
Chaotic composition operators

on the classical holomorphic spaces

Abstract

We call the composition operator induced by a biholomorphic au-
tomorphism of the unit disc U a M�obius composition operator. Here,
if � has a �xed point in U , then we call � elliptic. In this paper, we
give an elementary proof to the fact that a M�obius composition oper-
ator is chaotic on the Hardy space Hp and on the Bergman space Bp

for every p 2 (0;+1) if and only if the corresponding � is non-elliptic.
This result is a generalization of Hosokawa's results in [4].

1 Introduction

Let X be a topological vector space and L : X ! X a continuous linear
operator. We say that L is hypercyclic if there is an element x of X such
that the orbit fLk(x)g is dense in X. Here Lk is the k-th iteration of L for
every positive k 2 Z. On the other hand, we say that L is chaotic if

1) the set of periodic points of L are dense in X,
2) L is transitive, and
3) L has sensitive dependence on initial condition.

(See for instance, [7] and [9].) Here ifX is (separable and) completely metriz-
able, it is well-known that the condition 1) and hypercyclicity of L imply that
L is chaotic. Hence in the case of Banach spaces, the famous hypercyclicity
criterion due to Kitai, Gethner, and Shapiro can be rewritten as a criterion
for chaos.

Proposition 1 Let X be a separable complex Banach space and L : X ! X
a bounded linear operator. Suppose that there are a dense subset S of X, a
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convergent series
P1

k=1 ak of positive numbers, and a positive constant A(x)
for every x 2 S such that L�1 exists on S and that

kLk(x)k � A(x)ajkj

for every k 2 Z, where L�k = (L�1)k for every positive k 2 Z. Then L is

chaotic.

Proof. First, L is hypercyclic by the hypercyclicity criterion (see for instance,
[5] and [9]). Next, for every x 2 S and positive k 2 Z,

yk =
+1X

m=�1

Lmk(x) 2 X;

which is periodic, i.e. Lk(yk) = yk. Also kyk� xk � 2A(x)
P1

m=1 amk, which
tends to 0 as k ! +1. Since S is dense in X, periodic points are dense in
X.

Now, let U be the unit disc in C , and Aut(U) the group of M�obius trans-
formations which preserve U . For every � 2 Aut(U), we de�ne the composi-
tion operator C� by setting

C�f = f Æ �

for any function f on U , which we call the M�obius composition operator for
�.

Next, the classical holomorphic spaces are de�ned as follows.

De�nition For every p with 0 < p < 1, the Bergman space Bp is the
space consisting of all holomorphic functions f on U such that

kfkpBp =

Z
U

jf jpdA <1;

where dA is the normalized area measure dxdy=�.
The Hardy space Hp is the space consisting of all holomorphic functions

f on U such that

kfkpHp = lim
r!1

Z 2�

0

jf(rei�)jp
d�

2�
<1:
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Here recall that the identical embedding of Hp into Bp is continuous, that
every f 2 Hp has the boundary function f(ei�) = limr!1 f(re

i�) almost all
� 2 R, and that

kfkpHp =

Z 2�

0

jf(ei�)jp
d�

2�
:

Also, if p � 1 then Hp and Bp are Banach spaces and even if p 2 (0; 1),
they are separable completely metrizable topological vector spaces, and the
following fact is well-known and easily seen.

Proposition 2 For every p with 0 < p < 1, every M�obius composition

operator is continuous on Bp and on Hp.

In the sequel, we say that � 2 Aut(U) is hyperbolic or parabolic, respec-
tively, if � has exactly two or one �xed point(s) on the unit circle @U . If � has
a �xed point in U , then we call � elliptic (including the identical map). Thus
non-elliptic elements are either hyperbolic or parabolic. And it is known ([9])
that, for every non-ellipic element of Aut(U), the corresponding M�obius com-
position operator is chaotic on the complex topological vector space H(U),
consisting of all holomorphic functions on U with the topology induced by
uniform convergence on compact sets of U .

In this paper, we give an elementary proof of the following generalization
of Hosokawa's results in [4].

Theorem 3 For every � 2 Aut(U), the following conditions are equivalent.

1) � is non-elliptic.

2) C� is chaotic on some Hardy space Hp with p 2 (0;+1).
3) C� is chaotic on every Hardy space Hp with p 2 (0;+1).
4) C� is chaotic on some Bergman space Bp with p 2 (0;+1).
5) C� is chaotic on every Bergman space Bp with p 2 (0;+1).

