Assume that �(G) is equal to zero. If there exists a point x 2 f�1(J(G))
such that �(fxg) > 0; then �(ffj(x)g) = �(fxg): Since backward orbit of
any point of J(G) has in�nitely many points and � is a probability measure,
it is a contradiction. Hence � is non-atomic. For each measurable set A
included in J(G) we set

�(A) = �([n
j=1f

�1
j (A)):

15



Then � is a probability measure on J(G): But if A is a measurable set in
J(G) such that for each j all branches of f�1

j are well de�ned on A then

�(A) = (
nX

j=1

deg(fj))�(A);

and this is a contradiction, since J(G) is a disjoint union of some �nintely
many points and some sets on each of which for each j all branches of f�1

j

are well de�ned.

Theorem 3.4. Let G = hf1; f2; : : : fni be a �nitely generated hyperbolic ra-

tional semigroup satisfying the strong open set condition. We assume that

when n is equal to one the degree of f1 is at least two. Let � be a number

satisfying that 0 < � � 2 and assume that there is a �-conformal measure �
on J(G): Then � = �(G) and

dimH(J(G)) = �(G); 0 < H�(G)(J(G)) <1;

where dimH is the Hausdor� dimension and H� is the ��Hausdor� measure.

By Theorem 2.10 , Theorem 3.2 and Theorem 3.4, we get the next result.

Corollary 3.5. Let G = hf1; f2; : : : fni be a �nitely generated hyperbolic ra-

tional semigroup satisfying the strong open set condition. We assume that

when n is equal to one the degree of f1 is at least two. Then

0 < dimH(J(G)) < 2:

And if we set � = dim(J(G)); then

0 < H�(J(G)) <1:

Corollary 3.6. Let G = hf1; f2; : : : fni be a �nitely generated hyperbolic ra-

tional semigroup. We assume that when n is equal to one the degree of f1 is
at least two and the sets ff�1

j (J(G))gj=1;::: ;n are mutually disjoint. Then

0 < dimH(J(G)) < 2:

And if we set � = dim(J(G)); then

0 < H�(J(G)) <1:
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Proof. of Corollary 3.6. By Lemma 1.5.1 and Theorem 2.6, we can assume
that

inf
j

inf
z2f�1j (J(G))

kf 0j(z)k > 1;

where we denote by k � k the norm of the derivative with respect to the
spherical metric. Then it is easy to see that G satis�es the strong open set
condition. Now the statement follows from Corollary 3.5.

Proof. of Theorem 3.4. To prove our theorem it is su�cient to show that
if for a number � satisfying 0 < � � 2 there is a �-conformal measure � on
J(G); then 0 < H�(J(G)) <1: We set

� = inf
j

inf
z2f�1j (J(G))

kf 0j(z)k:

By Lemma 1.5.1 and Theorem 2.6 we can assume that � > 1 by replacing G
by a subsemigroup Im of G: As G is hyperbolic, there is a number r > 0 such
that for each � 2 J(G) and for each g 2 G we can take well de�ned branches
of g�1 on D(�; r) where D(�; r) is the r disc about �: Also we can assume
that for each j and for each � 2 J(G) the map fj is injective on D(�; r): We
set

S� = fS j a branch of g�1 on D(�; r); g 2 Gg:

By the Koebe theorem, there is a positive number c0 such that for each
� 2 J(G) and for each S 2 S�

supfkS 0(z)k j z 2 D(�;
r

2
)g � c0 � inffkS

0(z)k j z 2 D(�;
r

2
)g:

We �x a point z0 2 J(G): For each positive integer n there is a unique element
gn 2 G of word length n such that gn(z0) 2 J(G) because of Lemma 1.4.2
and the strong open set condition. We take a branch Sn of g�1

n such that
Sn(gn(z0)) = z0: By the Koebe theorem there are a positive constant �; �
such that if we set

rn =
r � k(Sn)0(zn)k

�
;

for each n where zn = gn(z0); then

D(z0; rn) � Sn(D(zn; r));
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D(z0; rn) � Sn(D(zn;
r

�
)):

Also we have rn ! 0 as n ! 1: Since the support of � is equal to J(G);
for each small number a > 0 there is a number M(a) > 0 such that for each
� 2 J(G)

�(D(�; a)) > M(a):

>From above and since � is � conformal we get

�(D(z0; rn)) � c��0 k(Sn)
0(zn)k

��(D(zn;
r

�
))

� (
rc0
�
)��r�nM(

r

�
);

�(D(z0; rn)) � c�0j(Sn)
0(zn)j

��(D(zn; r))

� c�0(
r

�
)��r�n:

So there is a number c1 > 1 such that for each n

c�1
1 �

�(D(z0; rn))

r�n
� c1:

We can take c1 independent of z0 2 J(G): We set

c2 =
maxj maxz2f�1j (J(G)) kf

0
j(z)k

�
:

There is a number n such that

c�1
2 rn � r0 � c2rn;

for all r0 with r0 < r1: Then for each r0 such that r0 < r1

�(D(z0; rn)) � c�1
1 r�n � (c1c

�
2)
�1(r0)�;

�(D(z0; rn)) � c1r
�
n � c1c

�
2(r

0)�:

So if we set c = c1c
�
2; for any small r0

c�1(r0)� � �(D(z0; r
0)) � c(r0)�:

Now the statement of our theorem follows immediately.
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In [DU], M.Denker and M.Urba�nski gave a conjecture that for any rational
map f; dimH(J(hfi)) = �(hfi): Similary we give the following conjecture.

