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Abstract. In this paper we solve the problem of equivalence between annuli
and Bell representations, which are canonical planar domains of connectivity
2. We give necessary and sufficient condition for equivalence as an explicit
formula in parameters that shape domains.

1. Introduction

In [4] and [5], S. Bell sought for the domain with algebraic Bergman kernel and
thought of the domain

Wa,b,r :=

{
z ∈ C :

∣∣∣∣∣ z +
n−1∑
k=1

ak

z − bk

∣∣∣∣∣ < r

}
as an example for complex ak and bk, positive r, and (a,b) := (a1, a2, . . . , an−1, b1,
b2, . . . , bn−1). Then he asked if every non-degenerate n-connected planar domain
with n > 1 can be mapped biholomorphically onto the domain Wa,b,r.

Jeong and Taniguchi showed in [7] that it is true with r = 1. For every n ≥ 2 let
Bn be the set of (a,b) ∈ C

2n−2 such that the corresponding domains Wa,b,1 are
non-degenerate n-connected planar domains. We call Bn the coefficient body for
non-degenerate n-connected canonical planar domains. The coefficient body Bn of
admissible coefficients ak and bk is completely characterized by the same authors in
[9]. Wa,b,1 are new canonical planar domains of n-connectivity, and hence referred
to as Bell representations. From now on we denote Wa,b,1 as Wa,b for convenience.

This gives rise to a problem of equivalence between our new canonical domains
and classic canonical domains. In case of connectivity n = 2, classic canonical
domain is one parameter family of annuli for 0 < ρ < 1

Ωρ2 := {z ∈ C : ρ2 < |z| < 1}.
It is well known that every nondegenerate doubly-connected domain in C is con-
formally equivalent to exactly one of Ωρ2 , 0 < ρ < 1.

For n = 2, Bell representation with a reduced coefficient body Wa,0, 0 < a < 1
4

is biholomorphic via z �→ z/
√

a to

A(r) =
{

z ∈ C :
∣∣∣∣z +

1
z

∣∣∣∣ < r

}
, r > 2
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with a = r−2. Every nondegenerate doubly-connected domain in C is conformally
equivalent to exactly one of A (r), r > 2, a version of Bell representation for the
connectivity 2 (see [5]). We study in this paper an equivalence

Problem 1.1. Can we tell which of Ωρ2 , 0 < ρ < 1 is conformally equivalent to
which of A(r), r > 2 ?

Conformal invariants are the first to examine. For a doubly connected domain G,
let Γ be the family of closed curves in G separating bounded and unbounded com-
ponents of the complement. Extremal length of Γ is λ (Γ) := supφ (infγ∈Γ

∫
γ

φ |dz|)2
/
∫∫

φ2dxdy, where the supremum is taken over all measurable φ ≥ 0 on the whole
plane with

∫∫
φ2dxdy �= 0, ∞. Module of G is M(G) := λ (Γ)−1

. Our annulus is of
M
(
Ωρ2

)
= (π)−1 ln ρ−1 (see [1, p.13]).

Both extremal lengths and modules of two doubly connected domains coincide if
and only if the two domains are conformally equivalent. However, extremal length
or module of a given domain is often hardly computable, which is the case of Bell
representation G = A (r).

In this paper we look into a new conformal invariant for G by Jeong and
Taniguchi [8]. The invariant is a pair (f, J), where f : G → U is a branched
double covering of the unit disc and J is a biholomorphic involution of G satisfying
f ◦ J = f. The map f is critical at the fixed points of J . If G ’s are conformally
equivalent, the sets of fixed points of J ’s are equivalent, and then the critical values
of f are equivalent up to automorphism of the unit disc.

By means of pair (f, J) and Tegtmeyer’s work [11] on annuli, we in section 4
relate Bell representation A(r) to conformally equivalent annulus Ωρ2 by

r =
2

c (ρ)
with an explicit formula for c (ρ), answering Problem 1.1. We also find the set
E(Ωρ2) consisting of all points in B2 which correspond to 2-connected canonical
domains biholomorphically equivalent to Ωρ2 .

