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Abstract. The quantity VD(') = sup
z2D

�D(z)
�1j'0(z)='(z)j will be considered for a

non-vanishing analytic function ' on a plane domainD with hyperbolic metric �D(z)jdzj:
We see that this quantity has various nice properties such as conformal invariance and
monotoneity. As a special case, for a proper subdomain 
 of the punctured plane C � =
C n f0g; we de�ne the domain constant W (
) = V
(id); which will be called the circular
width of 
 about the origin, and we will see that W (
) dominates the value of VD(')
if '(D) � 
: As applications, we provide boundedness and univalence criteria for those
functions f on the unit disk D for which f 0(D ) � 
: We also compute values of circular
width for typical domains.

1. Introduction

Conformal invariants play a central role in the modern theory of functions of a complex
variable. One of the most important is the hyperbolic metric �D(z)jdzj of a hyperbolic
plane domain D: Recall that a subdomain D of C is called hyperbolic if D admits an
analytic universal covering projection p of the unit disk D = f� 2 C : j�j < 1g onto
D: Then the hyperbolic metric is de�ned by the equation �D(z)jp0(�)j = 1=(1� j�j2) for
� 2 p�1(z): Note that the density �D(z) does not depend on the particular choice of
� or p: The Poincar�e-Koebe uniformization theorem tells us that D � C is hyperbolic
if and only if D is neither the whole plane C nor the punctured plane C n fag for any
a 2 C : The hyperbolic metric is conformally invariant in the sense that the pull-back
f ��D0(z) = �D0(f(z))jf 0(z)j of �D0(w)jdwj under a conformal map f : D ! D0 is equal to
�D(z): Throughout the paper, a conformal map means a conformal homeomorphism.
In this article, we propose a sort of conformal invariants associated with a non-vanishing

analytic function. This quantity proves its usefulness in estimation of the hyperbolic sup-
norm of the pre-Schwarzian derivative of a locally univalent functions in various situations
as in [15]. Let ' be a non-vanishing analytic function on a hyperbolic domain D; namely,
' : D ! C � = C n f0g is holomorphic. Then we set

VD(') = sup
z2D

�D(z)
�1

����'0(z)'(z)

���� :
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This quantity measures the rate of growth of ' compared with the hyperbolic metric.
Note also that VD(') can be thought of the Bloch semi-norm of the (possibly multi-
valued) function log': The quantity VD(') does not depend on the source domain D;
more precisely, VD0

(' Æ f) = VD(') for a conformal map f : D0 ! D (see Theorem 2.2
below). On the other hand, VD(') may depend on the target domain.
One merit of this quantity is monotoneity in several respects. For instance, if ! is a

holomorphic map of D0 into D; then VD(') � VD0
(' Æ!) holds (see Theorem 2.2). Many

more properties will be discussed in Section 2.
Let 
 be a proper subdomain of the punctured plane C

� : Then 
 admits an analytic
universal covering projection p of a simply connected proper subdomain D of C onto it.
Then the quantityW (
) = VD(p) is independent of the particular choice of p : D! 
 and
will be called the circular width of 
 (about the origin). An important property to note
is thatW (
) � W (
1) if 
 � 
1 � C

� : For instance, the sector fw 2 C : jargwj < ��=2g
has circular width 2� for 0 < � � 2 (see Section 5). Fundamental properties and a
geometric meaning of the circular width will be given in Section 3. Also, exact values of
W (
) for some speci�c domains 
 are given in Section 5.
The circular widths (about boundary points) of a plane domain are closely related to

uniform perfectness of the boundary. We will explain it in Section 4. As an application,
we will give a proof of Osgood's theorem [21, Theorem 2] in a quantitative way: @D is

uniformly perfect if and only if the hyperbolic sup-norm of univalent analytic functions on

D is bounded.

The information on W (
) is useful regarding univalence and boundedness criteria. For
example, let us consider an analytic function f in the unit disk with Re f 0 > 0: In general,
the function f may not be bounded (e.g., f(z) = log(1 � z)). As a consequence of our
results, we obtain the boundedness criteria stating that if f 0(D ) � 
 for a subdomain 

of the right half-plane H = fw 2 C : Rew > 0g with W (
) < 2 then f must be bounded.
Note that W (
) � 2 holds always for 
 � H :
Applying this to the function f = logF for a non-vanishing locally univalent function

F on D gives another approach to the problem considered by MacGregor and R�nning in
[17]. In Section 6, we will give some suÆcient conditions for a domain 
 � C

� to have
circular width less than 2:
We have already used some facts aboutW (
) implicitly in [15]. Moreover, some results

in Section 5 were used by Ponnusamy and the second author [23] in order to deduce
univalence criteria for meromorphic functions outside the unit disk. See Section 6 for
more details about applications of circular width.

Acknowledgement. The second named author would like to thank Shinji Yamashita
for helpful comments on the Gelfer functions.

2. Basic properties of the quantity VD(')

In this section, basic properties of the quantity VD(') and more re�ned results are
given. We �rst see that how VD(') measures the rate of growth of ' with respect to the
hyperbolic metric. We denote by dD(z0; z1) the hyperbolic distance between two points
z0 and z1 in D; namely,

dD(z0; z1) = inf



Z



�D(z)jdzj;
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where the in�mum is taken over all piecewise smooth curves joining z0 and z1 in D:With
this notation, we have the following result.

