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Abstract

In this paper, we give a very brief exposition of the general Te-

ichm�uller theory for complex dynamics and illustrate it with ex-

amples in the case of entire functions.
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1 A Teichm�uller theory for entire functions

Recently, McMullen and Sullivan have constructed a general Teichm�uller
theory for complex dynamics [24], which gives a lot of new viewpoints to the
research of complex dynamics. In this paper, we give a very brief exposition
of the theory and illustrate it with examples in the case of entire functions.
In the seqeul, we discuss the case of transcendental entire functions only.

The authors would like to express hearty thanks to the referee and our
colleague, T. Sugawa for their helpful comments.

De�nition A transcendental entire function f induces an equivalence re-
lation on the whole plane C: z and w are equivalent if there are positive
integers n and m such that fn(z) = fm(w). We call this equivalence relation
the grand orbit equivalence relation for f , and the equivalence class the grand
orbit.

A point of C belongs to either the Fatou set or the Julia set of a given
entire function f , according as the iterations of f form a normal family in a
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neighborhood of the point or do not. The grand orbit of any component of
the Fatou set contains one of the following domains; an attractive basin, a
super-attractive basin, a parabolic basin, a Siegel disk, a Baker domain, and
a wandering domain. (For the details, see for instance [4], [25] and references
of them.)

Recall that entire functions have no Herman rings and that every Baker
domain is simply connected.

De�nition An invariant Beltrami di�erential � for f on a completely in-
variant set E is a measurable function on E that satis�es

f ��(z)
�
= �(f(z))f 0(z)=f 0(z)

�
= �(z): (1)

Now considering a transcendental entire function f as a (branched and
incomplete) covering of C by itself, we can de�ne its deformation space.

De�nition We say that two quasiconformal automorphisms �1 and �2 of C
are conformally equivalent if �1 =  � �2 with a conformal map  .

The deformation space Def(C; f) of the covering f : C! C is the totality
of the conformal equivalence classes of quasiconformal automorphisms � of
C satisfying

� � f = g � � (2)

with some entire functions g = g�.

Quasiconformal automorphisms � satisfying (2) with some entire g send
the grand orbit equivalence relation for f to that for g.

Remark By the Ahlfors-Bers measurable mapping theorem (see [20] The-
orem 4.30), Def(C; f) can be identi�ed with the open unit ball M1(C; f) of
M(C; f) consisting of all invariant Beltrami di�erentials for f , whose ele-
ments are called invariant Beltrami coe�cients.

De�nition Let QC0(C; f) be the set of all quasiconformal automorphisms
of C isotopic to the identity by uniformly quasiconformal maps which are
commutative with f .

The Teichm�uller space Teich(C; f) of the covering f : C ! C is the
quotient space of Def(C; f) by QC0(C; f).

Remark We also consider the set Rep(f) of all entire functions g� as in
(2) with � 2 Def(C; f). This way was taken in the celebrated paper [15] of
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Eremenko and Lyubich, and leads to explicit families of entire functions as
are discussed later.

To state the fundamental structure theorem of Teich(C; f), we further
need several de�nitions.

De�nition Let Ĵ be the closure of grand orbits of periodic points and those
intersecting sing(f�1). We write the complement of Ĵ as F̂ . Let F dis be
the subset of F̂ consisting of all grand orbits discrete in F̂ . Finally, we set
F fol = F̂ � F dis.

A theorem of Fatou implies that periodic points are dense in the Julia set
J . Hence Ĵ contains the Julia set J of f . Also note that a deep theorem of
Baker states that repelling ones only are dense in the Julia set.

A fundamental structure theorem of Teich(C; f) is Theorem 1 below
([19]), which is essentially due to McMullen and Sullivan.

Theorem 1 Suppose that the set sing(f�1) of all singular values is a count-
able set, then

Teich(C; f) = M1(Ĵ ; f )� Teich(F fol; f)�Teich(F dis; f)

Remark The same assertion follows under a weaker condition that the
subset sing(f�1)\F is countable. Indeed, the set Per consisting of periodic
points in J is dense in J and we can apply the argument in the proof below
to the grand orbits of Per [ (sing(f�1) \ F ), which is still countable.

