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Abstract. By means of the Briot-Bouquet differential subordination, we estimate the
order of strong starlikeness of strongly convex functions of a prescribed order. We also
make numerical experiments to examine our estimates.

1. Introduction

We denote by A the class of functions f analytic in the unit disk D = {z ∈ C : |z| < 1}
and normalized by f(0) = 0 and f ′(0) = 1. Let S denote the class of normalized univalent

analytic functions and, for each 0 ≤ k < 1, let S (k) denote the subclass of S consisting

of those functions which extend to k-quasiconformal mappings of the extended plane Let

g and h be meromorphic functions in D. We say that g is subordinate to h and express it

by g ≺ h or conventionally by g(z) ≺ h(z) if g = h ◦ ω for some analytic map ω : D→ D

with ω(0) = 0. When h is univalent, the condition g ≺ h is equivalent to g(D) ⊂ h(D)

and g(0) = h(0).

An analytic function f in the unit disk D is called starlike if f is univalent and f(D) is

starlike with respect to f(0). Also, f is called convex if f is univalent and f(D) is convex.

It is well known that f ∈ A is starlike if and only if Re (zf ′(z)/f(z)) > 0 in D and

f ∈ A is convex if and only if Re (1 + zf ′′(z)/f ′(z)) > 0 in D (see, for instance, [3]).

The sets of starlike functions and convex functions in A are denoted by S ∗ and K ,

respectively. Let α be a positive real number. A function f in A is said to be strongly

starlike of order α if | arg(zf ′(z)/f(z))| < πα/2 for z ∈ D. Similarly, f ∈ A is said to be

strongly convex of order α if | arg(1+zf ′′(z)/f ′(z))| < πα/2 for z ∈ D. The sets of strongly

starlike functions of order α and strongly convex functions of order α are denoted by S ∗
α

and Kα, respectively. Many geometric characterizations of the class S ∗
α , 0 < α < 1, are

known (for a short survey, see [13]).

Throughout the paper, we will use the symbol T to stand for the mapping of the unit

disk onto the right-half plane which is defined by

T (z) =
1 + z

1− z
.
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For 0 < κ ≤ 1, we consider also the subclass S ∗[κ] of S ∗ consisting of functions f with

zf ′(z)/f(z) ≺ T (κz) = (1+κz)/(1−κz). Hence, for 0 < κ < 1, a function f ∈ A belongs

to the class S ∗[κ] if and only if the inequality∣∣∣∣zf ′(z)

f(z)
− 1 + κ2

1− κ2

∣∣∣∣ < 2κ

1− κ2

holds in D. Here are useful criteria for quasiconformal extensions.

Theorem A.

(i) S ∗
α ⊂ S (sin(πα/2)) for 0 < α < 1.

(ii) S ∗[κ] ⊂ S (κ) for 0 < κ < 1.

Relation (i) is due to Fait, Krzyż and Zygmunt [4], and (ii) is due to Brown [1] (see

also [12]). It is easy to see that S ∗[κ] ⊂ S ∗
α for α = (2/π) arcsin(2κ/(1 + κ2)) because of

T (κz) ≺ Tα(z).

Obviously, a convex function is starlike, in other words, K ⊂ S ∗. Moreover, Mocanu

showed the relation Kα ⊂ S ∗
α for 0 < α ≤ 2 in [6]. Therefore, it is natural to consider

the problem of finding the number

β∗(α) = inf{β : Kα ⊂ S ∗
β }

for each α > 0. By the maximum principle, we have Kα ⊂ S ∗
β∗(α). Hence, β∗(α) is the

minimal number β so that Kα ⊂ S ∗
β .

Later, Mocanu proved the following in [7]. For 0 < β < 1, set

γ(β) =
2

π
arctan

[
tan

πβ

2
+

β

(1 + β)
1+β

2 (1− β)
1−β

2 cos(πβ/2)

]
(1.1)

= β +
2

π
arctan

[
β cos(πβ/2)

(1 + β)
1+β

2 (1− β)
1−β

2 + β sin(βπ/2)

]
.

Theorem B (Mocanu). A strongly convex function of order γ(β) is strongly starlike of

order β for 0 < β < 1.