Proposition 2.1. Let ' be a non-vanishing analytic function on a hyperbolic domain D
and let c be a positive constant. Then VD(') � c if and only if the inequality

exp
�� c dD(z0; z1)

� � j'(z1)j
j'(z0)j � exp

�
c dD(z0; z1)

�
(2.1)

holds for every pair of points z0; z1 in D:

Proof. We �rst assume that VD(') � c; namely, j'0='j � c�D: Since

log
j'(z1)j
j'(z0)j = Re

Z



'0(z)

'(z)
dz

for 
 joining z0 and z1 in D; we obtain the inequalities����log j'(z1)jj'(z0)j
���� �

Z



����'0(z)'(z)

���� jdzj � c

Z



�D(z)jdzj:

Thus we can now see (2.1).
We next prove the converse. Set u(z) = log j'(z)j for z 2 D: Then the condition (2.1)

means that
ju(z0)� u(z)j � cdD(z; z

0); z; z0 2 D:
By dividing both sides by jz0 � zj and taking upper limits as z0 ! z; we obtain the
inequality jru(z)j � c�D(z): Here r denotes the gradient. Since u is the real part of the
analytic function f = log' (at least locally), one gets jruj = jf 0j = j'0='j: Therefore, we
have proved the inequality j'0='j � c�D:

We next see fundamental properties of the quantity VD('): The following properties
are obvious: for non-vanishing analytic functions ' and  on a hyperbolic domain D; the
inequality

VD(' �  ) � VD(') + VD( )

holds and the relation

VD('
�) = j�jVD(')(2.2)

holds for � 2 C as long as the power '� is de�ned as a single-valued analytic function on
D: Note that '� is always taken to be single-valued if � is an integer or if D is simply
connected.
Apart from these, we have the following important invariance properties.

Theorem 2.2. Let D be a hyperbolic domain and let ' be a non-vanishing analytic func-

tion on D:

(a) Let p : D0 ! D be an analytic (unbranched and unlimited) covering projection. Then
VD0

(' Æ p) = VD('): In particular, VD(') is conformally invariant in the sense that

this does not depend on the source domain.

(b) VD(L Æ ') = VD(') holds for any conformal automorphism L of C � : In particular,

VD(1=') = VD(') = VD(c') for any constant c 2 C � :
(c) Let ! : D0 ! D be a holomorphic map. Then VD0

(' Æ !) � VD('):
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(d) If  : D! C � is univalent and if '(D) �  (D) then VD(') � VD( ):

Proof. The assertion (a) follows from the invariance property �D(p(z))jp0(z)j = �D0
(z) of

the hyperbolic density, and (b) is easily deduced by a straightforward computation. Next
we prove property (c) when D = D0 = D by the Schwarz-Pick lemma: (1� jzj2)j!0(z)j �
1� j!(z)j2; jzj < 1; for a holomorphic map ! : D ! D : We now have the inequality

(1� jzj2)
����(' Æ !)0(z)(' Æ !)(z)

���� = (1� jzj2)j!0(z)j
����'0(!(z))'(!(z))

���� � (1� j!(z)j2)
����'0(!(z))'(!(z))

���� :
We note that equality holds in the above for some (and thus all) point z 2 D if and only
if ! is an automorphism of D : Thus (c) has been proved for this special case. We proceed
to the general case. Let p : D ! D0 and q : D ! D be holomorphic universal covering
projections of D onto D0 and D; respectively. We take a lift ~! of ! Æ p via the projection
q: Namely, a holomorphic map ~! : D ! D satis�es ! Æ p = q Æ ~!: Then, by using (a) and
the special case of (c), we have

VD0
(' Æ !) = VD (' Æ ! Æ p) = VD (' Æ q Æ ~!) � VD (' Æ q) = VD('):

We show property (d) by applying (c) to the function ! =  �1 Æ ' : D ! D:

The following result ensures that the inequality VD (') � 4 holds for any non-vanishing
univalent function ' on D :

Proposition 2.3. Let ' be a non-vanishing univalent function in the unit disk. Then

(1� jzj2)
����'0(z)'(z)

���� � 4;

where equality holds at z = z0 if and only if C n '(D ) is a ray emanating from the origin

and the value '(z0) lies in the line containing the ray.

Proof. By the conformal invariance of the quantity (1�jzj2)j'0(z)='(z)j (see the proof of
Theorem 2.2 (c)), it suÆces to show the above inequality at the origin: j'0(0)='(0)j � 4:
Then, f(z) = ('(z) � '(0))='0(0) is a normalized univalent function in jzj < 1: The
Koebe one-quarter theorem now implies that f(D ) contains the disk fjwj < 1=4g: On
the other hand, by assumption, the function f omits the value �'(0)='0(0); therefore
j'(0)='0(0)j � 1=4 and equality holds if and only if f is a rotation of the Koebe function
K(z) = z=(1� z)2 (see [7, p. 31]). Now the assertion follows.