In section 5, by successive conformal transformations we relate G = A (r) to
a Teichmüller extremal domain(see [1, p.35]). Applying identities of the theta
constants we obtain another formula for c (ρ). Expanding it into Lambert series,
we have the expression for c (ρ) similar to the one in section 4.

However, the methods to obtain the formulas for c(ρ) in section 4 and section 5
are different and the two formulas are related nontrivially.

2. Property of the Ahlfors map

Let Ω be a given non-degenerate n-connected planar domain with C∞ smooth
boundary bΩ. We can assume that bΩ consists of exactly n non-intersecting smooth
simple closed curves with parameterization zj(t), 0 ≤ t ≤ 1, j = 1, . . . , n. Let Tb

be the complex unit tangent function on bΩ defined by Tb(zj(t)) = z′j(t)/|z′j(t)|.
Fix a point a in Ω, and let fa be the Ahlfors map of Ω with base point a. Among

all holomorphic functions h which map into the unit disc with h(a) = 0, the Ahlfors
map fa is the unique function which maximizes |h′(a)| with f ′

a(a) > 0. Here for
the definition and properties of the Ahlfors map, see [3]. In particular, fa maps Ω
properly and holomorphically onto the unit disc. Moreover, fa can be extended to
a continuous map of Ω onto the closed unit disc so that every component γj of bΩ,
where j = 1, · · · , n, is mapped homeomorphically onto the unit circle.
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The Ahlfors map can be expressed as the quotient of the Szegő kernel and the
Garabedian kernel via

fa(z) =
S(z, a)
L(z, a)

(2.1)

for z ∈ Ω. The Garabedian kernel L(z, a) is the kernel for the orthogonal projection
from L2(bΩ) onto the orthogonal complement of H2(bΩ) and is represented by

L(z, a) =
1
2π

1
z − a

+ Ha(z)

where Ha is holomorphic on a neighborhood of Ω. The Garabedian kernel L(z, a)
and the Szegő kernel S(z, a) are related via the identity

S(z, a) = −iL(z, a)Tb(z)

for a ∈ Ω, z ∈ bΩ.
The Szegő kernel S(z, a) has exactly n − 1 zeroes a1, a2, · · · , an−1 in Ω and

S(a, a) > 0. The simple zero of fa at a comes from the simple pole of L(z, a) at a.
The n-to-one map fa must have n− 1 zeroes besides the one at a and these zeroes
coincide with the zeroes of S(z, a) since L(z, a) is nonvanishing.

3. Annulus and Bell representation

3.1. Annulus. Let 0 < ρ < 1 and fρ be the Ahlfors map of Ωρ2 = {z ∈ C : ρ2 <

|z| < 1} with base point ρ. An orthonormal basis for H2
(
bΩρ2

)
is for n ∈ Z

ϕn(z) =
zn√

2π (1 + ρ4n+2)

and hence the Szegő kernel for Ωρ2 with base point ρ is

S(z, ρ) =
1
2π

∞∑
n=−∞

(zρ)n

1 + ρ4n+2
,(3.1)

which converges absolutely and uniformly on compact subsets. The Garabedian
kernel is

L(z, ρ) =
1
2π

1
z − ρ

+
1
2π

∞∑
n=0

ρ4n+2

1 + ρ4n+2

z2n+1 − ρ2n+1

(zρ)n+1
(3.2)

(see [12]). The Ahlfors map with base point ρ is fρ(z) = S(z, ρ)/L(z, ρ) as in (2.1),
which gives 2-sheeted branched covering of the unit disc U by Ωρ2 .

The map fρ induces a nontrivial automorphism Jρ of Ωρ2 that satisfies that

fρ (z) = fρ (Jρ (z)) , z ∈ Ωρ.(3.3)

Since fρ(ρ) = fρ(−ρ) = 0 (see [10]), Jρ maps ρ to −ρ. Hence

Jρ (z) = −ρ2/z.

Also the uniqueness of the Ahlfors functions implies that

f−ρ(z) = fρ(Jρ(z)) = fρ(z)(3.4)

(For the details, see [10]). In [11] Tegtmeyer proved the following lemma and for
most part the proof involves manipulation of power series (3.1) and (3.2). In [10]
Mair and McCullough had already proved it, but not using power series. Here we
provide a proof for reader’s convenience.



