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Abstract. The author gave in [12] an explicit estimate of uniform perfectness of
the Julia sets of general rational maps of degree d � 2: In this note, we will present
some exapmles of such an estimate for quadratic polynomials.

1. Uniform perfectness of Julia sets

A compact set C with #C > 1 in the Riemann sphere bC is said to be uniformly

perfect if C \fz 2 C; cr < jz� aj < rg 6= ; for any a 2 C n f1g and 0 < r < diamC;
where 0 < c < 1 is a constant and diam stands for the diameter with respect to the
Euclidean metric. It is easy to see that C = bC nD is uniformly perfect if and only if
�nite is the supremum M�

D of the moduli of essential round annuli in D separating
C; where the modulus of the round annulus fz; r1 < jz � aj < r2g is de�ned by
log r2=r1 and an annulus in D is said to separate C if both of two components of
the complement of the annulus intersect C: Teichm�uller's theorem tells us that the
condition M �

D <1 is equivalent to �niteness of the supremum MD of the moduli of
essential (not necessarily round) annuli in D separating C:We remark that the above
equivalences are quantitative (for more information, see [13]).
The notion of uniform perfectness �rst appeared in [1] and then was intensively

investigated by Pommerenke in [8] and [9]. In [9] Pommerenke proved that the Julia
set of a hyperbolic rational map of degree� 2 is uniformly perfect. Afterwards,
Ma~n�e-da Rocha [7] and Hinkkanen [4] independently proved the uniform perfectness
for general rational maps of degree� 2: But their proofs are made by contradiction
argument, thus no explicit bounds for uniform perfectness were given so far. Recently,
the author gave in [12] another proof for uniform perfectness of the Julia sets of
general rational maps with explicit bounds by using the hyperbolic geometry. We
shall present this estimate in the following.

We begin with several de�nitions and notation needed later. Let C be a compact set
in bC containing at least three points andD its complement. Then each componentD0

1991 Mathematics Subject Classi�cation. Primary 30D05, Secondary 30F45.
Key words and phrases. uniformly perfect, Julia set, quadratic polynomial.

1



ofD has a holomorphic universal covering map p : D! D0 from the unit disk D: Since
the hyperbolic metric �D = (1� jzj2)�1jdzj is invariant under the action of the cover
transformation group � < M�ob; this metric induces a Riemannian metric �D0

(z)jdzj;
which is also called the hyperbolic metric, that is, �D0

(p(z))jp0(z)j = (1� jzj2)�1jdzj:
We de�ne �D by �D = �D0

on each component D0: For a piecewise smooth curve �
in D the hyperbolic length `D(�) of � is de�ned as

R
� �D(z)jdzj: We set

dD(z; w) = inf
�
`D(�); �D(z) =

1

2
inf
�
`D(�);

where � runs over all curves joining z and w in D and � runs over all nontrivial loops
passing through z in D; which are called the hyperbolic distance and the injectivity
radius of D; respectively. Let LD be the in�mum of hyperbolic lengths of nontrivial
loops in D: (If D is simply connected we de�ne LD = +1:) In other words, LD =
2 infz2D �D(z): The following result is essential for our argument.

Theorem 1.1 ([13]). The following inequalities hold for any hyperbolic open set D

of bC with the hyperbolic metric.

1

2
MD � 1:7332 � � � �M�

D �MD; and

LD � �2

MD

� minfLDeLD ; L
2
D

2
coth2(LD=2)g:

In particular, the complement bC nD is uniformly perfect if and only if LD > 0:

Let f : bC ! bC be a rational map of degree d � 2 and denote by Jf and 
f

the Julia set and the Fatou set of f: In other words, 
f is the maximal open set
where the iterates fn (n = 1; 2; � � � ) form a normal family and Jf is its complement.
Since d � 2 the Julia set is non-empty and perfect, hence Jf is uncountable. In
particular, 
f is hyperbolic. Let U1; � � � ; Us be a complete list of the components of

f containing a critical point of f: The number of critical points of f with counting
multiplicities is known to be 2d � 2; thus s � 2d � 2: We denote by Cj the set of
critical points of f contained in Uj for j = 1; � � � ; s: Then we consider the following
two families of loops in Wj = f(Uj): For v1; v2; v 2 f(Cj) with v1 6= v2 we set