Remarks. (1) Proposition 2.3 can also be deduced directly from Macintyre's inequality
[18] (see also [30, p.102 and p.112]). This was pointed out to the authors by Shinji
Yamashita.
(2) On the other hand, the above proof is same as that of the well-known estimate

�D(z)ÆD(z) � 1=4 for a simply connected domain D; where ÆD(z) = dist(z; @D): Actually,
the quantity VD has the following geometric meaning. Let �̂D(z)jdzj denote the Hahn
metric of the domain D: A paper [19] of D. Minda contains the following fundamental
properties of the Hahn metric. i) If f : D ! D0 is holomorphic and injective, then
�̂D0(f(z))jf 0(z)j � �̂D(z): ii) If D is simply connected, �̂D = �D: iii) For the punctured



A CONFORMAL INVARIANT FOR NON-VANISHING ANALYTIC FUNCTIONS 5

plane C � = C n f0g; we know that �̂C� (z) = 1=(4jzj): In particular, the quantity VD(')
for ' : D ! C

� has the expression

VD(') = 4 sup
z2D

�̂C� ('(z))j'0(z)j
�D(z)

= 4 sup
D

'�(�̂C� )

�D
:

Therefore, the proposition is nothing but an expression of the decreasing property of the
Hahn metric under univalent maps: '�(�̂C� ) � �̂D = �D; thus it may be thought of a
corollary of the above-mentioned results due to Minda [19].

A holomorphic function g : D ! C is called Gelfer if g(z) + g(w) 6= 0 for any pair of
points z; w 2 D : In particular, a Gelfer function is always non-vanishing. (Note here that
we drop the usual normalization condition g(0) = 1:)
As a corollary of Proposition 2.3, we can show the following result on Gelfer functions,

which was �rst shown by S. A. Gelfer in his paper [9] written in Russian by means of
a known result on Bieberbach-Eilenberg functions and which was e�ectively used by S.
Yamashita in [31]. The authors could not �nd a short account for its proof in the literature
other than the original article by Gelfer, and could not attribute anyone to the equality
condition below. We thus include a simple proof of this for the convenience of the reader.

Theorem 2.4 (Gelfer [9], see also [29]). For a Gelfer function g;

(1� jzj2)
����g0(z)g(z)

���� � 2

for jzj < 1; where equality holds at z = z0 precisely when g maps the unit disk univalently

onto a half-plane H whose boundary contains the origin and the orthogonal projection of

the point g(z0) to @H is equal to the origin.

Proof. Let g be a Gelfer function. Without loss of generality, we may assume that
g(0) = 1: Let bC = C [ f1g be the Riemann sphere. We set f(z) = g(z)2; then the

unique unbounded component C of bC n f(D ) connects the origin and the point at in�nity.

Thus D = bC n C is a simply connected domain in C � with 1 2 D: (For this part, see
also [8, Th�eor�em 8] or [24, Lemma].) Now let ' : D ! D be a conformall map. By the
Schwarz-Pick lemma and Proposition 2.3, we can see that

(1� jzj2)
����f 0(z)f(z)

���� = (1� jzj2)j!0j
����'0(!)'(!)

���� � (1� j!j2)
����'0(!)'(!)

���� � 4;

where ! = '�1 Æ f: In the above, (1 � jz0j2)jf 0(z0)=f(z0)j = 4 holds at the point z0 if
and only if f maps D univalently onto the complex plane o� a ray emanating from the
origin and f(z0) lies in the line containing this ray. Since g(z) =

p
f(z) and f 0(z)=f(z) =

2g0(z)=g(z); now the desired statement follows.

In view of the above proof, we also have the next result which is a generalization of
Proposition 2.3.

Proposition 2.5. Let f be a non-vanishing holomorphic function on the unit disk D

such that the image f(D ) does not separate the origin from the point at in�nity. Then the

inequality (1� jzj2)jf 0(z)=f(z)j � 4 follows and equality holds at some point if and only

if f maps D conformally onto the complex plane o� a ray emanating from the origin.
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3. Circular width of a proper subdomain of C �

Let 
 be a hyperbolic plane domain with 0 2 C n 
: The quantity

W (
) =

�
inf
w2


jwj�
(w)
��1

will be called the circular width of 
 (about the origin). In general, it is not easy to
compute the values of the density �
(w) of the hyperbolic metric of 
: Therefore, another
expression of W (
) is often useful.

Lemma 3.1. Let 
 be a proper subdomain of the punctured plane C � and let p be an

analytic (unbranched) covering projection of a domain D onto 
: Then W (
) = VD(p):

Proof. First we note that the circular width of 
 can be written in the form W (
) =
V
(id): Theorem 2.2 (a) now implies the relation V
(id) = VD(p):

We now collect basic properties of the circular width. Before that, we recall the notion of
circular symmetrization. For a subdomain 
 of C � we de�ne the circular symmetrization

� (about the origin) by


� = frei� : � 2 I(r;
); 0 < r <1g;
where I(r;
) denotes the interval in the form (�t=2; t=2) of the same length as Ir = f� 2
[��; �] : rei� 2 
g if Ir 6= [��; �] otherwise I(r;
) = [��; �]:
Theorem 3.2. Let 
 and 
0 be proper subdomains of the punctured plane C � :

(i) W (
) =W (L(
)) for any conformal automorphism L of C � :
(ii) If 
 � 
0; then W (
) � W (
0):
(iii) Circular symmetrization does not decrease circular width; W (
) � W (
�):
(iv) If 
 is simply connected, then W (
) � 4:

Proof. In view of the formula W (
) = V
(id); we can deduce (i) and (ii) from Theorem
2.2 (b) and (d), respectively. Part (iii) lies much deeper. We will employ Weitsman's
theorem [28]: �
(w) � �
�(jwj): Then