4 MOONJA JEONG, JONG-WON OH, AND MASAHIKO TANIGUCHI

Lemma 3.1. The Ahlfors map fρ satisfies the following for z ∈ Ωρ2 and z∗ :=
ρ2/z̄.

(i) fρ(z̄) = fρ(z). (ii) fρ(−z̄) = −fρ(z).

(iii) fρ(z∗) = −fρ(z) and if |z| = ρ, fρ(z) is purely imaginary.

(iv) fρ(±iρ) = ±ci for some c > 0. (v) f ′
ρ(iρ) = f ′

ρ(−iρ) = 0.

Proof. First, (i) holds since S(z̄, ρ) = S(z, ρ) and L(z̄, ρ) = L(z, ρ).
Next, observing that S(−z̄, ρ) = S(z,−ρ) and L(−z̄, ρ) = −L(z,−ρ), we have

fρ(−z̄) = −f−ρ(z) = −fρ(z) by (3.4), which implies (ii).
For (iii), combine (ii) and (3.3) to obtain fρ(z∗) = fρ(−Jρ(z)) = −fρ(Jρ(z)) =

−fρ(z). Since z∗ = z on |z| = ρ, fρ is purely imaginary on |z| = ρ.
For (iv), we know that fρ maps {z : |z| = ρ} onto a line segment on the imaginary

axis by (iii) and hence the end points of the line segment are branch points. By
(i), the end points can be written as [−ci, ci] for some c > 0. If fρ(z) = ci, then
fρ(−z̄) = ci by (ii). Since fρ is a two-to-one mapping and ci is a branch point, it
is the image of a single point. Hence fρ(iρ) = ci and similarly fρ(−iρ) = −ci.

Finally, we have (v) since ±iρ map to the branch points.

The involution Jρ (z) in (3.3) fixes critical points z = ±ρi of fρ in view of (v) in
the above lemma.

3.2. Bell representation for n = 2. For r > 2, Bell representation

A(r) =
{

z ∈ C :
∣∣∣∣z +

1
z

∣∣∣∣ < r

}
is a doubly connected domain with smooth real analytic boundary curves. Mapping

fr(z) =
1
r

(
z +

1
z

)
is a proper holomorphic map from A(r) onto the unit disc which gives a 2-sheeted
branched covering of U by A(r) (see [5]). Moreover, fr has critical points z = ±1
with critical values ±2/r. Hence fr gives a 2-sheeted covering of the Riemann sphere
Ĉ by itself branched over ±2/r for each positive r.

The proper map fr : A (r) → U is associated with a biholomorphic involution in
A(r)

J (z) =
1
z
,

which fixes critical points z = ±1 of fr and satisfies that

fr (z) = fr (J (z)) , z ∈ A (r) .(3.5)

4. Solution to equivalence problem

The first theorem that solves the equivalence problem is
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Theorem 4.1. Annulus Ωρ2 , 0 < ρ < 1, is conformally equivalent to Bell repre-
sentation A(r), r > 2, if and only if r = 2/c(ρ), where

c(ρ) :=

2ρ

∞∑
k=0

(−1)[
k+1
2 ]ρ2k/

(
1 + ρ4k+2

)
1 + 2

∞∑
k=0

(−1)[
k+2
2 ] ρ4k+2/

(
1 + ρ4k+2

) .(4.1)

Both series in the numerator and denominator above converge uniformly on every
compact subset of (0, 1). The denominator is 2π (i − 1) ρL(iρ, ρ) (see the proof),
which is nonvanishing for 0 < ρ < 1 since the kernel L is. c(ρ) is continuous with
c(0+) = 0. One to one correspondence between 0 < ρ < 1 and r > 2 for conformal
equivalence implies that c(ρ) is a positive increasing function ranged in (0, 1). This
observation immediately leads to

Corollary 4.2. Module of Bell representation A(r), r > 2, is

M (A(r)) =
1
π

log
1

c−1
(

2
r

) .
The first step for the proof of Theorem 4.1 is to match the critical values of the

covering maps.