Proof. By the invariance of Beltrami coe�cients, the topological covering
structures are unchanged under the isotopy in QC0(C; f). Since sing(f�1)
is countable by the assumption, it is �xed pointwise under the isotopy in
QC0(C; f), and hence so is Ĵ . Thus

QC0(C; f) = QC0(F̂ ; f);

and we conclude

Teich(C; f) =M1(Ĵ ; f)� Teich(F̂ ; f):

Since f is a smooth covering of F̂ onto itself, the general theory of Mc-
Mullen and Sullivan ([24]) implies the following.
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Proposition 2 The factors M1(Ĵ ; f) and Teich(F fol; f) are the unit balls
of the L1-space and of the `1-space, respectively.

The discrete part Teich(F dis; f) is identi�ed with the Teichm�uller space
T (F dis=f) of a union of Riemann surfaces.

Fatou components producing non-trivial factors of Teich(F fol; f) are super-
attractive basins, Siegel disks, and wandering domains.

Those for Teich(F dis; f) are attractive basins, parabolic basins, wandering
domains, and Baker domains.

The discrete part Teich(F dis; f) represents the visible action of f , and is
important in itself.

Remark Eremenko and Lyubich constructed (in [14]) an example where the
space M(J; f) is of in�nite dimension. And we will give various conditions
which implies thatM(J; f) is trivial. Wandering domains and Baker domains
contribute nothing in some cases, and in�nite dimensions in other cases, to
the Teichm�uller space. See Examples 4 and 5. On the other hand, the
authors do not give an explicit example of a wandering domain which gives
a non-trivial factor of Teich(F fol; f ).

2 Dimension estimates

To estimate the dimension of the Teichm�uller space, it is natural to consider
some representation space containing it. In the case of rational functions (or
polynomials), the coe�cients of functions give parameters of such a space.
In the case of entire functions, Eremenko and others used the loci of singular
values possibly with two accessary parameters [15], [17]. Suitable choice of
such a representation space provides a universe of various (possibly some
quotients of) Teichm�uller spaces, as the c-plane in the case of the quadratic
family fz2 + cg. In particular, we know the following

Proposition 3
dimRep(f) � #sing(f�1) + 2;

or equivalently
dimTeich(C; f) � #sing(f�1):
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On the other hand, the McMullen-Sullivan theory gives a lower bound of
the dimensions. As far as entire functions concern, the hard obstruction to get
the exact value is the existence of wandering and Baker domains. Actually,
we have known little about wandering domains and Baker domains. So, no
wandering domains theorems such as follows are useful.

Proposition 4 (No wandering domains theorem of primitive type)
If the discrete part Teich(F dis; f) is of �nite dimension, then there are no
eventually singular-value free, simply connected wandering domains.

Remark Absence of multiply connected wandering domains is equivalent to
the condition that J [ f1g is connected in Ĉ (cf.[22]). On the other hand,
su�cient conditions for connectedness of the Julia set have been given in [8],
[26], which imply absence of multiply connected wandering domains.

Now we turn to famous tame families of entire functions.

De�nition

1. The class B consists of critically bounded entire functions, namely those
with bounded singular values.

2. The Speiser class S consists of those with a �nite number of singular
values.

3. The class C consists of entire functions f such that the closure of the
forward orbits of sing(f�1) is compact and has a positive distance from
the Julia set.

Recall that any composition of two elements of S again belongs to S ([3],
[17]) and that every function in C has no Siegel disks. In the case of rational
functions, every function in the class C is called hyperbolic, and its Julia set
has vanishing area (cf. [23]). But in the case of entire functions, the Julia
set of a function in S \ C may have a positive area. The sine family gives
such an example ([23]). See Example 2.