S(v1; v2) =f�;� is a trivial loop in Wj through v1; v2 with a nontrivial lift in Ujg;
T (v) =f�;� is a trivial loop in Wj through v essentially

at least two times with a nontrivial lift in Ujg:
More precisely, the statement that a loop � : S1 !Wj passes through v at least two

times means that there exist distinct points �0 and �1 in S1 with �(�0) = �(�1) = v
such that the restrictions �jI1 and �jI2 of the loop � are both nontrivial closed curves

in Wj; where I1 and I2 are the connected component of S1 n f�0; �1g:
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And we set

aj(v1; v2) = inf
�2S(v1;v2)

`
(�); bj(v) = inf
�2T (v)

`
(�) and

aj = min
v1;v22f(Cj);v1 6=v2

aj(v1; v2); bj = min
v2f(Cj)

bj(v);

where we set aj = +1 if #f(Cj) = 1:
Next, let A1; � � � ; At be the complete system of representatives of the cycles of

Herman rings of f: Remark that Shishikura's theorem says that 0 � t � d � 2; in
particular, if d = 2 there are no Herman rings. And, since the Julia set has no isolated
points, the Herman rings have �nite moduli, so LAk

> 0 for all k:
Now we are in a position to state the above-mentioned theorem.

Theorem 1.2 ([12]).

L
f
� minfa1; � � � ; as; b1; � � � ; bs; LA1

; � � � ; LAt
g:

Since � 2 S(v1; v2) satis�es `Wj
(�) � 2dWj

(v1; v2);we have aj(v1; v2) � 2dWj
(v1; v2):

Similarly we obtain bj(v) � 4�Wj
(v): Hence, we have the following

Corollary 1.3. Let V be the set of critical values of f contained in the Fatou set


f : Then we have

L
f
� minfK1;K2;K3g;

where

K1 = min
v1 6=v22V

2d
f
(v1; v2); K2 = min

v2V
4�
f

(v)

and K3 = minfLA1
; � � � ; LAt

g: In particular, L
f
> 0; equivalently, Jf is uniformly

perfect.

In order to prove the above theorem, �rst we remark that the Schwarz-Pick lemma
implies `
f

(�) � `
f
(f��) for any loop � in 
f : For any nontrivial loop � in 
f ; by

virtue of Sullivan's No Wandering Domains Theorem, the image curve �n = (fn)��
becomes contractible for su�ciently large n unless �n lands on some Herman ring (in
this case, `
f

(�) � `
f
(�n) � K3); thus the following lemma completes the proof.

Lemma 1.4. Let f : U ! W be a branched holomorphic covering map between

hyperbolic Riemann surfaces. We de�ne two families of curves S(v1; v2) and T (v)
for critical values v1; v2; v with v1 6= v2 of f as in the same way as above. And de�ne

a(v1; v2); b(v) as in the above and set a = infv1 6=v2 a(v1; v2) and b = infv b(v): Then,
for any nontrivial loop � such that f�� is trivial, it holds that

`U (�) � `W (f��) � minfa; bg:
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For a rigorous proof of this lemma, see [12]. In this note, let us be content to
exhibit only a simpli�ed example illustrating an essence of the proof.
For an r > 1 we set U = U(r) = fz 2 C; 1=r < jzj < rg: And, we consider the

Jeukowsky transformation f(z) = z + 1=z and put

f(U(r)) =W (r) =

8<:w = u+ iv 2 C;
 

u

r + 1=r

!2

+

 
v

r � 1=r

!2

< 1

9=; :
Then f : U ! W is a two-sheeted branched analytic covering with critical points
�1: Let � be a nontrivial loop in U; then one can observe that the image loop
� = f�� \surrounds" both critical values �2: Thus it is not di�cult to see that
`W (�) � a(2;�2) = 2dW (2;�2): Since W is simply connected, it holds that 1=4 �
�W (z)�W (z) � 1; where �W (z) = infa2@W jz � aj: Letting A = r + 1=r; then we have

dW (2;�2) � 2
Z 2

0

dx

�W (x)
= 2

Z 4=A

0

dx

(r � 1=r)
q
1� x2=4

+ 2
Z 2

4=A

dx

A� x

=
2

r � 1=r
arcsin

 
2

r + 1=r

!
+ 2 log

 
1 +

2

r + 1=r

!