Lemma 4.3. Fix r > 2. Then A(r) is biholomorphic to an annulus Ωρ2 = {z ∈
C : ρ2 < |z| < 1} for some ρ < 1 if and only if there is a biholomorphic map T (z)
of the unit disc U onto itself such that

T ({±ci}) = {±2/r}
where fρ maps {z ∈ C : |z| = ρ} onto a line segment with the endpoints ci and −ci.

Proof. First assume that A(r) is biholomorphic to an annulus Ωρ2 . Now choose
a biholomorphic mapping wr,ρ(z) of A(r) onto Ωρ2 . Recall that the proper map
fr : A (r) → U is associated with the canonical biholomorphic involution in A(r)

J(z) =
1
z
,

which fixes {±1} pointwise, the image of which by fr is {±2/r}, and interchanges
the sheets of the covering fr : A(r) → U . Then wr,ρ ◦J ◦w−1

r,ρ(z) is a biholomorphic
involution of Ωρ2 . Since any involution on annulus is of the form z �→ e2iθρ2/z for
some real θ, put

−e2iθJρ(z) = wr,ρ ◦ J ◦ w−1
r,ρ(z).

Replacing z in Ωρ2 by eiθz, composing z �→ e−iθz with wr,ρ, and multiplying −1
on wr,ρ if necessary, we may assume that wr,ρ(±1) = ±ρi and

Jρ(z) = wr,ρ ◦ J ◦ w−1
r,ρ(z).(4.2)

For every α ∈ U , the preimage f−1
ρ (α) = {w, Jρ(w)} for some w ∈ Ωρ2 by (3.3)

and w−1
r,ρ maps {w, Jρ(w)} bijectively onto {w−1

r,ρ(w), J(w−1
r,ρ(w))} by (4.2). Also fr

maps {w−1
r,ρ(w), J(w−1

r,ρ(w))} to a single point β ∈ U by (3.5). This implies that
w−1

r,ρ induces

T := fr ◦ w−1
r,ρ ◦ f−1

ρ
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a well-defined bijection of U onto itself. T is biholomorphic with T ({±ci}) =
{±2/r} as is seen from the construction.

Next suppose that there is a biholomorphic map T (z) of the unit disc U onto
itself such that

T ({±ci}) = {±2/r}.
We will show that the map T (z) can be lifted to a biholomorphic map of Ωρ2 onto
A(r). Recall that every A(r) has the canonical anticonformal automorphism

Π(z) =
1
z̄
,

which fixes the unit circle S1 pointwise, and the image fr(S1) is the segment L =
[−2/r, 2/r].

Now cut U by L, then the preimage f−1
r (U − L) consists of two connected

components, say D±
r , each of which is biholomorphic to U −L and bounded by two

analytic Jordan curves. Similarly, cut U by T−1(L), then since T−1(L) is a circular
arc connecting ±ci, the preimage f−1

ρ (U − T−1(L)) also consists of two connected
components, say D±

ρ , each of which is biholomorphic to U − T−1(L) and bounded
by two analytic Jordan curves.

In particular, f−1
r has single-valued branches h±

r which map U − L biholomor-
phically onto D±

r , respectively. Thus, on D±
ρ set

h±(z) = h±
r ◦ T ◦ fρ.

Then we can see that h±(z) has the same continuous boundary values on the
common boundary of D±

ρ . Thus the classical theorem of Painlevé implies that
h±(z) determines a biholomorphic map of Ωρ2 onto A(r).

Proof of Theorem 4.1. Notice that any biholomorphic map T (z) of the unit disc U
onto itself satisfying

T ({±ci}) = {±2/r}
in Lemma 4.3 is a rotation with |T ′(0)| = 1. Such T (z) exists if and only if
c = 2/r. Then the theorem follows from Lemma 3.1. Formula for c = c(ρ) is read
in fρ(iρ) = ci after computing fρ(iρ) by means of (2.1), (3.1) and (3.2). Actually,

fρ(iρ) =
S (iρ, ρ)
L (iρ, ρ)

= i
2π (i + 1) ρS (iρ, ρ)
2π(i − 1)ρL (iρ, ρ)

