A COEFFICIENT INEQUALITY FOR BLOCH FUNCTIONS WITH APPLICATIONS TO UNIFORMLY LOCALLY UNIVALENT FUNCTIONS

TOSHIYUKI SUGAWA AND TAKAO TERADA

ABSTRACT. We give a Fekete-Szegö type inequality for a Bloch function with Bloch seminorm ≤ 1 . As an application of it, we derive a sharp coefficient inequality for a_3 for a uniformly locally univalent function $f(z) = z + a_2 z^2 + a_3 z^3 + \ldots$ on the unit disk with pre-Schwarzian norm $\leq \lambda$ for a given $\lambda > 0$.

1. INTRODUCTION

Let \mathscr{S} be the class of univalent (analytic) functions f on the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ normalized by f(0) = 1 and f'(0) = 1. Thus a function f in \mathscr{S} can be expanded in the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots, \quad |z| < 1.$$

Bieberbach proved the inequality $|a_2| \leq 2$ and conjectured that $|a_n| \leq n$ holds for every n in 1916. After the proof of $|a_3| \leq 3$ by Löwner in 1923, Fekete and Szegö [3] surprised mathematicians by showing that the complicated inequality

$$|a_3 - \mu a_2^2| \le 1 + 2 \exp\left(\frac{-2\mu}{1-\mu}\right)$$

holds and is best possible for each $0 \leq \mu \leq 1$. We remark that $a_3 - a_2^2$ equals $S_f(0)/6$, where S_f is the Schwarzian derivative of f: $S_f = (f''/f')' - (f''/f')^2/2$. The above inequality suggests that the shape of the coefficient region $\{(a_2, a_3) \in \mathbb{C}^2 : \exists f \in \mathscr{S} \text{ such that } f(z) = z + a_2 z^2 + a_3 z^3 + \dots\}$ is quite complicated. Note that this coefficient region was thoroughly investigated by Schaeffer and Spencer [6].

In general, given a class \mathscr{F} of normalized analytic functions on the unit disk \mathbb{D} and a real (or, more generally, a complex) number μ , the Fekete-Szegö problem asks to find the best possible constant $C(\mu)$ so that $|a_3 - \mu a_2^2| \leq C(\mu)$ for every function f(z) = $z + a_2 z^2 + a_3 z^3 + \ldots$ in \mathscr{F} . Many papers have been devoted to this problem (see, for instance, [2] and references therein).

A function F on \mathbb{D} is called a *Bloch function* if the Bloch seminorm

$$||F||_{\mathscr{B}} = \sup_{z \in \mathbb{D}} (1 - |z|^2) |F'(z)|$$

Date: October 9, 2006, File: sugawa-terada06.tex.

Key words and phrases. uniformly locally univalent function, Bloch function, pre-Schwarzian derivative, Fekete-Szegö inequality.

The author was partially supported by the JSPS Grant-in-Aid for Scientific Research (B), 17340039.

is finite. We denote by \mathscr{B} the complex Banach space consisting of Bloch functions F on \mathbb{D} normalized by F(0) = 0 and set $\mathscr{B}_1 = \{F \in \mathscr{B} : ||F||_{\mathscr{B}} \leq 1\}$. Our first principal result is stated as follows.

Theorem 1. Let $\mu \in \mathbb{C}$. Then the sharp inequality

$$|b_2 + \mu b_1^2| \le \begin{cases} \frac{1 + 3\sqrt{3}|\mu|^3 + (1 + 3|\mu|^2)^{3/2}}{6\sqrt{3}|\mu|^2} & (|\mu| > \frac{4}{3\sqrt{3}})\\ \frac{3\sqrt{3}}{4} & (|\mu| \le \frac{4}{3\sqrt{3}}) \end{cases}$$

holds for every function $F(z) = b_1 z + b_2 z^2 + \dots$ in \mathscr{B}_1 .

The inequality in Theorem 1 can be regarded as a variant of the Fekete-Szegö inequality for \mathscr{B}_1 .