The McMullen-Sullivan theory gives the precise dimensions of the Te-
ichm�uller spaces in some cases.
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Theorem 5 Let f 2 B\C, and suppose that the number NAC of the foliated
equivalence classes of acyclic (i.e. neither periodic nor strictly preperiodic)
singular values in the Fatou set is �nite. Then

dimTeich(C; f) = NAC + dimM(J; f):

For every f 2 S,

dimTeich(C; f) = NAC + dimM(J; f)�NP ;

where NP is the number of cycles of parabolic periodic points.

Here we say that two points are in the same foliated equivalence class if
the closures of their grand orbits coincide.

Proof. First, since NAC is �nite, the closure of the grand orbits of acyclic
singular values in the Fatou set is a countable union of points and analytic
curves. Hence M(Ĵ ; f) = M(J; f).

It is known [15] that every f 2 B has no Baker domains. Further, if
f 2 C, then f has no wandering domains ([7]). This is true also when
f 2 S by [15], [17]. Thus by the same argument as in [24], we conclude the
assertion.

Remark One of Bergweiler's conjectures states that every f 2 B has no
wandering domains. Clearly, entire functions not belonging to B may have
no wandering domains. ee

z

� ez is such an example ([3]). Also cf. [4].
For other conditions on absence of Baker domains, see [27].

We can consider some larger class EL of all entire functions such that
the Julia set is coincident with the closure of the set of escape points (i.e.
points whose forward orbits tend to the in�nity). Eremenko and Lyubich
showed that the class EL contains the class B, and we have another kind of
no wandering domains theorem.

Theorem 6 (No wandering domains theorem) Suppose that f 2 EL
and that sing(f�1) \ F is �nite. Then f has no wandering domains if and
only if dimTeich(F dis; f) is �nite.

Moreover, if so,

dimTeich(F dis; f) = NAC �NP
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Proof. The �rst assumption implies that there are no Baker domains and no
multiply connected wandering domains. If there exists a simply connected
wandering domain D, then the assumption and Propostion 4 imply that
dimTeich(F dis; f) should be in�nite. Hence the if-part of the �rst assertion
follows.

Next, if there are no wandering domains, then by considering invariant
Beltrami coe�cients supported on the Fatou set, we can show the other
assertions as in [24].

Corollary 1 Suppose that f 2 EL and that every singular value is either
an escape point, or strictly preperiodic, or repelling periodic. Further if there
are no Siegel disks and no simply connected wandering domains, the Julia
set of f is C.

There may be a set of in�nitely many singular values whose closure con-
tains the boundary of either a Siegel disk or a simply connected wandering
domain without singular values.

Proof. The �rst assumptions gives that there are no Baker domains and
no multiply connected wandering domains. The second assumption means
that every singular value in the Fatou set should be strictly preperiodic.
Then the other assumptions and Theorem 6 gives that dimTeich(F dis; f) =
NAC = NP = 0. Hence there are no attractive basins, no parabolic ones, and
no super-attractive basins.

Next, a condition for absence of invariant line �elds (which represent
non-trivial invariant Beltrami di�erentials) can be restated as structural in-
stability as follows: Suppose that the Julia set of an entire function f0 is
C, and that, for every holomorphic slice fftg through f0 in a representation
space natural and faithful in a sense, there is a sequence ftng tending to 0
such that the Julia set of every ftn is a proper subset of C. Then

dimM(C; f0) = 0;

namely there are no invariant line �elds for f0 on C.
Also, Proposition 3 and Theorem 5 give the following

Corollary 2 (No invariant line �elds theorem) Let f 2 S and have
no parabolic periodic points. Suppose that all singular values are acyclic and
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belong to mutually di�erent foliated equivalence classes in the Fatou set. Then
there are no invariant line �elds on the Julia set J , or equivalently

dimM(J; f) = 0:

Note that absence of invariant line �elds on the Julia set J does not imply
ergodicity of the action of f on J . See Example 2.

3 Case studies

We will discuss some examples. First, we consider the exponential family.