= c i,

where the denominator of the third expression is

1 + 2
∞∑

k=1

(−1)k

(
ρ8k−6

1 + ρ8k−6
+

ρ8k−2

1 + ρ8k−2

)
= 1 + 2

∞∑
k=0

(−1)[
k+2
2 ] ρ4k+2

1 + ρ4k+2

and the numerator of the third expression is

2ρ

1 + ρ2
+ 2

∞∑
k=1

(−1)k

(
ρ4k−1

1 + ρ8k−2
+

ρ4k+1

1 + ρ8k+2

)
= 2ρ

∞∑
k=0

(−1)[
k+1
2 ] ρ2k

1 + ρ4k+2
,

and the formula for c(ρ) follows.
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Let W be a non-degenerate n-connected planar domain and let the subset E(W )
of Bn be consisted of all points which correspond to n-connected canonical domains
biholomorphically equivalent to W . We call E(W ) the leaf in Bn for W .

Remark 4.4. For every non-degenerate n-connected planar domain W , the set E(W )
is a non-empty proper subset of Bn and contains an element with a1 > 0.

Theorem 4.1 implies the following

Corollary 4.5. For every given ρ < 1 and fρ(ρi) = ci with 0 < c < 1,

E(Ωρ2) =

{
(a, b) ∈ B2 :

∣∣∣∣∣ 4a′

1 − (b + 2a′)(b − 2a′)

∣∣∣∣∣ =
2c

1 + c2

}
where a′ is any complex number such that (a′)2 = a.

In particular,

E(Ωρ2) ∩ {(a, 0) ∈ C
2} = {(a, 0) ∈ C

2 : |a| = c2/4}.
Proof. By Theorem 4.1, an annulus Ωρ2 , 0 < ρ < 1, is conformally equivalent to
Bell representation A(r) where r = 2/c(ρ). Therefore E(Ωρ2) = E(A(2/c(ρ))). We
denote that c(ρ) = c. By [8],

E(A(r)) =

{
(a, b) ∈ B2 :

∣∣∣∣∣ 4a′

1 − (b + 2a′)(b − 2a′)

∣∣∣∣∣ =
4r

4 + r2

}
where a′ is any complex number such that (a′)2 = a. Hence we get desired result
with r = 2/c.

In particular, by [8],

E(A(r)) ∩ {(a, 0) ∈ C
2} = {(a, 0) ∈ C

2 : |a| = r−2}
and it implies that

E(Ωρ2) ∩ {(a, 0) ∈ C
2} = {(a, 0) ∈ C

2 : |a| = c2/4}
since r = 2/c.

Remark 4.6. For a real θ and a real positive a,

Weiθa,0 =
{

z ∈ C :
∣∣∣∣z +

eiθa

z

∣∣∣∣ < 1
}

is biholomorphic to Wa,0 by the map z → eiθ/2z. Hence in the family {Weiθa,0}
with 0 < a < 1/4, there are no pair of mutually biholomorphic domains and the
set {(eiθa, 0) ∈ C2 : 0 < a < 1/4} contains a point of every E(Ωρ2).

5. Solution via Teichmüller extremal domain and theta constants

The function c(ρ) in Theorem 4.1 can be described in another manner by using
theta constants.

By the reflection principle, we see that there is a biholomorphic map of A(r)
onto

D = C − [−2/r, 2/r]− (−∞,−r/2] − [r/2, +∞).

and D is mapped onto the Teichmüller extremal domain

DP = C − [−1, 0] − [P,+∞)
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with

P =
((r/2) − (2/r))2

4
=

(r2 − 4)2

16r2

by the Möbius transformation

TP (z) =
(r/2) − (2/r)

4/r

z − (2/r)
z + (r/2)

.

On the other hand, considering the Weierstrass ℘ function with the periods

ω1 = 2
∫ 0

−1

dx√
x(x + 1)(x − P )

and

ω2 = 2i

∫ P

0

dx√
x(x + 1)(P − x)

,

the module M (DP ) of DP satisfies that ω2/ω1 = 2i M (DP ) . By setting

q := exp (iπω2/ω1) ,

we have

P

P + 1
=

∞∏
n=1

(
1 − q2n−1

1 + q2n−1

)8

(see for instance, [1] and [2]). Here, since

P

P + 1
=

(r2 − 4)2

(r2 + 4)2
,

c(ρ) = 2/r, and

q = exp(−2πM (DP )) = exp
(−2πM

(
Ωρ2

))
= ρ2,

we have

1 − c(ρ)2

1 + c(ρ)2
=

∞∏
n=1

(
1 − ρ4n−2

1 + ρ4n−2

)4

.