The function γ(β) is continuous and strictly increases from 0 to 1 when β moves from

0 to 1. We denote by γ−1 : (0, 1) → (0, 1) the inverse function of γ. The theorem then

implies the relation Kα ⊂ S ∗
γ−1(α), namely, β∗(α) ≤ γ−1(α) for 0 < α < 1. The same

result was re-proved later by Nunokawa [8] and by Nunokawa and Thomas [9]. It is further

claimed in [9] that the result is best possible, namely, β∗(α) = γ−1(α) for 0 < α < 1. This

is, however, wrong as we see in the following result.

Theorem 1.1. The function β∗(α) is continuous and strictly increasing in 0 < α < 1.

Moreover, β∗(α) < γ−1(α) holds for each 0 < α < 1.
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In the same way as above, we denote by κ∗(α) the minimal number κ so that Kα ⊂
S ∗[κ]. It is clear that κ∗(α) ≤ 1. It seems, however, that no bounds of κ∗(α) were given in

the literature. The next theorem implies that for each 0 < α < 1, there exists a κ ∈ (0, 1)

such that Kα ⊂ S ∗[κ].

Theorem 1.2. The function κ∗(α) is continuous and strictly increasing in 0 < α < 1.

Moreover, κ∗(α) < 1 holds for each 0 < α < 1.

Explicit expressions of β∗(α) and κ∗(α) will be given in Section 3 in terms of a solution

to a Briot-Bouquet differential equation (Proposition 3.1). The proof of our theorems

depends on geometric properties of the solution. Section 3 will also be devoted to inves-

tigation of the solution.

The above two theorems are, however, not quantitative. In order to obtain better and

concrete upper bounds for β∗(α) and κ∗(α), we need more efforts. We propose a method

of giving a better estimate for them. Due to some technicality, the presentation of the

method will be postponed to Section 4. The next section is used to the preparation of

necessary materials for the proof of the theorems and for development of our methods.

We end this introduction with the remark that, using Theorem A, we obtain quasicon-

formal extension criteria for the class Kα, though we do not state them separately.

2. Preliminaries

Our arguments will be largely based on results proved by Miller and Mocanu. We state

it in convenient forms for the present aim. The first result is the following.

Theorem C (Miller and Mocanu [5, Theorems 3.2a and 3.2j]). Let h be a convex func-

tion in the unit disk with h(0) = 1 and Reh(z) > 0 in |z| < 1 and let q be the analytic

solution to the differential equation

q(z) +
zq′(z)

q(z)
= h(z), z ∈ D, and q(0) = 1.

Then q is univalent and subordinate to h. Moreover, if an analytic function p in the unit

disk with p(0) = 1 satisfies the subordination

p(z) +
zp′(z)

p(z)
≺ h(z),

then p(z) ≺ q(z).

The second result that we will need is contained in [5, Theorem 3.4h] with the choice

of θ(w) = w and φ(w) = 1/w.

Theorem D (Miller and Mocanu). Let q be a non-vanishing univalent function in D

with q(0) = 1 and set Q(z) = zq′(z)/q(z) and h = q + Q. Suppose that Q is starlike and
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that Re (q(z) + zQ′(z)/Q(z)) > 0 in D. Then h is univalent. Furthermore, if an analytic

function p in D with p(0) = 1 satisfies the relation

p(z) +
zp′(z)

p(z)
≺ q(z) +

zq′(z)

q(z)
= h(z),

then p(z) ≺ q(z).

Note that, when Re q(z) > 0, the condition Re (q(z) + zQ′(z)/Q(z)) > 0 is fulfilled

automatically because Re (zQ′(z)/Q(z)) > 0.

We also use the following version of the Julia-Wolff lemma, which is a combination of

known facts.

Lemma 2.1. Let z0 ∈ ∂D. Suppose that an analytic function ω in D ∪ {z0} satisfies

|ω(z)| < 1 in |z| < 1, ω(0) = 0 and |ω(z0)| = 1. Then

m =
z0ω

′(z0)

ω(z0)

is a positive real number with m ≥ 1. Furthermore, m = 1 only if ω(z) ≡ ω(z0)z/z0.