Example 1 Since ez has the single singular value 0 and hence by Proposi-
tion 3, we need to prepare the 3-dimensional family

feaz+b + c j a 2 C�; b; c 2 Cg:

By taking conformal conjugacy equivalence classes, we may use the 1-dimensional
exponential family

E = ff�(z) = �ez j � 2 C�g:

Fix an element f = f� 2 E . If Teich(C; f) (which is at most one-dimensional,
for sing(f�1) consists of only one asymptotic value) is not trivial, then the
family E gives a local chart of Teich(C; f) near f . (More explicitly, there
are a domain D containing � and a holomorphic covering map of Teich(C; f)
onto D.) Also recall that the exponential family E is topologically complete
in the sense that any entire function topologically conjugate to an element
of the family is actually conformally conjugate to an element.

In particular, if f 2 E has an attracting periodic point, then the Julia set
admits no invariant line �elds (and is area 0 in this case. See [23]). This is
still true for every element accumulated by such ones.

Recall the similarity of the exponential family to the quadratic family
fz2 + cg; both are controled by the forward orbit of a single point. Cf. [2],
[10], [11], [13], [16], [30], [31]. And we can formulate the hyperbolic-dense
conjecture.

Conjecture ([4] Question 19) In the exponential family E , the subset of
functions belonging to the class C is dense.
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When this conjecture is true, every function in the family admits no
invariant line �elds on the Julia set.

Also since every f in the class C can not have C as the Julia set, we can
consider another kind of

Conjecture
The set of all f whose Julia sets have no interior points are dense in E .
Every f having C as the Julia set is structurally unstable.

Such conjectures can be formulated for other examples below. On the
other hand, each family has clearly an individual character. For instance, in
the case of the exponential family, there exist no super-attracting periodic
points. Hence the center of each stable component should disappears, except
for the main one.

Example 2 Next, we consider the sine family. Since sin z has two critical
values f�1g, we consider the 4-dimensional family

fc sin(az + b) + dg;

or by taking conformal conjugacy equivalence classes, the 2-dimensional fam-
ily

S = ffa;b(z) = sin(az + b) j a 2 C�; b 2 Cg:

Let f = fa;b 2 S. Then Teich(C; f) is at most two-dimensional, and this
family gives a locally faithful representation space of Teich(C; f). Recall
that every element of this family has the Julia set of positive measure ([23]).

Actually, the sine family S is contained in an in�nite dimensional family,
which distinguishes every critical points. But S is topologically complete,
and hence of great importance.

Now apply Proposition 3 and Theorem 5, and we have the following

Proposition 7 Let f 2 C \S, and suppose that two singular values belong
to di�erent foliated equivalence classes. Then

Teich(C; f ) = Teich(F dis; f);

and is two-dimensional. In particular, there are no invariant line �elds on
the Julia set J .
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Proof. Teich(F dis; f) is the Teichm�uller space of a twice punctured torus or
of two once punctured tori, and hence of two dimension. Hence the assertion
follows.

Remark For instance, if b = 0 and 0 < jaj < 1, we can apply Proposition
7.

McMullen further showed in [23] that, for every element in the sine family,
the action on the Julia set is not ergodic, and that, under the assumption of
Proposition 7, the set of escape points has full measure in the Julia set.

Example 3 A family

f�(e2a=2a)z2ez j 0 < ja� 1j < 1=2g

has an attracting �xed point �2a near, but not equal to �2 (which is super-
attracting if a = 1). It has two critical points at 0, �2 and asymptotic value
0. So we may consider that this family is a complex submanifold of a more
general representation space.

Such a 3-dimensional representation space is

F2 = ffa;b;c(z) = �(z + b)(z + c)eaz j �(b� 2)(c� 2)e�2a = �2g:

The normalization conditions of this family is that 0 is the asymptotic value
and �2 is one of �xed points. Take an f such that 0 and �2 are attracting
�xed points, and that two critical values are near, but not equal to, 0 and
�2, respectively: abc+ b+ c and a(2� b)(2� c) + (b+ c� 4) are su�ciently
small, but nonzero. Also note that F2 is topologically complete (cf. [29]).