In particular, we note that dW (r)(2;�2) � 1=(r�1) as r ! 1+ and dW (r)(2;�2) � 1=r
as r ! +1: In this case, in fact, we can calculate LU(r) explicitly as �2= log r: Thus,
the estimate LU � 2dW (2;�2) is not so good when r tends to +1:
Next, let ' be a conformal map fromW onto the unit disk D so that � := '(2) > 0

and � := '(�2) is very close but not equal to ��: Now we consider the branched
covering map g : U ! D of degree 4 de�ned by g(z) = '(f(z))2: Then the critical
values of g is �2; �2 and 0: In this case, dD(�

2; �2) is very close to zero but a(�2; �2) is
not so small because any element of S(�2; �2) goes a long way round another critical
value 0: Hence we cannot expect that the estimate in Corollary 1.3 would be always
su�ciently good.

We conclude this section by giving some applications of the estimate of uniform
perfectness. The �rst is due to Pommerenke.

Theorem 1.5 (Pommerenke [9]). A compact set C with #C > 1 in bC is uniformly

perfect if and only if there exists a positive constant c such that

Cap(C \ B(a; r)) � cr

for any a 2 C and 0 < r < diamC; where Cap denotes the logarithmic capacity and

B(a; r) = fz; jz�aj � rg: In particular, a uniformly perfect set is regular in the sense

of Dirichlet.
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In fact, the above constant c is explicitly estimated by the uniform perfectness
constant and vice versa (see [8]). The next result is essentially due to J�arvi-Vuorinen
[5], however the following quantitative form appeared in [13].

Theorem 1.6. The Hausdor� dimension of a uniformly perfect set C = bC nD can

be estimated as

H-dimC � log 2

log(2eM
�

D + 1)
� log 2

M �
D + log 3

� log 2

�2=LD + log 3
:

2. Explicit estimate in quadratic polynomial case

In this section, we shall present a typical example of estimating the constant L
f
:

We consider here the quadratic polynomial fc(z) = z2+c where c is a parameter in C:
For brevity, we set Jc = Jfc and 
c = 
fc etc. Our aim here is to estimate Lc = L
c

from below. If c is in the Mandelbrot set M = fc 2 C; ffn(0);n 2 Ng is bounded g;
then it is known that Jc is connected, so Lc = +1: Therefore we have nothing to do
in this case. In the case c =2M the Julia set Jc is known to be a totally disconnected
(Cantor type) set and 
c = fz 2 bC; fn(z) ! 1 as n ! 1g is connected. The
critical values of f are c and 1; so what we should do is estimate the hyperbolic
distance dc(c;1) and the injectivity radii �c(c) and �c(1) by Corollary 1.3.
For simplicity, we shall make an additional assumption that c < �2: Then Jc is

contained in the interval [��; �]; where � = (1 +
p
1� 4c)=2 is a �xed point of fc

with � > 2: We denote another �xed point of fc by �: Note here that � + � = 1;
and ��; � 2 Jc: In particular, the hyperbolic domain D0 = bC n f�;��; �g contains

c; thus the Schwarz-Pick lemma yields that �D0

� �c = �
c
on 
c: Let T be the

M�obius transformation taking �;�� and � to 1; 0 and 1; respectively. Then T
can be expressed by T (z) = (3 + t)(� + z)=(� � z); thus T (1) = �(3 + t) and
T (c) = �t(3 + t)=(4 + t); where t =

p
1� 4c � 3 > 0: We notice that T (Jc) �

[0;+1]: The bihaviour of the hyperbolic metric �(z)jdzj of the canonical domain

D = bC n f1; 0; 1g is well understood. For instance, the precise version of Landau's
theorem due to Hempel [3] says that