Proof. First, by the Julia-Wolff lemma [11, Proposition 4.13], we see thatm = z0ω
′(z0)/ω(z0)

is a positive real number. Here we recall the boundary Schwarz lemma due to Osserman

[10, Lemma 1]: |ω′(z0)| ≥ 2/(1 + |ω′(0)|). The remaining assertion now follows from the

Schwarz lemma: |ω′(0)| ≤ 1 and equality holds only if ω is a rotation about the origin.

The next strange-looking result generates a new family of starlike functions from a

single starlike function.

Lemma 2.2. Let a and b be complex numbers with a 6= 0 and |a|+ |b| ≤ 1. For a starlike

function f : D→ C with f(0) = 0, the function g : D→ C defined by

g(z) =
f
(

az
1−bz

)
1− bz

is also starlike.

Note that az/(1 − bz) ∈ D for z ∈ D whenever |a| + |b| ≤ 1. In this lemma, f and g

satisfy only the condition f(0) = g(0) = 0, thus, f and g might not be normalized so

that f ′(0) = g′(0) = 1. In order to obtain a transformation of S ∗ into itself, we may

consider the operator Ia,b defined by Ia,b[f ](z) = f(az/(1− bz))/(a(1− bz)). It might be

interesting to observe that Ia,b[f ](z) = z/(1− bz)2 → z/(1− z)2 (the Koebe function) as

(a, b)→ (0, 1) for each f ∈ S ∗.

Proof. Let ϕ(z) = zf ′(z)/f(z). Then the starlikeness implies Reϕ > 0 in D. We need to

see that
zg′(z)

g(z)
=
ϕ
(

az
1−bz

)
+ bz

1− bz
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has positive real part. First we consider the special case when ϕ = ϕζ for some ζ ∈ ∂D,

where ϕζ(z) = (1 + ζz)/(1− ζz). Then, a straightforward computation gives

zg′(z)

g(z)
=

1 + (aζ + b)z

1− (aζ + b)z
.

By assumption, we have |aζ + b| ≤ |a|+ |b| ≤ 1 and thus Re (zg′(z)/g(z)) > 0.

To show the general case, we use the Herglotz representation of a function with positive

real part (cf. [3]). For the general ϕ, there exists a Borel probability measure µ on the

unit circle ∂D such that

ϕ(z) =

∫
∂D

1 + ζz

1− ζz
dµ(ζ) =

∫
∂D

ϕζ(z)dµ(ζ).

Therefore,

ϕ
(

az
1−bz

)
+ bz

1− bz
=

∫
∂D

ϕζ
(

az
1−bz

)
+ bz

1− bz
dµ(ζ)

=

∫
∂D

1 + (aζ + b)z

1− (aζ + b)z
dµ(ζ).

This shows that zg′(z)/g(z) has positive real part.

We recall also the following simple fact (cf. [2]).

Lemma 2.3. Let f : D → C be a convex univalent function and ∆ be an open disk

contained in D. Then f(∆) is also convex.

3. Proof of Theorems 1.1 and 1.2

In this section, we prove Theorems 1.1 and 1.2. To this end, we introduce a mapping

associated with the function Tα.

Let qα be the analytic function in the unit disk determined by

qα(z) +
zq′α(z)

qα(z)
=

(
1 + z

1− z

)α
= Tα(z), and qα(0) = 1.(3.1)

Since Tα is analytic in D \ {±1}, qα is also analytically continued in a neighborhood of

D \ {±1}. Hence, we can argue the value of qα(eiθ) for 0 < |θ| < π.

As an immediate consequence of Theorem C, we obtain explicit expressions of the

quantities β∗(α) and κ∗(α) in terms of the function qα for 0 < α < 1.