And the general theory in x2 means the following

Proposition 8 For such an f as above,

Teich(C; f ) = Teich(F dis; f);

and is three-dimensional. In particular, there are no invariant line �elds on
the Julia set J .

Proof. Teich(F dis; f) contains the Teichm�uller spaces of a once punctured
torus and a twice punctured torus. Hence it is at least three-dimensional.

As for the �rst family in Example 3, we have the following
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Proposition 9 Each element of a family

f(e2a=2a)z2e�z j 0 < ja� 1j < 1=2g;

admits no invaliant line �elds on the Julia set and has the one-dimensional
Teichm�uller space (coming from the attractive basin for �2a).

Now, take a logarithmic lift (cf. [15]), we have a family

L = f2a� log 2a+ 2z � ez j 0 < ja� 1j < 1=2g:

The element with a = 1 is an example of Bergweiler in [6], which is also
interesting in our viewpoint.

Example 4 Wandering domains may contribute nothing to Teich(C; f). A
famous example in [1] and [18] (also cf. [21])

f(z) = z � ez + 1 + 2�i

gives a wandering domain D contained in F fol and Teich([D]=f) is trivial.
Here [D] is the grand orbit of D. Bergweiler's example

2� log 2 + 2z � ez

stated above gives another such wandering domain.
In fact, since D is simply connected and f maps singular values to them-

selves, taking copies �n = fjznj < 1g of the unit disk, we may assume that
f on fn(D) are P (zn) = z2n+1. Suppose that there is an invariant Beltrami
di�erential � on [D]. Let �n be � restricted on �n. Then

�n(P
n(z0)) (P n)0(z0)=(P

n)0(z0) = �0(z0):

Set !n = e2
1�n�i, and we see that all !m

n z0 belong to the grand orbit of z0,
and that

�0(!nz0) !n=!n = �n(P
n(z0)) (P n)0(z0)=(P

n)0(z0) = �0(z0):

Thus by a direct construction or by the same argument as in [24], we conclude
that �0, and hence � itself, corresponds to an element of QC0(C; f).
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Here also note that, elements of the family L with a 6= 1 have wandering
domains D in F dis such that Teich([D]=f) is that of C � Z, and hence of
in�nite dimension.

In fact, we can take as a fundamental set all copies of a suitable ring
domain in D with the single critical value on the boundary, and patching up
all of them canonically, we have a Riemannn surface equivalent to C� Z.

Remark Recall that Eremenko and Lyubich [14] showed existence of a
wandering domain D where fn are eventually univalent, which means that
D � F dis and Teich(F dis; f) is of in�nite dimension. As an explicit known
example, we cite Herman's one [18]

f (z) = z + (�� 1)(ez � 1) + 2�i

with a linearizable � such that j�j = 1.

Example 5 Baker domains may contribute nothing to Teich(C; f). An
example is

f(z) = z + ez:

This f has in�nitely many Baker domains, each D of which is contained in
F dis and Teich([D]; f) is the Teichm�uller space of a thrice punctured sphere
and hence trivial.

On the other hand, Bergweiler's f in Example 4 again gives an exam-
ple of a Baker domain D without singular values, and contained in F dis.
Teich([D]=f) is that of an annulus, and hence Teich([D]=f) is of in�nite
dimension.

In fact, on a half plane fRe z � �Rg with su�ciently large R, the
hyperbolic metric on D is nearly that on the left half plane, and f(z) is
nearly z 7! 2z. Thus on the quotient hyperbolic surface [D]=f , the hyperbolic
length of any non-trivial loop passing through the point corresponding to z
tends to in�nity as jIm zj tends to 1. Hence [D]=f is an annulus.

A classical example of Fatou

f(z) = z + e�z + 1

also gives a Baker domain D such that Teich([D]=f) is that of C � Z, and
hence again of in�nite dimension.
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