An analytic function f on \mathbb{D} is called *uniformly locally univalent* if there is a constant $\rho = \rho(f)$ such that f is univalent in each hyperbolic disk of radius ρ . It is known that f is uniformly locally univalent if and only if the norm

$$||T_f||_{\mathbb{D}} = \sup_{z \in \mathbb{D}} (1 - |z|^2) |T_f(z)|$$

is finite, where $T_f = f''/f'$ is the pre-Schwarzian derivative of f. It is also known that f is (globally) univalent if $||T_f||_{\mathbb{D}} \leq 1$ and, conversely, $||T_f||_{\mathbb{D}} \leq 6$ holds if f is univalent. We denote by \mathscr{U} the class of uniformly locally univalent functions f on \mathbb{D} normalized by f(0) = 0 and f'(0) = 1. Let $\mathscr{U}(\lambda)$ be the subclass of \mathscr{U} consisting of those functions f satisfying $||T_f||_{\mathbb{D}} \leq \lambda$.

In [4] Y. C. Kim and the first author observed various properties of uniformly locally univalent functions. They obtained, among others, the asymptotic estimate $a_n = O(n^{\alpha})$ for every function $f(z) = z + a_2 z^2 + a_3 z^3 + \ldots$ in $\mathscr{U}(\lambda)$ and every number α with $\alpha < (\sqrt{1 + \lambda^2} - 3)/2$. However, they did not have a sharp coefficient inequality except for the trivial one: $|a_2| \leq \lambda/2$. We apply Theorem 1 to obtain the following result.

Theorem 2. Let $\lambda > 0$. Then the sharp inequality

$$|a_{3}| \leq \begin{cases} \frac{8 + 3\sqrt{3}\lambda^{3} + (4 + 3\lambda^{2})^{3/2}}{36\sqrt{3}\lambda} & (\lambda > \frac{8}{3\sqrt{3}})\\ \frac{\sqrt{3}}{4}\lambda & (\lambda \le \frac{8}{3\sqrt{3}}) \end{cases}$$

holds for every function $f(z) = z + a_2 z^2 + a_3 z^3 + \dots$ in $\mathscr{U}(\lambda)$.

2. Proof of Theorems 1 and 2

For a positive integer n, we consider the set

$$\mathbf{B}_n = \{ (b_1, \dots, b_n) \in \mathbb{C}^n : \exists F \in \mathscr{B}_1 \text{ such that } F(z) = b_1 z + \dots + b_n z^n + \dots \},\$$

which is sometimes called the *coefficient region* of \mathscr{B}_1 with order n. Bonk studied in his dissertation [1] the coefficient regions \mathbf{B}_n and observed that they are closed convex sets with non-empty interior. It is an easy exercise to show that $\mathbf{B}_1 = \{|b_1| \leq 1\}$. One of

Bonk's main contributions was to give a description of \mathbf{B}_2 . To state his result, we need to introduce auxiliary functions. Let

$$P(x) = \frac{3\sqrt{3}}{2}x(1-x^2).$$

Then the function P(x) increases from 0 to 1 when x moves from 0 to $1/\sqrt{3}$. Therefore, we can take a branch Q of P^{-1} on the interval [0,1] so that $Q : [0,1] \to [0,1/\sqrt{3}]$ is homeomorphic. Note that the relation

(2.1)
$$P(Q(t)) = \frac{3\sqrt{3}}{2}Q(t)\left(1 - Q(t)^2\right) = t$$

holds for $t \in [0, 1]$. We are now ready to state Bonk's theorem.

Theorem A (Bonk [1, Satz 3.2.1]).

$$\mathbf{B}_2 = \left\{ (b_1, b_2) \in \mathbb{C}^2 : |b_1| \le 1 \text{ and } |b_2| \le \frac{3\sqrt{3}}{4} \left(1 - 3Q(|b_1|)^2 \right) \left(1 - Q(|b_1|)^2 \right) \right\}.$$

In particular, we have the sharp bound $|b_2| \leq 3\sqrt{3}/4$ for functions $F(z) = b_1 z + b_2 z^2 + ...$ in \mathscr{B}_1 . With this information about \mathbf{B}_2 , we prove Theorem 1.