Such infinite products can be expressed by theta constants. We recall some of
such expressions. For the basic facts on theta constants, see for instance, [6].

By using the well-known product expressions of the theta constants and the
Jacobi quartic identity, we have

c(ρ) =
θ2
2

θ2
3 + θ2

0

,

where we set

θ0 =
∑
n∈Z

(−1)nqn2
=

∞∏
n=1

(1 − q2n)
∞∏

n=1

(1 − q2n−1)2,

θ2 =
∑
n∈Z

q(n−(1/2))2 = 2q1/4
∞∏

n=1

(1 − q2n)
∞∏

n=1

(1 + q2n)2,

and

θ3 =
∑
n∈Z

qn2
=

∞∏
n=1

(1 − q2n)
∞∏

n=1

(1 + q2n−1)2.
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with q = ρ2. In particular, c(ρ) can be expressed by

c(ρ) =
4ρ
∏∞

n=1

(
1 + ρ4n

)4∏∞
n=1 (1 + ρ4n−2)4 +

∏∞
n=1 (1 − ρ4n−2)4

(5.1)

and

c(ρ) =
4ρ(
∑∞

n=1 ρ2n(n−1))2

(1 + 2
∑∞

n=1 ρ2n2)2 + (1 + 2
∑∞

n=1 (−1)nρ2n2)2
.(5.2)

Moreover, by using Lambert series, we express c(ρ) in a way similar to the one
in Theorem 4.1, and we have the following

Theorem 5.1. The function c(ρ) can be written by

c(ρ) =

2ρ

∞∑
k=0

(−1)kρ2k/
(
1 − ρ4k+2

)
1 + 4

∞∑
k=0

(−1)kρ8k+4/
(
1 − ρ8k+4

) .
Proof. Since it is known (cf. [6] p.477-478) that

(1 + 2
∞∑

n=1

xn2
)2 = 1 + 4

∞∑
k=0

(−1)k x2k+1

1 − x2k+1
,

and hence

(1 + 2
∞∑

n=1

(−1)nxn2
)2 = 1 + 4

∞∑
k=0

(−1)k −x2k+1

1 + x2k+1
,

the denominator of (5.2) can be expressed as

2 + 8
∞∑

k=0

(−1)k ρ8k+4

1 − ρ8k+4
.

On the other hand, by another theta identity (cf. [6] (7.16)), we have

x(2
∞∑

n=1

x2n(n−1))2 = (1 + 2
∞∑

n=1

xn2
)2 − (1 + 2

∞∑
n=1

x2n2
)2

= 4
∞∑

k=0

(−1)k x2k+1

1 − x2k+1
− 4

∞∑
k=0

(−1)k x4k+2

1 − x4k+2
= 4

∞∑
k=0

(−1)k x2k+1

1 − x4k+2
.

Hence the numerator of (5.2) is expressed as

4ρ

∞∑
k=0

(−1)k ρ2k

1 − ρ4k+2
.

Thus we have derived the formulas for c(ρ) representing the relation between
A(r) and an annulus Ωρ2 in several ways. The formula for c(ρ) in section 4 is not
derived from the formulas in this section even if it has the expression similar to
the one in Theorem 5.1. By equating the formulas for c(ρ) in Theorem 4.1 and
Theorem 5.1 we get the following
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Corollary 5.2. For every z with |z| < 1, we have the following equation.( ∞∑
k=0

(−1)[
k
2 ]zk

1 − z2k+1

(−1)[
k+1
2 ]zk

1 + z2k+1

)(
1 +

∞∑
k=0

2(−1)[
k+2
2 ]z4k+2

1 + z4k+2

)

=

( ∞∑
k=0

(−1)[
k+1
2 ]z2k

1 + z4k+2

)(
1 +

∞∑
k=0

2(−1)[
k+2
2 ]z4k+2

1 + z4k+2

2(−1)[
k+3
2 ]z4k+2

1 − z4k+2

)
.
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