�(z) � 1

2jzj(j log jzjj+H)
;(2.1)

where H = �(14)
4=4�2 = 4:3768796 � � � and the equality occurs when z = �1: Note

that this inequality is actually e�cient only on the half plane Rez � 1
2
; otherwise we

have only to note that �(1� z) = �(z): We also note that Solynin and Vuorinen [11]
gave a recursive procedure for computing �(z):
In order to estimate the metric �; we shall analyze the universal covering map of

D: Let � be the domain f� 2 H; 0 < Im� < 1; j� � 1
2
j > 1

2
g; and � : � ! H the

conformal homeomorphism from � onto the upper half plane H taking 0; 1;1 to
1;1; 0; respectively. By the re
ection principle, � is analytically continued to the
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holomorphic universal covering map ofD from the upper half plane, which will be also
denoted by �; in particular, we see 1=2Im� = �(�(�))j�0(� )j: The map � : H! D is
nothing more than the classical elliptic modular function. Noting that the hyperbolic
line fz 2 H; Rez = 1g is mapped onto (�1; 0) by �; one can show that the segment

 = [T (1); T (c)] is the shortest hyperbolic geodesic joining T (1) and T (c) in D:
Thus we can estimate as

dW (1; c) � dbCnf�;��;�g(1; c) = dD(T (1); T (c)) =
Z


�(z)jdzj

�
Z



jdzj
2jzj(j log jzjj+H)

=
1

2
log

log(3 + t) +H

H
+

1

2

������log
log 4+t

t(3+t)
+H

H

������ :
Next, we shall explain the estimation of the injectivity radii. We remark that


f � 
 does not necessarily imply �
f
(z) � �
(z); however �
f

� �
 implies that
�
f

(z) � infw2@V d
f
(z; w) � infw2@V d
(z; w) for any simply connected subdomain

V of 
f containing z: We shall take bC n [��; �] as V: In this case, for any x 2
[�1;��) [ (�;+1]; we have

�
f
(x) � inf

y2[��;�]
d
f

(x; y) � inf
y2[��;�]

dbCnf�;��;�g(x; y) = inf
s>0

dD(T (x); s) = �D(T (x)):
(2.2)

Now we estimate I(a) = �D(�a) = �D(1 + a) for a > 0: Let ' : H ! � be the
inverse map of � : � ! H: Since � is a Jordan domain, Carath�eodory's theorem
implies that ' extends to a homeomorphism from � onto H: First we assume that
0 < a � 1: Then �0 = '(1 + a) can be expressed by (ei� + 1)=2 with �=2 � � < �:
Thus dH(�0; '((0; 1))) � dH(�0; '((�1; 0))) and the shortest hyperbolic segment 

joining �0 and '((0; 1)) = fyi; y > 0g is contained in f� 2 �; Re� � 1

2
g: Because

�(f� 2 �; Re� = 1
2
g) = fz 2 H; jz � 1j = 1g; it follows that �D(1 + a) =

R
��


�(z)jdzj
and ��
 is contained in fjz � 1j � 1g: Let � the loop in D obtained as the union
of 1 � ��
 and its complex conjugate. Then j�j � 1 and 2I(a) =

R
� �(z)jdzj: Set

a0 = min j�j: Noting that jdzj � (jdrj+ rjd�j)=p2; where z = rei�; we have

2I(a) �
Z
�

jdzj
2jzj(� log jzj+H)

�
Z
�

jdrj+ rjd�j
2r
p
2(� log r +H)