Proposition 3.1. Let 0 < α < 1 and let β∗(α) and κ∗(α) be the minimal numbers β and

κ, respectively, such that Kα ⊂ S ∗
β ,Kα ⊂ S ∗[κ]. Then they are expressed by

β∗(α) = sup
0<θ<π

arg qα(eiθ) and κ∗(α) = sup
0<θ<π

∣∣∣∣qα(eiθ)− 1

qα(eiθ) + 1

∣∣∣∣ .
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Proof. Let f ∈ Kα and set p(z) = zf ′(z)/f(z). By the relation p(z) + zp′(z)/p(z) =

1 + zf ′′(z)/f ′(z) ≺ Tα(z), we conclude that p ≺ qα by Theorem C. In particular,

sup
z∈D
| arg p(z)| ≤ sup

z∈D
| arg qα(z)| = sup

0<θ<π
arg qα(eiθ).

Here, equality holds when we take f so that 1+zf ′′(z)/f(z) = Tα(z), namely, zf ′(z)/f(z) =

qα(z). Thus, we have shown the first relation. The second one can be deduced in the same

way.

Remark. A direct computation gives q1(z) = 1/(1 − z). In the case when α = 1, the

above argument thus yields that for f ∈ K1 = K , p(z) = zf ′(z)/f(z) is subordinate

to q1(z) = 1/(1 − z), that is, p(D) ⊂ q1(D) = {Rew > 1/2}. In other words, a convex

function is starlike of order 1/2. This is known as Strohhäcker’s theorem, see [3, p. 251].

In order to get information about β∗(α) and κ∗(α), it is thus important to know about

the function qα. We summarize geometric properties of qα in the following proposition.

Proposition 3.2. For 0 < α < 1, the function qα maps the unit disk univalently onto a

symmetric bounded Jordan domain contained in {w ∈ C : | argw| < πα/2,Rew > 1/2}
in such a way that qα(x) ∈ R for x ∈ (−1, 1) and q′α(0) = α.

The proof is divided into several steps as follows.

Since Tα is convex and has positive real part, the functions h = Tα and q = qα satisfy

the assumptions of Theorem C. Therefore, qα is univalent and | arg qα(z)| < πα/2 in D. By

the symmetry of the equation (3.1), the solution qα is symmetric, namely, qα(z) = qα(z̄).

Therefore, qα(D) is symmetric in the real axis and qα maps real numbers to real numbers.

Since Tα ≺ T, the theorem yields also the relation qα ≺ q1. Therefore, qα(D) lies in the

domain q1(D) = {Rew > 1/2}. The relation q′α(0) = α > 0 can be verified directly. In

particular, we see that Im qα(z) > 0 for Im z > 0.

The following lemma gives an upper bound for |qα(z)|.

Lemma 3.3. The function qα is bounded in the unit disk for 0 < α < 1.

Proof. For a fixed θ ∈ R, we consider the function u(r) = qα(reiθ) in 0 ≤ r ≤ 1. We

express u also in the form u(r) = R(r)eiΘ(r), where R(r) > 0 and Θ(r) ∈ R with Θ(0) = 0.

Then

R(r)eiΘ(r) +
rR′(r)

R(r)
+ irΘ′(r) = u(r) +

ru′(r)

u(r)
= Tα(reiθ).

As observed above, |Θ(r)| ≤ πα/2 holds. Therefore, taking the real part of the above

relation, we obtain

cR(r) +
rR′(r)

R(r)
≤ ReTα(reiθ) ≤

(
1 + r

1− r

)α
,
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where c = cos(πα/2). We now define the positive function g(r), 0 < r ≤ 1, by the relation

log g(r) =

∫ r

1/2

cR(x)

x
dx.

Then, rg′(r)/g(r) = cR(r) and thus

g′′(r)

g′(r)
=

1

r

[
cR(r) +

rR′(r)

R(r)
− 1

]
≤ 1

r

[(
1 + r

1− r

)α
− 1

]
.

An integration yields

log
g′(r)

g′(1/2)
≤ Φ(r) =

∫ r

1/2

1

x

[(
1 + x

1− x

)α
− 1

]
dx

for 1/2 < r < 1. Since

Φ(r) < 21+α

∫ 1

1/2

dx

(1− x)α
=

4α

1− α
,

and g′(1/2) = 2cR(1/2), the inequality

g′(r) < 2cR(1
2
) exp

4α

1− α

follows for 1/2 < r < 1. Since g′ > 0, we have g(r) > g(1/2) = 1 for 1/2 < r < 1.