Proof of Theorem 1. Let $C(\mu)$ be the best possible constant C such that $|b_2 + \mu b_1^2| \leq C$ holds for every function $F(z) = b_1 z + b_2 z^2 + \ldots$ in \mathscr{B}_1 , where μ is a fixed complex number. Then, by definition of the coefficient region, we have

$$C(\mu) = \sup_{(b_1, b_2) \in \mathbf{B}_2} |b_2 + \mu b_1|.$$

For $(b_1, b_2) \in \mathbf{B}_2$, by Theorem A,

(2.2)
$$|b_2 + \mu b_1^2| \le |b_2| + |\mu| |b_1|^2$$

(2.3) $\le \frac{3\sqrt{3}}{4} (1 - 3Q(|b_1|)^2) (1 - Q(|b_1|)^2) + |\mu| |b_1|^2 = M(|b_1|),$

where

$$M(t) = \frac{3\sqrt{3}}{4} \left(1 - 3Q(t)^2\right) \left(1 - Q(t)^2\right) + |\mu|t^2$$

We note here that we can choose $(b_1, b_2) \in \mathbf{B}_2$ so that equality holds at both (2.2) and (2.3). Since $|b_1|$ can take any value in [0, 1], we obtain

(2.4)
$$C(\mu) = \max_{0 \le t \le 1} M(t).$$

We have thus to compute the value of the maximum of M(t) over $0 \le t \le 1$. Since P'(Q(t))Q'(t) = 1, we obtain the relation

$$Q'(t) = \frac{2}{3\sqrt{3}(1 - 3Q(t)^2)}.$$

Therefore, by substituting the last relation and (2.1), we get

$$\begin{split} M'(t) &= -3\sqrt{3} \left(2 - 3Q(t)^2\right) Q(t) Q'(t) + 2|\mu|t\\ &= -\frac{2Q(t) \left(2 - 3Q(t)^2\right)}{1 - 3Q(t)^2} + 3\sqrt{3}|\mu|Q(t) \left(1 - Q(t)^2\right)\\ &= \frac{Q(t)}{1 - 3Q(t)^2} \left\{ 2\left(3Q(t)^2 - 2\right) + 3\sqrt{3}|\mu| \left(Q(t)^2 - 1\right) \left(3Q(t)^2 - 1\right) \right\}. \end{split}$$

Solving the quadratic equation $2(3x-2)+3\sqrt{3}|\mu|(x-1)(3x-1)=0$, we have the solutions $x = (2\sqrt{3}|\mu| - 1 \pm \sqrt{1+3|\mu|^2})/(3\sqrt{3}|\mu|)$. Because $(2\sqrt{3}|\mu| - 1 + \sqrt{1+3|\mu|^2})/(3\sqrt{3}|\mu|) \ge 2/3 > 1/3$, if the derivative M'(t) has a zero t_0 in the interval (0,1) it must satisfy the relation

$$Q(t_0)^2 = \frac{2\sqrt{3}|\mu| - 1 - \sqrt{1 + 3|\mu|^2}}{3\sqrt{3}|\mu|}$$

We now set

$$R(s) = \frac{2\sqrt{3}s - 1 - \sqrt{1 + 3s^2}}{3\sqrt{3}s}, \quad s > 0$$

Since

$$R'(s) = \frac{1 + \sqrt{1 + 3s^2}}{3s\sqrt{3(1 + 3s^2)}} > 0,$$

the function R(s) is increasing in s > 0. Note that $R(\frac{4}{3\sqrt{3}}) = 0$ and $\lim_{s \to +\infty} R(s) = \frac{1}{3}$. Therefore, the equation $Q(t)^2 = R(|\mu|)$ has a solution $t = t_0$ in the interval (0, 1) precisely when $\frac{4}{3\sqrt{3}} < |\mu|$.