� 2

2
p
2
log

 � log a0 +H

� log a+H

!
+

1

2
p
2

2�

� log a0 +H

� �=
p
2

� log a+H
;

since the function h(x) = log x + �=x is increasing in x > 0 thus h(x) > h(H) > 0
for x > H: Hence I(a) � �=2

p
2(� log a+H) for 0 < a � 1:
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In the case 1 < a; by I(a) = I(1=a); we have I(a) � �=2
p
2(log a + H): In any

case, I(a) � �=2
p
2(j log aj+H): Combining this with (2.2), we obtain

K := minf2dc(c;1); 4�c(c); 4�c(1)g

� min

8<:log log(3 + t) +K

K
+

������log
log 4+t

t(3+t)
+K

K

������ ;
p
2�

log(3 + t) +K
;

p
2�

log 4+t
t(3+t)

+K

9=;
=

p
2�

logm+K
;

where m = maxf3 + t; 4+t
t(3+t)

g: By Corollary 1.3 we have the next

Theorem 2.1. For c < �2; the Fatou set 
c of fc(z) = z2 + c satis�es

L
c
�

p
2�

logm+H
;

where m = maxfp1� 4c;
p
1�4c+1p

1�4c(
p
1�4c�3)

g and H = �(1
4
)4=4�2 = 4:3768796 � � � :

On the other hand, it is relatively easy to obtain an upper bound for Lc: For
simplicity, we assume that c < �2 again and use the same notation as above. Let

 =

p�c� � > 0; then one can observe that

fc(x) = x2 + c < 
2 + c = ��
for x 2 (�
; 
); thus (�
; 
) � 
c: This says that the annulus A = bC n ([
; �] [
[��;�
]) separates the Julia set Jc: By de�nition, we have M
c

� m(A): Here we

note that A is conformally mapped to Teichm�uller's extremal domain bC n ([�r1; 0] [
[r2;+1]) by the M�obius transformation T (z) = 
+z

��z ; where r1 = (� � 
)=2� and

r2 = 2
=(� � 
): It is known that m(A) = 2�(
q
r1=(r1 + r2)); where �(r) denotes

the modulus of Gr�otzsch's extremal domain D n [0; r] for 0 < r < 1 and this quantity
satis�es the following (cf. [6]):

log
(1 +

p
1� r2)2

r
< �(r) < log

2(1 +
p
1� r2)

r
< log

4

r
and

�(r)�
�
1� r

1 + r

�
=
�2

2
:

In particular, we obtain

m(A) = 2�

 
�� 


� + 


!
=

�2

�(
=�)
:

Combining these with Thoerem 1.1, we get
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Theorem 2.2. For c < �2; the Fatou set 
c of f(z) = z2 + c satis�es

L
c
� �2

M
c

� �2

2�
�
��

�+


� = �
�



�

�
;

where � = (1 +
p
1� 4c)=2 > 2 and 
 =

p�c� � > 0:

Since (��
)=(�+
) = 1=2
p�c+O(jcj�1) as c! �1 and 
=� =

q
"=6(1+O("))

as " := �c � 2 ! +0; we can see that L
c
� �2

log jcj(1 + o(1)) as c ! �1 and

L
c
� log 1

"
(1 + o(1)) as " = �c� 2! +0:

3. Estimate by Green's function

In this section, we explain an estimate of the uniform perfectness constant by
Green's function, which is weaker than one in the previous section but easier to make
in most cases. Let f(z) = c0z

d + � � � + cd�1z + cd be a polynomial of degree d � 2
and 
 the immediate basin of 1: (More generally, f may be a rational map with a
super attractive �xed point z0 such that f�1(z0) \ 
 = fz0g; where 
 denotes the
immediate basin of z0:)
As is well-known (cf. [2]), Green's function g(z) = G(z;1) of 
 with pole at 1

can be expressed by
g(z) = lim

n!1 d
�n log jfn(z)j:

Since g(z) = log jzj + (d � 1)�1 log jc0j + o(1) as z ! 1; we know that Cap(Jf) =

1= d�1

q
jc0j: We also note that the following functional equation:

g(f(z)) = d � g(z):(3.1)

On the other hand, by Myrberg's theorem (cf. [14]), Green's function G(z; a) of
the domain 
 with pole at a can be written by

G(p(z); a) =
X

2�

log

�����1� 
(0)z

z � 
(0)