1

W (
)
= inf

w2

jwj�
(w) � inf

w2

jwj�
�(jwj) � inf

w2
�

jwj�
�(w) =
1

W (
�)
;

which proves (iii). Part (iv) follows from the Koebe one-quarter theorem. This also
follows from (ii) and (iii). Indeed, if 
 is simply connected the symmetrized domain 
�

is contained in the slit domain 
1 = C n (�1; 0]: A simple computation gives W (
1) = 4
(see Example 5.1). Thus (ii) and (iii) now yield W (
) � W (
�) � W (
1) = 4:

In general, the circular width may not be �nite. We give here a characterization of
domains with in�nite circular width. In particular, if the origin is an isolated boundary
point of 
; then W (
) =1:

Proposition 3.3. Let 
 be a proper subdomain of the punctured plane C � : The circular

width W (
) is in�nite if and only if there is a sequence of annuli An = fw 2 C : rn <
jwj < Rng with An � 
 such that Rn=rn !1:
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As a preparation, �rst we show the following.

Lemma 3.4. Let 
 be a proper subdomain of the punctured plane C
� and set

M(
) = sup
w2


inf
b2Cn


���log ���w
b

������ :
Then the inequalities

4

�
M(
) � W (
) � 2M(
) + C

hold, where C = �(1=4)4=(2�2) � 8:7538:

Proof. For the proof, we need the following estimate (see [26, Theorem 1.5]):

1

2m(w) + C
� jwj�
(w) � �

4m(w)
; w 2 
;

where
m(w) = inf

b2Cn


���log ���w
b

������ :
By the de�nitions of W (
) and M(
); now the required inequalities follow.

Proof of Proposition 3.3. By Lemma 3.4, W (
) =1 if and only if M(
) =1: Suppose
that A = fr < jwj < Rg � 
: Then m(w) � (1=2) log(R=r) for jwj = p

rR: Therefore,
we have M(
) � (1=2) lim log(Rn=rn) = 1 if An = frn < jwj < Rng � 
 satis�es
Rn=rn ! 1: Conversely, we assume that W (
) = 1; equivalently, M(
) = 1: Then,
there exists a sequence wn such that mn = m(wn) ! 1 as n ! 1: Then the annulus
An = fe�mn jwnj < jwj < emn jwnjg does not meet C n 
 by the de�nition of the function
m; therefore, An � 
: It is evident that the sequence An is what we wanted.

The circular width may not behave continuously in 
: For instance, consider the se-
quence of domains 
n = fjw�1j < 1+1=ng: Then 
n converges to 
1 = fjw�1j < 1g in
the Hausdor� topology. But W (
n) =1 by Proposition 3.3 whereas W (
1) � W (H ) =
2 (see Example 5.1). We can, however, show a continuity property of circular width in
the following form.

Proposition 3.5. Let 
n be a sequence of domains with 
n � 
n+1 such that the union


 = [1n=1
n is a proper subdomain of C � : Then W (
n)! W (
) as n!1:

Proof. By the monotoneity of circular width (Theorem 3.2 (ii)),W (
1) � W (
2) � � � � �
W (
); therefore limn!1W (
n) � W (
): On the other hand, for any number m < W (
);
we can �nd a point w0 2 
 such that jw0j�
(w0) < 1=m: Since �
n(w0) ! �
(w0) (see,
for example, [12, Theorem 1]), we obtain

1

m
> lim

n!1
jw0j�
n(w0) � lim

n!1
W (
n)

�1:

Since m was arbitrary as far as m < W (
); we now obtain W (
)�1 � limn!1W (
n)
�1;

namely, limn!1W (
n) � W (
): The proof is now complete.

The circular widthW (
) dominates the quantity VD(') for holomorphic maps ' : D!

:
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Theorem 3.6. Let 
 be a proper subdomain of C � and let ' : D ! 
 be holomorphic.

Then VD(') � W (
):

Proof. By Theorem 2.2 (c), we have VD(') = VD(id
 Æ ') � V
(id
) = W (
):

Combining this with Proposition 2.1, we have the following, which is a slight general-
ization of a result of J.-H. Zheng [32].

Corollary 3.7. Under the same hypotheses in Theorem 3.6,

exp
��W (
) dD(z0; z1)

� � j'(z1)j
j'(z0)j � exp

�
W (
) dD(z0; z1)

�
; z0; z1 2 D:

We remark that a similar result can be obtained by applying the Harnack inequality
to the harmonic function log j'j on D: The latter idea is even eÆcient for quasiregular
mappings in higher dimensional Euclidean space (see [27, x. 13]).

4. Connection with uniform perfectness

In general, we can de�ne the circular width Wa(D) of a hyperbolic domain D about a
point a 2 C nD by

Wa(D) =
1

infz2D jz � aj�D(z) :
Note that this can also be written as Wa(D) = VD(�a); where �a(z) = z � a: It is known
that the domain constant

C(D) = sup
a2@D

Wa(D) = sup
z2D

1

ÆD(z)�D(z)

is �nite if and only if the set @D is uniformly perfect (see, for example, [22] or [25]).
Here we recall that ÆD(z) = dist(z; @D): In this context, the constant Wa(D) appeared
essentially in a paper [32] by J.-H. Zheng. We remark that we may replace @D by the
complement of D in the above without any essential change. The constant C(D) or,
equivalently, the constant c(D) = 1=C(D) is studied by many authors (see, for instance,
[11], [16], [25] and [30]). Note that C(D) � 2 holds for an arbitrary hyperbolic domain D
with equality if and only if D is convex [11, Theorem 4].
Let us introduce a variant of the quantity VD('): For a non-vanishing analytic function

' on D; we set

V̂D(') = sup
z2D

ÆD(z)

����'0(z)'(z)

���� :
Since �D(z)ÆD(z) � 1 for z 2 D; we have V̂D(') � VD('): Let N(D) be the least number
such that

VD(') � N(D)V̂D(')

holds for every holomorphic map ' : D ! C
� : If there is no such a number, then we set

N(D) = +1: It is interesting to observe that the quantities C(D) and N(D) are equal.