Therefore,

R(r) =
rg′(r)

cg(r)
< 2R(1

2
) exp

4α

1− α
for 1/2 < r < 1. We now recall the growth theorem for functions f in S (cf. [3, p. 33]):

r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2
, |z| = r < 1.

Since (qα−1)/α belongs to S , we have |qα(z)| ≤ 1+αr/(1−r)2, |z| = r. Letting r = 1/2,

we obtain the estimate R(1/2) ≤ 1 + 2α. Therefore,

|qα(z)| = R(r) ≤ 2(1 + 2α) exp
4α

1− α

for z = reiθ, 1/2 < r < 1. The last inequality is valid for all z ∈ D by the maximum

modulus principle.

Let 0 < α < β < 1. Since Tα ≺ T β, Theorem C implies that qα ≺ qβ. Note also that

ω = q−1
β ◦ qα is analytically continued across the border ∂D \ {±1}. We now show the

following.

Lemma 3.4. Let ω = q−1
β ◦ qα : D → D for 0 < α < β < 1. Then |ω(eiθ)| < 1 for each

θ ∈ (0, π).
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Proof. Suppose, to the contrary, that |ω(z0)| = 1 for some z0 = eiθ0 , θ0 ∈ (0, π). Lemma

2.1 implies that m = z0ω
′(z0)/w0 ≥ 1, where we set w0 = ω(z0). Note that |w0| = 1 and

Imw0 > 0. On the other hand, the relation qα = qβ ◦ ω yields

Tα(z0) = qα(z0) +
z0q
′
α(z0)

qα(z0)

= qβ(w0) +
z0q
′
β(w0)ω′(z0)

qβ(w0)

= qβ(w0) +
mw0q

′
β(w0)

qβ(w0)

= −(m− 1)qβ(w0) +mT β(w0).

By Theorem B, 0 ≤ arg qβ(w0) ≤ πγ−1(β)/2 < πβ/2 = arg T β(w0). Therefore, an ele-

mentary geometry tells us that the argument of −(m− 1)qβ(w0) +mT β(w0) is in between

πβ/2 and πβ/2 + π. This contradicts the fact that arg Tα(z0) = πα/2 < πβ/2. Thus the

inequality in question has been shown.

Lemma 3.5. Let 0 < α < 1. The curve γα : (0, π) → C defined by γα(θ) = qα(eiθ) is a

Jordan arc of finite length.

Proof. If γα is not injective, then γα bounds a domain D. If β > α is close enough to

α, the boundary of qβ(D) must go through D, which implies that the curve γβ has a

common point with the curve γα. This is, however, impossible by Lemma 3.4. In order

to see finiteness of the length of γα, we use the Hardy spaces. Since T ∈ Hp for all

p < 1, we see that Tα ∈ Hp for all p < 1/α. In particular, Tα ∈ H1. Here, by (3.1),

zq′α(z) = qα(z)(Tα(z)− qα(z)). Since qα is bounded by Lemma 3.3, we have q′α ∈ H1. The

length of γα is now estimated by∫ π

0

|γ′α(θ)|dθ =
1

2

∫ 2π

0

|q′α(eiθ)|dθ = π‖q′α‖H1 <∞.

Completion of the proof of Proposition 3.2. The remaining part is to show that qα(D) is

a Jordan domain.

Since the curve γα has finite length, it extends to a continuous map on [0, π], which will

be denoted by the same symbol γα. By the symmetry of qα, it is now obvious that the

image qα(D) is bounded by γα([0, π]) and its reflection in R. Thus the assertion has been

proved.

We are now ready to prove Theorems 1.1 and 1.2. It is a standard fact in the theory of

ordinary differential equations that the solutions of initial value problems are continuous
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with respect to parameters. The continuity of β∗(α) and κ∗(α) immediately follows from

this fact. Proposition 3.2 yields that qα(D) is bounded and contained in the half-plane

Rew > 1/2, which implies κ∗(α) < 1. (A crude estimate of κ∗(α) can be given by using

the estimate in the proof of Lemma 3.3.)