����� ;
where p : D ! 
 is a holomorphic universal covering of 
 with p(0) = a and � its
cover transformation group. For a w = p(z) 2 
 with z 2 D there exists a 
 2 �

such that d
(w; a) = dD(z; 
(0)) = arctanh
���� z�
(0)1�
(0)z

���� ; therefore
G(w; a) � log

�����1� 
(0)z

z � 
(0)

����� = � log tanh(d
(w; a));

equivalently,

d
(w; a) � �1

2
log tanh(G(w; a)=2):(3.2)
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For simplicity, we assume that f(z) = fc(z) = z2+c with c outside the Mandelbrot
set in the sequel. In this case, 0 and its backward orbit under f form the set of critical
points for Green's function gc(z) = Gc(z;1); thus we can see that the subdomain

0 = fz 2 
; gc(z) > gc(0)g is simply connected.

Now we consider the B�ottcher coordinate  of f at1; i.e.,  (z) = limn!1(fn(z))�d
�n

satisfying the functional equation  (f(z)) =  (z)2; by which  can be analytically
continued near any point z0 so far as  is already de�ned near f(z0): Therefore,
' =  �p can be analytically continued to a holomorphic map from D to itself, where
p : D! 
 is a universal covering map of 
 with p(0) =1: Let V be the connected
component of p�1(
0) containing 0 and s : 
0 ! V the inverse map of pjV : We note
that '(V ) = fjzj < e�gc(0)g:
Since 
0 is simply connected, any nontrivial loop 
 passing through c must escape

from 
0; thus it contains two parts 
1 and 
2 both of which start from c and end
at some points in @
0 and entirely contained in 


0
: Since j'(s(c))j = e�gc(c) and

gc(c) = 2gc(0) by (3.1), we can estimate as

`c(
j) = `D(s�
j) � `D('�(s�
j)) � dD(e
�gc(c); e�gc(0))

=
1

2
log

tanh gc(c)=2

tanh gc(0)=2
=

1

2
log

tanh gc(0)

tanh gc(0)=2
:

Thus we have �c(c) � (`c(
1) + `c(
2))=2 � 1
2
log tanh gc(0)

tanh gc(0)=2
: In the same fashon, we

obtain �c(1) � �1
2
log tanh gc(0)=2: Summing up these esitimates, we obtain the

following result by Corollary 1.3.

Theorem 3.1. Let 
c be the Fatou set of a quadratic polynomial fc(z) = z2+ c with
c outside the Mandelbrot set. If we denote Green's function of 
c with pole at 1 by

gc(z); we have the following estimate:

L
c
� 1

2
log

tanh gc(0)

tanh gc(0)=2
=

1

2
log

2

1 + tanh2(gc(0)=2)
:

Finally, we make some comparison between the above estimates and known results.
By Theorem 1.6, Theorems 2.1 and 3.1 produces the following inequalities.

H-dimJc �
p
2 log 2

�(logm+H) +
p
2 log 3

; and(3.3)

H-dimJc � log 2

2�2= log tanh gc(0)
tanh gc(0)=2

+ log 3
;(3.4)

where m = maxfp1� 4c;
p
1�4c+1p

1�4c(
p
1�4c�3)

g and c < �2 in (3.3) and c =2M in (3.4).
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On the other hand, Ransford [10] proved the following estimate for any c 2 CnM:

log 2

gc(0) + log 2
� H-dimJc � log 2

gc(0) + (e�gc(0) + 1)�1 log 2
:

Note that GM(c;1) = gc(c) = 2gc(0); where GM is Green's function of the exterior
of the Mandelbrot set with pole at 1: Since gc(0) =

1
2
GM(c;1) = 1

2
log jcj+ o(1) as

c ! 1 (cf. [2]), we see that H-dimJc =
2 log 2
log jcj (1 + o(1)) at 1: On the other hand,

(3.3) yields that H-dimJc � 2
p
2�

log jcj as c ! �1; which is rather good estimate. But

(3.4) yields only that H-dimJc � log 2=�2
q
jcj as c!1:
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