Proposition 4.1. Let D be a hyperbolic plane domain. Then C(D) = N(D) holds. In

particular, @D is uniformly perfect if and only if N(D) <1:
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Proof. Since ��1D � C(D)ÆD; the inequality N(D) � C(D) is trivial. We now show

C(D) � N(D): First we note the simple fact that V̂D(�a) � 1 holds for each a 2 C nD:
We now apply the inequality VD(') = N(D)V̂D(') to the function ' = �a to obtain
Wa(D) = VD(�a) � N(D) for a 2 @D: Taking the supremum over a; we obtain C(D) �
N(D):

As a simple application of the above proposition, we give a proof of Osgood's theorem.
In order to state it, we introduce the domain constant

U(D) = sup
f
VD(f

0);

where the supremum is taken over all univalent analytic functions f on D: Note that
VD(f

0) is nothing but the hyperbolic sup-norm of the pre-Schwarzian derivative f 00=f 0 of
f: Osgood's theorem [21, Theorem 2] states that @D is uniformly perfect if and only if
U(D) < 1: In view of his proof, a quantitative form can be presented in the following
way.

Theorem 4.2 (Osgood). Let D be a hyperbolic plane domain. Then

2C(D) � U(D) � 4C(D):

Proof. First we show the inequality 2C(D) � U(D): For a 2 @D; we consider the
function fa(z) = 1=(a � z): It is clear that fa is univalent analytic on D: In particular,
VD(f

0
a) � U(D): Since f 0a = ��2a ; the relation (2.2) implies VD(f

0
a) = 2VD(�a) = 2Wa(D):

Thus 2Wa(D) � U(D); from which the required inequality follows.
We now show the inequality U(D) � 4C(D): Let f : D ! C be univalent and analytic.

Then the sharp inequality V̂D(f
0) � 4 holds (see [21, Lemma 1]). Thus U(D) � 4N(D)

is obtained. Now we employ Proposition 4.1 to get U(D) � 4C(D):

5. Computations of circular widths

In the present section, we give exact values of circular width for several concrete ex-
amples. These will be useful to give upper bounds of circular width for various domains.
In view of Theorem 3.2 (iii), we see that circularly symmetric domains are particularly
important.

Example 5.1 (sectors). For S(�) = fw : jargwj < ��=2g; 0 < � � 2; we have
W (S(�)) = 2�:

Indeed, by Theorem 2.4, we have W (H ) = 2: Since S(�) = '�(H ) for '�(z) = z�; we
obtain by (2.2)

W (S(�)) = VH ('�) = j�jVH (id) = � �W (H ) = 2�:

We remark that the above computation remains valid even when � is a complex number.
It is easy to see that '� is univalent in H if j� � 1j � 1 and � 6= 0: Therefore, we have
also W ('�(H )) = 2j�j for such a �: Note that '�(H ) is a Jordan domain bounded by two
logarithmic spirals ending at 0 and 1 when j� � 1j < 1:
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Example 5.2 (half-sectors). Let S(�; r) = fw : jargwj < ��=2; jwj < rg and S 0(�; r) =
fw : jargwj < ��=2; jwj > 1=rg for 0 < � � 2 and 0 < r < 1: Then W (S(�; r)) =
W (S 0(�; r)) = 2�:

Since circular width is invariant under dilations, we see that W (S(�; r)) =W (S(�; 1)):
On the other hand, by Proposition 3.5, we have limr!1W (S(�; r)) = W (S(�)) = 2�:
Thus we obtainW (S(�; r)) =W (S(�; 1)) = 2�: For the other case, the same computation
works.
It is interesting to see that an arbitrary domain 
 with S(�; r) � 
 � S(�) for some

r > 0 has circular width 2� because 2� = W (S(�; r)) � W (
) � W (S(�)) = 2� by
monotoneity.

Example 5.3 (annuli). For the annulus A(r; R) = fw : r < jwj < Rg; 0 < r < R <1;
we have W (A(r; R)) = (2=�) log(R=r):

We may assume that R = em and r = e�m for some m > 0 for the proof. Then the
mapping '(z) = exp((2mi=�) log z) = z2mi=� gives an analytic universal covering projec-
tion of the right half-plane H onto A(r; R): Thus the same computation as in Example
5.1 gives W (A(r; R)) = VH (') = 2j2mi=�j = 4m=� = (2=�) log(R=r):

Example 5.4 (disks). Let D (a; r) = fw : jw � aj < rg for 0 < r � a: Then

W (D (a; r)) =
2r=a

1 +
p
1� (r=a)2

:

Let '(z) = a+ rz: Then

W (D (a; r)) = VD (') = sup
z2D

(1� jzj2) r

ja+ rzj = sup
0�x<1

r(1� x2)

a� rx
:

Since r(1 � x2)=(a � rx) takes its maximum at x = (a � p
a2 � r2)=r; we obtain the

required expression of W (D (a; r)):
Note thatW (D (a; a)) = 2 for a > 0: Since circular width is invariant under the inversion

z 7! 1=z (see Theorem 3.2 (i)), we also obtain W (H) = 2 for the half-plane H = fw :
Rew > bg for b = 1=(2a) > 0:

Example 5.5 (parallel strips). Let P (a; b) = fw : a < Rew < bg for 0 � a < b < 1:
Then

W (P (a; b)) = max
0����=2

2t cos �

1� t�
;

where t is a number with 0 < t � 2=� determined by

�t

2
=
b� a

b+ a
:

Note that the function '(z) = 1+ it log z maps the right half-plane H onto the parallel
strip P (1� �t=2; 1 + �t=2): Therefore, if we choose t as above, then this strip is similar
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to P (a; b) and thus they have the same circular width. If we write z = rei�; we compute

W (P (a; b)) = VH (') = sup
z2H

2Re z
t=jzj

j1 + it log zj
= sup

0<r<1;��=2<�<�=2

2t cos �

j1� t� + it log rj

= sup
��=2<�<�=2

2t cos �

1� t�
:

Clearly we can discard the case � < 0; and thus we have the required form.
We remark that these parallel strips are not circularly symmetric.

Example 5.6 (truncated wedges). Let S(�; r; R) = fw : jargwj < ��=2; r < jwj <
Rg; 0 < � � 2; 0 < r < R <1: Then

W (
) =
log(R=r)

(1 + t)K(t)
;

where

K(t) =

Z 1

0

dxp
(1� x2)(1� t2x2)

is the complete elliptic integral of the �rst kind and 0 < t < 1 is a number such that

K(
p
1� t2)

K(t)
=

2��

log(R=r)
:

Note that the quantity �(t) = (�=2)K(
p
1� t2)=K(t) is the modulus of the Gr�otzsch

ring D n [0; t] for 0 < t < 1 and decreasing from +1 to 0 (see, for example, [1]). Therefore,
we can always take such a t satisfying the above relation.
We set K = K(t) and K 0 = K(

p
1� t2): Since the rectangles Q1 = (�K;K)� (0; K 0)

and Q2 = (log r; logR) � (���=2; ��=2) are similar by the choice of t; there is a linear
function L(z) = az + b with a > 0 such that L(Q1) = Q2: Note that

a =
log(R=r)

2K
=
��

K 0
:(5.1)

It is well known that the function

F (z) =

Z z

0

d�p
(1� �2)(1� t2�2)

maps the upper half-plane H onto the rectangle Q1: Therefore, the composed function
'(z) = exp(aF (z) + b) is a conformal map of H onto S(�; r; R): We now have

W (S(�; r; R)) = VH(') = sup
z2H

2Im z � ajF 0(z)j = sup
z2H

2aIm z

j(1� z2)(1� t2z2)j1=2 :

We write z = x + iy with x 2 R; y > 0: Then we have

j(1� z2)(1� t2z2)j2 � (1 + t)4y4

= (1� x2 � t2x2 + t2x4 � t2y4)2 + 2(1 + t2)y2(tx2 + ty2 � 1)2

+ 2x2y2
�
2t(1� t)2 + (t2x2 + t2y2 � 1)2 + t4(x2 + y2 � 1)2

�
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and thus

j(1� z2)(1� t2z2)j1=2 � (1 + t)y;

where equality holds when x = 0 and ty2 = 1: Therefore, in view of (5.1), we obtain

W (S(�; r; R)) =
2a

1 + t
=

log(R=r)

(1 + t)K
=

2��

(1 + t)K 0
:

Observe that the limiting case S(�; 0;1) = S(�) corresponds to t = 1�: Since K 0 !
�=2 as t ! 1�; we reproduce the relation W (S(�)) = 2�: We also see that the other
limiting case S(1; r; R) = A(r; R) corresponds to t = 0+: (We have to regard S(�; r; R)
as an overlapped domain when � > 2:) Since K ! �=2 as t ! 0+; we reproduce the
relation W (A(r; R)) = (2=�) log(R=r):
We remark that the essentially same observations were made by Avhadiev and Ak-

sent'ev [2] (see also Corollary 6.9 below) though they did not make systematic use of
circular width.
We end the present section with a criterion for a subdomain of the right half-plane H

to have circular width 2:

Proposition 5.1. Let 
 be a subdomain of H : Suppose that for each number � 2 (0; 1)
there is a number Æ > 0 such that S(�; Æ) � 
: Then W (
) = 2:

Proof. Since 
 � H ; we have W (
) � W (H ) = 2: On the other hand, by assumption,
W (
) � W (S(�; Æ)) = 2� for each � < 1 (see Example 5.2). Thus we conclude that
W (
) = 2:

Obviously, we may replace S(�; Æ) by S 0(�; Æ) in the assertion of the last proposition.
For instance, if 
 contains a disk whose boundary contains the origin, then W (
) � 2

(see also Example 5.4).