First we consider the case when $|\mu| \leq \frac{4}{3\sqrt{3}}$. In this case, M'(t) < 0 in 0 < t < 1 and hence $M(|b_1|)$ takes its maximum as $|b_1| = 0$. Therefore, we obtain $C(\mu) = M(0) = 3\sqrt{3}/4$ by (2.4).

Secondly, we assume that $|\mu| > \frac{4}{3\sqrt{3}}$. Then, as was seen above, there is a unique point $t_0 \in (0,1)$ such that $Q(t_0)^2 = R(|\mu|)$. Since M'(t) > 0 for $0 < t < t_0$ and M'(t) < 0 for $t_0 < t < 1$, the function M(t) takes its maximum at $t = t_0$. Thus, $C(\mu) = M(t_0)$ by (2.4). Let us now compute the value of $M(t_0)$. In view of the relation $t_0 = P(Q(t_0)) = P(\sqrt{R(|\mu|)})$, we have the expression

$$M(t_0) = \frac{3\sqrt{3}}{4} (1 - 3Q(t_0)^2) (1 - Q(t_0)^2) + |\mu| t_0^2$$

= $\frac{3\sqrt{3}}{4} (1 - 3R(|\mu|)) (1 - R(|\mu|)) + |\mu| P(\sqrt{R(|\mu|)})^2$
= $\frac{1 + 3\sqrt{3}|\mu|^3 + (1 + 3|\mu|^2)^{3/2}}{6\sqrt{3}|\mu|^2}.$

Thus, the assertion of Theorem 1 has been confirmed.

Proof of Theorem 2. For a function $f(z) = z + a_2 z^2 + a_3 z^3 + \dots$ in $\mathscr{U}(\lambda)$, we set $F = \lambda^{-1} \log f'$. Then, $\|F\|_{\mathscr{B}} = \lambda^{-1} \|T_f\|_{\mathbb{D}} \leq 1$ and thus $F \in \mathscr{B}_1$. We expand F in a power

series: $F(z) = b_1 z + b_2 z^2 + \dots$ A comparison of the Taylor coefficients of the both sides of $f' = e^{\lambda F}$ yields the relations

$$2a_2 = \lambda b_1$$
 and $3a_3 = \lambda \left(b_2 + \frac{\lambda}{2} b_1^2 \right)$.

Thus, the maximum of $|a_3|$ for $f \in \mathscr{U}(\lambda)$ is given as $\lambda C(\lambda/2)/3$. Theorem 1 now yields the required assertion.

Under the same circumstances as in the above proof, we further obtain the expression

$$a_3 - \mu a_2^2 = \frac{\lambda}{3} \left[b_2 + \frac{\lambda}{4} (2 - 3\mu) b_1^2 \right].$$

Hence, as an immediate consequence of Theorem 1, we also have the Fekete-Szegö inequality for the class $\mathscr{U}(\lambda)$.

Theorem 3. Let a functor $f(z) = z + a_2 z^2 + a_3 z^3 + ...$ belong to $\mathscr{U}(\lambda)$ for a $\lambda > 0$. Then the sharp inequality

$$\begin{aligned} |a_3 - \mu a_2^2| &\leq \frac{\lambda}{3} C\left(\frac{(2-3\mu)\lambda}{4}\right) \\ &= \begin{cases} \frac{64 + 3\sqrt{3}\lambda^3 |2 - 3\mu|^3 + \left(16 + 3\lambda^2 |2 - 3\mu|^2\right)^{3/2}}{72\sqrt{3}\lambda |2 - 3\mu|^2} & (\lambda|2 - 3\mu| > \frac{16}{3\sqrt{3}}) \\ \frac{\sqrt{3}}{4}\lambda & (\lambda|2 - 3\mu| \leq \frac{16}{3\sqrt{3}}) \end{cases} \end{aligned}$$

holds for each $\mu \in \mathbb{C}$.