Here clearly 3) implies 2) and 5) implies 4). Also it is well-known that 2)
or 4) implies 1). Actually, any elliptic � 2 Aut(U), C� is not hypercyclic on
Bp and on Hp for every p 2 (0;+1). (cf. [1] and [8]. Indeed, �x p 2 (0;+1)
and an element f in Ap or in Hp arbitrarily. Let � 2 U be the �xed point
of �. Then (C�)

kf(�) = f(�) for every k 2 Z. Since the norm convergence
in Bp or in Hp implies the local uniform convergence on U , the orbit of f is
dense neither in Bp nor in Hp.) Thus we need to prove that 1) implies 3)
and 5), which will be proved in the following sections.

Finally, the author would like to hearty thanks to Professor K. Matsuzaki
and the referee for their valuable comments.
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2 M�obius composition operators for hyper-

bolic automorphisms

In this section, we prove the following

Theorem 4 Suppose that 0 < p < 1. Then for every hyperbolic � in

Aut(U), the composition operator C� on Bp and on Hp is chaotic.

Let H(U) be the set of all functions holomorphic in a neighborhood of U .
Then it is well known that H(U) is dense in Hp and in Bp. (See for instance,
[2] and [3].) In particular, Hp (as a subset) is dense in Bp. Thus we need
to prove the assertion only for the Hardy spaces. Hence we �x p 2 (0;+1),
and consider the Hardy space Hp only, though the same arguments give the
assertion for Bp.

Lemma 5 Let � be a point on the unit circle @U , and N(�) be the set of all
functions holomorphic in a neighborhood of the closed unit disc U vanishing

at �. Then N(�) is dense in Hp.

Furthermore, the subsets N(�K), consisting of all functions holomorphic

in a neighborhood of U with a zero of order not less than K � 2 at �, and
N(�; �) = N(�)

T
N(�) with another � 2 @U are also dense in Hp.

Proof. Set

gt(z) =
z � �

z � t�

for every real t > 1. Then gt 2 H(U), and supz2U jgt(z)j < 1. Hence by the
Lebesgue convergence theorem, we have

lim
t!1

kf � gtfkHp = 0

for every f 2 H(U). Since gtf 2 N(�), we have the �rst assertion. The
other cases are similar.

To estimate the norm of (C�)
kf for every k 2 Z, we divide U into the

Dirichlet fundamental regions for the cyclic group G generated by �. Let D0

be the Dirichlet fundamental region for G with the center 0, i.e.

D0 = fz 2 U j d(z; 0) < d(z; �`(0)); ` 2 Z� f0gg;
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where d(�; �) is the Poincar�e distance on U . ThenDk = �k(D0) is the Dirichlet
fundamental region for G with the center �k(0).

Remark When we map U to the upper half plane H so that 0 corresponds
to i and � to z 7! �z with � 2 (0; 1), D0 corrsponds to the domain

fz 2 H j �1=2 < jzj < ��1=2g:

In the sequel, let � and � be the attracting and the repelling �xed point
of �, i.e. corresonding to 0 and 1, respectively, on H.

Lemma 6 There are constants C > 0 and � 2 (0; 1) such that the length

L(Lk) =
R
Lk

d�=(2�) of Lk = Dk \ @U is bounded from above by C�jkj for
every k 2 Z.

Proof. There is a constant � 2 (0; 1) as in the above remark, or equivalently,
such that

�k(z) =
(�� �k�)z � (1� �k)��

(1� �k)z + ��k � �

for every k 2 Z. Hence

(�k)0(z) =
�k(�� �)2

((1� �k)z + ��k � �)2
:

Here,

(1� �k)z + ��k � � = (z � �)

�
z � �

z � �
� �k

�

if k > 0 and

��k((1� �k)z + ��k � �) = �(z � �)

�
z � �

z � �
� ��k

�

if k < 0. Since the image of D0 by (z � �)=(z � �) is disjoint from the
non-negative real axis fx 2 R j x � 0g, j(�k)0(z)j is bounded by C0�

jkj with
a suitable C0 on D0 for every k 2 Z.
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Lemma 7 Fix f 2 N(�; �). Then there is a constant C 0 such that

sup
z2Dk

jf(z)j � C 0�jkj

for every k.