6. Applications

In this section, we give a few applications of circular width. More concrete applications
can be found in [15] and [23].
Let us introduce some notation. For a locally univalent function f on D ; the quantity

Tf = f 00=f 0 is called the pre-Schwarzian derivative of f and measured by the norm

kTfkD = sup
z2D

(1� jzj2)jTf(z)j:

Note that this can be described by kTfkD = VD (f
0): Let A denote the class of holomorphic

functions f on D normalized by f(0) = 0; f 0(0) = 1:

Theorem 6.1. Let 
 be a proper subdomain of the punctured plane C
� with W (
) < 2:

If f 2 A satis�es f 0(D ) � 
; then jf(z)j < M; z 2 D : Here M is a constant depending

only on W (
):

The assumption implies kTfkD = VD (f
0) � W (
) < 2 by Theorem 3.6. Though it is

known that the condition kTfkD < 2 implies boundedness of f (see [14]), we will give a
proof for completeness.
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Proof. Set � = W (
)=2: By Corollary 3.7, we have jf 0(z)j � exp(2�dD (z; 0)): Since
dD (z; 0) = arctanh(jzj) = (1=2) log((1 + jzj)=(1� jzj)); this inequality is equivalent to

jf 0(z)j �
�
1 + jzj
1� jzj

��

:

Since � < 1; the function ((1 + x)=(1� x))� is integrable over (0; 1): Thus we have

jf(z)j �
Z 1

0

�
1 + x

1� x

��

dx < 2�
Z 1

0

(1� x)��dx =
2�

1� �
=

2W (
)=2

1�W (
)=2
:

We remark that the above integral can be expressed byZ 1

0

�
1 + x

1� x

��

dx = �
h
 
�� �

2

��  
�
1��
2

�i� 1;

where  (x) = �0(x)=�(x) is the digamma function (see [14]).
If W (
) � 2; there is no guarantee that f is bounded. For instance, consider the

function f(z) = �2 log(1� z) � z: Though f 0(D ) � H and W (H ) = 2; the function f is
unbounded.
It may be interesting to �nd a characterization of such subdomains 
 of H that f 0(D ) �


 implies boundedness of f 2 A: The last theorem gives the suÆcient conditionW (
) < 2
for that. A similar problem was considered by MacGregor and R�nning [17]. They tried
to �nd conditions for subdomains 
 of H to have the property that g0(z)=g(z) 2 
; z 2
D ; implies boundedness of log jg(z)j for non-vanishing locally univalent function g on
D : Letting f = log g; we see that the latter conclusion is weaker than the former. In
particular, the condition W (
) < 2 is suÆcient for MacGregor-R�nning's problem. Their
conditions, however, are more re�ned because they cover even cases where W (
) = 2:
Note also that the condition f 0(D ) � H implies univalence of f (Noshiro-Warschawski

theorem). Recently, Chuaqui and Gevirtz [6] gave a characterization of such subdomains

 of H that f 0(D ) � 
 implies quasiconformal extensibility of f 2 A:
We now consider suÆcient conditions for proper subdomains 
 of C � to satisfyW (
) <

2; which implies boundedness criterion by Theorem 6.1. Note that if 
 � H thenW (
) �
2: Thus, the following result gives a suÆcient condition for such 
 to have circular width
less than 2: We also remind the reader that we gave a suÆcient condition for subdomains

 of H to have circular width 2 (see Proposition 5.1).
Let �
(r) denote the half of the length of the set f� 2 [��; �] : rei� 2 
g: By Theorem

3.2, we see that W (
) � 2 if �
(r) � �=2 for every r > 0: Furthermore, we have the
following result.

Theorem 6.2. Let 
 be a proper subdomain of the punctured plane C
� with the property

that �
 � �=2 on (0;1): If lim r!0 �
(r) < �=2 and if lim r!1 �
(r) < �=2; then W (
) <
2:

Proof. Let 
� be the circular symmetrization of 
: By Theorem 3.2 (iii), we haveW (
) �
W (
�): Note that 
� is contained in the right half-plane H by assumption.
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For positive constants m and R; we de�ne the domains 
1(m;R) and 
0(m;R) by
fw = u+ iv : u > 0; jvj < mu+Rg and f1=w : w 2 
1(m;R)g; respectively.
By assumption, 
� is contained in the domain 
0 = 
0(m;R)\
1(m;R) for suÆciently

large m and R: Since W (
) � W (
�) � W (
0); it suÆces to show W (
0) < 2:
Let  : H ! 
0 be a conformal homeomorphism. Since 
0 is a Jordan domain, by the

Carath�eodory extension theorem,  extends uniquely to a homeomorphism from H onto

0: We may take  so that  (0) = 0 and  (1) =1: Consider the function

�(z) = Re z

���� 0(z) (z)

����
in H : Since  ((1 + z)=(1 � z)) is Gelfer, Theorem 2.4 implies that �(z) < 2 for every
z 2 H : Therefore, in order to show W (
0) < 2; it is enough to show that lim z!� �(z) < 2
for each � 2 @
0: Since  is symmetric, we may further assume that Im � � 0: Let ia and
ib be the inverse images of i=R and iR; respectively, under the mapping  : We can see
that the function  0(z)= (z) analytically extends to a holomorphic function across the
boundary point iy for y > 0 except for y = a; b: Therefore, lim z!iy �(z) = 0 for such y:
When y = b or y = a; we need more e�orts. First we note that the opening angle of 
0

at iR is �� = arctanm + �=2: Therefore, ' = ( � iR)1=� extends to a conformal map
around ib: In particular, '(z) = c(z � ib)(1 + o(1)) and '0(z) = c(1 + o(1)) as z ! ib;
where c = '0(ib) 6= 0: Since  = iR + '�; we see

