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Abstract. For a constant � 2 (0; 1]; a normalized analytic function f(z) = z +
a2z2+� � � on the unit disk is said to be strongly starlike of order � if jargzf 0(z)=f(z)j <
��=2 for any point z in the unit disk. In this note, we shall present an optimal but
not explicit esitimate of the norm of f 00=f 0; for such a function f: And we provide
a su�ciently good esitimate for the optimal constants. We also refer to the related
topics.

1. Introduction

Let A denote the set of analytic functions f on the unit disk � normalized so that
f (0) = 0 and f 0(0) = 1: For a constant � 2 (0; 1]; a function f 2 A is called strongly

starlike of order � if j arg(zf 0(z)=f(z))j < ��=2 in �: We denote by S�(�) the set of
strongly starlike functions of order �: Note that a function in A is strongly starlike of
order 1 if and only if it is starlike, i.e., Re(zf 0(z)=f(z)) > 0; in particular univalent
in �: These classes of the functions have been considered by several authors, for
example, Stankiewicz [6], Brannan-Kirwan [1] and Chiang [2].
For a locally univalent holomorphic function f; we de�ne

Tf =
f 00

f 0
and Sf = (Tf)

0 � 1

2
(Tf)

2;

these are called the pre-Schwarzian derivative (or nonlinearity) and the Schwarzian
derivative of f; respectively. For a locally univalent holomorphic function f in the
unit disk, we de�ne norms of Tf and Sf by

kTfk1 = sup
z2�

jTf(z)j(1� jzj2); and kSfk2 = sup
z2�

jSf(z)j(1� jzj2)2;

respectively. These norms have a signi�cant meaning in the theory of Teichm�uller
spaces.
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For a univalent function f; it is well-known that kTfk1 � 6; kSfk2 � 6 and
that these estimates are best possible. Moreover, if f can be extended to a k-
quasiconformal automorphism of the Riemann sphere bC then we have kTfk1 � 6k
and kSfk2 � 6k:
On the other hand, for any f 2 A; it is also known that if kTfk1 � 1 or kSfk2 � 2

the functions f is univalent in �:
In [5] Fait, Krzy_z and Zygmunt showed that any function f 2 S�(�) can be ex-

tended to a sin(��=2)-quasiconformal automorphism of bC; therefore we have kTfk1 �
6 sin(��=2) and kSfk2 � 6 sin(��=2) (cf. [3]). Moreover, Chiang [3](Theorem 2.4.3)
proved that kTfk1 � 6� however the formulation is slightly di�erent from here. He
also states this estimate is best possible, but his argument has a gap. In fact, we
shall give the following best possible estimate. The proof will be given in Section 2.

Theorem 1.1. For any f 2 S�(�); where 0 < � < 1; we have

kTfk1 = sup
z2�

(1� jzj2)
�����f

00(z)

f 0(z)

����� �M(�) + 2�;(1.1)

where, M(�) is given by

M(�) =
4�c(�)

(1� �)c(�)2 + 1 + �
=

4�c(�)�+1

c(�)2 + 1
;(1.2)

and c(�) is the unique solution of the following equation with respect to x in the

interval (1;1) :

(1� �)x�+2 + (1 + �)x� � x2 � 1 = 0:(1.3)

Moreover, the equality in (1.1) holds precisely if Tf (z) = ( 1+"z
1�"z

)� for a constant " with
j"j = 1:

In case � = 1; as is well-known, the Koebe function K(z) = z(1� z)�2 belongs to
S�(1) and satis�es that kTKk1 = 6:
By the expression of c(�) above, we can immediately see that M(�) < 4�: More-

over, modifying the method in [3], we can show that

M(�) < 2�(1 + �):(1.4)

The method of estimation of this might be interesting in itself, so we include it in
the proof of Theorem 1.1.
It seems di�cult to determine the exact value of c(�) in terms of �; although we

have a su�ciently good estimate of it.
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Theorem 1.2. Under the same hypothesis of Theorem 1.1, we can estimate c(�) and
M(�) as

(1� �=2)(1 + �)

1� �
< c(�) <

1 + �

1� �
;(1.5)

and

2�(1 + �)1+�(1� �)1��

1 + �2
< M(�) < 2�(1� �=2)�(1 + �)1+�(1� �)1��:(1.6)

Remark. The ratio r(�) = (1 � �=2)�(1 + �2) of the right-most term and the left-
most one in (1.6) is very near to 1: In fact, for 0 < � < 1 it holds that 1 < r(�) �
1:10244 � � � ; where the maximum is attained by � = 0:679508 � � � : Therefore, we are
convinced that the esimates in the above are nearly sharp. And, one can also deduce
(1.4) from the estimate (1.6).