Proof. Since there is a constant M such that

jf(z)j �M jz � �jjz � �j

on U and since

j�k(z)� �j � 2�k
����z � �

z � �

���� ;
we can �nd a constant M1 such that

jf(�k(z))j �M1�
k

on D0 for every positive k. The case that k is negative is similar by consid-
ering j�k(z)� �j.

Lemma 8 Under the same circumstance as above, there are constants C0

and c0 2 (0; 1) such that

k(C�)
kfkHp � C0(jkj+ 1)1=pc

jkj
0

for every k 2 Z.

Proof. Set ~p = minfp; 1g. Then lemmas 6 and 7 imply that

k(C�)
kfkpHp

�
X
m2Z

 
sup

z2Dk+m

jf(z)jp

!
� L(Lm) �

X
m2Z

C(C 0)p�jmj+pjk+mj

� C(C 0)p

0
@ X
jm+kj�jkj; jmj�jkj

(�~p)jmj+jk+mj

+
X

jm+kj>jkj

(�~p)jmj+jk+mj +
X

jmj>jkj

(�~p)jmj+jk+mj

1
A

� C(C 0)p
�
(jkj+ 1)(�~p)jkj +

4

1� (�~p)
(�~p)jkj

�
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for every k 2 Z. Hence we have the assertion with c0 = �minf1;1=pg.

Remark We can show Theorem 4 and several corollaries such as in [4]
directly by using Proposition 1. For instance, the proof of Lemma 8 implies
that �C� is chaotic on Hp if p � 1 and �1=p < j�j < ��1=p.

Finally, recall that the hypercyclicity criterion can be applied to the case
of separable completely metrizable topological vector spaces. In particular,
Lemma 8 implies the well-konwn fact that C� with a hyperbolic � is hyper-
cyclic on Hp. Thus Theorem 4 follows from the following lemma due to K.
Matsuzaki [6].

Lemma 9 For every f 2 N(�; �) and every positive odd integer 2k+1 with

k > 0, set

gk =
1X

m=�1

(C�)
(2k+1)mf:

Then there is a constant C 00 such that jgkj � C 00 on U for every k.
Moreover, gk converges to f in Hp as k !1.

Proof. First set D�(k) =
Sk

j=�k Dj, then by Lemma 7, we have

jgk(z)j �
1X

m=�1

jf(�(2k+1)m(z))j �
1X

m=�1

sup
w2�(2k+1)m(D�(k))

jf(w)j

� C 0

 
1 + 2

1X
m=1

(�k)2m�1

!
= C 0

�
1 +

2�k

1� �2k

�

for every z 2 U . Hence we have the �rst assertion.
Next, for an arbitrary � > 0, choose a positive integer k0 so that D�(k0)

contains the set

I = fei� j � � j� � �1j � �g
\
fei� j � � j� � �2j � �g

where we set � = ei�1 and � = ei�2 . If z 2 D�(k0) and if k � k0, then we
have

jf(z)� gk(z)j �
X

m2Z�f0g

jf(�(2k+1)m(z))j �
2C 0�k

1� �2k
:
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Hence we conclude that

kf � gkk
p
Hp

�
2X

j=1

Z
fj���j j<�g

jf(ei�)� gk(e
i�)jp

d�

2�
+

Z
I

jf(ei�)� gk(e
i�)jp

d�

2�

� 2
�

�
(C 0 + C 00)p +

�
2C 0�k

1� �2k

�p

;

which shows the second assertion.

3 M�obius composition operators for parabolic

automorphisms

In this section, we prove the following

Theorem 10 Suppose that 0 < p < 1. Then for every parabolic � in

Aut(U), the composition operator C� on Bp and on Hp is chaotic.

As before, we need to prove Theorem 10 for Hp only. Fix p 2 (0;+1)
and let � be the �xed point of �. Let D0 be the Dirichlet fundamental region
for the group generated by � with the center 0. Then again, Dk = �k(D0) is
the Dirichlet fundamental region for G with the center �k(0) for every k 2 Z.

Remark When we map U to the upper half plane H so that 0 corresponds
to i and � to z 7! z + 1, D0 corrsponds to the domain

fz 2 H j jRe zj < 1=2g:

Lemma 11 There is a constant C such that

L(Lk) � C(maxf1; jkjg)�2

for every k 2 Z.