Since $S_f(0) = 6(a_3 - a_2^2)$, we obtain the following corollary.

Corollary 4. For $f \in \mathscr{U}(\lambda)$, $\lambda > 0$, the sharp inequality

$$|S_f(0)| \le 2\lambda C(-\lambda/4) = \begin{cases} \frac{64 + 3\sqrt{3}\lambda^3 + (16 + 3\lambda^2)^{3/2}}{12\sqrt{3}\lambda} & (\lambda > \frac{16}{3\sqrt{3}})\\ \frac{3\sqrt{3}}{2}\lambda & (\lambda \le \frac{16}{3\sqrt{3}}) \end{cases}$$

holds.

3. Extremal functions

We end the paper with a remark on functions extremal in $\mathscr{U}(\lambda)$. First we observe extremal functions for the coefficient functional $|b_2 + \mu b_1^2|$ in \mathscr{B}_1 . It is clear that such an extremal function $F(z) = b_1 z + b_2 z^2 + \ldots$ has to satisfy the condition $(b_1, b_2) \in \partial \mathbf{B}_2$, in other words, either

(i)
$$|b_1| = 1$$
 and $b_2 = 0$, or
(ii) $|b_1| < 1$ and $|b_2| = \frac{3\sqrt{3}}{4}(1 - 3Q(|b_1|)^2)(1 - Q(|b_1|)^2)$.

In case (i), an extremal function is given by $F(z) = b_1 z$. In case (ii), setting $t_0 = P(|b_1|)$, we define F by

$$F(z) = \frac{3\sqrt{3}\varepsilon}{4} \left\{ \left(\frac{z+z_0}{1+\overline{z_0}z} \right)^2 - z_0^2 \right\},\,$$

where $\varepsilon \in \partial \mathbb{D}$ and $z_0 \in \mathbb{D}$ are chosen so that $\arg \varepsilon = \arg b_2$, $|z_0| = Q(|b_1|)$, and $\arg z_0 =$ $\arg b_1 - \arg b_2$. Then, it is checked that $\|F\|_{\mathscr{B}} = 1$, $F'(0) = \varepsilon(z_0/|z_0|)P(|z_0|) = b_1$ and $F''(0)/2 = \varepsilon \frac{3\sqrt{3}}{4}(1-3|z_0|^2)(1-|z_0|^2) = b_2$. Therefore, $F(z) = b_1 z + b_2 z^2 + \dots$ As for uniqueness of extremal functions, at least, we have the following.

Lemma 5. Let $(b_1, b_2) \in \partial \mathbf{B}_2$. If $|b_1| = 1$, then there are infinitely many functions $F \in \mathscr{B}_1$ such that $F(z) = b_1 z + O(z^3)$. If $b_1 = 0$ then a function $F \in \mathscr{B}_1$ with $F(z) = b_1 z + b_2 z^2 + \dots$ necessarily has the form $F(z) = b_2 z^2$.

Proof. We may first assume that $b_1 = 1$. Let ω be an analytic map of \mathbb{D} into itself with $\omega(0) = \omega'(0) = 0$. Then, consider the function

$$F(z) = \int_0^z \frac{\mathrm{d}\zeta}{1 - \omega(\zeta)} = \int_0^1 \frac{z \mathrm{d}t}{1 - \omega(tz)}.$$

Then F is analytic on \mathbb{D} and satisfies F(0) = 0 and F'(0) = 1. On the other hand, since $|\omega(z)| \leq |z|^2$, we have

$$(1 - |z|^2)|F'(z)| = \frac{1 - |z|^2}{|1 - \omega(z)|} \le \frac{1 - |z|^2}{1 - |\omega(z)|} \le 1$$

for |z| < 1 with equality for z = 0. Thus, we see that $||F||_{\mathscr{B}} = 1$. In this way, we can construct a plenty of such functions.