�(z) = Re (z � ib)
�j'(z)j��1j'0(z)j
jiR + '(z)�j

� (1 + o(1))jz � ibj�jcj
�jz � ibj��1
R

= (R�1 + o(1))�jcj�jz � ibj� = o(1)

as z ! ib: Considering 1= instead of  ; we can also see that �(z) = o(1) as z ! ia:
Finally, we consider the cases where � = 0 and � =1: We �rst claim that

lim
H3z!0

�(z) � 4

�
arctanm(< 2):

To show this, letting � > (2=�) arctanm; we consider the function h(z) =  (Æz) in
D0 = fz 2 D : Re z > 0g for Æ > 0: We can choose Æ so small that h(D0) is contained in
the sector S = fw : jargwj < ��=2g: As we saw in Example 5.1,W (S) = 2�: Therefore, by
Theorem 3.6, VD0

(h) � W (S) = 2�: Note that the function f(z) = (1+iz
1�iz

)2 maps the right
half-disk D0 conformally onto the upper half-plane. A direct computation shows that the
hyperbolic density �D0

(z) = jf 0(z)j=2Im f(z) satis�es that �D0
(z)�1 = 2Re z + O(jzj2) as

z ! 0 in D0: Hence, we see

lim
z!0

�(z) = lim
z!0

Re Æz

���� 0(Æz) (Æz)

���� = lim
z!0

1

2
�D0

(z)�1
����h0(z)h(z)

���� � 1

2
VD0

(h) � �:

Since � was arbitrary as far as � > (2=�) arctanm is satis�ed, we have now proved the
above claim. By considering 1= ; we have the same inequality when z !1 in H :
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We next apply Theorem 3.6 to the problem of quasiconformal extensibility. Our result
is based on the following theorem due to J. Becker. See, for sharpness, Becker and
Pommerenke [5].

Theorem 6.3 (Becker [4]). Let f 2 A be locally univalent. If kTfkD � 1; then f is

univalent. Furthermore, if kTfk � k for k 2 [0; 1); then f has a K-quasiconformal

extension to the whole plane, where K = (1 + k)=(1� k):

We are now in a position to show the following result.

Theorem 6.4. Suppose that a proper subdomain 
 of the punctured plane C
� satis�es

W (
) � k for some k � 1: If f 0(D ) � 
 for f 2 A; then f is univalent and, moreover, f
has a K-quasiconformal extension to the whole plane when K = (1 + k)=(1� k) <1:

See [23] for a counterpart of the theorem for meromorphic functions.

Proof. As we noted, the condition f 0(D ) � 
 implies that kTfkD � W (
) � k: We now
apply Theorem 6.3 to deduce the assertions.

Combining this with examples presented in the previous section, we obtain a series of
corollaries. (Remember the fact that circular width is invariant under rotations.) Note
that since most domains are contained in half-planes, univalence assertion is implied by
the Noshiro-Warschawski theorem in those cases.
The �rst corollary was noted by Avhadiev and Aksent'ev [3, pp. 33{34] at least when


 = 0:

Corollary 6.5. Let 0 < k � 1 and f 2 A: If jargf 0(z) � 
j < �k=4 in jzj < 1 for some

real constant 
; then f is univalent and, moreover, it extends to a K-quasiconformal

mapping of the whole plane when K = (1 + k)=(1� k) <1:

Note that the condition jargf 0(z)j < M; jzj < 1; implies quasiconformal extensibility
of f when M < �=2 (see [6]).

Corollary 6.6. Let k; r; R be positive numbers with 0 < log(R=r) � �k=2; k � 1 and let

f 2 A: If r < jf 0(z)j < M for jzj < 1; then f is univalent and, moreover, it extends to a

K-quasiconformal mapping of the whole plane when K = (1 + k)=(1� k) <1:

This sort of univalence criterion was �rst given by John [13]. The greatest number

 > 1 so that 1 < jf 0(z)j < 
 for jzj < 1 implies univalence of f is called the John
constant. He proved that log 
 � �=2; while Gevirtz [10] showed that log 
 < 0:6279�:

Corollary 6.7. Let k 2 (0; 1); a 2 C and r > 0 with r � jaj and 2r � k(jaj+pjaj2 � r2):
If f 2 A satis�es jf 0(z) � aj < r in jzj < 1; then f is univalent and extends to a K-

quasiconformal mapping of the whole plane when K = (1 + k)=(1� k) <1:

Note that the inequality ja� 1j < r must be satis�ed under the assumptions in the last
corollary because f 0(0) = 1:

Corollary 6.8. Let a; b; k be positive numbers with 0 � k � 1 such that 2t cos � � k(1�
t�) for all 0 � � � �=2; where t = (2=�)(b � a)=(b + a): If f 2 A admits the inequality

a < Re (ei
f 0(z)) < b in jzj < 1 for some real constant 
; then f is univalent and extends

to a K-quasiconformal mapping of the whole plane when K = (1 + k)=(1� k) <1:
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Corollary 6.9. Let k; r; R; � be positive numbers with 0 < log(R=r)=((1+ t)K(t)) � k �
1; where t is as in Example 5.6 and let f 2 A: If jargf 0(z)�
j < ��=2 and r < jf 0(z)j < R
in jzj < 1 for some real constant 
; then f is univalent and extends to a K-quasiconformal

mapping of the whole plane when K = (1 + k)=(1� k) <1:

Note that the last result was �rst shown by Avhadiev and Aksent'ev [2] (see also [3,
Theorem 34]) for the case 
 = 0: Related results are also given by Minda and Wright [20].
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