Conjecture 3.7. Let G = hf1; f2; : : : fni be a �nitely generated rational

semigroup satisfying the strong open set condition. We assume that when

n is equal to one the degree of f1 is at least two. Then

dimH(J(G)) = �(G):

4 �-Subconformal Measure

De�nition 4.1. Let G be a rational semigroup and � be a non-negative
number. We say that a probability measure � on C is �-subconformal if for
each g 2 G and for each measurable set A;

�(g(A)) �

Z
A

kg0(z)k�d�:

For each x 2 C and each real number s we set

S(s; x) =
X
g2G

X
g(y)=x

kg0(y)k�s

counting multiplicities and

S(x) = inffs j S(s; x) <1g:

If there is not s such that S(s; x) <1; then we set S(x) =1:Also we set

s0(G) = inffS(x)g; s(G) = inff� j 9� : �-subconformal measureg

By using the same method of the proof of Theorem 3.2, we can show the
following result.

Theorem 4.2. Let G be a rational semigroup which has at most countably

many elements. If there exists a point x 2 C such that S(x) <1 then there

is a S(x)-subconformal measure.

Proposition 4.3. Let G be a rational semigroup and � a �-subconformal

measure for G where � is a real number. Assume that ]J(G) � 3 and for

each x 2 E(G) there exists an element g 2 G such that g(x) = x and

jg0(x)j < 1: Then the support of � contains J(G):
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Proof. Assume that there are a point � 2 J(G) and a positive number a
such that �(D(�; a)) = 0: By Lemma 1.5, for each neighborhood U of E(G)
there exists an element h 2 G such that h(D(�; a)) � C n U: Since � is a
subconformal measure, it follows that �(C n E(G)) = 0: From the assump-
tion of our theorem, we have �(E(G)) = 0 and so �(C) = 0 but this is a
contradiction.

Theorem 4.4. Let G = hf1; f2; : : : fni be a �nitely generated rational semi-

group. Assume that G is expanding. Then s0(G) <1 and

dimH(J(G)) � s(G) � s0(G):

Proof. Because G is expanding, it is easy to see that s0(G) < 1: We will
show the statement in the same way as the proof of Theorem 3.4. Since we
have only to consider the case that ]J(G) � 3; we assume that. We set
� = s(G): Let � be a �-subconformal measure.

First we will show that the support of � contains J(G): To show that,
from Proposition 4.3, we have only to show that for each x 2 E(G) there
exists an element g 2 G such that g(x) = x and jg0(x)j < 1: If there exists
an element of G with the degree at least two, then it is easy to show that.
Now consider the case such that each element of G is of degree one. Since
G is expanding, the order of each element of G is in�nite. From Lemma 1.5,
]E(G) � 2: Let x be any point of E(G): Let g1; � � � ; gn2 be all elements of G
each of which is in the form fi1 � fi2: Then for each j = 1; : : : ; n2; gj(x) = x:
Assume that for each j = 1; : : : ; n2; jg0j(x)j � 1: Since G is expanding, for
each j = 1; : : : ; n2; jg0j(x)j > 1: With this fact, from Lemma 1.5.5, x is
an isolated point of J(G): On the other hand, from Lemma 1.5.2, J(G) is
a perfect set and this is a contradiction. So there is a number j such that
jg0j(x)j < 1: Hence the support of � contains J(G):

Next let z0 2 J(G) be any point. Because of the backward self-similarity
of J(G); we have for each positive integer m; there is an element gm 2 G
which is a product of m generators such that gm(z0) 2 J(G): As in the proof
of Theorem 3.4, with the fact that the support of � contains J(G); we can
show that there is a sequence (rm) of positive numbers converging to zero as
m!1 such that for each m;

c �
�(D(z0; rm))

r�m
;

where c is a positive constant independent of z0 2 J(G) and m: Hence the
statement of our theorem follows.
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Theorem 4.5. Let G = hf1; f2; : : : fni be a �nitely generated rational semi-

group which is expanding. Let � be the number in the assumption of Theo-

rem 2.8. Then

dimH(J(G)) �
log(
P

j deg(fj))

log�
: (6)

Proof. By replacing G by a subsemigroup Im of G; we can assume that for
each j and z 2 f�1

j (J(G))

kf 0j(z)k � �;

where k � k denotes the norm of the derivative with respect to the spherical
metric. We take a point x 2 J(G): Now for each m the set[

g2G: word length m

g�1fxg

has at most (
P

j(deg(fj)))
m points. Also for each z 2 J(G) and for each m;

if g 2 G is word length m and g(z) 2 J(G); then

kg0(z)k � �m:

So for each number s such that s >
log(
P

j deg(fj))

log �
we have

X
g2G

X
g(y)=x

kg0(y)k�s �
1X

m=0

(
X
j

deg(fj))
m��ms

=
1X

m=0

expfm log(
X
j

deg(fj))(1� s
log�

log(
P

j deg(fj))
)g <1:

>From the way of construction of �-subconformal measure and Theorem 4.4,
the statement of Theorem 4.5 follows.

Remark 5. In the sequel [S5], we will show (6) by using a method of the
thermodynamic formalism.

Example 4.6. Let n be a positive integer such that n � 4: We set G =
hzn; n(z�4)+4i: Then G is a �nitely generated hyperbolic rational semigroup

satisfying the strong open set condition. For, let f(z) = zn; g(z) = n(z�4)+4
and U = fjzj < 5g: Then the closures of f�1(U) and g�1(U) are included in

U and mutually disjoint. Hence J(G) � U and G satis�es the strong open

set condition. Since jg(0)j > 5; G is hyperbolic. By Theorem 4.5, we get

1 � dimH J(G) �
log(n+ 1)

log(n)
:
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