Next we assume that $b_1 = 0$ and $|b_2| = 3\sqrt{3}/4$. Let F be a function in \mathscr{B}_1 such that $F(z) = b_2 z^2 + c_3 z^3 + c_4 z^4 + \dots$ Then,

$$F'(z) = 2b_2z + 3c_3z^2 + \dots = F'_0(z)(1+h(z)),$$

where $F_0(z) = b_2 z^2$ and h is analytic on \mathbb{D} with h(0) = 0. In particular, we have

$$(1 - |z|^2)|F'(z)| = \frac{3\sqrt{3}}{2}|z|(1 - |z|^2)|1 + h(z)| = |1 + h(z)| \le 1$$

for $|z| = 1/\sqrt{3}$, by the assumption $||F||_{\mathscr{B}} \leq 1$. By the maximum modulus principle, this forces h to be identically 0. Thus, the proof is complete.

As consequences of the last lemma together with the proof of Theorem 1, we can deduce some information about extremal functions in \mathscr{B}_1 and $\mathscr{U}(\lambda)$.

Theorem 6. Let $\mu \in \mathbb{C}$ satisfy $|\mu| \leq \frac{4}{3\sqrt{3}}$. Then an extremal function F_0 for the coefficient functional $|b_2 + \mu b_1^2|$ for functions $F(z) = b_1 z + b_2 z^2 + \ldots$ in \mathscr{B}_1 must have the form $F_0(z) = \varepsilon \frac{3\sqrt{3}}{4} z^2$ for a complex constant ε with $|\varepsilon| = 1$.

We recall the definition of the error function:

$$\operatorname{Erf}(z) = \int_0^z e^{-\zeta^2} \mathrm{d}\zeta.$$

Then extremal functions in $\mathscr{U}(\lambda)$ can be expressed in terms of the error function for a small λ .

Theorem 7. Let $0 < \lambda \leq \frac{8}{3\sqrt{3}}$. Suppose that a function $f \in \mathscr{U}(\lambda)$ maximizes the functional $|a_3|$ within $\mathscr{U}(\lambda)$. Then f has to be represented by

$$f(z) = \frac{\operatorname{Erf}(\alpha z)}{\alpha}$$

for a complex constant α with $|\alpha|^2 = 3\sqrt{3\lambda}/4$.

Kreyszig and Todd [5] obtained the radius ρ of univalence of the error function up to 7 decimal places by using large-scale computers. According to their observations, the radius ρ is given by $\rho = \sqrt{(\theta + \pi/2)/\sin 2\theta}$, where $\theta \in (0, \pi/2)$ is determined by the equation

Im Erf
$$\left(\sqrt{\frac{\theta + \pi/2}{\sin 2\theta}} e^{i\theta}\right) = 0.$$

Using Mathematica 5.2, we obtained numerically

 $\rho = 1.57483758917543224805\ldots$

Especially, we admit that their computation was correct. Since α in Theorem 7 satisfies $|\alpha| \leq \sqrt{2} = 1.414...$, the extremal function $f(z) = \text{Erf}(\alpha z)/\alpha$ is univalent in the unit disk for such an α .

References

- 1. M. Bonk, Extremalprobleme bei Bloch-funktionen, Dissertation, TU Braunschweig (1988).
- J. H. Choi, Y. C. Kim, and T. Sugawa, A general approach to the Fekete-Szegö problem, Preprint (2003).
- M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), 85–89.
- Y. C. Kim and T. Sugawa, Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, Rocky Mountain J. Math. 32 (2002), 179–200.
- E. Kreyszig and J. Todd, The radius of univalence of the error function, Numer. Math. 1 (1959), 78–89.
- A. C. Schaeffer and D. C. Spencer, *Coefficient regions for schlicht functions*, Amer. Math. Soc. Colloq. Publ., vol. 35, 1950.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, HIGASHI-HIROSHIMA, 739-8526 JAPAN

E-mail address: sugawa@math.sci.hiroshima-u.ac.jp

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, HIGASHI-HIROSHIMA, 739-8526 JAPAN

E-mail address: teradat@hiroshima-u.ac.jp