It follows from the next lemma that β∗(α) and κ∗(α) are strictly increasing.

Lemma 3.6. Let 0 < α1 < α2 < 1. Then qα1(D) is a relatively compact subdomain of

qα2(D).

Proof. Since qα(D) is a Jordan domain, Carathéodory’s theorem ensures that qα extends

to a homeomorphism of D onto qα(D), which will still be denoted by qα. We show now that

qα1(1) < qα2(1). Let fα be the function in A determined by the relation 1+zf ′′α(z)/f ′α(z) =

Tα(z). Then qα is expressed by qα(z) = zf ′α(z)/fα(z). Letting Sα(z) = (Tα(z) − 1)/z,

we obtain f ′′α/f
′
α = Sα. Integrating both sides of the last relation, we have log f ′α(z) =∫ z

0
Sα(ζ)dζ =: Uα(z). Therefore,

1

qα(1)
=
fα(1)

f ′α(1)
=

∫ 1

0

eUα(x)−Uα(1)dx.

Since Uα(x)−Uα(1) = −
∫ 1

x
Sα(t)dt is strictly decreasing in 0 < α < 1 for a fixed x ∈ (0, 1),

it is concluded that qα(1) is strictly increasing. Thus the claim follows. In the same way,

we can show that qα2(−1) < qα1(−1).

Let ω = q−1
α2
◦ qα1 : D→ D. Note that ω is continuous in D. What we have seen above

means that |ω(ζ)| < 1 for ζ = ±1. On the other hand, Lemma 3.4 asserts that this is

valid for ζ ∈ ∂D \ {1,−1}. Therefore, we conclude that max|ζ|=1 |ω(ζ)| < 1, which implies

the required assertion.

Finally, we show that β∗(α) < γ−1(α) for 0 < α < 1. To this end, we recall the proof

of Theorem B. Set pβ = T β and

hβ(z) = pβ(z) +
zp′β(z)

pβ(z)
=

(
1 + z

1− z

)β
+

2βz

1− z2

for 0 < β < 1. Mocanu showed that hβ is univalent in D and γ(β) is obtained as the

minimum of (2/π) arg hβ(eiθ) over 0 < θ < π.

Suppose now that β∗(α) and γ−1(α) are the same number, say β, for some 0 < α < 1.

Then, Proposition 3.1 implies that a point in the boundary of qα(D) has argument πβ/2.

Therefore, if we set ω = p−1
β ◦ qα, |ω(z0)| = 1 holds for some z0 = eiθ, θ ∈ (0, π). Since

ω(0) = 0 and ω(z)/z is not constant, Lemma 2.1 implies that m = z0ω
′(z0)/w0 > 1, where
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w0 = ω(z0). The relation (3.1) now turns to

Tα(z0) = pβ(w0) +
z0p
′
β(w0)ω′(z0)

pβ(w0)

= pβ(w0) +
mw0p

′
β(w0)

pβ(w0)

= −(m− 1)pβ(w0) +mhβ(w0).

Since π > arg hβ(w0) ≥ πγ(β)/2 = πα/2 and arg pβ(w0) = πβ/2, we have

πα

2
< arg

{
− (m− 1)pβ(w0) +mhβ(w0)

}
<
πβ

2
+ π.

This is, however, impossible because arg Tα(z0) = πα/2. Thus we have shown that

β∗(α) < γ−1(α).

The proof of Theorems 1.1 and 1.2 is now complete.

4. Concrete bounds for the order of strong starlikeness

In the present section, we propose elementary bounds for the quantities β∗(α) and κ∗(α)

for certain α. For α ∈ (0, 1), u ∈ (0, 1), v ∈ (0,+∞), c ∈ (0, 1], we consider the function

qα,u,v,c(z) =
(1 + v)u(1 + cz)α + (1− u)v(1− z)α

u(1 + cz)α + v(1− z)α
.

We further set

hα,u,v,c(z) = qα,u,v,c(z) +
zq′α,u,v,c(z)

qα,u,v,c(z)
.

Then our theorem is now stated as follows.