Next, �x f 2 N(�K) with K � 2. Then there is a constant C 0 > 0 such

that

sup
z2Dk

jf(z)j � C 0(maxf1; jkjg)�K

for every k 2 Z.
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Proof. First, since

�k(z) = � +
z � �

1 + k
(z � �)

with a suitable 
 2 C ,

(�k)0(z) =
1

(1 + k
(z � �))2
;

and we have the �rst assertion.
Next, since

j�k(z)� �j =
jz � �j

j1 + k
(z � �)j
;

we see that there is a constant M such that Dk is contained in a disc with
center � and radius M(maxf1; jkjg)�1 for every k 2 Z. Also as before, there
is a constant M 0 such that

jf(z)j �M 0jz � �jK

on U , and hence

jf(�k(z))j � M 0 sup
z2D0

j�k(z)� �jK � M 0M(maxf1; jkjg)�K

on D0 for every k. Thus we have the second assertion.

Hence as in x2, we have the following estimates.

Lemma 12 Under the same circumstance as above, �x a positive integer K
such that Kp � 2, and f 2 N(�K). Then there is a constant C1 such that

k(C�)
kfkHp � C1(maxf1; jkjg)�2=p

for every k 2 Z.

Proof. As before, we have

k(C�)
kfkpHp �

X
m2Z

CC 0(maxf1; jmjg)�2(maxf1; jk +mjg)�Kp

� CC 0

0
@2(maxf1; jkjg)�2 +

X
jk+mj<jkj; jmj<jkj

jmj�2jk +mj�2

+
X

jk+mj>jkj

jmj�2jk +mj�2 +
X

jmj>jkj

jmj�2jk +mj�2

1
A :
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Here the second term in the right hand side is 0 if k = 0;�1, and is

jkj�1X
m=1

m�2(jkj �m)�2

�

[jkj=2]X
m=1

m�2(jkj=2)�2 +

jkj�1X
m=[jkj=2]+1

(jkj=2)�2(jkj �m)�2

� 16jkj�2
1X

m=1

m�2

if k 62 f�1; 0; 1g. Hence the right hand side is bounded from above by

CC 0(maxf1; jkjg)�2

 
2 + 16

1X
m=1

jmj�2 + 4
1X

m=1

jmj�2

!
;

which implies the assertion.

Remark For f 2 N(�K) with Kp � 3, we can show similarly as above
that there is a constant C 0

1 such that

k(C�)
kfkBp � C 0

1(maxf1; jkjg)�3=p

for every k 2 Z. Hence in the parabolic case, we can show Theorem 10
directly by using Proposition 1 forHp with 1 � p < 2 andBp with 1 � p < 3.

Finally, Lemma 12 and the hypercyclicity criterion imply that C� with
a parabolic � is hypercyclic on Hp. Hence Theorem 10 follows from the
following lemma.

Lemma 13 For every f 2 N(�K) with Kp � 2 and every positive odd

integer 2k + 1 with k > 0, set

gk =
1X

m=�1

(C�)
(2k+1)mf:

Then there is a constant C 00 such that jgkj � C 00 on U for every k.
Moreover, gk converges to f in Hp as k !1.
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Proof. First set D�(k) =
Sk

j=�k Dj, then by Lemma 11, we have

jgk(z)j �
1X

m=�1

jf(�(2k+1)m(z))j �
1X

m=�1

sup
w2�(2k+1)m(D�(k))

jf(w)j

� C 0

 
1 + 2

1X
m=1

1

k2(2m� 1)2

!

for every z 2 U . Hence we have the �rst assertion.
Next, for an arbitrary � > 0, choose a positive odd integer 2k0+1 so that

D�(k0) contains the arc I = fei� j � � j� � �0j � �g, where we set � = ei�0 .
If z 2 D�(k0) and if k � k0, then we have

jf(z)� gk(z)j �
X

m2Z�f0g

jf(�(2k+1)m(z))j �
2C 0

k2

1X
m=1

1

(2m� 1)2
:

Hence we conclude that

kf � gkk
p
Hp

=

Z
fj���0j<�g

jf(ei�)� gk(e
i�)jp

d�

2�
+

Z
I

jf(ei�)� gk(e
i�)jp

d�

2�

�
�

�
(C 0 + C 00)p +

 
2C 0

k2

1X
m=1

1

(2m� 1)2

!p

;

which shows the second assertion.
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