The proof of Theorem 1.2 will be given in Section 3.
On the other hand, it is unknown if the estimate kSfk2 � 6 sin(��=2) is sharp. In

this direction, we will show that this bound cannot be replaced by a smaller number
than 6� in Section 4.

2. Proof of Thereom 1.1

Now we shall prove the Theorem 1.1 by following the method developed by Chiang
[3]. First we set p(z) = Pf(z) = zf 0(z)=f(z): Then, by assumption, p is a holomorphic
function on � satisfying p(0) = 1 and p(�) � fw 2 C�; j argwj < ��=2g: Since p is
subordinate to the univalent map q(z) = (1+z

1�z
)�; there exists a holomorphic function

! : �! � with !(0) = 0 such that

p = q � ! =
�
1 + !

1� !

��
:(2.1)

Let F = F� 2 A be the function with PF = q; i.e. F (z) = z exp(
R z
0

(q(t)�1)dt
t

): Here,
for later use, we note an elementary fact that jq(z)� 1j � q(jzj)� 1 because

jq(z)� 1j =
����Z z

0

2�

1� t2

�
1 + t

1� t

��
dt
���� � Z z

0

2�

1� jtj2
 
1 + jtj
1� jtj

!�

jdtj = q(jzj)� 1:

By the logarithmic di�erentiation of p; we have

1

z
+

f 00

f 0
� f 0

f
= �

 
!0

1 + !
+

!0

1� !

!
; thus

zTf(z) =
zf 00(z)

f 0(z)
=

2�z!0

1� !2
+ p� 1:(2.2)
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By the Schwarz-Pick lemma: j!0(z)j=(1� j!(z)j2) � 1=(1� jzj2) and the fact that
j!(z)j � jzj and p = q � !; we can estimate as

jTf(z)j � 2�j!0j
1� j!j2 +

jq(!)� 1j
jzj � 2�

1� jzj2 +
q(j!j)� 1

jzj
� 2�

1� jzj2 +
q(jzj)� 1

jzj = TF (jzj);

where the inequality is strict unless !=z is a constant with absolute value 1. In
particular, we immediately see that kTfk1 � kTF k1:
Since (1� t2)TF (t) =

1�t2

t
(q(t)� 1) + 2� tends to 2� as t! 1� 0; if the equality

kTfk1 = kTFk1(> 2�) holds then jTf (z0)j = TF (jz0j) for some z0 2 �; hence we
conclude that Tf(z) = q(�z) for some constant " with j"j = 1:
From now on, we may restrict our attension on the norm of TF : What we need is

to evaluate M(�) = sup0<t<1
1�t2

t
(q(t) � 1): Changing the variable by x = 1+t

1�t
; we

have M(�) = sup1<x g(x); where g(x) =
4(x1+��x)

x2�1
:

By the logarithmic di�erentiation, we have

g0(x)

g(x)
= �(1� �)x2+� + (1 + �)x� � x2 � 1

(x1+� � x)(x2 � 1)
:

We set h(x) = (1��)x2+�+(1+�)x��x2�1; then we obtain h(1) = 0; h(+1) = +1
and

h0(x) = (1� �)(2 + �)x1+� + �(1 + �)x��1 � 2x;

h00(x) = (1� �2)(2 + �)x� � �(1� �2)x��2 � 2;

h000(x) = �(1� �2)x��3((2 + �)x2 + 2� �) > 0:

In particular, h00 is increasing, thus h00 has a unique zero in (1;+1); say x = x1;
because h00(1) = �2�2 < 0 and h00(x) ! +1 (x ! +1): Since h0(1) = 0 and
h0(x) ! +1 (x ! +1); h0 has a unique zero x2 > x1 in (1;+1): By the
same reasoning, h has a unique zero (nothing but the solution of (1.3)!) c(�) > x2
in (1;+1); since h(0) = 0 and h(x) ! +1 (x ! +1): By these observations,
we can see that g0 > 0 in (1; c(�)) and g0 < 0 in (c(�);+1): Thus g assumes its
maximum at x = c(�); therefore we obtain M(�) = g(c(�)): Since c = c(�) satis�es

c� = c2+1
(1��)c2+1+�

; we have also

M(�) = g(c) =
4c
�

c2+1
(1��)c2+1+�

� 1
�

c2 � 1
=

4�c

(1� �)c2 + 1 + �
=

4�c1+�

c2 + 1
:

Now the proof is completed.
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Here we should note that M(�) = g(c(�)) > limx!1+0 g(x) = 2�; thus M(�) �
2� = 4�c

(1��)c2+1+�
� 2� = 2�(c�1)(�(c+1)�(c�1))

(1��)c2+1+�
> 0; which proves that � > c�1

c+1
; i.e.

c = c(�) > 1+�
1��

:

As we promised in Introduction, we shall show (1.4). The proof below is rather
geometric and does not use the knowledge about c(�): In order to estimate M(�);
we shall investigate the function q(z) = 1 + c1z + c2z

2 + � � � ; here we can compute
that c1 = 2� and c2 = 2�2:
First, by the following lemma due to Loewner, we know that

jcnj � jc1j = 2�(2.3)

for all n:

Lemma 2.1 (cf. Duren [4]). If a function f(z) = z + a2z
2 + � � � 2 A is convex,

then janj � 1 for all n � 2: And all these inequalities are strict unless f is a rotation

of the function z
1�z

:

Here we devide q into the even part qe and the odd part qo; i.e.,

qe(z) =
1

2
(q(z) + q(�z)) = 1

2

 
q(z) +

1

q(z)

!
= 1 + c2z

2 + c4z
4 + � � � ;

and

qo(z) =
1

2
(q(z)� q(�z)) = c1z + c3z

3 + � � � :

Noting that qe(
p
z) is a univalent function whose image is a component of the

exterior of the hyperbola:

fz = x+ iy;

 
x

cos(��=2)

!2

�
 

y

sin(��=2)

!2

> 1 and x > 0g;

thus convex, by the above lemma again, we have

jc2nj � jc2j = 2�2(2.4)

for all n = 1; 2; � � � :
We remark that qo : � ! qo(�) is a conformal mapping onto the interior of the

hyperbola:

fz = x+ iy;

 
y

sin(��=2)

!2

�
 

x

cos(��=2)

!2

< 1g:
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By virtue of (2.3) and (2.4), we have

jq(z)� 1j �
1X
n=0

jc2n+1jjzj2n+1 +
1X
n=1

jc2njjzj2n

�
1X
n=0

2�jzj2n+1 +
1X
n=1

2�2jzj2n

=
2�jzj
1� jzj2 +

2�2jzj2
1� jzj2 =

2�jzj(jzj+ �)

1� jzj2 :

Thus we have proved that 1�jzj2

jzj
jq(z)�1j � 2�(jzj+�); from which we can deduce

(1.4).

3. More about c(�) and M(�)

In this section, we shall prove Theorem 1.2 by investigating c(�) and M(�) more.
Already, we have proved that c(�) < 1+�

1��
below the proof of Theorem 1.1 in the

previous section. Our next task is to show that �0 := (1��=2)(1+�)
1��

< c(�): In order
to prove this, it su�ces to show that h(�0) < 0; where h is the function de�ned in
Section 2. By substituting �0 to the expression of h; we calculate as

h(�0) = (1� �)�2

�
" 

2� �� 3�2

4
+

�3

4

!
(1� �

2
)�(1 + �)1+�(1� �)1�� �

 
2� �+

�2

4
� �3

2
+

�4

4

!#
:

Set

k(�) = log
(2� �� 3�2

4
+ �3

4
)(1� �

2
)�(1 + �)1+�(1� �)1��

2� �+ �2

4
� �3

2
+ �4

4

;

then we have

k00(�) =
�3l(�)

(8� 4�� 3�2 + �3)2(8� 4�+ �2 � 2�3 + �4)2(2� �)2(1� �2)
;

where

l(�) =� 30720� 109056�+ 139072�2 � 58176�3 � 29136�4 + 34392�5 � 1293�6

� 12397�7 + 7478�8 � 2053�9 + 468�10 � 215�11 + 82�12 � 15�13 + �14:

Since

l0(�) =109056� 278144� + 174528�2 + 116544�3 � 171960�4 + 7758�5 + 86779�6

� 59824�7 + 18477�8 � 4680�9 + 2365�10 � 984�11 + 195�12 � 14�13

=96 + 5920� + 28320�2 + 50048�3 + 36830�4 + 5046�5 � 9555�6

� 9008�7 � 1071�8 + 2260�9 + 407�10 � 264�11 + 13�12 + 14�13;

6



where � = 1 � �; we see that l0(�) � 96 > 0; hence l is increasing. On the other
hand, l(0) = �30720 < 0 and l(1) = 128 > 0; so we conclude that l has a unique zero
�1 in (0; 1): Taking account of that k0(0) = 0 and lim�!1�0 k

0(�) = +1; we see that
k0 has a unique zero �2 > �1 in (0; 1) and that k0 < 0 in (0; �2) and k0 > 0 in (�2; 1):
Therefore, we have k(�) < maxfk(0); k(1)g = 0 for all 0 < � < 1; hence h(�0) < 0:

Now, we shall estimate M(�): First, we note that the function u(x) = 4�x1+�

x2+1 is

decreasing in [�0;+1); where �0 = (1��=2)(1+�)
1��

; in fact, u0(x)=u(x) = 1+��(1��)x2

x(x2+1)
;

and (1��)x2 � (1��)(1��=2)2(1+�
1��

)2 � (1+�)2 1��+�
2=4

1��
> 1+�; thus u0(x) < 0:

In particular, in view of (1.5), we have u(�1) < M(�) = u(c(�)) < u(�0); where

�1 =
1+�
1��

: Noting that u(�1) =
2�(1+�)1+�(1��)1��

1+�2
and

u(�0) =
4�(1� �=2)1+�(1 + �)1+�(1� �)1��

2� �+ �2(1� �)2=4
� 2�(1� �=2)�(1 + �)1+�(1� �)1��;

we have the inequality (1.6).

4. Schwarzian derivatives

In this section, we remark a corresponding result on the Schwarzian derivatives of
strongly starlike functions. As was seen previously, if f 2 S�(�) then p = zf 0=f can
be represented as p = q � !; where q(z) = (1+z

1�z
)� and ! : � ! � is holomorphic

function with !(0) = 0:
Di�erentiating the both sides of zf 00=f 0+1� p = zp0=p(= 2�!0=(1�!2)); we have

z(f 00=f 0)0 + f 00=f 0 � p0 = (zp0=p)0; thus

z2(f 00=f 0)0 = zp0 � zf 00=f 0 + z(zp0=p)0 = zp0 � p+ 1� zp0=p+ z(zp0=p)0:

Noting these equalities, we can calculate as

z2Sf = z2(f 00=f 0)0 � 1

2
(zf 00=f 0)2

= z(zp0=p)0 � zp0=p+ zp0 � p+ 1� 1

2

n
(zp0=p)2 + p2 + 1 + 2zp0 � 2zp0=p� 2p

o
= z(zp0=p)0 � 1

2
(zp0=p)2 +

1

2
(1� p2)

=
2�z fz(z!00 + !0)(1� !2) + (2z! � �z)(!0)2g

(1� !2)2
+

1

2
(1� p2):

Though we know that kSfk2 � 6 sin(��=2); we feel much di�culty to estimate
kSfk2 directly by the above expression of Sf :
Analogously as in the case of pre-Schwarzian derivatives, one might expect that

the function F = F� determined by PF = q plays an extremal role, but this is not the

case. By the above calculations, we can see that z2SF (z) =
2�z(1��z+z2)

(1�z2)2 + 1
2(1 � q2)
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in this case. A direct but tedious calculation yields that kSFk2 = 2�(2 + �): But,

the same estimate does not hold for general f 2 S�(�): In fact, if Pf = ( 1+z
2

1�z2
)�;

then z2Sf(z) =
2�z(4z�4(1+�)z3+8z5)

(1�z4)2
+ 1

2
(1 � q(z2)); in particular, Sf(0) = 6�; hence

kSfk2 � 6�: (In fact, in this case kSfk2 = 6�:)
The author does not know if there exists a function f 2 S�(�) such that kSfk2 >

6�:
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