Theorem 4.1. Let α ∈ (0, 1), u ∈ (0, 1), v ∈ (0,+∞), and c ∈ (0, 1]. The function

q = qα,u,v,c is univalent in D and the image q(D) is a convex subdomain of the right half-

plane. Moreover, h = hα,u,v,c is univalent, and if an analytic function p in D with p(0) = 1

satisfies p(z) + zp′(z)/p(z) ≺ h(z), then p(z) ≺ q(z).

The following lemma will be needed to prove the theorem and it may be of independent

interest.

Lemma 4.2. Let α be a real number with 0 < α < 1 and let a, b, c, d be non-negative

numbers with ad− bc 6= 0. If q = (aTα + b)/(cTα + d), the function zq′(z)/q(z) is starlike

and, in particular, univalent in D. Here, Tα(z) = ((1 + z)/(1− z))α.

Proof. Set ϕ(z) = zq′(z)/q(z), ψ(z) = zϕ′(z)/ϕ(z) and p = Tα. We have to show that

u := Reψ > 0 on D. First of all, we have expressions

ϕ(z) =
zp′(z)

p(z)
· (ad− bc)p(z)

(ap(z) + b)(cp(z) + d)
=

2αz

1− z2
· (ad− bc)p(z)

(ap(z) + b)(cp(z) + d)
,(4.1)
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and

ψ(z) =
1 + z2

1− z2
+
zp′(z)

p(z)
− azp′(z)

ap(z) + b
− czp′(z)

cp(z) + d

=
1 + z2

1− z2
+

2αz

1− z2
· bd− acp(z)2

(ap(z) + b)(cp(z) + d)
(4.2)

At this stage, we can see that ϕ and ψ are both analytic in D. Since ψ is analytically

continued up to the boundary of D except for the points z = ±1, the harmonic function

u has a harmonic continuation across the curve ∂D \ {±1}. Therefore, in order to prove

positivity of u, by the minimum principle, it is enough to see the following three properties:

(i) u is symmetric in the real axis, namely, u(z̄) = u(z) for z ∈ D,

(ii) u(eiθ) ≥ 0 for θ ∈ (0, π), and

(iii) lim infz→±1 u(z) ≥ 0.

Property (i) is straightforward to see. We proceed to property (ii). For θ ∈ (0, π),

setting ω = p(eiθ), we have

ψ(eiθ) = i cot θ +
iα

sin θ
· bd− acω2

(aω + b)(cω + d)

and, in particular,

u(eiθ) = − α

sin θ
· Im bd− acω2

(aω + b)(cω + d)
.

We now have the following sequence of equivalent conditions:

u(eiθ) ≥ 0

⇔ Im
bd− acω2

(aω + b)(cω + d)
≤ 0

⇔ Im
(aω + b)(cω + d)

bd− acω2
= Im

(ad+ bc)ω + 2bd

bd− acω2
≥ 0

⇔ Im
[
((ad+ bc)ω̄ + 2bd)(acω2 − bd)

]
≥ 0

⇔ Im
[
ω((ad+ bc)|ω|2 + bd(ad+ bc) + 2abcdω)

]
≥ 0.

The last condition can be verified by argω = πα/2 and

arg((ad+ bc)|ω|2 + bd(ad+ bc) + 2abcdω) ≤ argω = πα/2.

We finally show property (iii). Observe first

ψ(z) =
1 + z2

1− z2
− 2αz

1− z2
·
(

1− b

ap(z) + b
− d

cp(z) + d

)
= α · 1− z

1 + z
+ (1− α) · 1 + z2

1− z2
+

2bαz

(1− z2)(ap(z) + b)
+

2dαz

(1− z2)(cp(z) + d)
.
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Since

Re
z

(1− z2)(ap(z) + b)
= Re

(z − z̄|z|2)(ap(z) + b)

|1− z2|2|ap(z) + b|2

=
1− |z|2

|1− z2|2

[
bRe z

|ap(z) + b|2
+
aRe z · Re p(z)

|ap(z) + b|2
+ a · 1 + |z|2

1− |z|2
· Im z · Im p(z)

|ap(z) + b|2

]
and Im z · Im p(z) ≥ 0, we can easily show the inequality

lim inf
z→1

Re
z

(1− z2)(ap(z) + b)
≥ 0.

Similarly, we have

lim inf
z→1

Re
z

(1− z2)(cp(z) + d)
≥ 0.

Thus we obtain the inequality

lim inf
z→1

u(z) = lim inf
z→1

Reψ(z) ≥ 0.

In order to show lim infz→−1 u(z) ≥ 0, letting ψ = ψa,b,c,d, we observe the relation

ψa,b,c,d(−z) = ψb,a,d,c(z) by the second expression of ψ in (4.2). Thus, the case can be

reduced to the above by interchanging a, c and b, d.

The proof is now complete.

Proof of Theorem 4.1. Firstly, we note that q = qα,u,v,c can be written as p ◦ ω. Here,

p = qα,u,v,1 and the map ω : D→ D is given by

ω(z) = ωc(z) =
(1 + c)z

2− (1− c)z
=

az

1− bz
,(4.3)

where a = (1 + c)/2 and b = (1− c)/2. Note here that a + b = 1. The function p can be

written in the form L ◦ Tα, where L is the Möbius transformation given by

L(z) =
(1 + v)uz + (1− u)v

uz + v
,

which maps the right half-plane H onto the disk with diameter (1 − u, 1 + v) in such a

way that L(0) = 1 − u, L(1) = 1 and L(∞) = 1 + v. In particular, p is convex. Since

∆ = ω(D) is a disk contained in D, by Lemma 2.3, the image p(∆) = q(D) is a convex

subdomain of the right half-plane.

We next show that Q(z) = zq′(z)/q(z) is starlike. Lemma 4.2 implies that P (z) =

zp′(z)/p(z) is starlike. The relation q = p ◦ ω now yields

Q(z) = P (ω(z))
zω′(z)

ω(z)
=
P ( az

1−bz )

1− bz
,

By Lemma 2.2, we conclude that Q is starlike.

Since q has positive real part, all the assumptions in Theorem D are fulfilled. Hence,

the assertions in the theorem now follow.
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We now set

β(α, u, v, c) = sup
z∈D

2

π
| arg qα,u,v,c(z)|,

κ(α, u, v, c) = sup
z∈D

∣∣∣∣qα,u,v,c(z)− 1

qα,u,v,c(z) + 1

∣∣∣∣ and

Γ(α, u, v, c) = inf
0<θ<π

2

π
arg hα,u,v,c(e

iθ)

for α, u ∈ (0, 1), v ∈ (0,∞) and c ∈ (0, 1]. Here, the argument is taken to be the principal

value. As a corollary of Theorem 4.1, we have

Corollary 4.3. Let β = β(α, u, v, c), κ = κ(α, u, v, c) and γ = Γ(α, u, v, c) for α, u ∈
(0, 1), v ∈ (0,∞) and c ∈ (0, 1]. If γ > 0, then Kγ ⊂ S ∗

β ∩S ∗[κ]. In particular, β∗(γ) ≤ β

and κ∗(γ) ≤ κ.

Example. We try to estimate β∗(1/2) with the aid of Mathematica. By numerical

experiments, we found that the choice α = 0.4731, u = 0.9285, v = 4.2506, c = 0.9285

yields Γ(α, u, v, c) ≈ 1/2 and β(α, u, v, c) ≈ 0.32104. Therefore, we obtain numerically,

β∗(1/2) < 0.3211.

Mocanu’s theorem, in turn, gives the estimate β∗(1/2) ≤ γ−1(1/2) ≈ 0.35046. On the

other hand, by numerically solving the differential equation (3.1), we obtain an experi-

mental value β∗(1/2) ≈ 0.309, though we do not know how reliable it is.

We next try to estimate κ∗(1/2). For α = 1/2, u = 0.95, v = 3.47, c = 0.49, we obtain

Γ(α, u, v, c) ≈ 1/2 and κ(α, u, v, c) ≈ 0.634. Therefore, κ∗(1/2) < 0.635. By a numerical

computation, we have an experimental value κ∗(1/2) ≈ 0.613.
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